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Abstract. The geometric processing of remote sensing images becomes a key
issue in multi-source data integration, management and analysis for many
geomatic applications. This paper first reviews the source of geometric
distortions, compares the different mathematical models being currently used
for geometric distortion modelling, details the algorithms, methods and
processing steps and finally tracks the error propagation from the input to
the final output data.

1. Introduction

Why ortho-rectify remote sensing images? Raw images usually contain such

significant geometric distortions that they cannot be used directly with map base

products in a geographic information system (GIS). Consequently, multi-source

data integration (raster and vector) for applications in geomatics requires geometric

and radiometric processing adapted to the nature and characteristics of the data in

order to keep the best information from each image in the composite ortho-rectified

products.

The processing of multi-source data can be based on the concept of ‘terrain-

geocoded images’, a term originally invented in Canada in defining value-added

products (Guertin and Shaw 1981). Photogrammetrists, however, prefer the term

‘ortho-image’ in referring to the unit of terrain-geocoded data, where all distortions

including the relief are corrected. To integrate different data under the concept,

each raw image must be separately converted to an ortho-image so that each

component ortho-image of data set can be registered, compared, combined, etc,

pixel by pixel but also with cartographic vector data in a GIS.

Why does the geometric correction process seem to be more important today

than before? In 1972, the impact of the geometric distortions was quite negligible

for different reasons:
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. the images, such as Landsat-MSS, were nadir viewing and the resolution was

coarse (around 80–100m);

. the products, resulting from the image processing were analogue on paper;

. the interpretation of the final products was performed visually; and

. the fusion and integration of multi-source and multi-format data did not

exist.

Now, the impact of distortions, although they are similar, is less negligible because:

. the images are off-nadir viewing and the resolution is fine (sub-metre level);

. the products resulting from image processing are fully digital;

. the interpretation of the final products is realized on computer;

. the fusion of multi-source images (different platforms and sensors) is in

general use; and

. the integration of multi-format data (raster/vector) is a general tendency in

geomatics.

One must admit that the new data, the method and processing, the resulting

processed data, their analysis and interpretation introduced new needs and require-

ments for geometric corrections, due to a drastic evolution with large scientific and

technology improvements between these two periods. Even if the literature is quite

abundant mainly in terms of books and peer-reviewed articles (an exhaustive list

is given in the references), it is important to update the problems and the solutions

recently adopted for geometrically correcting remote sensing images with the latest

developments and research studies from around the world. This review paper will

then address:

. the source of geometric distortions and deformations with different categoriza-

tions (§2);

. the modelling of the distortions with different 2D/3D physical/empirical

models and mathematical functions (§3); and

. the geometric correction method with the processing steps and errors (§4).

Comparisons between the models and mathematical functions, their applic-

ability and their performance on different types of images (frame camera, visible

infra-red (VIR) and infra-red oscillating or push-broom scanners; side looking

antenna radar (SLAR) or synthetic aperture radar (SAR) sensors; high, medium or

low resolution) are also addressed. The errors with their propagation from the input

data to the final results are also evaluated through the full processing steps.

2. Sources of geometric distortions

Each image acquisition system (figure 1) produces unique geometric distortions

in its raw images and consequently the geometry of these images does not corres-

pond to the terrain or of course to a specific map projection of end-users.

Obviously, the geometric distortions vary considerably with different factors such

as the platform (aircraft versus satellite), the sensor (VIR or SAR; low to high

resolution), and also the total field of view. However, it is possible to make general

categorizations of these distortions.

The sources of distortion can be grouped into two broad categories: the observer

or the acquisition system (platform, imaging sensor and other measuring instru-

ments, such as gyroscope, stellar sensors, etc) and the observed (atmosphere

and Earth). In addition to these distortions, the deformations related to the map
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projection have to be taken into account because the terrain and most GIS

end-user applications are generally represented and performed respectively in a

topographic space and not in the geoid or a referenced ellipsoid. Table 1 describes

in more detail the sources of distortion for each category and sub-category.

Figures 1 and 2 illustrate the geometry of acquisition and the quasi-polar elliptical

orbit approximation of remote sensing satellites around the Earth, respectively. The

map deformations are logically included in the distortions of the observed.

Previous studies made a second-level categorization into low, medium and

high frequency distortions (Friedmann et al. 1983), where ‘frequency’ is determined

or compared to the image acquisition time. Examples of low, medium and high

frequency distortions are orbit variations, Earth rotation, and local topographic

effects, respectively. While this categorization was suitable in the 1980s when there

were very few remote sensing systems, today, with so many different acquisition

systems, it is no longer acceptable because it differs with each acquisition system.

For example, attitude variations are a high-frequency distortion for Quickbird or

airborne push-broom scanner, a medium-frequency distortion for SPOT-HRV and

Landsat-ETMz or a low-frequency distortion for Landsat-MSS.

The geometric distortions of table 1 are predictable or systematic and generally

well understood. Some of these distortions, especially those related to the instru-

mentation, are generally corrected at ground receiving stations or by image

vendors. Others, for example those related to the atmosphere, are not taken into

Figure 1. Geometry of viewing of a satellite scanner in orbit around the Earth.
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account and corrected because they are specific to each acquisition time and

location and information on the atmosphere is rarely available. They also are

negligible for low-to-medium resolution images.

The remaining distortions associated with the platform (figure 2) are mainly

orbit and Earth related (quasi-elliptic movement, Earth gravity, shape and move-

ment) (Escobal 1965, Centre National d’Études Spatiales 1980, Light et al. 1980).

Depending on the acquisition time and the size of the image the orbital pertur-

bations have a range of distortions. Some effects include:

. platform altitude variation in combination with sensor focal length, the

Earth’s flatness and terrestrial relief can change the pixel spacing;

. platform attitude variation (roll, pitch and yaw) can change the orientation

and the shape of VIR images; it does not affect SAR image geometry; and

. platform velocity variations can change the line spacing or create line gaps/

overlaps.

The remaining sensor-related distortions include:

. calibration parameter uncertainty such as in the focal length and the instant-

aneous field of view (IFOV) for VIR sensors or the range gate delay (timing)

for SAR sensors; and

. panoramic distortion in combination with the oblique-viewing system, Earth

curvature and topographic relief changes the ground pixel sampling along the

column.

The remaining Earth-related distortions include (figure 1):

. rotation, which generates latitude-dependent displacements between image lines;

. curvature, which for large width image creates variation in the pixel spacing; and

. topographic relief, which generates a parallax in the scanner direction.

The remaining deformations associated with the map projection are:

Table 1. Description of error sources for the two categories, the observer and the observed,
with the different sub-categories.

Category Sub-category Description of error sources

Platform (spaceborne Variation of the movement
or airborne) Variation in platform attitude

(low to high frequencies)

Sensor (VIR, SAR or HR) Variation in sensor mechanics
(scan rate, scanning velocity, etc)The observer or the

Viewing/look anglesacquisition system
Panoramic effect with field of view

Measuring instruments Time-variations or drift
Clock synchronicity

Atmosphere Refraction and turbulence

The observed
Earth Curvature, rotation, topographic

effect

Map Geoid to ellipsoid
Ellipsoid to map
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. the approximation of the geoid by a reference ellipsoid; and

. the projection of the reference ellipsoid on a tangent plane.

3. Geometric modelling of distortions

All these remaining geometric distortions require models and mathematical

functions to perform geometric corrections of imagery: either through 2D/3D

empirical models (such as 2D/3D polynomial or 3D rational functions, RFs) or

with rigorous 2D/3D physical and deterministic models. With 2D/3D physical

models, which reflect the physical reality of the viewing geometry (platform, sensor,

Earth and sometimes map projection), geometric correction can be performed

step-by-step with a mathematical function for each distortion/deformation, or

simultaneously with a ‘combined’ mathematical function. The step-by-step solution

is generally applied at the ground receiving station when the image distributors sell

added-value products (georeferenced, map oriented or geocoded) while the end

users generally use and prefer the ‘combined’ solution.

3.1. 2D/3D empirical models

The 2D/3D empirical models can be used when the parameters of the

acquisition systems or a rigorous 3D physical model are not available. Since they

do not reflect the source of distortions described previously, these models do not

Figure 2. Description of a satellite orbit and its approximation by an ellipse. XYZ are the
geocentric frame reference system. V is the longitude of the ascending node (N); v is
the argument of the perigee (P); (vzv) is the argument of the satellite; r is the
distance from the Earth centre (O) and the satellite.
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require a priori information on any component of the total system (platform,

sensor, Earth and map projection).

These empirical models are based on different mathematical functions:

. 2D polynomial functions, such as:

P2D XYð Þ~
Xm

i~o

Xn

j~o

aijX
iY j ð1Þ

. 3D polynomial functions, such as:

P3D XYZð Þ~
Xm

i~o

Xn

j~o

Xp

k~o

aijkX
iY jZk ð2Þ

. 3D RFs, such as:
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where: X, Y, Z are the terrain or cartographic coordinates; i, j, k are integer

increments; and m, n and p are integer values, generally comprised between 0

and 3, with mzn(zp) being the order of the polynomial functions, generally

three.

Each 2D 1st, 2nd and 3rd order polynomial function will then have 3-, 6- and

10-term unknowns. Each 3D 1st, 2nd and 3rd order polynomial function will then

have 4-, 10- and 20-term unknowns. The 2D/3D 1st order polynomial functions are

also called affine transformations. Each 3D 1st, 2nd and 3rd order RF will have 8-,

20- and 40-term unknowns. In fact, the 3D RFs are extensions of the co-linearity

equations (§3.3), which are equivalent to 3D 1st order RFs. Depending on the

imaging geometry in each axis (flight and scan), the order of polynomial functions

(numerator and denominator) can be different and/or specific terms, such as XY2

for 2D or XZ, YZ2 or Z3, etc for 3D, and can be differently dropped of the

polynomial functions, when these terms cannot be related to any physical element

of the image acquisition geometry. These ‘intelligent’ polynomial functions better

reflect the geometry in both axes and reduce the over-parameterization and the

correlation between terms. Okamoto (1981, 1988) already applied this reduction of

terms for one-dimensional central perspective photographs and line-scanners,

respectively.

3.1.1. 2D Polynomial functions

Since the 2D polynomial functions, with their formulation, are well known and

have been documented since the 1970s (Wong 1975, Billingsley 1983), only a few

characteristics are given. The polynomial functions of the 1st order (six terms) allow

for only correcting a translation in both axes, a rotation, scaling in both axes and

an obliquity. The polynomial functions of the 2nd order (12 terms) allow for

correction, in addition to the previous parameters, torsion and convexity in both

axes. The polynomial function of the 3rd order (20 terms) allows for correction of

the same distortions as a 2nd order polynomial function with others, which do not

necessarily correspond to any physical reality of the image acquisition system. In
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fact, previous research studies demonstrated that 3rd order polynomial functions

introduce errors in the relative pixel positioning in ortho-images, such as Landsat-

TM or SPOT-HRV (Caloz and Collet 2001) as well as in geocoding and integrating

multi-sensor images, such as SPOT-HRV and airborne SAR (Toutin 1995a).

Since the 2D polynomial functions do not reflect the sources of distortion

during the image formation and do not correct for terrain relief distortions, they

are limited to images with few or small distortions, such as nadir-viewing images,

systematically-corrected images and/or small images over flat terrain (Bannari et al.

1995). Since these functions correct for local distortions at the ground control point

(GCP) location they are very sensitive to input errors and hence GCPs have to

be numerous and regularly distributed (Leeuw et al. 1988). Consequently, these

functions should not be used when precise geometric positioning is required for

multi-source/multi-format data integration and in high relief areas.

The 2D polynomial functions, as the simplest solution, were mainly used until

the 1980s on images whose systematic distortions, excluding the relief, had already

been corrected for by the image providers. As reported by Wong (1975), 2D

4th order polynomial functions were theoretically valid for low-resolution ERTS-1

imagery to approximate a rigorous 2D physical model (Kratky 1971). Extensions to

conformal/orthogonal polynomial functions (Wong 1975, Leeuw et al. 1988) and

surface-spline functions (Goshtasby 1988) were also used for Landsat-MSS. As

mentioned in §1, good geometric accuracy was not a key factor in the analysis of

analogue images, for which 2D polynomial functions could be appropriated. More

recently, simple affine and projective functions applied to IKONOS Geo images

(Hanley and Fraser 2001) or hybrid and projective functions to IKONOS Geo and

IRS-1C images (Valadan Zoej et al. 2002) achieved good results because the images

were acquired with near-nadir viewing angles over a flat terrain. However, while it

is now known that 2D polynomial functions are not suitable regardless the image

type and size as well as the terrain relief, some users still apply them, apparently

without knowing the implications for subsequent processing operations and

resulting digital products.

3.1.2. 3D polynomial functions

The 3D polynomial functions are an extension of the 2D polynomial function

by adding Z-terms related to the third dimension of the terrain. However, they are

prone to the same problems as any empirical functions, except for the relief: i.e.

they are applicable to small images, they need numerous, regularly distributed

GCPs, they correct locally at GCPs, they are very sensitive to errors, and they have

a lack of robustness and consistency in the operational environment. Their use

should be thus limited to small images or to systematically corrected images, where

all distortions except the relief have been pre-corrected. For these reasons, 2nd order

conformal polynomial functions have been primarily used in aerial photogram-

metry during the 1960s (Baetslé 1966, Schut 1966). Due to the larger size of satellite

images, they have been mainly used with georeferenced images: SPOT-HRV (level

1 and 2) using 1st order functions (Baltsavias and Stallmann 1992, Okamoto et al.

1998); SPOT-HRV (level 1B) and Landsat-TM (level bulk or georeferenced) using

2nd order functions (Palà and Pons 1995). More recently, 1st order affine functions

were applied to IKONOS Geo products (Ahn et al. 2001, Fraser et al. 2002a, b,

Jacobsen 2002, Vassilopoulou et al. 2002). The terms related to terrain elevation in

the 3D polynomial function could be reduced to aiZ for VIR images and to aiZ and
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ajZ
2 for SAR images whatever the order of the polynomial functions used. The

main reason is that there is no physical inter-relation in the X and Z or Y and Z

directions for most of the sensors used.

In fact, Kratky (1971, 1989) already used 3rd or 4th order 3D polynomial func-

tions with this term reduction to approximate its 2D or 3D physical models

developed for ERTS or SPOT raw images respectively. The main reason for his

SPOT model was that the real-time computation for implementing his specific

physical model solution was not feasible on a stereo-workstation. He would

certainly not do this approximation with the higher-performance computers now

available. More recently, tests were also performed using Kratky’s polynomial

functions with IKONOS Geo products acquired with near-nadir viewing over high

relief areas (Kersten et al. 2000, Vassilopoulou et al. 2002). The second study

evaluated the ortho-image errors over the GCPs and 1–2m errors were achieved

depending of their number, definition and image-measurement accuracy, but this

statistical evaluation is a little biased by using checked data applied in the geometric

correction process. However as previously mentioned, the 3D affine transformation,

also evaluated in the second study, gave the same results than 4th order polynomial

functions, but with much less GCPs.

3.1.3. 3D rational functions

While occasionally used during the 1980s (Okamoto 1981, 1988), the interest

in 3D RFs has recently been renewed in the civilian photogrammetric and remote

sensing communities due to the launch of the first civilian high-resolution IKONOS

sensor in 1999. Since sensor and orbit parameters were not included in the meta-

data, 3D RFs could be an alternative to avoid the development of 3D physical

models. The 3D RFs can be used in two approaches (Madani 1999):

1. to approximate an already-solved existing 3D physical model; and

2. to normally compute the unknowns of all the polynomial functions with

GCPs.

The first approach, inappropriately called terrain-independent because the

process still requests DTM and some GCPs to remove RF bias (see below), is

performed in two steps. A 3D regular grid of the imaged terrain is first defined and

the image coordinates of the 3D grid ground points are computed using the

already-solved existing 3D physical model. These grid points and their 3D ground

and 2D image coordinates are then used as GCPs to resolve the 3D RFs and

compute the unknown terms of polynomial functions. There are some disadvan-

tages to RFs (Madani 1999):

. the inability to model local distortions (such as high-frequency variations

with VIR sensors or with SAR sensors);

. a limitation in the image size;

. the difficulty of interpretation of the parameters due to the lack of physical

meaning;

. a potential failure to zero denominator; and

. a potential correlation between the terms of polynomial functions.

A different strategy can be adopted to reduce these limitations. To improve the

ability to model local distortions, RFs should be applied to georeferenced data with

systematic distortions corrected (such as IKONOS Geo images) rather than raw
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data with no geometric distortions corrected (such as QuickBird-2 or EROS-A1).

To reduce limitation of image size, the image could be divided into sub-images,

so that separate 3D RFs are required for each sub-image (Yang 2001). This results

in more geometric but also radiometric processing. To prevent potential failure and
correlation, the non-significant and/or high-correlated terms can be eliminated to

avoid zero crossing and instability of RFs depending of image geometry (Dowman

and Dolloff 2000), as mentioned previously. To overcome some of these problems,

a ‘universal real-time image geometry model’ based on RFs has been developed

(OGC 1999). This is a dynamic RF of variable orders, whose terms can be chosen

as a function of the sensor geometry, and in which the denominator polynomials

can be, and are generally, omitted. This reduction of terms is then similar to the

orientation theory developed in the 1980s (Okamoto 1981, 1988). In addition, when
the denominator polynomials are omitted, RFs become simple 3D polynomial

functions, also used since the 1960s.

Dowman and Dolloff (2000) addressed the advantages of this ‘universal real-

time image geometry model’, such as universality, confidentiality, efficiency and

information transfer; and the disadvantages, such as loss of accuracy (it is not a

rigorous method—this may lead to errors), numerical instability of the solution

(due to over-parametrization, correlation, interpolation errors), failure for highly

distorted imagery (i.e. airborne or asynchrone-mode images), uncertainty (there is
no relation to physical perturbations) and complexity (in defining the functions and

the number of GCPs). Some of these advantages/disadvantages are also related to

3D polynomial functions, as mentioned previously.

Image vendors and government agencies that do not want to deliver satellite/

sensor information with the image and commercial photogrammetric workstation

suppliers are the main users of this first approach. Image vendors thus provide with

the image all the parameters of 3D RFs. Consequently, the user can directly process

images without GCP for generating ortho-images with DEM, and even post-
process to improve the RF parameters with GCPs. This approach was adopted by

two resellers providing RF parameters with high-resolution images: Space Imaging

with IKONOS Geo images (Grodecki 2001) and MacDonald, Dettwiler and

Associates (MDA) with QuickBird-2 images (Hargreaves and Roberston 2001)

using 3rd order RF parameters. Since biases or errors still exist after applying the

RFs, the results need to be post-processed with few precise GCPs (at least one)

(Fraser et al. 2002a) or the original RFs parameters can be refined with linear

equations requesting more precise GCPs (Lee et al. 2002). The use of GCPs in post-
processing and DEM in ortho-rectification is the reason why this approach is

inappropriately called terrain-independent.

This first approach has also been tested under specific circumstances from an

academic point of view with aerial photographs and SPOT images by computing

parameters of 1st to 3rd order RFs from already-solved 3D physical models

(Tao and Hu 2001) and with IKONOS Geo images by using the provided 3rd order

RF parameters (Fraser et al. 2002a, b, Tao and Hu, 2002).

The second approach, called terrain-dependent, can be performed by the
end-users with the same processing method as with polynomial functions. Since

there are 40 and 80 parameters for the four 2nd and 3rd order polynomial functions,

a minimum of 20 and 40 GCPs, respectively, are required to resolve the 3D RFs.

However, the RFs do not model the physical reality of the image acquisition

geometry and they are sensitive to input errors, such as the 2D/3D polynomial

functions. Since RFs, such as the 2D/3D polynomial functions, mainly correct
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locally at GCP locations and the distortions between GCPs are not entirely

eliminated (Petrie 2002), many more GCPs will be required to reduce their error

propagation in an operational environment. A piecewise approach as described

previously (Yang 2001) should also be used for large images (SPOT, Landsat, IRS,

RADARSAT), which will increase the number of GCPs proportionally to the

number of sub-images, making the method inadequate in operational environment.
However, some academic studies in a well-controlled research environment

have demonstrated the feasibility of this second approach with medium-to-high

resolution images: level-1B SPOT and/or Landsat-TM georeferenced images

(Okamoto et al. 1998, Tao and Hu 2001), RADARSAT-SAR fine mode ground

range image (Dowmann and Dolloff 2000), and IKONOS Geo images (Fraser et al.

2002a, b, Tao and Hu 2002). Generally, the results are presented with images

acquired over a flat terrain, but never over hilly or high relief areas. In fact, the

solution is highly dependent on the actual terrain relief, and on the number,

accuracy and distribution of GCPs (Tao and Hu 2002). For SPOT images, they

found that RFs were sensitive to GCP distribution. For IKONOS images, the

results were also sensitive to GCP distribution, but were not significantly better

than using 3D 1st order polynomial functions, whereas many more GCPs are used.

In fact, since the map-oriented images, such as IKONOS Geo images, are already

corrected for all geometric distortions except relief, translation-rotation-scaling

corrections in addition to relief correction are theoretically enough to achieve good

results, such as in Fraser et al. (2002a, b) and Vassilopoulou et al. (2002). However,

some of these studies and results cannot be interpreted well because the conditions

of experimentation are not properly and completely defined: such as the geometric

characteristics of images used, the level of geometric correction already applied

to images; the source, accuracy, distribution and number of GCPs; the source,

accuracy, distribution and number of checked data; the size of the terrain and its

relief, etc. Consequently, their extrapolation or adaptation to other experiments

should be carefully applied.

On the other hand, more recent studies using 3D RFs with different high-

resolution images (level-1A EROS-A1, IKONOS Geo, level-1A QuickBird-2)

showed inferior and less consistent results (Toutin et al. 2002, Kristóf et al. 2002).

Some inconsistencies and errors with the IKONOS ortho-images generated from

RFs were not explained (Davis and Wang 2001) while these errors did not appear

using the 3D physical model. Tao and Hu (2002) achieved 2.2-m horizontal

accuracy with almost 7-m bias while processing stereo IKONOS images using

1st-approach RF method. Kristóf et al. (2002) and Kim and Muller (2002) obtained

5m random errors computed on precise independent check points (ICPs) when

using, respectively, precise GCPs to compute the RFs, or the RFs provided with the

stereo-images and a post-processing with GCPs to remove the bias. Larger errors

away from the GCPs were also reported (Petrie 2002). Since the academic results

are not entirely confirmed by the end-user results, more research should be thus

performed to evaluate the true applicability and the limitations of these 3D RFs for

high-resolution images in an operational environment and also in any study site,

especially with high relief.

3.2. 2D/3D physical models

2D/3D physical functions used to perform the geometric correction differ,

depending on the sensor, the platform and its image acquisition geometry:
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. instantaneous acquisition systems, such as photogrammetric cameras, Metric

Camera (MC) or Large Format Camera (LFC);

. rotating or oscillating scanning mirrors, such as Landsat-MSS, TM or

ETMz;
. push-broom scanners, such as SPOT-HRV, IRS-1C/D, IKONOS or Quickbird;

and

. SAR sensors, such as JERS, ERS-1/2, RADARSAT-1/2 or ENVISAT.

Although each sensor has its own unique characteristics, one can draw gener-

alities for the development of 2D/3D physical models, in order to fully correct all

distortions described previously. The physical model should mathematically model

all distortions of the platform (position, velocity, attitude for VIR sensors), the

sensor (viewing angles, panoramic effect), the Earth (ellipsoid and relief for 3D) and

the cartographic projection. The geometric correction process can address each

distortion one by one and step by step or simultaneously. In fact, it is better to

consider the total geometry of viewing (platformzsensorzEarthzmap), because

some of their distortions are correlated and have the same type of impact on the

ground. It is theoretically more precise to compute one ‘combined’ parameter

only than each component of this ‘combined’ parameter, separately, avoiding also

over-parameterization and correlation between terms.

Some examples of ‘combined’ parameters include:

. the ‘orientation’ of the image is a combination of the platform heading due

to orbital inclination, the yaw of the platform and the convergence of the

meridian;

. the ‘scale factor’ in the along-track direction is a combination of the velocity,

the altitude and pitch of the platform, the detection signal time of the sensor

and the component of the Earth rotation in the along-track direction; and

. the ‘levelling angle’ in the across-track direction is a combination of platform

roll, viewing angle, orientation of the sensor and Earth curvature; etc.

Considerable research has been carried out in the development of robust and

rigorous 3D physical models describing the acquisition geometry related to different

types of images (VIR and SAR, low, medium and high resolution) and of platforms

(spaceborne and airborne). 2D physical model was developed for ERTS imagery

(Kratky 1971) and 3D physical models were developed:

. for low/medium-resolution VIR satellite images (Bähr 1976, Masson

d’Autume 1979, Sawada et al. 1981, Khizhnichenko 1982, Friedmann et al.

1983, Guichard 1983, Toutin 1983, Salamonowicz 1986, Gugan 1987,

Konecny et al. 1986, 1987, Kratky 1987, Shu 1987, Paderes et al. 1989,

Westin 1990, Robertson et al. 1992, Ackermann et al. 1995, Sylvander et al.

2000, Westin 2000);

. for high-resolution VIR satelitte images (Gopala Krishna et al. 1996,

Jacobsen 1997, Cheng and Toutin 1998, Toutin and Cheng 2000, 2002,

Bouillon et al. 2002, Chen and Teo 2002, Hargreaves and Roberston 2001,

Toutin 2003a, Westin and Forsgren 2002);

. for SAR satellite images (Rosenfield 1968, Gracie et al. 1970, Leberl 1978,

Wong et al. 1981, Curlander 1982, Naraghi et al. 1983, Guindon and Adair

1992, Toutin and Carbonneau 1992, Tannous and Pikeroen 1994);

. for VIR airborne images (Derenyi and Konecny 1966, Konecny 1976, Gibson

1984, Ebner and Muller 1986, Hofmann and Muller 1988); and
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. for airborne SLAR/SAR images (LaPrade 1963, Rosenfield 1968, Gracie et al.

1970, Derenyi 1970, Konecny 1970, Leberl 1972, Hoogeboom et al. 1984,

Toutin et al. 1992) and many others afterwards.

The 2D Kratky’s physical model for ERTS took into consideration and

mathematically modelled, step-by-step, the effects of scanner geometry, panoramic

effect, earth rotation, satellite circular orbit and attitude, non-uniform scan rate and

map projection to finalize with a dual simple equation (one for each axis), which

mathematically integrated all the previous error equations.
The general starting points of the other research studies to derive the

mathematical functions of the 3D physical model are generally:

1. the well-known collinearity condition and equations (Bonneval 1972, Wong

1980) for VIR images:

x~ {fð Þm11 X{X0ð Þzm12 Y{Y0ð Þzm13 Z{Z0ð Þ
m31 X{X0ð Þzm32 Y{Y0ð Þzm33 Z{Z0ð Þ ð4Þ

y~ {fð Þm21 X{X0ð Þzm22 Y{Y0ð Þzm23 Z{Z0ð Þ
m31 X{X0ð Þzm32 Y{Y0ð Þzm33 Z{Z0ð Þ ð5Þ

where: (x,y) are the image coordinates; (XYZ) are the map coordinates;

(X0Y0Z0) are the projection centre coordinates; 2f is the focal length of the

VIR sensor; and [mij] are the nine elements of the orthogonal 3-rotation

matrix.
2. The Doppler and range equations for radar images:

f~
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�!
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!
{P
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ð6Þ
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where: f is the Doppler value; r is the range distance; S
!

and VS
�!

are the

sensor position and velocity; P
!

and VP
�!

are the target point position and

velocity on the ground; and l is the radar wavelength.

It should be noted that the collinearity equations were adapted as radargram-

metric equations to process radar images (Leberl 1972, 1990) and later as an

integrated and unified mathematic equations to process multi-sensor (VIR or radar)

images (Toutin 1995b).
The collinearity equations are valid for an instantaneous image or scanline

acquisition, such as photogrammetric cameras (LFC, MC), VIR scanner sensors

(SPOT, Landsat) and the Doppler-range equations are valid for a SAR scanline.

However, since the parameters of neighbouring scanlines of scanners are highly

correlated, it is possible to link the exposure centres and rotation angles of the

different scanlines to integrate supplemental information, such as:

. the ephemeris and attitude data using celestial mechanic laws (figure 2) for

satellite images; or

. the global positioning system (GPS) and inertial navigation system (INS)

data for airborne images.

The integration of the different distortions and the mathematical derivation of

equations for different sensors are outside the scope of this paper. They are
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described for photogrammetric cameras in Bonneval (1972) and Wong (1980), for

scanner images in Leberl (1972), Konecny (1976) and Masson d’Autume (1979),

for ERTS/Landsat images in Kratky (1971), Bähr (1976) and Salamonowicz (1986),

for push-broom scanners, such as SPOT, in Guichard (1983), Toutin (1983) and

Konecny et al. (1986, 1987), and for SAR data in Leberl (1978) and Curlander (1982).

4. Methods, processing and errors

Whatever the mathematical functions used, the geometric correction method

and processing steps are more or less the same. The processing steps are (figure 3):

. acquisition of image(s) and pre-processing of metadata;

. acquisition of the ground points (control/check/pass) with image coordinates

and map coordinates X, Y, (Z);
. computation of the unknown parameters of the mathematical functions used

for the geometric correction model for one or more images; and

. image(s) rectification with or without DEM.

The main differences in the processing steps between physical and empirical

models are in italic style and between 2D and 3D models are in bold style. The

metadata are useless for empirical models because the models do not reflect the

geometry of viewing, while the Z-elevation coordinates for GCPs and DEM are of

no use for 2D empirical models.

4.1. Acquisition of images and metadata

With VIR images, different types of image data with different levels of pre-

processing can be obtained, but the different image providers unfortunately use a

Figure 3. Description of the geometric correction method and processing steps. The ellipse
symbols are input/output data and the box symbols are processes.
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range of terminology to denominate the same type of image data. Standardization

should be better defined, mainly for the convenience of end-users:

. raw images with only normalization and calibration of the detectors (e.g. level

1A for SPOT and basic for EROS-A1 or QuickBird-2) without any geometric

correction are satellite-track oriented. In addition, full metadata related to

sensor, satellite (ephemeris and attitude) and image are provided;
. geo-referenced images (e.g. level 1B for SPOT or 1G for Landsat-ETMz)

corrected for systematic distortions due to the sensor, the platform and the

Earth rotation and curvature are satellite-track oriented. Generally, few

metadata related to sensor and satellite are provided; some of metadata are

related to the 1B processing; or

. map-oriented images, also called geocoded images, (e.g. level 2A for SPOT,

Cartera Geo for IKONOS or Standard for QuickBird-2) corrected for the

same distortions as geo-referenced images are North oriented. Generally, very

few metadata related to sensor and satellite are provided; most of metadata

are related to the 2A processing and the ellipsoid/map characteristics.

For simplicity, the easiest terminology defined for SPOT images are used. The

raw ‘level 1A’ images are preferred by photogrammetrists because 3D physical

models derived from co-linearity equations are well known and developed and

easily used in softcopy workstations. Since different 3D physical models are largely

available for such VIR images, raw 1A-type images should be now favoured by the

remote sensing community too. Specific software to read and pre-process the

appropriate metadata (ephemeris, attitude, sensor and image characteristics) have

to be realized for each image sensor according to the 3D physical model used.

Using celestial mechanics laws and Lagrange equations (Escobal 1965, Centre

National d’Études Spatiales 1980, Light et al. 1980) the ephemeris (position and

velocity) can be transformed into specific osculatory orbital parameters to reduce

the time-related effects (figure 2) (Toutin 1983). Since the Lagrange equations take

into account the variation of the Earth gravitational potential to link the different

positions of the satellite during the image formation, it is more accurate and robust

than using a constant ellipse with 2nd order time-dependent polynomial functions

(Guichard 1983, Toutin 1983, Tannous and Pikeroen 1994, Bannari et al. 1995).

This statement is more applicable when ‘long-strip’ images from a same orbit are

used with low-resolution images (Robertson et al. 1992, Sylvander et al. 2000,

Westin 2000), with images path processing (Toutin 1985, Sakaino et al. 2000) or a

block bundle adjustment method (Veillet 1991, Campagne 2000, Kornus et al. 2000,

Cantou 2002, Toutin 2002b, c, 2003). 3D physical models were also applied to high-

resolution airborne images (Konecny 1976, Gibson 1984, Ebner and Muller 1986)

or spaceborne images, such as IRS–1C/D (Gopala Krishna et al. 1996, Jacobsen

1997, Cheng and Toutin 1998), EROS (Chen and Teo 2002, Westin and Forsgren

2002), SPOT-5 (Bouillon et al. 2002) and QuickBirb-2 (Hargreaves and Roberston

2001, Toutin and Cheng 2002) for achieving pixel accuracy or better. Some results

were presented using 3D RFs with SPOT images (Dowman and Dolloff 2000, Tao

and Hu 2001), but the conditions of experimentation (study site and terrain relief,

image characteristics, cartographic data and accuracy, polynomial order) were not

fully explained. To our knowledge, no results were published with high-resolution

airborne or spaceborne images (EROS-A1, SPOT-5, QuickBird-2) using 3D RF’s

due their inability to model high-frequency distortions inherent to raw level-1A

images (Madani 1999, Dowman and Dolloff 2000).
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Since they have been systematically corrected and georeferenced, the ‘level 1B’

images just retain the terrain elevation distortion, in addition to a rotation-

translation related to the map reference system. A 3D 1st order polynomial model

with Z-elevation parameters could thus be efficient depending of the requested final

accuracy. For scanners with across-track viewing capability, only the Z-elevation

parameter in the X-equation is useful. The 2nd order polynomial models could

also be used (Palà and Pons 1995) for correcting some residual errors of the 1B

processing. When possible, solutions to overcome the empirical model approxima-

tion are either to convert the 1B-images back into 1A-images using the metadata

and the reverse transformation (Al-Roussan et al. 1997), or to ‘re-shape and re-size’

the 1B-images to the raw imagery format (Valadan Zoej and Petrie 1998). This

1B-geometric modelling can be mathematically combined with normal level-1A 3D

physical model to avoid multiple image resampling. Although this mathematical

procedure used for 1B images works better than empirical models, it is still

recommended that raw images with 3D rigorous physical models (co-linearity

equations) be directly used.

The map-oriented images (‘level 2A’) also retain the elevation distortion but

image lines and columns are no more related to sensor-viewing and satellite

directions. A 3D 1st order polynomial model with Z-elevation parameters in both

axes can thus be efficient depending of the requested final accuracy. Such as for

level 1B, 2nd order empirical models (polynomial or rational) can be used for

correcting some residual errors of the 2A processing, but it is generally no longer

possible to convert back the 2A image with the reverse transformation. Due to the

fact that IKONOS Geo images are already corrected for the systematic geometric

distortions, 2D/3D empirical models were recently applied to achieve pixel accuracy

or better:

. 2D first-order polynomial and RF functions (Hanley and Fraser 2001);

. 3D first-order polynomial functions (Ahn et al. 2001, Fraser et al. 2002a,b,

Vassilopoulou et al. 2002);

. 3D fourth-order polynomial functions (Kersten et al. 2000, Vassilopoulou

et al. 2002);

. 3D third-order RF functions using the 1st approach (described in §3.1.3) with

parameters computed from the Space Imaging camera model (Grodecki 2001,

Fraser et al. 2002a,b, Tao and Hu 2002); and

. 3D third-order RF functions using the 1st approach (described in §3.1.3) with

parameters provided with Geo images and using GCPs either to remove bias

(Fraser et al. 2002a) or to improve the original RF parameters (Lee et al. 2002).

Although the results are in the order of pixel accuracy or sometimes better, and

are correlated with GCP definition and image-measurement accuracy, they were

generally achieved using images or sub-images acquired over flat terrain and

processed with very accurate cartographic data (0.10m). Only few results were

published in high relief terrain using 3D polynomial functions (Kersten et al. 2000,

Vassilopoulou et al. 2002). However, they were all achieved in an academic

environment or by the image providers where errors and processing are well

controlled. Since other academic or operational studies using the 1st or 2nd RF

approach obtained larger errors of few (2–5) pixels (Davis and Wang 2001, Kristóf

et al. 2002, Kim and Muller 2002, Petrie 2002, Tao and Hu 2002 and other

unpublished studies), care must be then taken by end-users in the extrapolation

of these results using empirical models in operational environments to any
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high-resolution image acquired over any terrain and processed with any

cartographic data.

However, a 3D physical model has been approximated and developed for

IKONOS Geo images using basic information of the metadata and celestial

mechanics laws (Toutin and Cheng 2000). Even approximated, this 3D physical

model (‘using a global geometry and adjustment’) has been proven to be robust

and to achieve consistent results over different study sites and environments (urban,

semi-rural, rural, Europe, North and South America), different relief (flat to high)

and different cartographic data (DGPS, ortho-photos, digital topographic maps,

DEM) (Toutin 2003a). This 3D physical model has been used in different

applications, such as for digital image basemap generation (Davis and Wang 2001),

in urban management (Hoffman et al. 2001, McCarthy et al. 2001, Meinel and

Reder 2001, Ganas et al. 2002) or in land resources management (Kristóf et al.

2002, Toutin 2003b).

SAR images are standard products in slant or ground range presentations. They

are generated digitally during post-processing from the raw signal SAR data

(Doppler frequency, time delay). Errors present in the input parameters related to

image geometry model will propagate through to the image data. These include

errors in the estimation of slant range and of Doppler frequency and also errors

related to the satellite’s ephemeris and the ellipsoid. Assuming the presence of some

geometric error residuals, the parameters of a 3D physical model reflect these

residuals. As mentioned previously, the 3D physical model starts generally either

from the traditional Doppler and range equations (Curlander 1982), from the

equations of radargrammetry (Konecny 1970, Leberl 1978, 1990), or from general-

ized equations (Leberl 1972, Masson d’Autume 1979, Toutin 1995b). Due to the

large elevation distortions in SAR images, 2D polynomial models cannot be used,

even in rolling topography (Toutin 1995a) or to extract planimetric features (de

Sève et al. 1996). Furthermore, since different 3D SAR physical models are largely

available, few attempts have been done to apply 3D polynomial or RF empirical

models to SAR images (spaceborne or airborne). Dowman and Dolloff (2000)

presented preliminary results with one RADARSAT-1 SAR fine mode image but

the conditions of experimentation (study site and terrain relief, cartographic data

and accuracy, type and approach of RFs) were not described. Extrapolation to

other SAR data is not therefore recommended.

4.2. Acquisition of GCPs

Whatever the VIR and/or SAR geometric model used, even with the RF

‘terrain-independent’ approach to remove the bias or refine RF parameters, some

GCPs have to be acquired to compute/refine the parameters of the mathematical

functions in order to obtain a cartographic standard accuracy. Generally, an

iterative least-square adjustment process is applied when more GCPs than the

minimum number required by the model (as a function of unknown parameters)

are used. The number of GCPs is a function of different conditions: the method

of collection, sensor type and resolution, image spacing, geometric model, study

site, physical environment, GCP definition and accuracy and the final expected

accuracy. If GCPs are determined a priori without any knowledge of the images to

be processed 50% of the points may be rejected. If GCPs are determined a posteriori

with knowledge of the images to be processed, the reject factor will be smaller

(20–30%). Consequently, all the aspects of GCP collection do not have to be
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considered separately, but as a whole to avoid too large discrepancies in accuracy of

these different aspects. For example, differential GPS survey should not be used to

process Landsat data in mountainous study site, nor should road intersections and

1 : 50 000 topographic maps be used to process QuickBird images if 1–2m final
accuracy is expected, etc. The weakest aspect in GCP collection, which is of course

different for each study site and image, will thus be the major source of error in the

error propagation and overall error budget of the bundle adjustment.

Since empirical models do not reflect the geometry of viewing and do not filter

errors, many more GCPs than the theoretical minimum are required to reduce the

propagation of input errors in the geometric models. When the cartographic data

accuracy and/or the positioning accuracy are in the same order of magnitude as

the image resolution, twice as many is a minimum requirement: around 20, 40 or 80
GCPs should then be acquired for 2nd order 2D polynomial, 3D polynomial or 3D

terrain-dependent RF models respectively. The 3rd order models obviously required

more GCPs, mainly RFs. Furthermore, to insure robustness and consistency in

an operational environment, it is safer to collect more than twice the minimum

required mentioned previously. This could therefore be a restriction in the use

of such empirical models in an operational environment. However, when using 3D

1st-approach RF models with the already-computed parameters provided by the

image vendor, a few (1–10) GCPs only are needed to remove the bias or to refine
the RF parameters. When more than one image is processed, each image requires

its own GCPs and the geometric models are generally computed separately

(no relative orientation or link between adjacent images). However, some block

adjustment can be performed with RFs (Dial and Grodecki 2002, Fraser et al.

2002a). Since empirical models are sensitive to GCP distribution and number,

GCPs should be spread over the full image(s) in planimetry and also in the

elevation range for the 3D models to avoid large errors between GCPs. It is also

better to have medium-accurate GCPs (lakes, tracks, ridges) than no GCP at the
tops of mountains. If the image is larger than the study site it is recommended to

reduce the GCP collection to the study site area because the empirical models only

correct locally.

With 3D physical models, fewer GCPs (1–6) are theoretically required per

image. When more than one image is processed a spatio-triangulation method with

3D block-bundle adjustment can be used to process all images together (VIR and

SAR). It enables users to reduce drastically the number of GCPs for the block with

the use of tie points (TPs) (Veillet 1991, Belgued et al. 2000, Campagne 2000,
Kornus et al. 2000, Sakaino et al. 2000, Cantou 2002, Toutin 2003b, c, d). When

the map and positioning accuracy is of the same order of magnitude as the image

resolution, twice (or a little less) the theoretical minimum is recommended. When

the accuracy is worse, the number should be increased depending also on the final

expected accuracy (Savopol et al. 1994). Since more confidence, consistency and

robustness can be expected with physical models (global image processing, filtering

input errors) than with empirical models, it is not necessary to increase the number

of GCPs in operational environments. GCPs should preferably be spread at
the border of the image(s) to avoid extrapolation in planimetry, and it is also

preferable to cover the full elevation range of the terrain (lowest and highest

elevations). Contrary to empirical models, it is not necessary to have a regular

distribution in the planimetric and elevation ranges. Since the physical models

correct globally the GCP collection has to be performed in the full image size, even

if the study site is smaller. First, it will be easier to find GCPs over the full image
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than over a sub-area and more homogeneity is thus obtained in the different area of

the image.
GCP cartographic co-ordinates can be obtained from global positioning system

(GPS), air photo surveys, paper or digital maps, GIS, ortho-rectified photos or

images, chip database, etc, depending on the requested accuracy of the input/output

data. The cartographic co-ordinates obtained from these sources have drastically

different accuracies: from better than 0.2m with differential GPS to 25–50m with

1 : 50 000 paper maps, certainly the most common GCP source used around the

world. Consequently, with lower accuracy more GCPs must be used (Savopol et al.

1994). The image co-ordinates are obtained interactively on the screen or auto-

matically using GCP chip database and image correlation tools. When more than

multiple images with overlapping coverage are processed the image co-ordinates are

obtained either in stereoscopy (the best solution) or simultaneously in ‘double

monoscopy’ because some workstations do not have full stereoscopic capabilities

for multi-sensor images. The ‘double monoscopy’ image measurements will then

create artificial X- and Y-parallaxes (a few pixels) between the images, and the

parallax errors will propagate through the bundle adjustment (relative and absolute

orientations). The error propagation is larger with SAR images than with VIR

images due to a lower image-measurement accuracy (1–2 pixels versus M–K pixel),

and increases with smaller intersection angles, but also with shallower same-side

SAR look angles (Toutin 1998, 1999). Consequently, where possible, true stereo-

scopic image measurements with human depth perception should be used. These

enable a better relative correspondence of the GCP between the images and a better

absolute positioning on the ground.

4.3. Geometric model computation

When more than one image (VIR or SAR) is processed over a large study

site (figure 4), a spatio-triangulation process based on a block adjustment can be

first applied simultaneously to compute all geometric models (figure 3). The spatio-

triangulation method has been developed and applied with different VIR/SAR/HR

data using 3D physical models (Veillet 1991, Belgued et al. 2000, Campagne 2000,

Kornus et al. 2000, Sakaino et al. 2000, Cantou 2002, Toutin 2003b, c, d), as well as

with IKONOS data using 3D RF models (Dial and Grodecki 2002, Fraser et al.

2002). The first group of tests was achieved over different terrain including

mountainous areas while the last group of tests was only achieved over flat terrain.

Figure 4 is an example of a block over the Canadian Rocky Mountains (BC)

(600 km by 530 km) with 15 level-1G Landsat-ETMz images formed with five strips

and three rows (Toutin 2003c).

All model parameters of each image/strip are determined by a common

least-squares adjustment so that the individual models are properly tied in and the

entire block is optimally oriented in relation to the GCPs. With the spatio-

triangulation process, the same number of GCPs is theoretically needed to adjust a

single image, an image strip or a block. However, some tie points (TPs) between the

adjacent images have to be used to link the images and/or strips. Elevation of TPs

(ETPs) must be added when the intersection geometry of the adjacent images is

weak, such as with intersection angles less than 15‡–20‡ (Toutin 2003b, c, d). There

are a number of advantages to the spatio-triangulation process, namely:

. the reduction of the number of GCPs;

. a better relative accuracy between the images can be obtained;
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. a more homogeneous and precise mosaic over large areas can be obtained; and

. a homogeneous GCP network can be generated for future geometric processing.

Whatever the number of images (spatio-triangulation or single image) and

the geometric models (physical or empirical) used, each GCP contributes to two

observation equations: an equation in X and an equation in Y. The observation

equations are used to establish the error equations for GCPs, TPs, and ETPs. Each

group of error equations can be weighted as a function of the accuracy of the image

and cartographic data. The normal equations are then derived and resolved with

the unknowns computed. In addition for the 3D physical models, conditions or

constraints on osculatory orbital parameters or other parameters (GPS/INS) can

be added in the adjustment to take into account the knowledge and the accuracy of

the ephemeris or other data, when available. They thus prevent the adjustment from

diverging and they also filter the input errors.

Since there are always redundant observations, in order to reduce the input

error propagation in the geometric models a least-square adjustment is generally

Figure 4. Image block of 15 level-1G Landsat-7 ETMz images over Rocky Mountains,
Canada (600 km6530 km) generated from five strips and three rows. The lined
images are acquired from the same orbit and date and can be used as a single image
with path processing (Toutin 2003c).
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used. When the mathematical equations are nonlinear, which is the case for

physical and 2nd and higher order empirical models, some means of linearization

(series expansions or Taylor’s series) must be used. A set of approximate values for

the unknown parameters in the equations must be thus initialized:

. to zero for the empirical models, because they do not reflect the image

acquisition geometry; or

. from the osculatory orbital/flight and sensor parameters of each image for the

physical models.

More information on least-squares methods applied to geomatics data can be

obtained in Mikhail (1976) and Wong (1980). The results of this processing step are:

. the parameter values for the geometric model used for each image;

. the residuals in X and Y directions (and Z if more than one image is

processed) for each GCP/ETP/TP and their root mean square (rms) residuals;

. the errors and bias in X and Y directions (and Z if more than one image is

processed) for each ICP if any, and their rms errors; and

. the computed cartographic coordinates for each point, including ETPs and TPs.

When more GCPs than the minimum theoretically required are used, the GCP

rms residuals reflect the modelling accuracy, while the ICP rms errors reflect the

final accuracy taking into account ICP accuracy. As mentioned previously, this

final accuracy is mainly dependent on the geometric model and the number of

GCPs used versus their cartographic and image co-ordinate errors. When ICPs

are not accurate, their errors are included in the computed rms errors; con-

sequently, the final internal accuracy of the modelling will be better than these rms

errors.

When no ICP is available, GCP rms residuals can be carefully used as an approx-

imation of the final accuracy, only when using physical models. However, the fact

that GCP rms residuals can be small with empirical models does not indicate

necessarily a good accuracy because these models correct locally at GCPs and the

least-square adjustment minimizes residuals at GCPs. Errors are still present

between GCPs (Davies and Wang 2001, Petrie 2002). On the other hand by using

overabundant GCPs with physical models, the input data errors (image

measurement and/or map) do not propagate through the physical models but

are mainly reflected in the GCP residuals due to a global adjustment. Consequently,

it is thus ‘normal and safe’ with 3D physical models to obtain RMS residuals in the

same order of magnitude than the GCP accuracy, but the physical model by itself

will be more accurate: in other words, the internal accuracy of image(s) will be

better than the rms residuals. In contrast to empirical methods, which are sensitive

to GCP number and spatial distribution (including their elevation), the 3D physical

models are not affected by these factors because they precisely retain the complete

viewing geometry, provided that there is no extrapolation in planimetry and also in

elevation.

4.4. Image rectification

The last step of the geometric processing is image rectification (figure 3). To

rectify the original image into a map image, there are two processing operations:

. a geometric operation to compute the cell coordinates in the original image

for each map image cell; and
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. a radiometric operation to compute the intensity value or digital number

(DN) of the map image cell as a function of the intensity values of original

image cells that surround the previously-computed position of the map image

cell.

4.4.1. Geometric operation

The geometric operation requires the two equations of the geometric model with

the previously computed unknowns, and sometimes elevation information. Since

2D models do not use elevation information, the accuracy of the resulting rectified

image will depend on the image viewing/look angle and the terrain relief. On the

other hand, as 3D models take into account elevation distortion DEM is thus

needed to create precise ortho-rectified images. This rectification should then be

called an ortho-rectification. But if no DEM is available, different altitude levels

can be input for different parts of the image (a kind of ‘rough’ DEM) to minimize

this elevation distortion. It is then important to have a quantitative evaluation of the

DEM impact on the rectification/ortho-rectification process, both in terms of eleva-

tion accuracy for the positioning accuracy and of grid spacing for the level of

details. This last aspect is more important with high-resolution images because a

poor grid spacing when compared to the image spacing could generate artefacts for

linear features (wiggly roads or edges).

Figures 5 and 6 give the relationship between the DEM accuracy (including

interpolation in the grid), the viewing and look angles with the resulting positioning

error on VIR and SAR ortho-images, respectively. These curves were mathe-

matically computed with the elevation distortion parameters of a 3D physical

model (Toutin 1995b). However, they could be also used as approximation for

other 3D physical and empirical models. One of the advantages of these curves is

that they can be used to find any third parameter when the two others are known.

This can be useful not only for quantitative evaluation of the ortho-rectification,

Figure 5. Relationship between the DEM accuracy (m), the viewing angle (‡) of the VIR
image, and the resulting positioning error (in metres) generated on the ortho-image
(Toutin 1995b).
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but to forecast the appropriate input data, DEM or the viewing/look angles,

depending of the objectives of the project.

For example (figure 5), with a SPOT image acquired with a viewing angle of 10‡
and having a 45m accurate DEM, the error generated on the ortho-image is 9m.

Inversely, if a 4m final positioning accuracy for the ortho-image is required and

having a 10-m accurate DEM, the VIR image should be acquired with a viewing

angle less than 20‡. The same error evaluation can be applied to SAR data using

the curves of figure 6. As another example, if positioning errors of 60m and 20m on

standard-1 (S1) and fine-5 (F5) ortho-images, respectively are required, a 20m

elevation error, which includes the DEM accuracy and the interpolation into the

DEM, is thus sufficient. For high-resolution images (spaceborne or airborne), the

surface heights (buildings, forest, hedges) should be either included in the DEM

to generate a digital surface model (DSM) or taken into account in the overall

elevation error. In addition, an inappropriate DEM in term of grid spacing can

generate artifacts with high-resolution images acquired with large viewing angles,

principally over high relief areas (Zhang et al. 2001).

Finally, for any map coordinates (X, Y), with the Z-elevation extracted from a

DEM when 3D models are used, the original image coordinates (column and line)

is computed from the two resolved equations of the model. However, the computed

image coordinates of the map image coordinates will not directly overlay in the

Figure 6. Relationship between the DEM accuracy (m), the look angle (‡) of the SAR
image, and the resulting positioning error (in metres) generated on the SAR ortho-
image. The different boxes at the bottom represent the range of look angles for each
RADARSAT beam mode. (Toutin 1998).

1914 T. Toutin



original image; in other words, the column and line computed values will rarely, if

ever, be integer values.

4.4.2. Radiometric operation

Since the computed coordinate values in the original image are not integers,

one must compute the DN to be assigned to the map image cell. In order to do this,

the radiometric operation uses a resampling kernel applied to original image cells:

either the DN of the closest cell (called nearest neighbour resampling) or a specific

interpolation or deconvolution algorithm using the DNs of surrounding cells. In

the first case, the radiometry of the original image and the image spectral signatures

are not altered, but the visual quality of the image is degraded. In addition to the

radiometric degradation, a geometric error of up to half pixel is also introduced.

This can cause a disjointed appearance in the map image. If these visual and

geometric degradations are acceptable for the end user, it can be an advantageous

solution.

In the second case, different interpolation or deconvolution algorithms (bilinear

interpolation or sinusoidal function) can be applied. The bilinear interpolation

takes into account the four cells surrounding the cell. The final DN is then either

computed from two successive linear interpolations in line and column using DNs

of the two surrounding cells in each direction or in one linear interpolation using

DNs of the four surrounding cells. The DNs are weighted as a function of the

cell distance from the computed coordinate values. Due to the weighting function

this interpolation creates a smoothing in the final map image.

The theoretically ideal deconvolution function is the sin(x)/x function. As this

function has an infinite domain it cannot be exactly computed. Instead, it can be

represented by piecewise cubic function, such as the wellknown cubic convolution.

The cubic convolution then computes 3rd order polynomial functions using a

464 cell window. DNs are first computed successively in the four-column and -line

direction, and the final DN is an arithmetical mean of these DNs. This cubic

convolution does not smooth, but enhances and generates some contrast in the map

image (Kalman 1985).

Due to computer improvement over recent years, the sin(x)/x function can now

be directly applied as deconvolution function with different window sizes (generally

868 or 16616). The computation time with 16616 cell window can be 40–80

times more than the computation time for nearest neighbour resampling. The final

image is, of course, sharper with more detailed features.

All these interpolation or deconvolution functions can be applied to VIR or

SAR images. However, they are geometric resampling kernels, not very well

adapted to SAR images. Instead, it is better to use statistical functions based on the

characteristics of the radar, such as existing adaptive filters using local statistics

(Lee 1980, Lopes et al. 1993, Touzi 2002). Combining filtering with resampling also

avoids multiple radiometric processing and transformation, which largely degrades

the image content and its interpretation (Toutin 1995b).

Since interpolation or deconvolution functions transform the DNs and then

alter the radiometry of the original image, problems may be encountered in sub-

sequent spectral signature or pattern recognition analysis. Consequently, any

process based on image radiometry should be performed before using interpolation

or deconvolution algorithms.

Figures 7 and 8 are examples of the application of different resampling kernels
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with Quickbird high-resolution VIR image and RADARSAT-SAR fine mode (F5)

images, respectively. Sub-images (2006200 pixels) were resampled with a factor of

six to better illustrate the variations of the resampling kernels: the Quickbird and

RADARSAT resampled image pixels are then 0.10m and 1.10m, respectively. The

letters A, B, C and D refer to different geometric resampling kernels (nearest

neighbour, bilinear, cubic convolution, sin(x)/x with 16616 window), respectively

and the letters E and F refer to statistical SAR filters (Enhanced Lee and Gamma),

respectively. For both VIR and SAR images, the nearest neighbour resampling
kernel (A) generates ‘blocky’ images with rectangular-edge features, while the

bilinear resampling kernel (B) generates fuzzy images with the feeling of ‘out of

focus’ images. The best results are obtained with the sinusoidal resampling kernels

(C and D): even if there are few differences the true sinusoidal function (D)

generates sharper features. As an example on the Quickbird image (figure 7), the

two cars in the front of the houses are better defined in D: the windshield and rear

(a) (b)

(c) (d)

Figure 7. Examples of applications of geometric resampling kernels used in the rectifica-
tion process with a Quickbird image. The sub-images are 350 by 350 pixels with
0.10-m spacing. Letters A, B, C and D refer to different geometric resampling kernels
(nearest neighbour, bilinear, cubic convolution, sin(x)/x with 16616 window),
respectively. Quickbird Image # Digital Globe, 2001.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Examples of applications of geometric resampling kernels used in the rectification
process with RADARSAT-SAR fine mode (F5) image. The sub-images are 600 by 600
pixels with 1.00-m spacing. Letters A, B, C andD refer to different geometric resampling
kernels (nearest neighbour, bilinear, cubic convolution, sin(x)/x with 16616 window),
respectively and letters E and F refer to statistical SAR filters (Enhanced Lee and
Gamma), respectively. RADARSAT Images # Canadian Space Agency, 2001.
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window can be perceived on the car underneath while only the windshield is visible

on the other car. It helps to differentiate a car and a station wagon! For the SAR

image (figure 8), the two filters (E and F) give even better image appearance than

the sinusoidal resampling, due to the fact that the SAR speckle is filtered at the

same time.

5. Concluding remarks

Since the launch of the first civilian remote sensing satellite in the 1970s, the

needs and requirements for geometrically processed remote sensing images have

drastically changed. Furthermore, the integration of multi-format data in a digital

world requires the highest accuracy possible so as to perform the ortho-rectification

of multi-sensor images. For the last twenty years, two mathematical solutions have

been developed for the geometric processing of remote sensing images: the physical

and empirical models.

The major advantages of physical modelling over empirical modelling is mainly

due to the fact that the mathematical functions correspond to the physical reality

of the viewing geometry and take into account all the distortions generated in

the image formation, while empirical model parameters do not have any physical

meaning (Madani 1999, Dowman and Dolloff 2000). When the parameters have a

physical meaning, bad or erroneous results are easy to find and interpret. Previous

research studies with low/medium-resolution images (Salamonowicz 1986, Novak

1992, Toutin 1995a, de Sève et al. 1996), review papers and books (Konecny 1979,

Wiesel 1984, Leberl 1990, Bannari et al. 1995, Caloz and Collet 2001) are all in

agreement with these above statements. In addition, Dowman and Dolloff (2000)

mentioned that there is no unanimity on the role for RFs to be adopted as a

universal standard, and that the consensus seems to be in favour of rigorous

physical models, but that RFs may be sometimes inevitable for some sensors. In

other words, 3D physical and deterministic models should be the primary choice

whenever available. In fact, the mathematical parameterization of physical and

deterministic models has always been a major issue in scientific research and

achievement.

References
ACKERMAN, F., FRITSCH, D., HAHN, M., SCHNEIDER, F., and TSINGAS, V., 1995, Automatic

generation of digital terrain models with MOMS-02/D2 data. Proceedings of the
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grammétrie générale: Tome 3, Collection scientifique de l’Institut Géographique
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Photogrammétrie et de Télédétection, 159, 59–65.
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TOUTIN, T., CHÉNIER, R., and CARBONNEAU, Y., 2002, 3D models for high resolution
images: examples with QuickBird, IKONOS and EROS. Proceedings of Joint
International Symposium on Geospatial Theory, Processing and Applications (ISPRS,
IGU, CIG), Ottawa, Ontario, Canada, 8–12 July 2002, CD-ROM.

TOUZI, R., 2002, A review of speckle filtering in the context of estimation theory. IEEE
Transactions on Geoscience and Remote Sensing, 40, in press.

VALADAN ZOEJ, M. J., and PETRIE, G., 1998, Mathematical modelling and accuracy testing
of SPOT Level-1B stereo-pairs. Photogrammetric Record, 16, 67–82.

VALADAN ZOEJ, M. J., MANSOURIAN, A., MOJARADI, B., and SADEGHIAN, S., 2002, 2D
geometric correction of IKONOS imagery using genetic algorithm. International
Archives of Photogrammetry and Remote Sensing and Spatial Information Sciences,
Vol. 34 (B4), CD-ROM (unpaginated).

VASSILOPOULOU, S., HURNI, L., DIETRICH, V., BALTSAVIAS, E., PATERAKI, M., LAGIOS, E.,
and PARCHARIDIS, I., 2002, Orthophoto generation using IKONOS imagery and

Geometric processing of remote sensing images 1923



high-resolution DEM: a case study on volcanic hazard monitoring of Nisyros Island
(Greece). ISPRS Journal of Photogrammetry and Remote Sensing, 57, 24–38.

VEILLET, I., 1991, Triangulation spatiale de blocs d’images SPOT. Thèse de Doctorat,
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WESTIN, T., and FORSGREN, J., 2002, Orthorectification of EROS-A1 images. ImageSat
International website (last accessed 20 April 2003; http://www.imagesatintl.com/
customers/techarticles/Orthorectification_EROSA1Images.pdf).

WIESEL, J. W., 1984, Image rectification and registration. International Archives of
Photogrammetry and Remote Sensing, Rio de Janeiro, Brazil (Brazil: ISPRS),
Vol. 25 (A3b), pp. 1120–1129.

WONG, K. W., 1975, Geometric and cartographic accuracy of ERTS-1 imagery.
Photogrammetric Engineering and Remote Sensing, 41, 621–635.

WONG, K. W., 1980, Basic mathematics of photogrammetry. In Manual of Photogrammetry,
4th edn, edited by C. C. Slama (Falls Church, USA: ASP Publishers), pp. 37–101.

WONG, F., ORTH, R., and FRIEDMANN, D., 1981, The use of digital terrain model in
the rectification of satellite-borne imagery. Proceedings of the 15th International
Symposium on Remote Sensing of Environment, Ann Arbor, Michigan, May 11–15
(ERIM: Ann Arbor, USA), pp. 653–662.

YANG, X., 2001, Piece-wise linear rational function approximation in digital photo-
grammetry. Proceedings of the ASPRS Annual Conference, St Louis, Missouri, USA,
April 23–27 2001 (ASPRS: Bethesda, USA), CD-ROM (unpaginated).

ZHANG, Y., TAO, V., and MERCER, B., 2001, Assessment of the influences of satellite viewing
angle, Earth curvature, relief height, geographical location and DEM characteristics
on planimetric displacement of high-resolution satellite imagery. Proceedings of the
ASPRS Annual Conference, St Louis, Missouri, April 23–27 2001 (ASPRS: Bethesda,
USA), CD-ROM (unpaginated).

1924 Geometric processing of remote sensing images


