Téma 5.: Výpočet číselných charakteristik náhodných veličin pomocí systému STATISTICA K výpočtu kvantilů mnoha typů spojitých rozložení slouží Pravděpodobnostní kalkulátor v menu Statistiky. Kvantily lze počítat též pomocí funkcí implementovaných v položce „Dlouhé jméno“ proměnné. Normální rozložení N(μ, σ^2) Náhodná veličina X ~ N(μ, σ^2) má hustotu . Pro μ = 0, σ^2 = 1 se jedná o standardizované normální rozložení, píšeme U ~ N(0, 1). Hustota pravděpodobnosti má v tomto případě tvar φ(u) = . Příklad 1.: Nechť U ~ N(0, 1). Najděte medián a horní a dolní kvartil. Návod na výpočet pomocí systému STATISTICA: První možnost: Do okénka průměr napíšeme 0, do okénka Sm. Odch. napíšeme 1, do okénka p napíšeme pro medián 0,5, pro dolní kvartil 0,25 a pro horní kvartil 0,75. V okénku X se objeví 0 pro medián, -0,67449 pro dolní kvartil a 0,67449 pro horní kvartil. Ilustrace pro horní kvartil: Šedá plocha pod grafem hustoty má velikost 0,75 a hodnota distribuční funkce v bodě 0,67449 je 0,75 (značeno šrafovaně). Druhá možnost: Otevřeme nový datový soubor o třech proměnné a jednom případu. Do dlouhého jména první proměnné napíšeme =VNormal(0,5;0;1). Dostaneme 0. Do dlouhého jména druhé proměnné napíšeme =VNormal(0,25;0;1). Dostaneme -0,67449. Do dlouhého jména třetí proměnné napíšeme =VNormal(0,75;0;1). Dostaneme 0,67449. Příklad 2.: Nechť X ~ N(3, 5). Najděte dolní kvartil. Návod na výpočet pomocí systému STATISTICA: První možnost: Do okénka průměr napíšeme 3, do okénka Sm. Odch. napíšeme 2,236, do okénka p napíšeme 0,25 a v okénku X se objeví 1,4918. Druhá možnost: Otevřeme nový datový soubor o jedné proměnné a jednom případu. Do dlouhého jména této proměnné napíšeme =VNormal(0,25;3;sqrt(5)). Dostaneme 1,491795. Pearsonovo rozložení chí-kvadrát s n stupni volnosti χ^2(n) Nechť X[1], ..., X[n ]jsou stochasticky nezávislé náhodné veličiny, X[i ]~ N(0, 1), i = 1, ..., n. Pak náhodná veličina X = X[1]^2 + ... + X[n]^2 ~ χ^2(n). Vyjádření hustoty je příliš složité, lze ho najít např. v příloze A skript Marie Budíková, Pavel Osecký, Štěpán Mikoláš: Teorie pravděpodobnosti a matematická statitika. Sbírka příkladů. MU Brno 2007. Příklad 3.: Určete χ^2[0,025](25). Návod na výpočet pomocí systému STATISTICA: První možnost: Do okénka sv. napíšeme 25 a do okénka p napíšeme 0,025. V okénku Chi 2 se objeví 13,11972. Šedá plocha pod grafem hustoty má velikost 0,025 a hodnota distribuční funkce v bodě 13,11972 je 0,025 (značeno šrafovaně). Druhá možnost: Otevřeme nový datový soubor o jedné proměnné a jednom případu. Do dlouhého jména této proměnné napíšeme =VChi2(0,025;25). Dostaneme 13,1197. Studentovo rozložení s n stupni volnosti t(n) Nechť X[1], X[2 ]jsou stochasticky nezávislé náhodné veličiny, X[1 ]~ N(0, 1), X[2] ~ χ^2(n). Pak náhodná veličina X = ~ t(n). Vyjádření hustoty je příliš složité, lze ho najít např. v příloze A skript Marie Budíková, Pavel Osecký, Štěpán Mikoláš: Teorie pravděpodobnosti a matematická statistika. Sbírka příkladů. MU Brno 2007. Příklad 4.: Určete t[0,99](30) a t[0,05](14). Návod na výpočet pomocí systému STATISTICA: První možnost: Do okénka sv. napíšeme 30 (resp. 14) a do okénka p napíšeme 0,99 (resp. 0,05). V okénku t se objeví 2,457262 (resp. -1,761310). Ilustrace pro t[0,05](14): Šedá plocha pod grafem hustoty má velikost 0,05 a hodnota distribuční funkce v bodě -1,76131 je 0,05 (značeno šrafovaně). Druhá možnost: Otevřeme nový datový soubor o jedné proměnné a jednom případu. Do dlouhého jména této proměnné napíšeme =VStudent(0,99;30) (resp. VStudent(0,05;14)). Dostaneme 2,457262 (resp. -1,76131). Fisherovo-Snedecorovo rozložení s n[1] a n[2] stupni volnosti F(n[1], n[2]) Nechť X[1], ..., X[n ]jsou stochasticky nezávislé náhodné veličiny, X[i ]~ χ^2(n[i]), i = 1, 2. Pak náhodná veličina X = ~ F(n[1], n[2]). Vyjádření hustoty je příliš složité, lze ho najít např. v příloze A skript Marie Budíková, Pavel Osecký, Štěpán Mikoláš: Teorie pravděpodobnosti a matematická statistika. Sbírka příkladů. MU Brno 2007. Příklad 5.: Určete F[0,975](5, 20) a F[0,05](2, 10). Návod na výpočet pomocí systému STATISTICA: První možnost: Do okénka sv1 napíšeme 5 (resp. 2), do okénka sv2 napíšeme 20 (resp. 10) a do okénka p napíšeme 0,975 (resp. 0,05). V okénku F se objeví 3,289056 (resp. 0,05156). Ilustrace pro F[0,975](5, 20): Šedá plocha pod grafem hustoty má velikost 0,975 a hodnota distribuční funkce v bodě 3,289056 je 0,975 (značeno šrafovaně). Druhá možnost: Otevřeme nový datový soubor o jedné proměnné a dvou případech Do dlouhého jména první proměnné napíšeme =VF(0,975;5;20), do dlouhého jména druhé proměnné napíšeme =VF(0,05;2;10).Dostaneme 3,2891 (resp. 0,05156). Příklad 6.: Postupně se zkouší spolehlivost čtyř přístrojů. Další se zkouší jen tehdy, když předchozí je spolehlivý. Každý z přístrojů vydrží zkoušku s pravděpodobností 0,8. Náhodná veličina X udává počet zkoušených přístrojů. Vypočtěte střední hodnotu a rozptyl náhodné veličiny X. Řešení: X nabývá hodnot 1, 2, 3, 4 a její pravděpodobnostní funkce je π(1) = 0,2, π(2) = 0,8*0,2 = 0,16, π(3) = 0,82*0,2 = 0,128, π(4) = 0,83*0,2 + 0,84 = 0,512, π(0) = 0 jinak E(X) = 1*0,2 + 2*0,16 + 3*0,128 + 4*0,512 = 2,952 D(X) = 12*0,2 + 22*0,16 + 32*0,128 + 42*0,512 – 2,9522 = 1,4697 Postup ve STATISTICE: Otevřeme nový datový soubor o dvou proměnných X a cetnost a čtyřech případech. Do proměnné X napíšeme 1, 2, 3, 4, do proměnné cetnost napíšeme 200, 160, 128, 512. Statistiky – Základní statistiky/tabulky – Popisné statistiky – OK – zavedeme proměnnou vah cetnost – OK - Proměnné X – OK – Detailní výsledky - zaškrtneme Průměr, Rozptyl – Výpočet. Rozptyl však musíme upravit, musíme ho přenásobit číslem 999/1000. Do výstupní tabulky tedy přidáme za proměnnou Rozptyl novou proměnnou a do jejího Dlouhého jména napíšeme =v3*999/1000 Příklad 7.: Náhodná veličina X udává počet ok při hodu kostkou. Pomocí systému STATISTICA vypočtěte její střední hodnotu a rozptyl. Výsledek: E(X) = 3,5, D(X) = 2,9167 Příklad 8.: Náhodná veličina X udává příjem manžela (v tisících dolarů) a náhodná veličina Y příjem manželky (v tisících dolarů. Je známa simultánní pravděpodobnostní funkce π(x,y) diskrétního náhodného vektoru (X,Y): π(10,10) = 0,2, π(10,20) = 0,04, π(10,30) = 0,01, π(10,40) = 0, π(20,10) = 0,1, π(20,20) = 0,36, π(20,30) = 0,09, π(20,40) = 0, π(30,10) = 0, π(30,20) = 0,05, π(30,30) = 0,1, π(30,40) = 0, π(40,10) = 0, π(40,20) = 0, π(40,30) = 0, π(40,40) = 0,05, π(x,y) = 0 jinak. Vypočtěte koeficient korelace příjmů manžela a manželky. Řešení: Náhodná veličina X i náhodná veličina Y nabývají hodnot 10, 20, 30, 40. Stanovíme hodnoty marginálních pravděpodobnostních funkcí: π[1](10) = 0,25, π[1](20)=0,55, π[1](30) = 0,15, π[1](40) = 0,05, π[1](x) = 0 jinak, π[2](10) = 0,3, π[2](20) = 0,45, π[2](30) = 0,2, π[2](10) = 0,05, π[2](y) = 0 jinak. Spočteme E(X) = 20, E(Y) = 20, D(X) = 60, D(Y) = 70. Dosazením do vzorce pro výpočet kovariance zjistíme, že C(X,Y) = 49, tedy koeficient korelace R(X,Y) = 49/√60√70 = 0,76. Postup ve STATISTICE: Vytvoříme nový datový soubor o třech proměnných X, Y, cetnost a 16 případech. Do proměnné X napíšeme 10, 10, 10, 10, 20, 20, 20, 20, 30, 30, 30, 30, 40, 40, 40, 40, do proměnné Y 4x pod sebe 10, 20, 30, 40 a do proměnné cetnost 20, 4, 1, 0, 10, 36, 9, 0, 0, 5, 10, 0, 0, 0, 0, 5. Statistiky - Základní statistiky/tabulky – zavedeme proměnnou vah cetnost – OK - Korelační matice – OK – 1 seznam proměnných – X, Y – OK. Příklad 9.: Diskrétní náhodný vektor (X[1],X[2]) má simultánní pravděpodobnostní funkci s hodnotami π(0,-1) = c, π(0,0) = π(0,1) = π(1,-1) = π(2,-1) = 0, π(1,0) = π(1,1) = π(2,1) = 2c, π(2,0) = 3c, π(x,y) = 0 jinak. Určete konstantu c a vypočtěte R(X[1],X[2]). Výsledek: c = 0,1, R(X[1],X[2]) = 0,42379.