700 28 AUTOMATED METHODS OF ANALYSIS

produce and the results by standard procedures. Pre-

OO e S o maies autide s cision of 1 to 10% relative is reported depending upon

countered in a clinical laboratory. Samples f)ut§ide this

range can usually be handled by suitable dﬂut‘mns.
Extensive performance testing of these devices gen-

erally reveals a good correlation between the data they

data from automated standard methods.

28E QUESTIONS AND PROBLEMS

28-1 List sequentially a set of laboratory unit opera'tions that might b? used to
(a) ascertain the presence or absence of lead in ﬂake§ of dry paint,
(b) determine the iron content of multiple vitamin/mineral tablets.

28-2 Sketch a flow-injection system that could be used for the determination of

K* and Na™* in blood based upon flame photometric measurements.

28-3 Sketch a flow-injection system that might be employed for determining le.ad_.
in the aqueous effluent from an industrial plant baseld upon the t?th‘aCtlon..
of lead ions with a carbon tetrachioride solution of dithizone, which reacts

with lead ion to form an intensely colored product.

284 Sketch a flow-injection apparatus for the determination of sodium sulfite in

aguecus samples.

the type of test, which again is comparable with the

Appendix 1

Evaluation of
Analytical Data

This appendix describes the types of errors that are
encountered in analytical chemistry and how their
magnitudes are estimated and reported. Estimation of
the probable accuracy of resuits is a vital part of any
analysis because data of unknown reliability are essen-
tially worthless.

alA
PRECISION AND ACCURACY

Two terms are widely used in discussions of the reli-
ability of data: precision and accuracy.

alA-1 Precision

Precision describes the reproducibility of results—
that is, the agreement between numerical values for two
or more replicate measurements, or measurements that
have been made in exactly the same way. Generally,
the precision of an analytical method is readily obtained
by simply repeating the measurement. '

Three terms are widely used to describe the pre-
cision of a set of replicate data: standard deviation,
variance, and coefficient of variation. These terms have
statistical significance and are defined in Section
alB-1.

alA-2 Accuracy

Accuracy describes the correctness of an experi-
mental result. Strictly speaking, the only type of mea-
surement that can be completely accurate is one that
involves counting objects. All other measurements con-
tain errors and give only an approximation of the truth.

Accuracy is a relative term in the sense that what
is an accurate or inaccurate method very much depends
upon the needs of the scientist and the difficulty of the
analytical problem. For example, an analytical method
that yields results that are within = 10%, or one’ part
per billion, of the céfrect amount of mercury in a sample
of fish tissue that contains 10 parts per billion of the
metal would usually be considered to be reasonably
accurate. In contrast, a procedure that yields results that
are within =+ 10% of the correct amount of mercury in
an orc that contains 20% of the metal would usually be
deemed unacceptably inaccurate.

Accuracy is expressed in terms of cither absolute
error or relative error. The absolute error E, of the mean -
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given by the relationship

where x, is an accepted value of the quantity being
measured. Often, it is useful to express
terms of relative error, where

relative error =

TABLE at—1

Replicate Absorbance

E,=%—x

X—x

Measurements™

17

+ Maximum value
§ Minimum value

0.488
0.480
0.486
0.473
0.475
0.482
0.486
0.482
(.481
0.450
0.480
0.489
0.478
0.471
0.482
0.483
0.488

Mean absorbance = 0.482

Standard deviation = 0.0056

# Data listed in the order obtained
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(al-1)

the accuracy in

Frequently, :
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Note that both absolute an
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is greater than its true va
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he measured resuit
lue and a negative sign the
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d systematic; ot

determinate, errors.’ The error in thé mean of a set of

replicate measurements is then the sum of these two
types of errors:

E,=E +E, (al-3)

where E, is the random error associated with a meas-
urement and £, is the systematic error,

RANDOM ERRORS

Whenever analytical measurements are repeated on the
same sample, the data obtained are scattered, as is shown
in Table al-1, because of the presence of random, or
indeterminate crrors—that is, the presence of random
errors is reflected in the imprecision of the data, The
data in columns 2, 4, and 6 of the table are absorbances
(Section 7A-2) obtained with a spectrophotometer on

18
19
20
21
2
23
24
25
26
27
28
29
30
31
3
33
34

0.475
0.480
0.4947
0.492
0.484
0.481
0.487
0.478
0.483
0.482
0.49
0.481
0.469%
0.485
0.477
0.476
0.483

36
37
38
39
40
41
42
43

45
46
47
48
49
50

30 replicate red solutions produced by treating identical
aqueous samples containing 10 ppm of Fe(Ill) with an
excess of thiocyanate ion. The measured absorbances
are directly proportional to iron concentration.

The distribution of random errors in these data is
more casily comprehended if they are organized into
equal-size, contiguous data groups, or cells, as shown
in Table al-2. The relative frequency of occurrence of
data in each cell is then plotted as in Figure al-14 to
give a bar graph called a histogram.

It is reasonable to suppose that if the number of
analyses were much larger than that shown in Table
al-2 and if the size of the cells were made much smaller,
then, ultimateiy, a smooth curve such as that shown in
Figure al-1B would be obtained. A smooth curve of
this type is called a Gaussian curve, or a normal error
. curve. It is found empirically that the results of replicate
chemical analyses are frequently distributed in an ap-
. proximately Gaussian, or normal, form.

The frequency distribution exhibited by a Gaussian
curve has the following characteristics:

1. The most frequently observed result is the mean p
of the set of data.

! A third type of error occasionally encountered is gross error, which
arises in most instances from the carclessness, ineptitude, laziness,
or bad luck of the experimenter. Typical sources include transpo-
sition of numbers in recording data, spilling of a sample, using the
wrong scale on a meter, accidental introduction of contaminasnts,
and reversing the sign on a meter reading. A gross error in a set of
replicate measurements appears as an outlier—a datum that is no-
ticeably different from the other data in the set. We will not consider
gross errors in this discussion.
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2. The results cluster symmetrically around this mean
value.

3. Small divergences from the central mean value are
found more frequently than are large divergences.

4. In the absence of systematic errors, the mean of a
large set of data approaches the true value,

Characteristic 4 means that, in principle, itis always
possible to reduce the random error of an analysis to
something that approaches zero. Unfortunately, it is
seldom practical to achieve this goal, because to do so
requires performing 20 or more replicate analyses. Or-
dinarily, a scientist can only afford the time for two or
three replicated measurements, and a significant random
error is to be expected for the mean of such a small
number of replicate measurements,

Statisticians usually use | to represent the mean of
an infinite collection of data (see Figure al-18), and *
for the mean of a small set of replicate data. The random
error E, for the mean of the small set is then given by

E =%X—-pn (al—4)

It is found that the mean for a finite set of data
rapidly approaches the true mean when the number of
measurements N is greater than perhaps 20 or 30. Thus,
as is shown in the following example, we can sometimes

TABLE a1-2
Frequency Distribution of Data from Table a1-1

0.469 to 0.471 3 0.06
0.472 to 0.474 1 0.02
0.475 t0 0.477 7 0.14
0.478 to 0.480 9 0.18
0.481 to 0.483 13 0.26
0.484 10 0.486.~ 7 0.4 "
0.487 to 0.489 5 0.10
0.490 to 0.492 4 0.08
0.493 to 0.495 1 0.02
* N = total number of measurements = 50.
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28 -
24

20 -

Percentage of measuremernts

i ing distribution of the BO resuts in Table
RE ai—1 A, Histogram showing distribution o
'EE'{J B, aéaussian curve S‘?or data having the same mean and same standard

deviation as the data in A.

determine the random error in an individual datum or
in the mean of a small set of data.

EXAMPLE a1-1
Calculate the random error for (a) the second datgm
in Table al-1 and (b) the mean for the first three entries

in the table. .
The mean for the entire set of data is 0.482, and

because this mean is for 50 measurements, v.ve may
assume that the random error in it is approximately
zero. Thus, the limiting mean . can be taken as 0.482.

(a) Here, the random error for a single measurement
X, 18
E, = x — # = 0.480 — 0.482 = —0.002

(b) The mean X for the first three entries in the table
is

_ 0.488 + 0.4;80 + 0.486 — 0.485

Substituting into Equation al—4 gives
E, =% — u= 0485 — 0482 = +0.003

The random nature of indeterminate errors makes
it possible to treat these effects by the methgds of sta-
tistics. Statistical techniques are considered in Section

alB.

0.487 | 0,490 1 0493
0.469 | 0.472 | 0475 | 0478 | 0481 | 0.484
0471 0474 0477 04S¢ 0483 0486 0489 0492 0495

SYSTEMATIC ERRORS—BIAS o
Systernatic errors have a definite value, an ass;gnablg:.
cause, and are of the same sign and magnitude for re

licate measurements made in exactly the same wa
Systematic errors lead to bias in a measurem.ent Fec
nique. Bias is illustrated by the two curves in Flfgq@
al-2, which show the frequency distribution of replicate
results in the analyéis of identical samples by two meth-
ods that have random errors of identical size. Method
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Analytical resuit, x;

FIGURE a1-2 illustration of bias: bias = ps — %"

A has no bias, so the limiting mean is the true value x,.
Method B has a bias that is given by

bias = py — X, = Py — pa {al-5)

Note that bias affects’all of the data in a set and that it
, bears a sign.

Systematic errors have three sources: instrumental,
personal, and method.

Instromental Errors.  Typical sources of instru-
mental errors include drift in electronic circuits, leakage
in vacuum systems, temperature effects on detectors,
currents induced in circuits from ac power lines, de-
creases in voltages of batteries with use, and calibration
errors in meters, weights, and volumetric equipment.

Systematic instrument errors are commonly de-
tected and corrected by calibration with suitable stan-
dards. Periodic calibration of instruments is always de-
sirable because the response of most instruments
changes with time as a consequence of wear, corrosion,
or mistreatment.

Personal Errors. Personal errors are those in-
troduced into a measurement by judgments that the ex-
perimentalist must make, Examples include estimating
the position of a pointer between two scale divisions,
the color of a solution at the end point in a titration,
the level of a liguid with respect to a graduation in a
pipet, or the relative intensity of two light beams. Judg-
ments of this type are often subject to systematic, uni-
directional uncertainties. For example, one person may
read a pointer consistently high, another may be slightly
slow in activating a timer, and a third may be less
sensitive to color. Color blindness or other physical
handicaps often exacerbate determinate personal errors.

Number bias is another source of personal system-
atic error that is widely encountered and varies consid-
erably from person to person. The most common bias
encountered in estimating the position of a needle on a
scale is a preference for the digits 0 and 5. Also prevalent
is a preference for small digits over large and even ones
over odd.

A near-universal source of personal error is prej-
udice. Most of us, no matter how honest, have a naturai
tendency to estimate scale readings in a direction that
improves the precision in a set of results or causes the
results to fall closer to a preconceived notion of the true
value for the measurement.

Most personal errors can be minimized by care and
self-discipline. Thus, most scientists develop the habit
of systematically double-checking instrument readings,
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notebook entries, and calculations, Robots, automated
systems, computerized data collection, and computer-
ized instrument control have the potential of minimizing
or eliminating personal systematic errors.

Methed Errors. Method-based errors are often
introduced from nonideal chemical and physical be-
havior of reagents and reactions upon which an analysis
is based. Possible sources include slowness or incom-
pleteness of chemical reactions, losses by volatility,
adsorption of the analyte on solids, instability of rea-
gents, contaminants, and chemical interferences.

Systematic method errors are usually more difficult
to detect and correct than are instrument and personal
errors. The best and surest way involves validation of
the method by employing it for the analysis of standard
materials that resemble the samples to be analyzed both
in physical state and in chemical composition. The an-
alyte concentrations of these standards must, of course,
be known with a high degree of certainty. For simple
materials, standards can sometimes be prepared by
blending carefully measured amounts of pure com-
pounds. Unfortunately, more often than not, materials
to be analyzed are sufficiently complex to preclude this
simple approach.

The National Institute of Standards and Tech-
nology” offers for sale a variety of standard reference
materigls (SRMs) that have been specifically prepared
for the validation of analytical methods.® The concen-
tration of one or more constituents in these materials
has been determined by (1) a previously validated ref-
erence method, (2) two or more independent, reliable
measurement methods, or (3) analyses from a network
of cooperating laboratories, technically competent and
thoroughly familiar with material being tested. Most
standard reference materials are substances that are com-
monly encountered in commerce or in environmental,
pollation, clinical, biological, and forensic studies. A
few examples include trace elements in coal, fuel oil,
urban particulate matter, sediments from estuaries, and

2 In 1989, the name, of the National Bureau of Standards (NBS) was
changed to the Natidnal Institute of Standards and Téchnology
(NIST). At this time, several of the NIST publications still bear the
NBS label.

* See U.S. Department of Commerce, NIST Standard Reference Ma-
terials Catalog 1990-91, NIST Special Publication 260, Washing-
ton: Government Printing Office, 1990. For a description of the
NIST reference material program, see R. A. Alvarez, §. D). Ras-
berry, and G. A. Uriano, Anal. Chem., 1982, 54, 1226A; and
G. A. Uriano, ASTM Standardization News, 1979, 7, 8.
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water; lead in blood samples; cholesterol in hurr'lan se-
rum; drugs of abuse in urine; and a wide varlet'y- of
elements in rocks, minerals, and glasses. In add1t‘10n
several commercial supply houses now offer a vanety
of analyzed materials for method testing.*

aiB
STATISTICAL TREATMENT OF RANDOM

ERRORS

Randomly distributed data of the kind descrﬂ?ed in the
section labeled ‘‘random errors’ are convgmently an-
alyzed by the techniques of statisticss, which are con-
sidered in the next several sections.

aiB-1 Populations and Samples

In the statistical treatment of data, it is assumed
that the handful of replicate experimental resu}ts op-
tained in the laboratory is a minute fraction of the mﬁmte
qumber of results that could in principle be obtained
given infinite time and an infinite amount of sample.
Statisticians call the handful of data a sample and view
it as a subset of an infinite population, ot u‘nz'\'zerse, of
data that in principle exists. The laws of s:tatlstms apply
strictly to populations only; when applying these laws
to a sample of laboratory data, it is necessary to assume
that the sample is truly representative of the pogulatign.
Because there is no assurance this assumption i vahc.l,
statements about random etrors are necessarily uncertain
and must be couched in terms of probabilities.

DEFINITION OF SOME TERMS USED IN S'!"ATJISTICS
Population Mean (p).  The popula{zon mean, Or
limiting mean, of a set of replicate data 1s defined by

the equation

i=1

p = lim (al-6)

N—x N

4 gea C. Veillon, Anal. Chem., 1986, 58, 831A.

1 atisti Icutt and R.

5 For a more detailed freatment of statistics, se¢ R. Ca
Boddy, Statistics for Analytical Chemistry, New ‘1l’0rk: Chanan
and Hall, 1983; J. Mandel, in Treatise on Analytical Chemistry,
7nd ed., 1. M. Kolthoff and P. J. Elving, BEds., Part [, Vol. 1,

Chapter 5. New York: Wiley, 1978; I, K. Taylor, Quality Assurance:

of Chemical Measuremenis. Chelsea, Michigan': Le_wis Publishers,
Inc.. 1987; and H. Mark and ¥, Workman, Statistics in Spectroscopy.
San Diego: Academic Press, 1991.

where x; represents the value of the ith measurement.
As indicated by this equation, the mean of a set of -
measurements approaches the population mean as N,
the number of measurements, approaches }nﬁmty: It is -
important to add that in the absence of bias; W s the
true value for the quantity being measured, :
Population Standard Deviation {0) and the Pop-
ulation Variance (2. The population stanc?ar-d de--
viation and the population variance provide statlst‘lcall'y :
significant measures of the precision of a popuiation of:

data. Thus,

where x; is again the value for the it.h _mea‘surement__“
Note that the population standard deviation is the root:;
mean square of the individual deviations from the mean.
for the population. N :
Statisticians prefer to express the precision of data
in terms of variance, which is simply the square of t_h_e
standard deviation (%), because variances combine _'a:.
ditively. That is, if n independent sources ng 'ranﬁipm
error exist in a system, the total variance o; 18 gwgn
by the relationship :
(al=8)

where o2, o2, . . . , 0 are the individual Vﬂl’ial‘}.C?S'._

Chemists generally prefer to describe the precision
of measurements in terms of standard deviation rather
than variance because the former carries the same um’_c__
as the measurement itself. o

Sample Mean (¥). The sample mean is the mea
or average, of a finite set of data. Because N in th
case is a finite number, X often differs somewhat fg_om
the population mean ., and thus the tru.e value, of: t e
guantity being measured. The use of a d1ffc‘rent_ syrqbol-
in this case emphasizes this important dlstlnctlop.-

Sample Standard Deviation (s) and Sample V al
jance (s?). The standard deviation (s) for sam'plge_ of
data that is of limited size is given by the equation:

2 2
g =ag; + o3+ + o

(al

Note that the sample standard deviation d‘iffers in. thr
ways from the population standard deviatmn.as deﬁn
by Equation al-7. First, o is replaced by s in or(]c
emphasize the difference between the two terms..

ond, the true mean  is replaced by X, the sample mean.
Finally, N — 1, which is defined as the number of
degrees of freedom, appears in the denominator rather
than N.°

Relative Standard Deviation (RSD) and Coef-
ficient of Variatior (CV). Relative standard devia-
tions are often more informative than are absolute stan-
dard deviations. The relative standard deviation of a
data sample is given by

RSD = - x 17 (al-10)

=it

When z = 2, the relative standard deviation is given
as a percent; when it is 3, the deviation is reported in
parts per thousand. In the former case, the relative stan-
dard deviation is also known as the coefficient of var-
iation (CV) for the data. That is,

CV = - x 100% (al-11)

Wl T

In dealing with a population of data, o and p are used
in place of s and X in Equations al-10 and al-11.

An Alternate Way of Calculating Sample Stan-
dard Deviations. In calculating s with a handheld
calculator that does not have a standard deviation func-
tion, the following algebraic identity to Equation al-9
is somewhat more convenient to use:

_ [P - GxiN
tT N -1

EXAMPLE a1-2

The following replicate data were obtained for the
concentration of SO, in the air near a paper mill: 1.96,
1.91, 1.88, and 1.94 parts per million (ppm). Calculate
(a) the mean, (b) the absolute standard deviation, and
(c) the coefficient of variation for the data.

(al-12)

6 By definition, the degrees of freedom are the number of data that
remain independent when s is evaluated. The standard deviation of
a set of experimental data is calculated based upon (¥ — 1) degrees
of freedom because the mean x is used in the calculation. By sub-
stituting the mean and any subset of (N — 1) data into the algebraic
equation for the mean, the numerical value of the one excluded
datum can be calculated. The fact that the numerical value of any
datum point can be calculated from the remaining data and the mean
ilustrates that one degree of freedom is lost anytime a mean is used
in the calculation of any subsequent statistic.
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ppm S0,
Xi x.l1

Xy 1.96 3.8416
Xn 1.91 3.6481
X3 1.88 3.5344
X4 1.94 3.7636

Xx, = 7.69 Zaf = 14.7877
(a) x = 7.69/4 = 1.9225 = 1.92 ppm S0,
(by Applying Equation al-12, we obtain

. \/14.7877 — (7.69)%/4

41
147877 — 14.784025
3
10.003675 '
=J 3 ~ 0.035 ppm 80,
0.035 ppm

{c} CV = x 100% = 1.8%

1.92 ppm

Note that the difference between 2x? and Gx)*/N
in Example al-2 is so small that premature rounding
would have led to a serious error in the computed value
of 5. Because of this source of error, Equation al—12
should never be used to calculate the standard deviation
for numbers containing five or more digits; instead,
Equation al-9 should be used. It is also important to
note that handheld calculators and small computers with
a standard deviation function usually employ a version
of Equation al-12. Consequently, large errors in s are
to be expected when these devices are applied to data
having five or more significant figures.”

THE NORMAL ERROR LAW
In Gaussian statistics, the results of replicate measure-
ments arising from indeterminate errors are assumed to
be distributed according to the normal error law, which
states that the fraction of a population of observations,
dN/N, whose vaiug,‘;s lic in the region x to x + 'dx is
given by

an i

R e e*(x*p.)zﬂu'z dx

1-13
N 2o (a )

? See H. E. Solberg, Anal. Chem., 1983, 55, 1661; and P. M. Wanek,
et al., Anal. Chem., 1982, 54, 1877.
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Here, p. and ¢ are the population mean an(.i the standard
deviation and N is the number of observations. The tyvo
curves shown in Figure al-3a are plots of Equation
al—13. The standard deviation for the data in curve B
is twice that for the data in curve A. .

Note that (x — ) in Equation al--13 is the absolute
deviation of the individual values of x from the.me(.:m
in whatever units are used in the measurement.. If is,
however, more convenient to express the deviations

from the mean in units of standard deviation z where
z = (x — Wo (al-14)

Taking the derivative of this equation with respect to x
gives
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EIGURE a1-3 Normal error curves. The standard

deviation for B is twice that for A, thatis, 05 = .QUA. ;
(a) The abscissa is the deviation from the mean in the u?': S
of measuremnent. (b) The abscissa is the deviation from the

mean in units of @, Thus, A and B produce identical curves.

dz = dxlo (al-15)"

Substitution of these two relationships intov Ec-luati'c_m'-
al—13 leads to an equation that expresses the distribution
in terms of the single variable z. That 1s,

aN 1

N 21

o772 dz (al-16)

THE NORMAL ERROR CURVE ' RE
Figure al-3b shows another way of plotthg th_e datg_:
for the two curves in Figure al-3a. The absc‘,llssa is now.
z, the deviations from the mean of the data. in umts‘ of
standard deviation (Equation al-14). Th{s functloq_;
yields a single curve regardless of the magnitude of .tk}g
mean and standard deviation of the data. T.he' general
properties of this carve include (1) zero deviation frorq
the mean occurring with maximum frequepcy, (2_) Sym-
metricat distribution of positive and neganv‘e deviations
about this maximum, and (3) rapid decrease in frequenpy_
as the magnitude of the deviations increases. Thus, smau
random errors are much more common than large.
Areas under Regions of the qumal Error
Curve. The arca under the curve in Elgure al-31is
the integral of Equation al-16. The fractio_n of tt.u: pop
ulation with values of z between any specified hn'ut_s_,_ is
given by the area under the curve between these hm__l
For example, the arca under the curve between z_
—loandz = + 1o is0.683 or 68.3% of the total arca
wnder the curve. We may therefore% conclude that 683%
of a population of data lies with.m 't lo of the mean
value. Furthermore, 95.5% lies within + 29‘ and 99.7%
within +3o. Values forx — p correspondmg‘to :t_}(r
+2q, and = 30 are indicated by broken vertical line
in Figure al-3. .
The properties of the normal error curve are usefu
because they permit statements to be made .about_'-;th
probable magnitude of the net random‘errlor in a give
measurement or set of measurements provided the. ;{an
dard deviation is known. Thus, one can say that t:_E
chances are 68.3 out of 100 that the rafadom CTIOF a5
sociated with any single measurement 1s smaker tha
+ 1o, that the chances ate 95.5 out of 100 that the erto
is fess than =2¢, and so forth. Clearl‘y, tt}c standar
deviation is a useful parameter for estimating and
porting the probable net random error for an am_i_lyt
methé)tdandard Error of a Mean, The figures op:_gf_:.
centage distribution just quoted refer t'o the prc_;_b_alb
error of a single measurement. If a series of sample
each containing N data, are taken randomly from a po

ulation of data, the mean of each set will show less and
less scatter as N increases, The standard deviation of
each mean is known as the standard error of the mean
and is given the symbol s,,. It can be shown that the
standard error is inversely proportional to the square

, Toot of the number of data used 1o calculate the mean.
That is,

S = SIVN (al-17)

The mean and the standard deviation for a set of
data are statistics of primary importance in all types of
science and engineering. The mean is important becanse
it usually provides the best estimate of the parameter
of interest. The standard deviation of the mean is equ ally
important because it provides information about the pre-

cision and thus the random error associated with the
mean.

METHOD FOR OBTAINING A GOOD APPROXIMATION
OF o
In order to apply a statistical relationship directly to
finite samples of data, it is necessary to know that the
sample standard deviation s for the data is a good ap-
proximation of the population standard deviation o.
Otherwise, statistical inferences must be modified to
take into account the uncertainty in 5. In this section,
we consider methods for obtaining reliable values for
s from small sarmples of experimental data.
Performing Preliminary Experiments. Uncer-
tainties in the calculated value for s decrease as the
number of measurements N in Equation al-9 increases.
Figure al-4 shows the error in s as a function of N.

Note that when N is greater than about 20, 5 and ¢ can

Neumber of

Specimen Number Samples Measured
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be assumed, for most purposes, to be identical. Thus,
when a method of measurement is not excessively time-
consuming and when an adequate supply of sample is
available, it is sometimes feasible and economic to carry
out preliminary experiments whose sole purpose is that
of obtaining a reliable standard deviation for the method.
Pooling Data. For analyses that are time-con-
suming, the foregoing procedure is seldom practical. In
such cases, however, precision data from a series of
similar samples accumulated in the course of time can
be pooled to provide an estimate of s that is superior
to the value for any individual subset. Agdin, one must
assume the same sources of random error are present
in all the samples. This assumption is usually valid
provided the samples have similar compositions and
each has been analyzed identically. To obtain a pooled
estimate of s, deviations from the mean for each subset
are squared; the squares for all of the subsets are then
summed and divided by an appropriate number of de-
grees of freedom. The pooled s is obtained by extfracting
the square root of the quotient. One degree of freedom
is lost in obtaining the mean for each subset. Thus, the
number of degrees of freedom for the pooled s is equal
to the total number of measurements minus the number
of subsets. An example of this calculation follows.

EXAMPLE a1-3

The mercury in samples of seven fish taken from the
Mississippi River was determined by a method based
upon the absorption of radiation by gaseous elemental
mercury. Calculate a pooled estimate of the standard
deviation for the method, based upon the first three

Hg Content, ppm

columns of data in the table that follows:

Sum of Squares
of Deviations

Nuraber of measurements 28

Mean, ppm Hz ~ from Means
1 3 1.80, 1.58, 1.64 1.673 0.0259
2 4 0.96, 0.98, 1.02, 1.10 1.015 0.0115
3 2 3.13, 3.35 o 3.240 0.0242
4 6 2.06,1.93,2.12,2.16, 1.89, 1.95 2.018 0.0611
5 4 0.57, 0.58, 0.64, 0.49 0.570 0.0114
6 5 2.35,2.44, 2.70, 2.48, 2.44 2.482 0.0685
1 4 111, 1.15, 1.22, 1.04 1.130 0.0170

Sum of sum of squares = 0.2196
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The values in columns 4 and 5 for specimen 1 were
derived as follows:

x; x; — ¥ (x— 3

1.80 0.127 0.0161

1.58 0.093 0.0087

1.64 0.033 0.0011

;0—2 Sum of squares = 0.0259
X = 5—;)2" = 1.673

The other data in columns 4 and 5 were obtained
similarly. Then

0.2196
28 — 7
0.102 ppm Hg

Spocled =

Note that in Example al—3 one degree of freedom was
lost for each of the seven samples. Because the re-
maining degrees of freedom are greater than 20, how-
ever, the computed s can be considered to be a good
approximation of o, and we may assume that s — ©.

a1B-2 Confidence Limits (CL)

The true or population mean () of a measurement
is a constant that must always remain U.Ilkl'.lOV.VI’l. How-
ever, in the absence of systernatic errors, limits can be
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FIGURE ai—4 Relative error in s as a function of N.

set within which the population mean can be expt?(:t?cj
to lie with a given degree of probabihty.. The: 1{m1t; :
obtained in this manner are called confidence limits. -
The confidence limit, which is derived from ..th?
sample standard deviation, depends upon the c‘:ert.al_r_l__t.y :
with which s is known. If there is reason to believe t_hg_lt
5 is a good approximation of o, then tpe conﬁqggc_::
limits can be significantly narrower than if the estimats
of s is based upon only two or three measuremcnt;

CONFIDENCE LIMIT WHEN s IS A GOOD

APPROXIMATION OF o . _ o
Figure al-5 is a normal error curve which the absciss

is the quantity z, which représents the deviation"fr'?m :
the mean in units of the population standard dev;_at_lq

—4g

FIGURE a1—5 Confidence levels for various values of z.

(Equation al-14). The column of numbers in the center
of the figure gives the percent of the total area under
the curve that is encompassed by the indicated values
of —z and +z. For example, 50% of the area under
any Gaussian curve lies between —0.670 and +0.670;
B0% of the area lies between — 1.29¢ and +1.290.
From the latter limits then, we may assert, with 80
chances out of 100 being correct, that the population
mean lies within +1.29¢ of any single measurement
we make. Here, the confidence level is 30% and the
confidence intervalis +zo = +1.290. A general state-
ment for the confidence limit (CL) of a single mea-
surement is obtained by rearranging Equation al-14,

remembering that z can take positive or negative values.
Thus,

ClLforp =x + zo (al-18)

Equation al-18 applies to the result of a single
measurement. Application of Equation al—17 shows the
confidence interval is decreased by \/N for the average
of N replicate measurements. Thus, a more general form
of Equation al-18 is

CLforpn=3x = (al-19)

Ll
VN
Values for z at various confidence levels are found in
Table al-3.

EXAMPLE a1—4

Calculate the 50% and the 95% confidence limits for
the mean value (1.67 ppm Hg) for specimen 1 in
Example al-3. Again, s = ¢ = 0.10.

Applying Equation al-19 to the three measure-
ments yields

0.67 X 0.10
= 1.67 & ———
50% CL = 1.67 v
= 1.67 + 0.04
1,96 % 0.10
95% CL = 1.67 + ~—— "
b CL = 1.6 Ve
= 1.67 % 0.11

From Example al4, we conclude that there is a 50%
chance that ., the population mean (and in the absence
of systematic error the true value), will lic between the
limits of 1.63 and 1.71 ppm Hg. Furthermore, there is
& 95% chance that u will be found between 1.56 and
1.78 ppm Hg.
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EXAMPLE a1-5
How many replicate measurements of specimen 1 in
Example al-3 would be needed to decrease the 95%
confidence interval to +0.07 ppm Hg?

The pooled value for s is 2 good estimate for o.
For a confidence interval of +0.07 ppm Hg, subst-
tution into Equation al—19 leads to

z5 1.96 x 0.10
007 = & o= &~ D0
VN VN
1.96 x 0.10
N= + ——— =280
VN 0.07
N=78

We conclude, then, that 8 measurements would pro-
vide a slightly better than 95% chance of the population

mean lying within +0.07 ppm of the experimental
mean.

A consideration of Equation al-19 indicates that
the confidence interval for an analysis can be halved by
employing the mean of four measurements. Sixteen
measurements would be required to natrow the limit by
another factor of two. It is apparent that a point of
diminishing return is rapidly reached in acquiring ad-
ditional data. Thus, the chemist ordinarily takes ad-
vantage of the relatively large gain afforded by averaging
two to four measurements but can seldom afford the
time required for further increases in confidence.

In data analysis, it is essential to keep in mind
always that confidence limits based on Equation al-19
apply only in the absence of systematic errors.

TABLE ai1-3
Confidence Levels for Various Values of z

50 0.67 96 2.00
68 1.00 99 2.58
80 1.29 99.7 3.00
90 L.oe4 99.9 3.29
95 1.96
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CONFIDENCE LIMITS WHEN o IS UNKNOWN .
Frequently, a chemist must make use of an unfamlhlar
method wherein limitations in time or aqlount of avail-
abie sample preclude an accurate estimation of c. Here,
a single set of replicate measurements must prc'wu.ie not
only a mean but also a precision estimate. As indicated
earlier, s calculated from a small set of data may be
subject to considerable uncertainty; thusl, conﬁdenc'e
limits must be broadened when a good estimate of ois
unavailable. - '
To account for the potential variability of s, use 18
made of the statistical parameter ¢, which is defined as

= (x — wis (al-20)

Note the similarity between Equations _31420 and
al—14. In contrast to z in Equation al-14, 113 dependent
not only on the desired confidence level but ‘also upon
the number of degrees of freedom available in the cal-
culation of 5. Table al-4 provides values for t for a few

TABLE ai-—4

 Values of f for Various Levels of Probability

1 3.08 631 127 63.7 637

2 1.89  2.92 4,30 9.92 31.6

3 1.64 2.35 3.18 5.84 12.9
4 153 213 2.78 4.60 8.60
5 148 2.02 2.57 4.03 6.é6
6 1.44 194 2.45 37N 5.96
7 1.42 190 2.36 3.50 5.40
8 1.40  1.36 2.31 3.36 5.04
9 138 1.83 2.26 3.25 4.78
10 1.37 181 2.23 3.17 4.59
11 1.36 1.80 2.20 3.11 4.44
i2 136 178 2.18 3.06 4.32
13 1.35 17 2.16 3.01 4,22
14 134 176 2.14 2.98 4.14
oo 1.29 1.64 1.96 2.58 3.29

-

degrees of freedom; more extensive tables are found in
most mathematical handbooks. Note that the values fo_r :
t become equal to those for z (Tablle al‘—3) as the number -
of degrees of freedom becomes infinite. o

The confidence limit for the mean X of N replicate-
measurements can be derived from ¢ by an equation’:
analogous to Equation al—19; that is, L

ts

EXAMPLE a1-6 _ o
A chemist obtained the following data for the alcoho

content of a sample of blood; percentage of ethan
= (.084, 0.089, and 0.079. Calculate the 95%.(:0' -
fidence limit for the mean assumning (a} no addiuon_g}
knowledge about the precision of the metl'mfl and (b)
that on the basis of previous experiences it 1s known
that s — o = 0.006% ethanol. .

(@) Sx, = 0.084 + 0.089 + 0079 = 0.252
$a% = 0.0070566 + 0.007921 + 0.006241

= 0.021218 =

2 :

_ f.ozmi* (:).252) B _ 00050

Here, £ = 0.252/3 = 0.084. Table al-4 indicates
that + = +4.30 for two degrees of freedom gnd
95% confidence. Thus,

s
95%CL=£i*\/—N‘

4.3 x 0.0050. . .

V3
= 0.084 = 0.012

(b) Because a good value of o is available

= (.084 =

20
95%CL;ftV_A—I

1.96 x 0.006

V3
= (.084 + 0.007

0.084 =

li

Note from Example al—6 that a sure knowledge.
o nearly halves the confidence interval.

ailB-3 Test for Bias

As noted in Section alA-2, bias in an analytical
methad is generally detected by the analysis of oné

more standard reference materials whose composition
is known. In all probability, the experimental mean of
such an analysis £ will differ from the true value
supplied for the standard. In this case, a judgment must
be made whether this difference is the conseguence of

, random error in the analysis of the reference material
or of bias in the method vsed.

A common way of treating this problem statistically
1s to compare the experimental difference ¥ — p with
the difference that could be expected at a certain prob-
ability level if no bias existed. If the experimental ¥ —
is larger than the calculated difference, bias is likely.
If, on the other hand, the experimental value is equal
to or smaller than the computed difference, the presence
of bias has not been demonstrated.

This test for bias makes use of the 7 statistics dis-
cussed earlier. Here we rearrange Equation al-21 to
give

c e IS

I—p == VN
where N is the number of replicate measurements em-
ployed in the test. (If a good estimate of o is available,
the equation can be modified by replacing ¢ with z and
s with &.) If the experimental value of £ — p is larger
than the value of ¥ —p calculated from Equation
al-22, the presence of bias in the method is suggested.
if, on the other hand, the value calculated using Equation
al-22 is larger, no bias has been demonstrated.

(al-22)

EXAMPLE a1-7

A new procedure for the rapid determination of sulfur
in kerosenes was tested on a sample known from its
method of preparation to contain 0.123% S. The results
were % S = 0.112,0.118, 0.115, and 0.119, Do the
data indicate the presence of bias in the method?

2x, = 0.112 + 0.118 + 0.115 + 0.119
= (.464

X = 0.464/4 = 0.116% S
£ p=0116 —0.123 = —0.007% S

Zx? = 0.012544 + 0.013924 + 0.013225
+ 0.014161 = 0.053854

\/0.053854 — (0.464)%4
P 4-1

= ’O—_.OO::]OBO = 0.0032
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From Table al-4, we find that at the 95% con-

fidence level, ¢ has a value of 3.18 for three degrees
of freedom. Thus,

g5 _ 30800032 oo
vz Nz S

An experimental mean can be expected to deviate by
#0.0051 or greater no more frequently than 5 times
.in 100. Thus, if we conclude that x — . = —0.007
is a significant difference and that bias is present, we
will, on the average, be wrong fewer than 5 times in
100.

If we make a similar calculation employing
the value for r at the 99% confidence level,
ts/\/N assumes a value of 0.0093. Thus, if we insist
upon being wrong no more often than I time in 100,
we must conclude that no bias has been demonstrated.
Note that this statement is different from saying that
no bias exists.

EXAMPLE a1-8

Suppose we know from past experience that the method
described in Example al-7 had a population standard
deviation of 0.0032% S. That is, s = o = 0.0032.

Is the presence of bias suggested at the 99% confidence
level?

Here we write that

£
VN
2.58 X 0.0032
_— =

V4 +0.00413

The experimental difference of —0.007 is significantly
larger than this number. Thus, bias is strongly sug-
gested.

X—p==
+

aiB—4 Propagation of Measurement
Uncertainties

A typical insitumental method of analysis involves
several experimental measurements, each of which is
stbject to an indeterminate uncertainty and each of
which contributes to the net indeterminate error of the
final result. For the purpose of showing how such in-
determinate uncertainties affect the outcome of an anal-
ysis, let us assume that a result x is dependent upon the
experimental variables, p, ¢, r, . . . , each of which
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fuctuates in a random and independent way. Tt'lat is,
x is a function of p, g, ¥, . . . , SO W& may write

x=fip.gr, . ..) (a1-23)

The uncertainty dx; (the deviation from the me%:m)
in the ith measurement of x will depenc‘l upon the size
and sign of the corresponding uncertainties dp;, dqy
dri, . .. and we may write

dx, =f(dpj,dq,.,dr,., N

The variation in dx as a function of the uncertainti.cs in
p, g, F, . . -canbe derived by taking the total differ-
ential of Equation al-23. That is,

ox ax
=|— dp + (H—) dg
& (E'P)q,r,,.. P 0q/ .. ..

dx
ar

dr + - -+ (al-24)

Pg -

+

In order to develop a relationship between the standard
deviation of x and the standard deviations of p, 4 and
r, it is necessary to square the foregoing eqpatlon. ‘In
doing so, we will drop the subscripts associated with
all partial derivatives. Thus,

ox ax
wr=|(5)e+ (5)

+ & ar + - -
ar

2
] (al-25)

This equation must then be summed between the limits
ofi = 1toi = N, where N again is the total nurnber
of replicate measurements.

In squaring Equation al-24, two types of terms
from the right-hand side of the equation emerge: (1)
square terms and (2) cross terms. Square terms take the
form

2 . a 2 a 2
=Y g (Z dZ(—x) a’ ..
(ap) - (Gq) T \or

Square terms are always positive and can, thereforc,
never cancel, In conirast, cross terms may be either
positive or negative in sign. Examples are

ox ﬁ)—‘) dp da, (a_x) (a_x) dpdr. . . .
ap/ \dq ap/ \or

If dp, dg, and dr represent independent and rana’?m
uncertainties, some of the cross terms will be negative
and others positive. Thus, the summation of all suck

terms should approach zero, particularly when N is:
large.® ‘ _

* As a consequence of the canceling tendency Of. Cross
terms, the sum of Equation al-25 from i = ltoi =N
can be assumed to be made up exclusively of square
terms. This sum then takes the form

2 2
d ox
E(dx;)z = ('5;') z(dpi)z + (5‘(}) E(dqz')z

2
ox

) S(dr + - -+ (al-=26)
or

Dividing through by N gives

2
Sy’ _ (a_x) S, (aj) Sdg)?
N ap N aq N
2
+ (ﬁ) M v (a1_27)
ar N -

From Equation al-7, however, we scc that

S _ S0 = wF _

o

N N *

where o2 is the variance of x. Similarly,
2(?5:‘)2 — Uﬁ

and éo forth. Thus; Equation al-27 can be v-vritten il
terms of the variances of the guantities; that is,

. 2 5 2
ax X 2
2 (=] g2+ |} O
o (ap) e (aq) ’
2
ox 2
—_ D-r + R

The example that follows illustrates how Equati?'
al-28 is employed to give the variance of a quanti
calculated from several experimental data.

(al-28)

EXAMPLE ai-9 - 5
The number of plates N in a chromato graphic co_l_u
can be computed with Equation 24-17 (Chapter 24

2
Ir
N = IG(W)

i terms must be kep!

% If the variables are not independént, the cross e kep
regardless of the size of N. See S. L. Meyer, Data Analys_:s for
Scientists and Engineers. New York: Wiley, 1975.

where 15 is the retention time and W is the width of
the chromatographic peak in the same units as £,. The

significance of these terms is explained in Figure
24-6.

Hexachlorobenzene exhibited a high-performance
+|| liquid chromatographic peak at a retention time of
13.36 min. The width of the peak at its base was 2.18
min. The standard deviation s for the two time mea-
surements was 0.043 and 0.061 min, respectively.
Calculate (a) the number of plates in the column and
(b) the standard deviation for the computed result.

13.36 min

N=1
@ '6( 2,18 min

2
) = 601 plates

(b} Substituting 5 for o in Equation al-28 gives

2 2
oN aN
sh=1{— 2 41— z
N afR wsm 6W . Sw

Taking partial derivatives of the original equation

32¢ 3 _a02
il = *-—QR and N = 3?—"
otgfy W w /. W

Substituting these relationships into the previous equa-
tion gives

321 \° 32:2\°
i = (Vf) Sie ¥ (—Wg_R) S
B (32 X 13,36 min

(2.18 min)?

2
—32(13.36 min)? _
t\— 043 2
( (2.18 miny’ ) (0.043 min)

!

2
) (0.061 min)?

= 592.1
Sy = V592.1 = 24.3 = 24 plates
Thus, N = 6.0 (£0.2) X 107 plates

alB-5 Rounding Results from
Arithmetic Calculations

Hquation al-28 is helpful in deciding how the re-
sults of arithmetical calculations should be rounded. For
example, consider the case where the result x is com-
puted by the relationship

x=p+gqg-—-r

where p, g, and r are experimental quantities having
sample standard deviations of s,,, 5, and s,, respectively.
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Applying Equation a1-18 (using sample rather than pop-
ulation standard deviations) gives

d. ? a : a 2

29

si=|—] s+ o 2+ iad 52
ap aq.r aq pr dar P

But,

) o
(_x) = (—{) =1 and (%) = —1
ap q.r aq Pr ar P.q

Therefore, the variance of x is given by
sp= (122 + (1Ps2+ (~ 152
or the standard deviation of the result is given by

Thus, the absolute standard deviation of a sum or dif-
ference is equal to the square root of the sum of the
squares of the absolute standard deviation of the num-
bers making up the sum or difference.

Proceeding in this same way yields the relationships
shown in column 3 of Table al-5 for other types of
arithmetic operations. Note that in several calculations,
relative variances such as (s,/x)* and (si,/p)2 are com-
bined rather than absolute standard deviations.

EXAMPLE a1-10 '
Calculate the standard deviation of the result of

[14.3(+0.2) ~ 11.6(£0.2)] X 0.050(+0.001)
[820(% 10) + 1030(=£5)] X 42.3(+0.4)
= 1.725(+7) X 105

where the numbers in parentheses are absolute standard
deviations. First we must calculate the standard de-
viation of the sum and the difference. The standard
deviation s, for the difference in the numerator is given
by

5 = V(Z0.2% + (20272 = +0.283

For the sum in the denominator, the standard defivative

$g 18 s

S = V(10 + (£5) = ill.Z.

‘We may then rewrite the equation as

2.7(+0.283) X 0.050(£0.001)
1850( % 11.2) x 42.3(0.4)

= 1.725(+7) X 10~°
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The equation now contains only products ?nd quo-
tients, and Equation (2) of Table al-5 applies:

2
C0283C (0001} [+112) (04
7 )" * a3
2.7 0.050 1850 .

= *=0.107

8
X

To obtain the absolute standard deviation, we write

5. = +0.107 x = +0.0107(1.725 X 1079
i _ +0.185 X 10-6

and the answer is rounded to 1.7 (+0.2) X 1078,

EXAMPLE afi-i1
Calculate the absolute deviations of the results of the

following computations. The absolute standard de-
viation for each quantity is given in parentheses.

(a) x = log [2.00 (£0.02) x 107*]

= —3.6990 + ?
(b) x = antilog {1.200 (£0.003)]
= 15.849 = 7
(c) x = antilog [45.4 (x0.3)]
= 2.5119 x 10* & 7
TABLE al-5

Error Propagation in Arithmetic Calcutations

(a) Referring to Equation (4) in Table al-5 we see -

0.02 x 107* N
= e 2 = 20.004
s = F0434 X 00 % 10
Thus, .

log [2.00 (+0.02) X 107*] = —3.699 (+0.004)
(b) Employing Equation (5) in Table al-5, we obtgﬁr%

Sx _ 9303 x (+0.003) = £0.0069 =
X

4 0.0069% = +0.0069 X 15.849
= 0.109

Sx

Therefore, 4 -
antilog [1.200 (£0.003)] = 15.8 & 0_1..._

© = = 2303(+0.3) = £0.691
X
5, = =0.691 X 2.511 X 104
= +1.7 X 10
Therefore,

antilog [45.4 (£0.3)] = 2.5 (£ 1.7) x 107

Example al-11c demonstrates that a large absolute:

error is associated with the antilogarithrp of a meb
with few digits beyond the decimal point. This lar;

—_——

Addition or Subtraction X

Multiplication or Division x=p-glr
Expgnentiation x=p
Logarithm x = logw P
Antilogarithm x = antilog P

#p, g, and r are experimental variables whose standard deviations are Sp, Sq

o
A ERC RO
x P q r
X

5= 04342 : )
. 5 _

- 23035, ©)
X

and s,, respectively; y is a constant,

uncertainty arises from the fact that the numbers to the
left of the decimal (the characteristic) serve only to locate
the decimal point. The large error in the antilogarithm
results from the relatively large uncertainty in the man-
tissa of the number (that is, 0.4 + 0.3).

aiC
METHOD OF LEAST SQUARES

Most analytical methods are based upon a calibration
curve in which a measured quantity y is plotted as a
function of the known concentration x of a series of
standards. Figure al-6 shows a typical calibration
curve, which was derived for the chromatographic de-
termination of isooctane in hydrocarbon samples. The
ordinate (the dependent variable) is the area under the
chromatographic peak for isooctane, and the abscissa
(the independent variable) is the mole percent of iso-
octane. As is typical (and desirable), the plot approx-
imates a straight line. Note, however, that because of
the random errors in the measuring process, not all the
data fall exactly on the line. Thus, we must try to fit a
““best’” straight line through the points. A common way
of finding such a line is the method of least squares.
In applying the method of least squares, we assume
that there is a linear relationship between the area of

5.0 F—

3.0

3™ Residual =
¥; — lmx; + b)

2.0

y, Peak area, arbitrary units

1.0

i | | |
0.0 05 1.0 1.5 2.0

x, Concentration of iscoctane, maol %

FIGURE a1-6 Calibration curve for determining isooctane
in hydrocarbon mixtures,
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the peaks (y) and the analyte concentration (x) as given
by the equation

y=mx + b

where m is the slope of the straight line and b is the
intercept. We also assume that any deviation of indi-
vidual points from the straight line results from error
in the area measurement and that there is no error in
the values of x—that is, the concentrations of the stan-
dard sohuions are known exactly.

As illustrated in Figure al-5, the vertical deviation
of each point from the straight line is called a residual.
The line generated by the least-squares method is the
one that minimizes the sum of the squares of the residuals
for all of the points.

For convenience, we define three quantities S, S,,,
and 5., as follows:

2
Se = 2x; — £)? = a2 — —(E;") (al-29)
Sy = 2y — ¥)* = 2y} — Q%L (al-30)
Sy = 20t — )y — )
_ Sy, — 2 (al-31)

N

Here x; and y, are the coordinates of the individuat data
points, N is the number of pairs of data used in prep-
aration of the calibration curve, and % and ¥ are the
average values for the variables, or

Note that §,, and 3,, are the sum of the squares of
the deviations from the mean for the individual values
of x and y. The equivalent expressions shown to the far
right in Equations al-29, al-30, and al-31 are more
convenient when a handheld calculator is being used.

Six useful gnantities can be computed from 5., Sy,
and §,,.

1. The slope of-the line m: -

M= 8,18, (al-32)
2. The intercept b:

b= — mi (al 33)

3. The standard deviation s, of the residuals, which is
given by:
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2
5. = Sy = M8 (a1-34)
’ N-2
4. The standard deviation of the slope s,
AT (al-35)
5. The standard deviation s, of the intercept:
| Sx?
56 = NS - Ex)

[
=5 s  (al-36
“ N e @0

6. The standard deviation s, for analytical results ob-
tained with the calibration curve:

= =32
o511 =73
e m\/L+ N ms,,

Equation al-37 permits the caiculation of the standard
deviation of the mean ¥, of a set of L replicate analyses

when a calibration curve that contains N points is ussed;
recall that 7 is the mean value of y for the N calibration

data.

EXAMPLE a1-12 -
Carry out a least-squares analysis of _the. experimental
data provided in the first two columns in Table al-6
and plotted in Figure al-6.

Columns 3, 4, and 5 of the table contain computed
values for x7, ¥?, and x;y;; their sums appear as the
last entry of each column. Note that the number of
digits carried in the computed values should be the
maximum allowed by the calculator or computer, a.nd
rounding should not be performed until the calculation

is complete. '
We now substitute into Equations a1-29, al--30,

and al-31 to obtain

(ai-37)

TABLE a1-6

_ . ture.
Calibration Data for a Chromatographic Method for the Determination of Iscoctane in a Hydrocarbon Mbxur

0.123%0 1.1881 0.38368 "7
gggg i(”;]'g 0.64481 3.1684 ;ggzgg .:.
1‘08 2.60 1.16640 6.7600 4-13140

. 03 1.90440 9.1809 . G
75 2.01 3.06250 16.0801 7.01750
%g—gS H 6.90201 -36.3775 15.81992

S, = 3a? — (Sx)UN = 6.90201 — (5.365)"/5
1.14537
= Sy — (Sy)PIN = 36,3775 — (12.51)%5
= 5.07748
S = Sxy; — ZxZyiN
= 15.81992 — 5.365 X 12.51/5
= 2.39669

Substituting these quantities into Equations al-32 and
a1-33 yields

2.39669/1.14537 = 2.0925 = 2.09

p= 125150005 5 2305 (0567 = 0.26
5 5

LA
3
f

Ik

H

Thus, the equation for the least-squares line is
y = 2.09x + 0.26

Substitution into Equation al-—34 yields the stan—_.
dard deviation for the residuals:

S,y — M8
N—2

_ - o
\/5.07748 — (2.0925) X 1.14537 _ 014

5-12

and substitution into Equation al-35 gives the standard
deviation of the slope:

S = 8,/\V85 = 0.14/7/1.14537 = 0.13

The standard deviation of the intercept is obtained from_
Equation al1-36. Thus

' 1
= 0.16
= 0‘14\£ — (5.365)7/6.90201

EXAMPLE a1-13

The calibration curve derived in Example al-12 was
used for the chromatographic determination of iso-
octane in a hydrocarbon mixture. A peak area of 2.65
was obtained. Calculate the mole percent of isooctane
and the standard deviation for the result if the area
was (a) the result of a single measurement and (b) the

all) QUESTIONS AND PROBLEMS  A-18

(a) Substituting into BEquation al-37, we obtain

. 0.14 1 1 (2,65 — 12.51/5)
i 208y 5 (2.09)* x 1.145
= 0.074 mol %

mean of four measurements.
In either case,

2.09 2.09

_ =026  2.65—0.26

(by For the mean of four measurements,

0.4 1 1 @65 - 12.5Usp
5= — =4 =

_ “T 200745 000 x 1145
= 1.14mol % = 0.046 mol %

alD QUESTIONS AND PROBLEMS

al-1

al-2

al-4

al-5

al-6

Consider the following sets of data:

A B C D

61.45
61,53
61.32

3.27 12.06 2.7
3.26 12.14 2.4
3.24 2.6
3.24 2.9
3.28
3.23

Caleulate: (a) the mean for each data set, and decide how many degrees
of freedom are associated with the calculation of X, (b) the absolute standard
deviation of each set, and decide how many degrees of freedom are as-
sociated with the calculation of s; (c) the standard error of the mean of each
set; (d) the coefficient of variation for the individual data points from the
mean.

The accepted value for the quantity that provided each of the sets of data
in Problem al-1 is: A 61.71, B 3.28, C 12.23, D 2.75. Calculate: () the
absolute error for the mean of cach set; (b) the percent relative error for
each mean.

A particular method for the analysis of copper yields results that are low
by 0.5 mg. What will be the percent relative error due to this source if the
weight of copper in a sample is

(a) 25 mg? {b) 100 mg? (c) 250 mg? {d) 500 mg?

The method described in Problem al-3 is to be used to analyze an ore that
contains about 4.8% copper. What minimum sample weight should be taken
if the relative error due to 2 0.5-mg loss is to be smaller than

(a) 0.1%? (b) 0.5%" (c) 0.§%? (d) 1.2%7 _

A certain instrumental technique has a standard deviation of 1.0%. How
many replicate measurements are necessary if the standard error of the mean
is to be 0.01%?

A certain technique is known to have a mean of 0,500 and standard deviation
of 1.84 > 1077, It is also known that Gaussian statistics apply. How many
replicate determinations are necessary if the standard error of the mean is
not to exceed 0.100%?
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al-7

al-8

al-9

al-10

al-11

A constant solubility loss of approximately 1.8 mg is assoc'lated with a B
particular method for the determination of chromium in geologxcqi samples.:

A sample containing approximately 18% Cr was z?nalyzed by this methoq_
Predict the relative error {in parts per thousand) in tl_le results due to this
systematic error, if the sample taken for analysis we_lghecli 0.4}00 £.
Following are data from a continuing study of calcium ion in the blood -

plasma of several individuals:

Mean Calcium

er of Derivation of Individual

Subject ng?;l(:(e)nl::L Ol\l];;::ations Results from Mean Valuesr

1 3.16 5 0.14, 0.09, 0.06, 0.00, 0.11

2 4.08 4 0.07, 0.12, 0.10, 0.01

3 3.75 5 0.13, 0.05, 0.08, 0.14, 0.07

4 3.49 3 0.10, 0.13, 0.07 .

5 3.32 6 0.07, 0.10, 0.11, 0.03, 0.14,

0.05

{a) Calculate s for each set of values. _

(b) Pool the data and calculate s for the analytical method. - .
A method for determining the particulate lead content of air samples is-
based upon drawing a measured quantity of air through a ﬁltel? ar?d.pe;-.
forming the analysis on circles cut from the filter. Calcula_te the individual
values for s as well as a pooled value for the accompanying data.

Sample pg Phim® Air
1 1.5,1.2,1.3
2 2.0,2.3,23,22
3 1.8,1.7, 1.4, 1.6
4 1.6,1.3,1.2, 1.5, 1.6

»

Estimate the absolute standard deviation and the coefficient of vaﬁation for‘
the results of the following calculations. Round each result so that it contams.
only significant digits. The numbers in parentheses are absolute standard.

deviations.
6.75 (+£0.03) + 0.843 (£0.001) — 7.021 (+0.001) = 0.572-

(@) y= - -
() y = 61.1(x03) x 103 (x0.02) x 10°7 = 69113 x 107"
760( £2) '
~ _T60(£D) (235785
(©) y =243 (=1 X 75060+ 0.006)
143(26) — 64(=3) _ ¢ 590 » 192

@Y= Ta9r 1) + 77(+8)
@ y = 200D g 106996 x 1072 |
243(£3) ' .
Estimate the absolute standard deviation and the coefficient of variation for™
the tesults of the following calculations. Round each result to include only
significant figures. The numbers in parentheses are absolute standard d_e_—
viations. i
(@) y = —1.02(£0.02) X 1077 — 3.54 (+0.2) X 10 :
= —1.374 x 1077 S
(b) y = 100.20 (+0.08) — 99.62 (£0.06) + 0.200 (+0.004) = 0.780
(c) y = 0.0010 (£0.0005) x 18.10 (£0.02) X 200 (1) = 3.62 &

al-12

al-13

al-14

al-15

al-16

al-17

al-18

al-19

al-20
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il

(d)y y
(e)y=

[33.33 (+0.03)]° = 37025.927

1.73(+0.03) x 10~

1.63(£0.04) x 10716

Based on extensive past experience, it is known that the standard deviation

for an analytical method for gold in sea water is 0.025 ppb. Calculate the

99% confidence limit for an analysis using this method, based on

{a) a single measurement.

(b) three measurements.

(c) five measurements.

An established method of analysis for chlorinated hydrocarbons in air sam-

ples has a standard deviation of 0.030 ppm.

(a) Calculate the 95% confidence limit for the mean of four measurements
obtained by this method.

(b} How many measurements should be made if the 95% confidence limit
is to be +0.017?

The standard deviation in a method for the analysis of carbon monoxide

in automotive exhaust gases has been found, on the basis of extensive past

experience, to be 0.80 ppm.

(a) Estimate the 90% confidence limit for a triplicate analysis,

(b) How many measurements would be needed for the 90% confidence
limit for the set to be 0.50 ppm?

The certified percentage of nickel in a particular NIST reference steel sample

is 1.12%. A new spectrometric method for the determination of nickel

produced the following percentages: 1.10, 1.08, 1.09, 1.12, 1.09. Is there

an indication of bias in the method at the 95% level?

A titrimetric method for the determination of calcium in limestone was

tested by analysis of an NIST limestone containing 30.15% CaQ. The mean

result of four analyses was 30.26% CaQ, with a standard deviation of

0.085%. By pooling data from several analyses, it was established that

s—> o = 0.094% CaO.

(a) Do the data indicate the presence of a determinate error at the 95%
confidence level?

(b) Do the data indicate the presence of a determinate error at the 95%
confidence level if no pooled value for o was available?

In order to test the quality of the work of a commercial laboratory, duplicate

analyses of a purified benzoic acid (68.8% C, 4.953% H) sample was

requested. It is assumed that the relative standard deviation of the method

is 5, — o, = 4 ppt for carbon and 6 ppt for hydrogen. The means of the

reported results are 68.5% C and 4.882% H. At the 95% confidence level,

is there any indication of determinate error in either analysis?

The diameter of a sphere has been found to be 2.15 cm, and the standard

deviation associated with the mean is 0.02 cm. What is the best estimate

of the volume of the sphere, and what'is the standard deviation associated

with the volume? '

A given pH meter can be read with a standard deviation of +0.01 pH units

throughout the range 2 to 12. Calculate the standard deviation of [H,0 ™)

at each end of this range.

A solution is prepared by weighing 5.0000 g of compound X into a 100-

ml. volumetric flask. The balance could be used with a precision of 0.2

mg reported as a standard deviation and the volumetric flask could be filled

= 106.1349693
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al-21

al-22

al-23

with a precision of 0.15 mL also reported as a -stano‘:lard de\;’latlon. What
is the estimated standard deviation of conclentrauon in g/mIT. i e
Estimate the absolute standard deviation in the result dem}ve r:)md z.
following operations (the numbers in parentheses are abst(t)1 ufe stan -art
deviations for the numbers they follow). Report the result to the appropriate .
number of significant figures.

(a) x = log 878(+4) = 2.94349

() x = log 0.4957(0.0004) = —0.30478

(¢) p = antilogatithm 3.64(+0.01) = 4365.164169 « 10-8
(d) p = antilogarithm ~7.191(£0.002) = 6.4 R
The sulfate ion concentration in natural water can be de_terrg;ndt Y
suring the turbidity that results when an excess of ]3-3.C12 is adde dofa mtel:la_lT ;
sured quantity of the sample. A turbidimeter, the instrument 11133 or ! ;::
analysis, was calibrated with a series Qf stapdard Na,S0, solutions. >
following data were obtained in the calibration:

mg SO} /L, ¢ Turbidimeter Reading, R

0.00 0.06
5.00 1.48
10.00 2.28
15.0 3.98
20.0 4.61

Assurmne that a linear relationship exists between the instrument reading and-.:_

concentration. . .
(a) Plot the data and draw a straight line through the'pomts by eye. .
(b) Derive a least-squares equation for the relationship between the van

ables. ' . . . . i
(¢) Compare the straight line from the relationship derived in (b) with that:
in (a). '

(d) Calculate the standard deviation for the slope and the intercept for the
least-squares line. ‘ o -
(e) Calculate the concentration of sulfate ina sample y1elc.hn'g a turbldimet.el;:
reading of 3.67. Calculate the absolute standard deviation of the resu.t
and the coefficient of variation. ' :
(f) Repeat the calculations in (e) assuming that the 3.67 was a mean of
six turbidimeter readings. o o -
The following data were obtained in calibrating a calcium ion elec_troc}lze.f(.)é_
the determination of pCa. A linear relationship between the potential and
pCa is known to exist.

pCa E, m¥
5.00 -53.8
4.00 -27.7
3.00 + 2.7
2.00 +31.9
1.00 +65.1

i . ints by eye.

Dot the data and draw a line through the poin . : .

EIE;; Eerive a least-squares expression for the best straight line through_t:l'_le
points. Plot this line.

al-24
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(¢} Calculate the standard deviation for the slope and the intercept of the
least-squares line.

(d) Calculate the pCa of a serum solution in which the electrode potential
was 20.3 mV. Calculate the absolute and relative standard deviations
for pCa if the result was from a single voltage measurement.

(e) Calculate the absolute and relative standard deviations for pCa if the
millivolt reading in (d) was the mean of two replicate measurements.
Repeat the calculation based upon the mean of eight measurements,

(f) Calculate the molar calcium jon concentration for the sample described
in (d).

(g) Calculate the absolute and relative standard deviations in the calcium
ion concentration if the measurement was performed as described in
{e).

The following are relative peak areas for chromatograms of standard so-
lutions of methyl vinyl ketone (MVK).

Concentration MVK, mmol/L Relative Peak Area

0.500 3.76
1.50 9.16
2.50 15.03
3.50 20.42
4.50 25.33
5.50 31.97

{a) Derive a least-squares expression assuming the variables bear a linear
relationship to one another.

{(b) Plot the least-squares line as well as the experimental points.

(¢) Calculate the standard deviation of the slope and intercept of the line.

(d) Two samples containing MVK yielded relative peak areas of 6.3 and
27.5. Calculate the concentration of MVK in each solution.

(e) Assume that the results in (d) represent a single measurement as well

as the mean of four measurements. Calculate the respective absolute
and relative standard deviations.

.



