Aplikovaná chemie a biochemie Přednáška č. 1 Úvod Stručný přehled: • detekce exprese, lokalizace, syntézy, degradace a funkcí proteinů; protilátky; • detekce exprese na úrovni RNA; využití siRNA pro manipulace s expresí genů; microarrays; • práce s DNA; využití vektorů pro transfekci živočišných buněk in vitro; aktivace transkripce; • lipidy a polysacharidy – izolace, separace a identifikace; • nízkomolekulární látky – separační a analytické techniky, HPLC techniky a modifikace; • využití chemických inhibitorů, • modelové organismy; transgenní zvířata. Náplň předmětu: • přednášky; • seminář; Literatura: • Molecular Biology of The Cell (s.469-580), http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=books •Principles and Techniques of Practical Biochemistry http://assets.cambridge.org/97805216/58737 /toc/9780521658737_toc.pdf Primární literatura Protein (1): • identifikace (specifická protilátka; MALDITOF; microsequencing) • zařazení (práce s databázemi) • regulace exprese (analýza exprese v modelovém buněčném systému a in vivo) • lokalizace v buňce (live cell imaging; imunofluorescenční techniky; subcellular fractionation) • interagující proteiny (imunoprecipitace; GST-pull-down; yeast two-hybrid screen) • in vitro funkce – enzymatická aktivita?, strukturní protein?, membránový protein?, adaptérový protein?, receptor?; • in vivo funkce (transgenní modely, tkáňově specifická exprese, mutace) Protein (2): • funkce jednotlivých domén; • posttranslační modifikace (fosforylace, acetylace, glykosylace) • regulace odborávání proteinu (ubikvitinace; proteazomální degradace) • DNA interakce, transkripční aktivace, identifikace cílových genů, DNA-binding sites (EMSA, reporter gene assays) • manipulace s proteinem (overexprese; dominant negative constructs, antisense oligonucleotides, siRNA) • proteomika • protein v buněčném kontextu • izolace a purifikace SDS-PAGE a Western blotting, 2-D elektroforéza Western blotting – transfer: Membrány: • PVDF • nitrocelulóza Western blotting – imunodetekce: Western Blot Procedure • Blocking The membrane is blocked, in order to reduce non-specific protein interactions between the membrane and the antibody. This is achieved by placing the membrane in a solution of bovine serum albumin (BSA) or non-fat dry milk (NFDM). • Primary Antibody The first antibody to be applied (specific for protein of interest) is incubated with the membrane. The antibody is diluted in a buffer solution (PBS) containing a carrier protein (BSA or NFDM) along with some detergent. The primary antibody is specific for the protein of interest, and, at appropriate concentrations, should not bind any of the other proteins on the membrane. Western blotting is used to detect a target protein in a sample (containing a complex mixture of proteins) by using a polyclonal or monoclonal antibody specific to that protein. • Secondary Antibody After rinsing the membrane to remove unbound primary antibody a secondary antibody (figure 3 – green antibody) is incubated with the membrane. It binds to the primary antibody. This secondary antibody can be linked to an enzyme that allows for visual identification by producing vissible changes in colour, chemiluminescence or fluorescence. An alternative is to use a radioactive label. • Developing The unbound secondary antibodies are washed away, and the enzyme substrate is incubated with the membrane so that the positions of membrane-bound secondary antibodies will emit light. Bands corresponding to the detected protein of interest will appear as dark regions on the developed film. Band densities in different lanes can be compared providing information on relative abundance of the protein of interest. 1.The first paper describing the use of electrophoresis to transfer proteins from a gel to a membrane. Towbin H., Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350-4 2.The classic paper by UK Laemmli - the most cited article in the journal's history. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680-5. 3. The first paper to use the term western blot. Burnette WN. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195-203 http://www.westernblotting.org/ Modifikace •gel-shift assays Cx43 • whole cell protein modification assays (e.g. tyrosine phosphorylation) Cx43 TPA In-gel kinase assay. MBP (0.2 mg/ml), and MBP-Csx/Nkx2.5 or MBP-HD fusion protein (0.1 mg/ml) were incorporated into SDS–15% PAGE separation gels. NIH 3T3 nuclear extracts (50 mg) were boiled in SDS sample buffer and then loaded on the gels. After SDS-PAGE, gels were washed twice in 20% isopropyl alcohol for 30 min, denatured with 6Mguanidine-HCl in the buffer (40 mM HEPES [pH 7.4], 20 mM NaCl) for 60 min, and renatured gradually by decreasing Renatured gels were incubated in the presence of [g-32P]ATP (0.25 mCi/ml)–25 mM ATP in 40 mM of HEPES (pH 8.0)–5 mM MgCl2–2mMDTT– 0.1mMEGTA at room temperature for 1 h and washed with 5% trichloroacetic acid and 1% sodium pyrophosphate. Elektroforetická separace může být využita i pro funkční analýzu proteinů: FIG. 4. Dose-dependent increase in new protein expression in RAW 264.7 cells as determined by two-dimensional gels. A, dose-dependent increase in new protein expression in response to organic DEP extracts; protein expression was suppressed by NAC. B, regression analysis showing the linear correlation between extract dose and the number of newly expressed proteins. C, Venn diagram to show the overlapping and unique expression profiles at different doses of the DEP extract, D, list of six new proteins induced at all extract concentrations. RAW 264.7 cells were exposed to DEP extracts at indicated concentrations, in the absence or the presence of 20 mM NAC, for 6 h before cellular extraction and analysis of the soluble proteins by two-dimensional electrophoresis. These data were reproduced three times, during which the variability in protein expression was 10%. FIG. 5. Two-dimensional gel electrophoresis profile in the presence of 50 g/ml organic DEP extract. A, proteins that were induced 8-fold and subtracted in the presence of NAC were selected as oxidative stress markers that were identified by MS. Those proteins are numbered and their identities disclosed in Table I. B, excerpt of the two-dimensional profile to show how above criteria led to the identification of GAPDH as an oxidative stress marker. The top panel shows background expression in untreated cells, the middle panel shows increased expression by the extract, and the bottom panel shows the subtracted response in the presence of NAC. C, GAPDH immunoblotting shows the subtractive expression of this protein in crude cell lysates. See “Materials and Methods” for experimental details. These data were reproduced three times, during which the variability in protein expression was 10%. http://www.pdb.org/pdb/home/home.do http://www.ncbi.nlm.nih.gov/sites/entrez Protein (1): •regulace exprese (analýza exprese v modelovém buněčném systému a in vivo) • lokalizace v buňce (live cell imaging; imunofluorescenční techniky; subcellular fractionation) • interagující proteiny (imunoprecipitace; GST-pull-down; yeast two-hybrid screen) • in vitro funkce – enzymatická aktivita?, strukturní protein?, membránový protein?, adaptérový protein?, receptor?;