Population structure

• **Demography** - study of organisms with special attention to stage or age structure

processes associated with age, stage or size

x .. age/stage/size category

 p_x .. age/stage/size specific survival

$$p_x = \frac{S_{x+1}}{S_x}$$

 $m_{\rm x}$.. reproductive rate (expected average number of offspring per female)

- main focus on births and deaths
 immigration & emigration is
 ignored
- no adult survive
- one (not overlapping)

generation per year

- egg pods over-winter
- despite high fecundity they just
 replace themselves

breed at discrete
periods
no overlapping
generations

- pre-adults t_1 adults t_1 p birth 0adults t_2 pre-adults t_2
- breed at discrete periods
- adult generation may overlap

Perennial species

- breed at discrete periods
- breeding adults consist of
- individuals of various ages (1-5 years)
- adults of different generations are

equivalent

overlapping generations

Parus major

Age-size-stage life-table

age/stage
 classification is based
 on developmental time

 size may be more appropriate than age (fish, sedentery animals)

 Hughes (1984) used combination of age/stage and size for the description of coral growth

Agaricia agaricites

Age-dependent life-tables

show organisms' mortality and reproduction as a function of age

Static (vertical) life-tables

 examination of a population during one segment (time interval)
 segment = group of individuals of different cohorts

- designed for long-lived organisms

• ASSUMPTIONS:

- birth-rate and survival-rate are constant over time
- population does not grow

	X	Sx	Dx	Ix	рх	qx	mx
	1	129	15	1.000	0.884	0.116	0.000
	2	114	1	0.884	0.991	0.009	0.000
	3	113	32	0.876	0.717	0.283	0.310
	4	81	3	0.628	0.963	0.037	0.280
	5	78	19	0.605	0.756	0.244	0.300
4	6	59	-6	0.457	1.102	-0.102	0.400
	7	65	10	0.504	0.846	0.154	0.480
	8	55	30	0.426	0.455	0.545	0.360
	9	25	16	0.194	0.360	0.640	0.450
	10	9	1	0.070	0.889	0.111	0.290
	11	8	1	0.062	0.875	0.125	0.280
1	12	7	5	0.054	0.286	0.714	0.290
	13	2	1	0.016	0.500	0.500	0.280
	14	1	-3	0.008	4.000	-3.000	0.280
	15	4	2	0.031	0.500	0.500	0.290
	16	2	2	0.016	0.000	1.000	0.280

 S_x - number of survivors

 D_x - number of dead individuals

$$D_x = S_x - S_{x+1}$$

 l_x - standardised number of survivors

 $l_x = \frac{S_x}{S_0}$

 q_x - age specific mortality

 $q_x = \frac{D_x}{S_x}$

Cohort (horizontal) life-table

• examination of a population in a cohort = a group of individuals born at the same period

- followed from birth to death
- provide reliable information
- designed for short-lived organisms
- only females are included

X	Sx	Dx	Ix	рх	qx	mx
0	250	50	1.000	0.800	0.200	0.000
1	200	120	0.800	0.400	0.600	0.000
2	80	50	0.320	0.375	0.625	2.000
3	30	15	0.120	0.500	0.500	2.100
4	15	9	0.060	0.400	0.600	2.300
5	6	6	0.024	0.000	1.000	2.400
6	0	0	0.000			

Vulpes vulpes

Stage or size-dependent life-tables

- survival and reproduction depend on stage / size rather than age
- age-distribution is of no interest
- used for invertebrates (insects, invertebrates)
- time spent in a stage / size can differ

X	Sx	Dx	Ix	рх	qx	mx
Egg	450	68	1.000	0.849	0.151	0
Larva I	382	67	0.849	0.825	0.175	0
Larva II	315	158	0.700	0.498	0.502	0
Larva III	157	118	0.349	0.248	0.752	0
Larva IV	39	7	0.087	0.821	0.179	0
Larva V	32	9	0.071	0.719	0.281	0
Larva VI	23	1	0.051	0.957	0.043	0
Pre-pupa	22	4	0.049	0.818	0.182	0
Pupa	18	2	0.040	0.889	0.111	0
Adult	16	16	0.036	0.000	1.000	185

Campbell (1981)

Lymantria dispar

Survivorship curves

- display change in survival by plotting $log(l_x)$ against age (x)
- logarithmic transformation allows to compare survival based on different population size
- sheep mortality increases with age
- survivorship of lapwing (Vanellus) is independent of age

Pearls (1928) classified hypothetical age-specific mortality:

- Type I .. mortality is concentrated at the end of life span (humans)
- Type II .. mortality is constant over age (seeds, birds)
- Type III .. mortality is highest in the beginning of life (invertebrates, fish, reptiles)

Birth rate curves

- fecundity potential number of offspring
- fertility real number of offspring
- semelparous .. reproducing once a life
- iteroparous .. reproducing several times during life

 birth pulse .. discrete reproduction (seasonal reproduction)

birth flow .. continuous
 reproduction

Key-factor analysis

k-value - killing power - another measure of mortality

 $k = -\log(p)$

• k-values are additive unlike q

$$K = \sum k_x$$

• **Key-factor analysis** - a method to identify the most important factors that regulates population dynamics

▶ k-values are estimated for a number of years

• important factors are identified by regressing k_x on $\log(N)$

Leptinotarsa decemlineata

• over-wintering adults emerge in June \rightarrow eggs are laid in clusters on the lower side of leafs \rightarrow larvae pass through 4 instars

- \rightarrow form pupal cells in the soil \rightarrow summer adults emerge in August
- \rightarrow begin to hibernate in September
- mortality factors overlap

Harcourt (1971)

Summary over 10 years

highest k-value indicates the role of a factor in each generation

▶ profile of a factor parallel with the *K* profile reveals the key factor

emigration is the key-factor

Matrix (structured) models

model of Leslie (1945) uses parameters (survival and fecundity) from life-tables

• where populations are composed of individuals of different age, stage or size with specific births and deaths

• used for modelling of density-independent processes (exponential growth)

 $N_{x,t}$.. no. of organisms in age x and time t

 $G_{\rm x}$.. probability of persistence in the same size/stage

- $F_{\rm x}$.. age/stage specific fertility
- p_x .. age/stage specific survival

class 0 is omitted

number of individuals in the first age class

$$N_{1,t+1} = \sum_{x=1}^{n} N_{x,t} F_x = N_{1,t} F_1 + N_{2,t} F_2 + \dots$$

number of individuals in the remaining age class

$$N_{x+1,t+1} = N_{x,t} p_x$$

• each column in A specifies fate of an organism in a specific age: 3rd column: organism in age 2 produces F_2 offspring and goes to age 3 with probability p_{23}

- A is always a square matrix
- \mathbf{N}_t is always one column matrix = a vector

▶ fertilities/fecundities (*F*) and survivals (*p*) depend on whether population has discrete or continuous reproduction

- for populations with discrete pulses post-reproductive survivals and fertilities are

$$p_x = \frac{S_{x+1}}{S_x} \qquad F_x = p_0 m_x$$

- for populations with continuous reproduction post-reproductive survivals and fertilities are

$$p_x \approx \left(\frac{S_x + S_{x+1}}{S_{x-1} + S_x}\right)$$
 $F_x = \frac{(1 + S_1)(m_x p_0 m_{x+1})}{4}$

Stage-structured

only imagoes reproduce thus F_{1,2,3} = 0
 no imago survives to another reproduction period: p₄ = 0

$$\begin{bmatrix} 0 & 0 & 0 & F_4 \\ p_1 & 0 & 0 & 0 \\ 0 & p_2 & 0 & 0 \\ 0 & 0 & p_3 & 0 \end{bmatrix}$$

 model of Lefkovitch (1965) uses 3 parameters (mortality, fecundity and persistence)

 $\blacktriangleright F_1 = 0$

$$\begin{bmatrix} G_{11} & F_2 & F_3 & F_4 \\ p_1 & G_{22} & 0 & 0 \\ 0 & p_2 & G_{33} & 0 \\ 0 & 0 & p_3 & G_{44} \end{bmatrix}$$

Matrix operations

addition / subtraction

$$\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 4 \\ 5 & 8 \end{bmatrix} = \begin{bmatrix} 3 & 7 \\ 10 & 15 \end{bmatrix}$$

 $\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \times \begin{bmatrix} 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \times 4 + 3 \times 5 \\ 5 \times 4 + 7 \times 5 \end{bmatrix} = \begin{bmatrix} 23 \\ 55 \end{bmatrix}$

multiplication

$$\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \times 3 = \begin{bmatrix} 6 & 9 \\ 15 & 21 \end{bmatrix}$$

by a scalar

determinant

$$\begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix} = 2 \times 7 - 4 \times 3 = 2$$

• eigenvalue (λ)

$$\begin{bmatrix} 2 & 4 \\ 0.25 & 0 \end{bmatrix} = \begin{bmatrix} 2-\lambda & 4 \\ 0.25 & 0-\lambda \end{bmatrix} = (2-\lambda) \times (0-\lambda) - (0.25 \times 4) = \lambda^2 - 2\lambda - 1$$

by a vector

$$\lambda_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad \begin{array}{l} \lambda_1 = 2.41 \\ \lambda_2 = -0.41 \end{array}$$

$$\mathbf{N}_{2} = \mathbf{N}_{1}\mathbf{A}$$
$$\mathbf{N}_{3} = \mathbf{N}_{2}\mathbf{A}$$
$$\mathbf{N}_{t+2} = \mathbf{N}_{t}\mathbf{A}\mathbf{A} = \mathbf{N}_{t}\mathbf{A}^{2}$$
$$\mathbf{N}_{t+2} = \mathbf{N}_{t}\mathbf{A}\mathbf{A} = \mathbf{N}_{t}\mathbf{A}^{2}$$

parameters are constant over
 time and independent of population
 density

 follows constant exponential growth after initial damped oscillations

Matrix analysis

Net reproductive rate (R_0)

• average number of offspring produced by a female in her lifetime

$$R_0 = \sum_{x=0}^n l_x m_x$$

Average generation time (T)

average age of females when they give birth

Expectation of life

- age specific expectation of life
- ▶ *o* .. oldest age

$$e_x = \frac{T_x}{l_x} \qquad \qquad L_x = \frac{l_x + l_{x+1}}{2} \qquad \qquad T_x = 2$$

$$T_x = \sum_x^o L_x$$

Intrinsic growth rate (r)

• when Leslie model show exponential growth the potential rate of increase can be determined from

$$r \approx \frac{\ln(R_0)}{T}$$
 $\lambda \approx \frac{R_0}{T}$

• Euler (1760) found how to estimate *r* from the life table

$$\sum_{x} l_{x} m_{x} e^{-rx} = 1$$

► *r* can be estimated from the only dominant positive eigenvalue of the transition matrix \mathbf{A} (λ_1 ... finite growth rate)

$$r = \ln(\lambda_1)$$

Stable Class distribution (SCD)

relative abundance of different life history age/stage/size categories
 population approaches stable age distribution:
 N₀: N₁: N₂: N₃:...:N_s is stable

once population reached SCD it grows exponentially
proportion of individuals (c) in age x

$$c_x = \frac{l_x e^{-rx}}{\sum_x l_x e^{-rx}}$$

w₁.. right eigenvector of the dominant eigenvalue
 provides stable age distribution

- scale \mathbf{w}_1 by sum of individuals

$$\mathbf{A}\mathbf{w}_1 = \lambda_1 \mathbf{w}_1$$

$$SCD = \frac{\mathbf{w}_1}{\sum_{i=1}^{S} \mathbf{w}_1}$$

MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/15.0204

Cvičení z Populační ekologie

S. Pekár

podzim 2011

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Factors causing decline in the population of a moth:

Stage	Number	Factor
Eggs	562	Overwintering
Larvae	240	Parasites
Pupae	112	Predation
Imagoes	64	

1. Estimate k-value for each factor.

2. Simulate change in population density given the following estimated linear models of k_i on log(N):

overwintering:	$k_1 = 0.48 - 0.04 \log(N_E)$
parasites:	$k_2 = 0.55 - 0.09 \log(N_L)$
predation:	$k_3 = 0.30 - 0.03 \log(N_P)$
a say ratio is 1.1 Famala ha	s average focundity 17 eggs

The sex ratio is 1:1. Female has average fecundity 17 eggs.

Excercise 5

Perform demographic study of the common fox using life table menu in POPULUS. The fox breeds in pulses and the data were collected using post-breeding census.

X	Ix	mx
0	1	0
1	0.8	0
2	0.3	2
3	0.1	3
4	0.07	0

- Plot standardised survival (l_x) with age.
 Which survival curve type it corresponds to?
- Plot fecundity (m_x) and reproductive value (RV) with age.
- Construct Leslie transition matrix and project
- it over a period of another 20 years using initial vector (25, 18, 9,
- 5, 4). When does the population reach stable age distribution?