
Stano Pekár“Populační ekologie živočichů“

�
dN

= Nr
dt



Spatial ecology - describes changes in spatial pattern over time
� processes - colonisation / immigration and local extinction /
emigration

� local populations are subject to continuous colonisation and
extinction
� wildlife populations are fragmented

Metapopulation - a population consisting of many local
populations (sub-populations) connected by migrating individuals
with discrete breeding opportunities (not patchy populations)



� population density changes also in space
� for migratory animals (salmon) seasonal movement is the dominant
cause of population change
� movement of individuals between patches can be density-dependent
� distribution of individuals have three basic models:

� most populations in nature are aggregated (clumped)



Regular distribution

� described by hypothetical uniform distribution

n .. is number of samples
x .. is category of counts (0, 1, 2, 3, 4, ...)

� all categories have similar probability

� mean:

� variance:

� for regular distribution:
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� described by hypothetical Poisson distribution

µ .. is expected value of individuals
x .. is category of counts (0, 1, 2, 3, 4, ...)

� probability of x individuals at a given area usually decreases with x

� observed and expected frequencies are compared using χ2 statistics

� for random distribution:
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� described by hypothetical negative binomial distribution

µ .. is expected value of individuals
x .. is category of counts (0, 1, 2, 3, 4, ...)
k .. degree of clumping, the smaller k (→0) the greater degree of clumping

� approximate value of k:

�  for aggregated:

Coefficient of dispersion (CD)

CD < 1 … uniform distribution
CD = 1 … random distribution
CD > 1 … aggregated distribution
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• Geographic range - radius of space containing 95% of
individuals
• individual makes blind random walk
• random walk of a population undergoes diffusion in space

- radial distance moved in a random walk

is proportional to

- area occupied (radius2)

is proportional to time

Spread of muskart in Europe

time
Elton 1958
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• Difussion model
- solved to
2dimensional
Gaussian distribution

N0- initial density
ρ .. radial distance from point of release (range)

D - diffusion coefficient (distance2/time)
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• Skellam‘s model
- added exponential
population growth

r .. intrinsic rate of increase 

c - expansion rate [distance/time]

Skellam 1951



� Levins (1969) distinguished between dynamics of a single population
and a set of local populations which interact via individuals moving
among populations

�Hanski (1997) developed the theory - suggested core-satellite model

� the degree of isolation may vary depending on the distance among
patches

� unlike growth models that focus on population size, metapopulation
models concern persistence of a population - ignore fate of a single sub-
population and focus on fraction of sub-population sites occupied



� assumptions
- sub-populations are identical in size, distance, resources, etc.
- extinction and colonisation are independent of p
- many patches are available

m ..proportion of open sites colonised per unit time

e ..proportion of sites that become unoccupied per unit time

eppmp
dt

dp −−= )1(

Levin‘s model
p .. proportion of patches occupied
m .. colonisation rate 
e .. extinction rate

Levin 1969



Time
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� equilibrium is found for dp/dt = 0

- sub-populations will persist (p* > 0) only if colonisation is
larger than extinction
- all patches can be occupied only if e = 0

- K ..is fraction of patches
- defined by balance between m and e
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In a field the abundance of spiders on leaves was studied.
The following counts per leaf were made:

1. What is the distribution of spiders per leaf and per plant?
2. If aggregated, what is the coefficient of dispersion (CD) and the
degree of aggregation (k)?

Plant Counts
1 0, 0, 1, 5, 7
2 0, 1, 1, 4, 1
3 0, 0, 2, 0, 0
4 3, 1, 8, 1, 1
5 1, 2, 6, 3, 2



spider<-c(0,0,1,5,7,0,1,1,4,1,0,0,2,3,0,0,1,6,1,1,1,2,6,3,2)
table(spider)
CD1<-var(spider)/mean(spider); CD1
k1<-mean(spider)^2/(var(spider)-mean(spider)); k1

plant<-c(rep(1,5),rep(2,5),rep(3,5),rep(4,5),rep(5,5))
a<-tapply(spider,plant,mean)
CD2<-var(a)/mean(a); CD2



A dragonfly is spreading along a river. The spreading is anisotropic -
faster down the stream than up the stream. During 6 years the dragonfly
has spread as follows:

1. Estimate D in both directions.
2. Estimate expansion rate in both directions if finite growth rate λ = 1.4.
2. Model the spread using Skellam’s model.

Rok
po proudu proti proudu

0 0 0
1 3 0.2
2 7 0.5
3 13 1
4 17 1.4
5 26 1.8
6 30 2.2

Plocha [km2]



year<-0:6
po<-c(0,3,7,13,17,26,30)
rho1<-sqrt(po)
plot(year,rho1)
m1<-lm(rho1~year-1)
abline(m1)
m1

pro<-c(0,0.2,0.5,1,1.4,1.8,2.2)
rho2<-sqrt(pro)
plot(year,rho2)
m2<-lm(rho2~year-1)
abline(m2)
m2



r<-0:50
y<-10*exp(0.34*1-r^2/(4*0.25*1))/(4*pi*0.25*1)
plot(r,y,type="l")
y<-10*exp(0.34*10-r^2/(4*0.25*10))/(4*pi*0.25*10);lines(r,y)
y<-10*exp(0.34*20-r^2/(4*0.38*20))/(4*pi*0.38*20);lines(r,y)
y<-10*exp(0.34*30-r^2/(4*0.38*30))/(4*pi*0.38*30);lines(r,y)
y<-10*exp(0.34*40-r^2/(4*0.38*40))/(4*pi*0.38*40);lines(r,y)
y<-10*exp(0.34*50-r^2/(4*0.38*50))/(4*pi*0.38*50);lines(r,y)



A population of toads has been split into two sub-populations by a
new highway. One has 100 and the other 10 individuals. The first
one has exploited its resources so their finite rate of population
increase (λ1) is 0.8. The other has a lot of resources, therefore their
λ2 = 1.2. Is it necessary to built a corridor connecting populations?
If so how large it should be in terms of the rate of exchange (d)
between sub-populations.

1. Use discrete density-independent models to simulate fate of
populations for 20 years that are completely isolated (d = 0).

2. Simulate the dynamics of the two sub-populations for 20 years
with various levels of exchange, d = 0.1 to 1.

ttt NddNN ,21,111,1 )1( λλ +−=+ ttt NddNN ,12,221,2 )1( λλ +−=+



N12<-data.frame(N1<-numeric(1:20),N2<-numeric(1:20))
N12[,1]<-100
N12[,2]<-10

d=0
for(t in 1:20) N12[t+1,]<-{
N1<-0.8*((1-d)*N12[t,1]+0.8*d*N12[t,2])
N2<-1.2*((1-d)*N12[t,2]+1.2*d*N12[t,1])
c(N1,N2)}
matplot(N12, type="l",lty=1:2)
legend(1,200,c("N1","N2"),lty=1:2)

d=0.2
for(t in 1:20) N12[t+1,]<-{
N1<-0.8*((1-d)*N12[t,1]+0.8*d*N12[t,2])
N2<-1.2*((1-d)*N12[t,2]+1.2*d*N12[t,1])
c(N1,N2)}
matplot(N12, type="l",lty=1:2)
legend(1,150,c("N1","N2"),lty=1:2)



d=0.4
for(t in 1:20) N12[t+1,]<-{
N1<-0.8*((1-d)*N12[t,1]+0.8*d*N12[t,2])
N2<-1.2*((1-d)*N12[t,2]+1.2*d*N12[t,1])
c(N1,N2)}
matplot(N12, type="l",lty=1:2)
legend(15,100,c("N1","N2"),lty=1:2)


