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� continuous model of Lotka & Volterra (1925-1928)
- continuous predation
- capture several prey items, functional response Type II

H .. density of prey P .. density of predators
r .. intrinsic rate of prey population m .. predator mortality rate

a .. predation rate b .. reproduction rate of predators

� in the absence of predator, prey grows exponentially →

� in the absence of prey, predator dies exponentially →

� predation rate is linear function
of the number of prey .. aHP
� each prey contributes identically
to the growth of predator .. bHP
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� prey population would grow to infinity
→ neutral stability
� do not converge, has no asymptotic
stability (trajectories are closed lines)
� unstable system, amplitude of the cycles
is determined by initial numbers
� POOR model

Zero isoclines:
� for prey population:

� for predator population:
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� in the absence of the predator prey population reaches
carrying capacity K

Incorporation of density-dependence

� for given parameter values:  r = 3, m = 2, a = 0.1, b = 0.3, K = 10
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Zero isoclines:
� for prey population:

if H = 0 (trivial solution) or if

� for predator population: 0.3HP - 2P = 0

if P = 0 (trivial solution)
or if 0.3H - 2 = 0

� gradient of prey isocline is negative
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�functional response Type II:

� rate of consumption by all predators:

Incorporation of functional response

� for parameters:  rH = 3, a = 0.1, Th = 2, K = 10

prey isocline: predator isocline:

h
a aHT

aHT
H

+
=

1

h

a

aHT

aHP

T

PH

+
=

1

h
H aHT

aHP

K

H
Hr

t

H

+
−






 −=
1

1
d

d

0
d

d =
t

H

21.01

1.0

10
130

H

HPH
H

+
−






 −=

26.0630 HHP −+=

mPbHP
t

dP −=
d

H = constant



.. damped oscillations

� predator exploits prey
close to K
- isocline: H = 9
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� predator exploits
prey close to K/2
- isocline: H = 5

� predator exploits
prey at low density
- isocline: H = 2

Rosenzweig & MacArthur (1963)

H

P

H

P

H

P

K

prey

predator

0 0 0

0 0 0K/2

K

Damped oscillations Sustained oscillations            Extinction

K K



� logistic model with carrying capacity proportional to H
�k .. carrying capacity of the predator
� rP = bH - m

Incorporation of predator’s carrying capacity

� for parameters:  rP = 2, k = 0.2

predator isocline:

prey isocline:
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Zatypota Theridion



� discrete model of Nicholson & Bailey (1935)
- discrete generations
- 1, .., several, or less than 1 host
- random host search and functional response Type III
- lay eggs in aggregation

Ht = number of hosts in time t
Ha = number of attacked hosts
λ  = finite rate of increase of the host

Pt = number of parasitoids
c = conversion rate, no. of parasitoids for 1 host
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� parasitoid searches randomly
� encounters (x) are random (Poisson distribution)

p0 = proportion of not encountered, µ .. mean number of encounters

Et = total number of encounters
a = searching efficiency (proportion of hosts encountered)

Et = a Ht Pt

� proportion of encounters (1 or more times): p = (1– p0)

Incorporation of random search

x = 0, 1, 2, ...
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� highly unstable model for all parameter values:
- equilibrium is possible but the slightest disturbance leads to divergent
oscillations (extinction of parasitoid)
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� exponential growth of hosts is replaced by logistic equation

H* .. new host carrying capacity
� depends on parasitoids’ efficiency
- when a is low then q → 1
- when a is high then q → 0

� density-dependence have 
stabilising effect for moderate r and q  

Stability boundaries

Incorporation of density-dependence

Beddington et al. (1975)
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Incorporation of the refuge
� if hosts are distributed non-randomly in the space

Fixed number in refuge: H0  hosts are always protected

� have strong stabilising effect 
even for large r

Hassell & May (1973)
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� distribution of encounters is not random but aggregated (negative
binomial distribution)
- proportion of hosts not encountered  (p0):

where k = degree of aggregation

� very stable model system if k ≤ 1

Stability boundaries:
a) k=∝, b) k=2, c) k=1, d) k=0

Incorporation of aggregated distribution

Hassell (1978)
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You want to control population of mites. Before introduction of
predatory mites you want to simulate the predator-prey dynamic using
the following model:

Parameter estimates are obtained experimentally:
1. Rear prey population without predators. You find rH = 0.4 and K =
500.
2. Rear predators at constant prey densities. You find predators’
mortality d = 0.08 and conversion efficiency c = 0.8.
3. Perform functional response experiment. You find that a = 0.001 and
Th = 0.5.

How long it takes for the predatory mite to control mite pests. Initial
densities are 200 individuals of pests and 10 individuals of predators?
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predprey<-function(t,y,pa){
H<-y[1]
P<-y[2]
with(as.list(pa),{
dH.dt<-rH*H*(1-H/K)-a*H*P/(1+a*H*Th)
dP.dt<-a*c*H*P/(1+a*H*Th)-d*P
return(list(c(dH.dt,dP.dt)))})}

H<-200;P<-10
time<-seq(0,200,0.1) 
pa<-c(rH=0.4,K=500,a=0.001,Th=0.5,c=0.8,d=0.08)
library(deSolve)
out<-data.frame(ode(c(H,P),time,predprey,pa))
matplot(time,out[,-1],type="l",lty=1:2,col=1)
legend("right",c("H","P"),lty=1:2)



Caterpillars increased their population density in flour to 50
individuals/100 kg. You observed that their λ = 3 and K = 800. You need
to control these pests using a parasitoid. You can choose from three
parasitoid species (A, B, C). The three species differ in the number of
eggs/host (c) and in their search efficiency (a):

1. Use the discrete Nicholson-Bailey host-parasitoid model with density-
dependence. Introduce a single parasitoid per 100 kg. Find which of the
three species will achieve the quickest control.

A B C
c 1 3 2
a 0.003 0.1 0.005



time<-20
HP<-data.frame(H<-numeric(time),P<-numeric(time))
a=0.003;L=3;K=800;c=1
HP[1,]<-c(50,1)
for (t in 1:20) HP[t+1,]<-{
H<-L*HP[t,1]*exp((K-HP[t,1])/K-a*HP[t,2])
P<-c*HP[t,1]*(1-exp(-a*HP[t,2]))
c(H,P)}
matplot(HP,type="l",lty=1:2)
legend(10,2000,c("H","P"),lty=1:2)

HP<-data.frame(H<-numeric(time),P<-numeric(time))
a=0.1;L=3;K=800;c=3
HP[1,]<-c(50,1)
for (t in 1:20) HP[t+1,]<-{
H<-L*HP[t,1]*exp((K-HP[t,1])/K-a*HP[t,2])
P<-c*HP[t,1]*(1-exp(-a*HP[t,2]))
c(H,P)}
matplot(HP,type="l",lty=1:2)
legend(10,2000,c("H","P"),lty=1:2)



HP<-data.frame(H<-numeric(time),P<-numeric(time))
a=0.005;L=3;K=500;c=2
HP[1,]<-c(50,1)
for (t in 1:20) HP[t+1,]<-{
H<-L*HP[t,1]*exp((K-HP[t,1])/K-a*HP[t,2])
P<-c*HP[t,1]*(1-exp(-a*HP[t,2]))
c(H,P)}
matplot(HP,type="l",lty=1:2)
legend(10,4000,c("H","P"),lty=1:2)


