Stano Pekár“Populační ekologie živočichů“ dN = Nr dt Acarus Cheyletus continuous model of Lotka & Volterra (1925-1928) - continuous predation - capture several prey items, functional response Type II H .. density of prey P .. density of predators r .. intrinsic rate of prey population m .. predator mortality rate a .. predation rate b .. reproduction rate of predators in the absence of predator, prey grows exponentially → in the absence of prey, predator dies exponentially → predation rate is linear function of the number of prey .. aHP each prey contributes identically to the growth of predator .. bHP rH t H = d d mP t P −= d d aHPrH t H −= d d mPbHP t P −= d d prey population would grow to infinity → neutral stability do not converge, has no asymptotic stability (trajectories are closed lines) unstable system, amplitude of the cycles is determined by initial numbers POOR model Zero isoclines: for prey population: for predator population: H P prey isocline predator isocline 0 0 d d = t P aHPrH −=0 a r P = mPbHP −=0 b m H = 0 d d = t H timedensity prey predator 0 Analysis of the model a r b m in the absence of the predator prey population reaches carrying capacity K Incorporation of density-dependence for given parameter values: r = 3, m = 2, a = 0.1, b = 0.3, K = 10 HP H H t H 1.0 10 13 d d −      −= PHP t P 23.0 d d −= aHP K H rH t H −      −= 1 d d mPbHP t P −= d d Zero isoclines: for prey population: if H = 0 (trivial solution) or if for predator population: 0.3HP - 2P = 0 if P = 0 (trivial solution) or if 0.3H - 2 = 0 gradient of prey isocline is negative 0 d d = t H HP H H 1.0 10 130 −      −= 0 d d = t P P = 30 - 3H P H 1.0 10 130 −      −= H = 6.667 H P 30 6.670 10 time density prey predator 0 K H P 30 6.70 10 .. approaches stable equilibrium functional response Type II: rate of consumption by all predators: Incorporation of functional response for parameters: rH = 3, a = 0.1, Th = 2, K = 10 prey isocline: predator isocline: h a aHT aHT H + = 1 h a aHT aHP T PH + = 1 h H aHT aHP K H Hr t H + −      −= 1 1 d d 0 d d = t H 21.01 1.0 10 130 H HPH H + −      −= 2 6.0630 HHP −+= mPbHP t dP −= d H = constant .. damped oscillations predator exploits prey close to K - isocline: H = 9 time density time density time density predator exploits prey close to K/2 - isocline: H = 5 predator exploits prey at low density - isocline: H = 2 Rosenzweig & MacArthur (1963) H P H P H P K prey predator 0 0 0 0 0 0K/2 K Damped oscillations Sustained oscillations Extinction K K logistic model with carrying capacity proportional to H k .. carrying capacity of the predator rP = bH - m Incorporation of predator’s carrying capacity for parameters: rP = 2, k = 0.2 predator isocline: prey isocline: mPbHP t P −= d d       −= kH P Pr t P P 1 d d 0 d d = t P       −= H P P 2.0 120 H = 5P 2 6.0630 HHP −+= h H aHT aHP K H Hr t H + −      −= 1 1 d d H P K0 time density prey predator 0 K H P K0 .. quick approach to stable equilibrium Zatypota Theridion discrete model of Nicholson & Bailey (1935) - discrete generations - 1, .., several, or less than 1 host - random host search and functional response Type III - lay eggs in aggregation Ht = number of hosts in time t Ha = number of attacked hosts λ = finite rate of increase of the host Pt = number of parasitoids c = conversion rate, no. of parasitoids for 1 host )(1 att HHH −=+ λ aat HcHP ==+1 parasitoid searches randomly encounters (x) are random (Poisson distribution) p0 = proportion of not encountered, µ .. mean number of encounters Et = total number of encounters a = searching efficiency (proportion of hosts encountered) Et = a Ht Pt proportion of encounters (1 or more times): p = (1– p0) Incorporation of random search x = 0, 1, 2, ... !x e p x x µ µ − = µ− = ep0 ( )taP ta eHH − −= 1 t t t aP H E ==µ taP ep − =0 )1( taP ep − −= highly unstable model for all parameter values: - equilibrium is possible but the slightest disturbance leads to divergent oscillations (extinction of parasitoid) taP tt eHH − + = λ1 ( )taP tt eHP − + −= 11 time density H P 0 0 )(1 att HHH −=+ λ at HP =+1 exponential growth of hosts is replaced by logistic equation H*.. new host carrying capacity depends on parasitoids’ efficiency - when a is low then q → 1 - when a is high then q → 0 density-dependence have stabilising effect for moderate r and q Stability boundaries Incorporation of density-dependence Beddington et al. (1975) t t aP K H tt eHH −      − + = 1 1 λ ( )taP tt eHP − + −= 11 K H q * = Incorporation of the refuge if hosts are distributed non-randomly in the space Fixed number in refuge: H0 hosts are always protected have strong stabilising effect even for large r Hassell & May (1973) taP tt eHHHH − + −+= )( 001 λλ ( )taP tt eHHP − + −−= 1)( 01 distribution of encounters is not random but aggregated (negative binomial distribution) - proportion of hosts not encountered (p0): where k = degree of aggregation very stable model system if k ≤ 1 Stability boundaries: a) k=∝, b) k=2, c) k=1, d) k=0 Incorporation of aggregated distribution Hassell (1978) k tt k aP K H tt eHH −       +      − + = 11 1 λ               +−= − + k t tt k aP HP 111 k t k aP p −       += 10 You want to control population of mites. Before introduction of predatory mites you want to simulate the predator-prey dynamic using the following model: Parameter estimates are obtained experimentally: 1. Rear prey population without predators. You find rH = 0.4 and K = 500. 2. Rear predators at constant prey densities. You find predators’ mortality d = 0.08 and conversion efficiency c = 0.8. 3. Perform functional response experiment. You find that a = 0.001 and Th = 0.5. How long it takes for the predatory mite to control mite pests. Initial densities are 200 individuals of pests and 10 individuals of predators? h H aHT aHP K H Hr t H + −      −= 1 1 d d dP aHT acHP t P h − + = 1d d predprey<-function(t,y,pa){ H<-y[1] P<-y[2] with(as.list(pa),{ dH.dt<-rH*H*(1-H/K)-a*H*P/(1+a*H*Th) dP.dt<-a*c*H*P/(1+a*H*Th)-d*P return(list(c(dH.dt,dP.dt)))})} H<-200;P<-10 time<-seq(0,200,0.1) pa<-c(rH=0.4,K=500,a=0.001,Th=0.5,c=0.8,d=0.08) library(deSolve) out<-data.frame(ode(c(H,P),time,predprey,pa)) matplot(time,out[,-1],type="l",lty=1:2,col=1) legend("right",c("H","P"),lty=1:2) Caterpillars increased their population density in flour to 50 individuals/100 kg. You observed that their λ = 3 and K = 800. You need to control these pests using a parasitoid. You can choose from three parasitoid species (A, B, C). The three species differ in the number of eggs/host (c) and in their search efficiency (a): 1. Use the discrete Nicholson-Bailey host-parasitoid model with densitydependence. Introduce a single parasitoid per 100 kg. Find which of the three species will achieve the quickest control. A B C c 1 3 2 a 0.003 0.1 0.005 time<-20 HP<-data.frame(H<-numeric(time),P<-numeric(time)) a=0.003;L=3;K=800;c=1 HP[1,]<-c(50,1) for (t in 1:20) HP[t+1,]<-{ H<-L*HP[t,1]*exp((K-HP[t,1])/K-a*HP[t,2]) P<-c*HP[t,1]*(1-exp(-a*HP[t,2])) c(H,P)} matplot(HP,type="l",lty=1:2) legend(10,2000,c("H","P"),lty=1:2) HP<-data.frame(H<-numeric(time),P<-numeric(time)) a=0.1;L=3;K=800;c=3 HP[1,]<-c(50,1) for (t in 1:20) HP[t+1,]<-{ H<-L*HP[t,1]*exp((K-HP[t,1])/K-a*HP[t,2]) P<-c*HP[t,1]*(1-exp(-a*HP[t,2])) c(H,P)} matplot(HP,type="l",lty=1:2) legend(10,2000,c("H","P"),lty=1:2) HP<-data.frame(H<-numeric(time),P<-numeric(time)) a=0.005;L=3;K=500;c=2 HP[1,]<-c(50,1) for (t in 1:20) HP[t+1,]<-{ H<-L*HP[t,1]*exp((K-HP[t,1])/K-a*HP[t,2]) P<-c*HP[t,1]*(1-exp(-a*HP[t,2])) c(H,P)} matplot(HP,type="l",lty=1:2) legend(10,4000,c("H","P"),lty=1:2)