Strukturní chemie I C9550

Nukleární magnetická rezonance

Radek MAREK 2010

1

2D NMR spektroskopie

2D ¹H-¹H NMR spektrum

Vodíkový atom bez spin-spinové interakce se v 2D NMR spektru projeví přítomností diagonálního signálu – vývoj v obou časových dimenzích je modulován pouze vlastní rezonanční frekvencí – viz H_{A} .

Vzájemná korelace mezi interagujícími neekvivalentními jádry ¹H (spin-spinová interakce) se navíc projeví přítomností **mimodiagonálních signálů** (krospíků) – signál jednoho protonu je v nepřímé dimenzi modulován rezonanční frekvencí druhého a naopak – viz H_B-H_c.

2D ¹H-¹H NMR spektrum **COSY**

Correlation SpectroscopY

- Komunikace mezi jádry (vznik mimodiagonálního signálu) je zprostředkována nepřímou jadernou spin-spinovou interakcí (*J*-interakce).
- Během t₁ periody se protonové spiny vyvíjejí pod vlivem CS a J-couplingu, poté dojde aplikací RF pulzu (π/2) k přenosu polarizace – změna intenzity signálu jádra l je závislá na ω_s a J_{IS} a naopak. Takto modulovaná magnetizace je detekována během akvizice v přímé časové doméně (t₂).

2D ¹H-¹H NMR spektrum **NOESY**

Nuclear Overhauser Effect SpectroscopY

- Detekujeme prostorově blízká jádra ¹H na základě NOE.
- Během t₁ periody se protonové spiny vyvíjejí pod vlivem CS popř. J-couplingu, poté je takto označená magnetizace vrácena do longitudinálního (podélného) směru, v němž se během směšovacího času t_{mix} vyvíjí vlivem DD relaxace. Tímto efektem ovlivněná magnetizace je detekována během akvizice v přímé časové doméně.
- Z objemu krospíků v NOESY spektru lze semikvantitativně určit meziatomové vzdálenosti, během delších směšovacích časů nutných pro detekci interakce mezi vzdálenými jadry působí rušivě efekt spinové difuze.

- Detekujeme korelace mezi přímo vázanými páry ¹H-¹³C.
- Během přípravného INEPT bloku dojde k vývoji antifázové magnetizace a přenosu na ¹³C spiny.
- V rámci t₁ periody se vyvíjí magnetizace vlivem CS ¹³C a takto označená se přenese reverzním INEPTem zpět do ¹H spinového systému, kde se detekuje.
- Relativní zvýšení citlivosti vzhledem k experimentu přímo excitujícím i detekujícím ¹³C činí 32x.

2D NMR spektroskopie