8. NUMBERS AND MEASUREMENTS

1. Introduction. Discuss these questions in small groups.

- a) Do you like learning English? What other languages can you speak? At what level?
- b) Describe some interesting teacher you had at secondary school.
- c) Do you like mathematics and physics? Are you good at it? What is difficult about it?
- d) What are some things that a biologist needs to calculate? An astronomer? A physicist? A geologist? What about a chemist?
- e) "Mathematics is the father of all sciences.", "Everything in science has its origin in mathematics.", Mathematics is the most primary science."
 Do you agree with these statements? Why? Why not?
- f) What could you calculate or measure in this classroom? Think of weight, volume, temperature, size...
- g) Do you know any magical/lucky/unlucky numbers? Have you heard of numerology? Do you trust it?

READING NUMBERS:

0 zero / nought (in mathematics) / "o" (in telepho	one numbers)
25 twenty-five	1. the first
135 one hundred and thirty-five	2. the second
1258 one thousand two hundred and fifty-eight	5. the fifth
2 000 000 two million	26. the twenty-sixth
	26 / 11 the twenty-sixth of October
	October the twenty-sixth

2. Work in pairs. Find out this information:

- a) What's your name and surname? Can you spell it?
- b) How old are you? When were you born?
- c) In which year of your study are you?
- d) What's your phone number?
- e) What's your address? Include the postal code.
- f) How many brothers and sisters do you have? Can you spell their names?
- g) How many students are there in this class?
- h) Can you read these numbers? : 2654 4000 25 158 264 3 000 000 25. 78.

SIMPLE ARITHMETICS

Look at the way we say these examples:

4 + 4 = 8	four and (plus) four is / equals eight
9 - 2 = 7	nine minus two is seven
$5 \times 5 = 25$	five times five is twenty-five
	or five multiplied by five is twenty-five
$8 \div 4 = 2$	eight divided by four is two

Here are some more arithmetical symbols. Notice how to say them.

2^{2}	two squared		square root of
-2^3	minus (negative) two cubed	s v	cube root of
2 ⁴	two to the power of four	π	pi
log ₁₀ 7	log of seven to the base ten	x=3(a+b)	x equals three, bracket a plus b, bracket

This is how we say fractions

1	a half	1	a third	1	one thousandth/one over a thousand
2		3		1000	
1	a quarter	3	three fifths	1	one hundredth/ one over a hundred
4		5		100	
3	three quarters	21	two and a half	35	thirty-five over ten
4		2		10	

Look at this example

 $5 + 4 = \dots$ How much is five and four?

Five and four is nine.

3. Work in pairs. Ask and answer questions about these in the same way.

a) $12 - 6 = \dots$	d) √16 =	g) <mark>∛27</mark> = …
b) $9 \times 5 =$	e) $4 + 7\frac{1}{5} =$	h) $2^4 =$
c) $30 \div 6 =$	f) $9^2 =$	i) $\pi = \dots$

Look at this example:

Add six to seven. Now multiply by four.Subtract four.Divide by twelve. What is the answer?Four.6 + 7 = 13, $13 \times 4 = 52$ 52 - 4 = 48 $48 \div 12$ = 4.

4. Work in pairs to do these exercises. One of you should ask the questions. The other should give the answers without looking at the paper. See how quickly you can do it.

- a) Multiply 7 by 9. Add 9. Divide by 6. Subtract 3. What is the answer?
- b) Subtract 8 from 24. Divide by 2. Add two. Multiply by 10. What is the answer?
- c) Add six to eight. Multiply by 10. What is the answer?

d) Take 50% of the students in your class. Multiply by 2. Divide by 4. What is the answer?

FRACTIONS AND DECIMALS

Notice how we say the decimals. Read these examples.

 $\frac{1}{2} = 0.5$ (nought point five / zero point five)

 $1\frac{3}{4} = 1.75$ (one point seventy five)

 $3\frac{8}{10} = 3.8$ (three point eight)

 $\frac{874}{1000} = 0.874$ (nought point eight seven four)

and the measurements:

0.643 g = (nought) point six four three of a gramme

1.385 cm = one point three eight five centimetres

1 km = 0.621 miles: one kilometre equals nought point six two one miles

5. Change these fractions into decimals. Read it aloud with a neighbour.

a) $\frac{5}{8} =$	c) $6\frac{1}{3} =$
b) $4\frac{3}{5} =$	d) $7\frac{1}{4} =$

6. Work with a neighbour. Describe these numbers:

Example:

a)

One kilometre equals one thousand meters One decimetre equals one tenth of a meter or ten to the power of three. or ten to the power of minus one.

a) kilo-	one thousand:	$1 \ km = 1000 \ m$	10^{3}
b) deci-	one tenth:	$l dm = \frac{1}{10}m$	10^{-1}
c) centi-	one hundredth:	$1 \text{ cm} = \frac{1}{100} \text{ m}$	10^{-2}
d) milli-	one thousandth:	$1 \text{ mm} = \frac{1}{1000} \text{ m}$	10 ⁻³
e) micro-	one millionth:	$1 \ \mu m = \frac{1}{1000000} m$	10 ⁻⁶
f) nano-	one thousand millionth:	$1 \text{ nm} = \frac{1}{100000000} \text{ m}$	10 ⁻⁹

PERCENTAGES

7. 65% (per cent) of our body weight is oxygen. Use the diagram to make more sentences.

READING SIMPLE EQUATIONS¹:

Here are some common compounds, their names and FORMULAS:

NaCl – sodium chlor ide	H_2SO_4 – sulphuric acid	ZnSO ₄ – zinc sulphate	C ₆ H ₆ - benzene
ZnO – zinc oxide	HCl – hydrochlor ic acid	Na ₂ CO ₃ – sodium carbonate	NH ₃ - ammonia
CO ₂ - carbon di oxi de	NaOH – sodium hydroxide		

These formulas are useful for writing EQUATIONS.

Example:	HCl	+	NaOH	\rightarrow]	NaCl	+	H ₂ O
We spell as:	H Cl	plus	Na OH	gives	Na Cl	plus	H ₂ O
We read as:	hydrochloric acid	reacts with	sodium hydroxide	to form	sodium	chloride and	water.
	С	ombines wit	th				
8. Complete	these equations:						
a) $CuO + H_2$	→						

(copper oxide reacts with hydrogen to form copper and water)

b) $Na_2CO_3 + 2 HCl \rightarrow \dots$

(sodium carbonate reacts with 2 molecules of hydrochloric acid to form sodium chloride, carbon dioxide and water)

c) $Zn + 2HCl \rightarrow \dots$

(zinc reacts with 2 molecules of hydrochloric acid to form zinc chloride and hydrogen)

9. Express these equations in words:

1. $2 \operatorname{Na} + \operatorname{Cl}_2 \rightarrow 2 \operatorname{NaCl}$

2. $ZnO + H_2SO_4 \rightarrow 2 ZnSO_4 + H_2O$

3. $2 \operatorname{Na} + 2 \operatorname{H}_2 O \rightarrow 2 \operatorname{NaOH} + \operatorname{H}_2$

10. Watch the video lecture about pH calculation given by Dr.Goldwhite.² Listen and write down the calculation. Then watch it for the second time and note down the important words and phrases. Finally, try to describe the calculation in pairs. Useful vocabulary:

acid (n) - kyselinabase (n) - zásadaobtain (v) - získatstrongly acidic (adv+adj) - silně kyselébasic (adj) - zásaditéspecies (n) - vzorekconcentration of a solution (n)ion (n) - iontrelate to (v) - vztahovat se k ...- koncentrace roztokurelationship (n) - vztah

11. HOMEWORK – UNITS OF MEASUREMENT

a) Make 10 sentences from the table below. a) *Example*: The height of large objects is measured in metres.

The	height volume area width surface area length radius cross-sectional area diameter circumference distance	of	large small very small minute cylindrical	objects	is measured in	m cm mm μ m cm ³ cm ³ mm ³ cm ² cm ² mm ² km
	distance	between		places		km

Help: Units of measurements and their abbreviations

kilometre	km
metre	m
decimetre	dm
centimetre	cm
millimetre	mm
square metre	m^2
cubic metre (metre cubed)	m ³
micrometre	μ m = (,,micron")

b) Say whether the following statements are true or false. Correct the false statements.

a)	Duration is measured in degrees Centigrade	T/F
b)	The second is a unit of time	T/F
c)	Speed is measured in kilograms per hour.	T/F
d)	The watt is a unit of electrical charge.	T/F
e)	Density is measured in grams per metre cubed.	T/F
f)	The gram is a unit of mass.	T/F
g)	Liquid measurements are made in litres, or cubic decimetres.	T/F

Help: Other measurements and their units:

electric current	ampere (amp)
electric power	watt (W)
electric resistance	$ohm(\Omega)$
electric potential difference	volt (V)
temperature	degrees Centigrade (°C)
mass	gram (g), kilogram (kg)
weight (the force of gravity on mass)	newton (N). kilonewton (kN)
speed	kilometres per hour (km/h) (km.h ⁻¹)
density	kilograms per cubic metre (kg/m ³) (kg.m ⁻³)
time (duration)	second (s), minute (min), hour (h)
fluid capacity	litre (l) = cubic decimetre (dm^3)
concentration	molar (mole/liter)

For more units and their abbreviations visit <u>http://www.jbc.org/site/misc/itoa.TI.xhtml</u>

Sources: Lesson based on Bates, Martin and Dudley-Evans, Tony: Nucleus of General Science. Longman 1990.

¹Adapted from Cihová, Jarmila et al. Angličtina pre študentov chémie. Bratislava: Univerzita Komenského, 2003.

²Available at <u>http://www.youtube.com/watch?v=LZk1_yzF9js</u>. Accessed 29th October 2010

Week 8 – Numbers and Measurements - Vocabulary		
four and (plus) four is / equals eight	čtyři plus čtyři se rovná osm	
nine minus two is seven	devět mínus dva je sedm	
five times five is twenty-fine / five multiplied	pět krát pět je dvacet pět	
by five is twenty-five		
eight divided by four is two	osm děleno čtvřmi je dva	
two squared	dya na druhou	
minus (negative) two cubed	mínus dva na třetí	
two to the power of four	dya na čtyrtou	
square root of	druhá odmocnina	
cube root of	třetí odmocnina	
three quarters	tři čtyrtiny	
a third	třetina	
one thousandth/one over a thousand	iedna tisícina / jedna lomeno tisíc	
How much is five and four?	Kolik je pět plus čtyři?	
one thousand two hundred and fifty-eight	tisíc dvěsta nadesát osm	
add (v)	nřičíst	
subtract (v)	odečíst	
One kilometre equals nought point six two	Jeden kilometr se rovná nula celá šedesát dva	
one miles	mil	
7. 65 per cent of our body weight is oxygen.	7,65 procent těledné váhy je kyslík.	
Hydrochloric acid reacts with sodium	Kyselina chlorovodiková reaguje	
hydroxide to form sodium chloride and	s hydroxidem sodným a vytvoří chlorid	
water.	sodny a vodu.	
sodium chloride	chlorid sodny	
carbon dioxide	oxid uhlicity	
sulphuric acid	kyselina sirova	
sodium hydroxide	hydroxid sodny	
sodium carbonate	uhlicitan sodný	
$\frac{\text{acid}(n)}{(n)}$	kyselina / kysely	
base (n) / basic (adj)	zasada / zasadity	
obtain a species (v)	ziskat vzorek	
formula (n)	vzorec	
equation (n)	rovnice	
10n (n)	iont	
relate to (v) / relationship (n)	vztahovat se k / vztah	
concentration of a solution (n+prep+n)	koncentrace roztoku	
The height of large objects is measured in	Vyska velkých předmetu se merí v metřech.	
metres.		
surface area (n+n)	povrch	
width (n)	šířka	
length (n)	délka	
square metre (adj+n)	metr čtvereční	
cubic metre (metre cubed) (adj+n)	metr krychlový	
electric current (adj+n)	elektrický proud	
electric power(adj+n)	elektrický výkon	
electric resistance (adj+n)	elektrický odpor	
kilometres per hour	kilometry za hodinu	
Temperature is measured in degrees	Teplota se měří ve stupních Celsia.	
Centigrade (n+n)		