„Populační ekologie živočichů !í Stano Pekár evropský SOC'a,nL 1 MINISTERSTVO ŠKOLSTVÍ, TOnd V CR EVROPSKÁ UNIE MLÁDEŽE A TĚLOVÝCHOVY TTT, OP Vzdělávání pro konkurenceschopnost INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Linear model ► model is based on the assumption that development rate is a linear function of temperature ► valid for the region of moderate temperatures (15-25°) ► at low temperatures organisms die due to coldness, and at high temperatures organisms die due to overheating D .. development time (days) v .. rate of development = 1/D tmin .. lower temperature limit - temperature at which development rate = 0 0) H—> (0 s_ H—> c 0) E Q. O 0) > 0) Q 0.045 0.04 0.035 0.03 0.025 ] 0.02 0.015 0.01 0.005 0 0 10 20 30 40 Temperature mm ET.. effective temperature .. developmental temperature between tmax and tm-S .. sum of effective temperature .. number of degree-days [°D] required to complete development .. does not depend on temperature = D*ET tmin and S can be estimated from the regression line of v = a + bt t mm * a + bt:„ = 0 ^=> mm ^min , b S: S = D(t-tmm) = D t + — b V J ► sum of effective temperature (S) [°D] is equal to area under temperature curve restricted to the interval between current temperature if) and tmin ► biofix .. the date when degree-days begin to be accumulated time, days i=i ► for temperatures between tmin and t (upper threshold) mm time, days ► several different non-linear models (Briere, Lactin, etc.) ► allow to estimate tmin, tmSiX and topt (optimum temperature) ► easy to interpret for experiments with constant temperature ► instead of using average temperature, use actual temperature because below and above ET model is non-linear Briere et al. (1999) v = axtxit-t^ )x^max -t v .. rate of development (=11 D) t.. experimental temperature tmin.. low temperature threshold tmSiX.. upper temperature threshold a .. constant Optimum temperature: ► parameters are estimated using non-linear regression Lactin et al. (1995) v .. rate of development t.. experimental temperature t , A, p, .. constants tmaY and t- can be estimated from the formula: iiiaX mm 0 = e pt - e topt can be estimated from the first derivative: —y—= nep!--e dt A