MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/15.0204 PF_72_100_grey_tr ubz_cz_black_transparent Simulation http://scienceblogs.com/evolgen/wp-content/blogs.dir/296/files/2012/04/i-c8e1056c6360b072474fc15cac 92e5c3-mastodon_trex_phylogeny.gif http://static.flickr.com/44/171266122_837e847716.jpg http://www.phylogeny.fr/version2/images/logo_phylogeny-fr.png Úvod zákl. pojmy, počet stromů, typy dat Práce se sekvencemi DNA a proteinů databáze (GenBank, ENTREZ, BLAST), seřazení sekvencí (Clustal) Rozdělení metod a kritéria jejich hodnocení Maximální úspornost (Maximum parsimony, MP) MP a konzistence Evoluční modely a distanční metody výběr modelu, UPGMA, neighbor-joining 1_2 fylogenetický strom = fylogenie (phylogeny) s kořenem, bez kořene větve (branches, edges) vnější, vnitřní, centrální uzly (nodes, vertices) vnitřní, terminální (externí) dichotomie, polytomie OTU, HTU topologie Definice základních pojmů 1_1 dráha linie topologie: Definice základních pojmů linie 1_1 Kolik existuje stromů? více než elektronů ve viditelném vesmíru (Eddingtonovo číslo) Jaké typy dat můžeme použít? DATA Distance Diskrétní znaky Imunologie DNA-DNA hybridizace Binární Vícestavové neseřazené ACGTTAGCT seřazené A®B®C 11010010011 ABCDEF Typy dat: 1. Nukleotidové a proteinové sekvence: H_sapiens MTPMRKINPLMKLINHSFIDLPTPSNISAWWNFGS P_troglod ATGACCCCGACACGCAAAATTAACCCACTAATAAA pozice (site) = znak báze = stav znaku Typy dat: 2. Restrikční data: restriction-site data Restrikční místo = znak přítomnost/absence = stav znaku fragment = znak přítomnost/absence = stav znaku absence nezávislosti! restriction-fragment data RFLP = Restriction Fragment Length Polymorphism 3. Alozymy: alela = znak, přítomnost/absence = stav znaku lokus = znak, alela = stav znaku lokus = znak, alelová frekvence = stav znaku 4. Pořadí genů na chromozomu Typy dat: 5. Retroelementy: SINE = Short Interspersed Nuclear Elements: (Alu, B1, B2) LINE = Long Interspersed Nuclear Elements 6. VNTR, STR, SNP: VNTR = Variable Number of Tandem Repeats (minisatelity) STR = Short Tandem Repeats (mikrosatelity) = SSR (Simple Sequence Repeats) SNP = Single Nucleotide Polymorphisms Typy dat: Grafika1 Vlastnosti znaků: nezávislost (morfologie, alozymy, pořadí genů) homologie Problém homologie sekvencí Práce se sekvencemi DNA databáze: EMBL (European Molecular Biology Laboratory) – European Bioinformatics Institute, Hinxton, UK: http://www.ebi.ac.uk/embl/ GenBank – NCBI (National Center for Biotechnology Information), Bethesda, Maryland, USA: http://www.ncbi.nlm.nih.gov/Genbank/ DDBJ (DNA Data Bank of Japan) – National Institute of Genetics, Mishima, Japan: http://www.ddbj.nig.ac.jp/ Proteinové databáze: SWISS-PROT – University of Geneve & Swis Institute of Bioinformatics: http://www.expasy.ch/sprot/ a http://www.ebi.ac.uk/swissprot/ PIR (Protein Information Resource) – NBRF (National Biomedical Research Foundation, Washington, D.C., USA) & Tokyo University & JIPID (Japanese International Protein Information Database, Tokyo) & MIPS (Martinsried Institute for Protein Sequences, Martinsried, Germany): http://www-nbrf.georgetown.edu/ PRF/SEQDB (Protein Resource Foundation) – Ósaka, Japan: http://www.prf.or.jp/en/os.htm PDB (Protein Data Bank) – University of New Jersey, San Diego & Super-computer Center, University of California & National Institute of Standards and Technology: http://www.rcsb.org/pdb/ FASTA: >H_sapiens ATGACCCCAATACGCAAAATTAACCCCCTAATAAAATTAATTAACCACTCATTCATCGACCTCCCCACCC CATCCAACATCTCCGCATGATGAAACTTCGGCTCACTCCTTGGCGCCTGCCTGATCCTCCAAATCACCAC AGGACTATTCCTAGCCATACACTACTCACCAGACGCCTCAACCGCCTTTTCATCAATCGCCCACATCACT CGAGACGTAAATTATGGCTGAATCATCCGCTACCTTCACGCCAATGGCGCCTCAATATTCTTTATCTGCC TCTTCCTACACATCGGGCGAGGCCTATATTACGGATCATTTCTCTACTCAGAAACCTGAAACATCGGCAT ... >P_troglod ATGACCCCGACACGCAAAATTAACCCACTAATAAAATTAATTAATCACTCATTTATCGACCTCCCCACCC CATCCAACATTTCCGCATGATGGAACTTCGGCTCACTTCTCGGCGCCTGCCTAATCCTTCAAATTACCAC AGGATTATTCCTAGCTATACACTACTCACCAGACGCCTCAACCGCCTTCTCGTCGATCGCCCACATCACC CGAGACGTAAACTATGGTTGGATCATCCGCTACCTCCACGCTAACGGCGCCTCAATATTTTTTATCTGCC TCTTCCTACACATCGGCCGAGGTCTATATTACGGCTCATTTCTCTACCTAGAAACCTGAAACATTGGCAT ... >P_paniscus ATGACCCCAACACGCAAAATCAACCCACTAATAAAATTAATTAATCACTCATTTATCGACCTCCCCACCC CATCCAATATTTCCACATGATGAAACTTCGGCTCACTTCTCGGCGCCTGCCTAATCCTTCAAATCACCAC AGGACTATTCCTAGCTATACACTACTCACCAGACGCCTCAACCGCCTTCTCATCGATCGCCCACATTACC CGAGACGTAAACTATGGTTGAATCATCCGCTACCTTCACGCTAACGGCGCCTCAATACTTTTCATCTGCC TCTTCCTACACGTCGGTCGAGGCCTATATTACGGCTCATTTCTCTACCTAGAAACCTGAAACATTGGCAT ... Formáty souborů Formáty souborů GenBank: ORIGIN 1 tgaaatgaag atattctctt ctcaagacat caagaagaag gaactactcc ccaccaccag 61 cacccaaagc tggcattcta attaaactac ttcttgtgta cataaattta catagtacaa 121 tagtacattt atgtatatcg tacattaaac tattttcccc aagcatataa gcaagtacat 181 ttaatcaatg atataggcca taaaacaatt atcaacataa actgatacaa accatgaata 241 ttatactaat acatcaaatt aatgctttaa agacatatct gtgttatctg acatacacca 301 tacagtcata aactcttctc ttccatatga ctatcccctt ccccatttgg tctattaatc 361 taccatcctc cgtgaaacca acaacccgcc caccaatgcc cctcttctcg ctccgggccc 421 attaaacttg ggggtagcta aactgaaact ttatcagaca tctggttctt acttcagggc 481 catcaaatgc gttatcgccc atacgttccc cttaaataag acatctcgat ggtatcgggt 541 ctaatcagcc catgaccaac ataactgtgg tgtcatgcat ttggtatttt tttattttgg 601 cctactttca tcaacatagc cgtcaaggca tgaaaggaca gcacacagtc tagacgcacc 661 tacggtgaag aatcattagt ccgcaaaacc caatcaccta aggctaatta ttcatgcttg 721 ttagacataa atgctactca ataccaaatt ttaactctcc aaacccccca accccctcct 781 cttaatgcca aaccccaaaa acactaagaa cttgaaagac atatattatt aactatcaaa 841 ccctatgtcc tgatcgattc tagtagttcc caaaatatga ctcatatttt agtacttgta 901 aaaattttac aaaatcatgc tccgtgaacc aaaactctaa tcacactcta ttacgcaata 961 aatattaaca agttaatgta gcttaataac aaagcaaagc actgaaaatg cttagatgga 1021 taattttatc cca // PHYLIP (“interleaved” format): 6 1120 H_sapiens ATGACCCCAA TACGCAAAAT TAACCCCCTA ATAAAATTAA TTAACCACTC P_troglod ATGACCCCGA CACGCAAAAT TAACCCACTA ATAAAATTAA TTAATCACTC P_paniscus ATGACCCCAA CACGCAAAAT CAACCCACTA ATAAAATTAA TTAATCACTC G_gorilla ATGACCCCTA TACGCAAAAC TAACCCACTA GCAAAACTAA TTAACCACTC P_pygmaeus ATGACCCCAA TACGCAAAAC CAACCCACTA ATAAAATTAA TTAACCACTC H_lar ATGACCCCCC TGCGCAAAAC TAACCCACTA ATAAAACTAA TCAACCACTC ATTCATCGAC CTCCCCACCC CATCCAACAT CTCCGCATGA TGAAACTTCG ATTTATCGAC CTCCCCACCC CATCCAACAT TTCCGCATGA TGGAACTTCG ATTTATCGAC CTCCCCACCC CATCCAATAT TTCCACATGA TGAAACTTCG ATTCATTGAC CTCCCTACCC CGTCCAACAT CTCCACATGA TGAAACTTCG ACTCATCGAC CTCCCCACCC CATCAAACAT CTCTGCATGA TGGAACTTCG ACTTATCGAC CTTCCAGCCC CATCCAACAT TTCTATATGA TGAAACTTTG Formáty souborů NEXUS (PAUP*, “interleaved”): #NEXUS begin data; dimensions ntax=6 nchar=1120; format datatype=DNA interleave datatype=DNA missing=? gap=-; matrix P_troglod ATGACCCCGACACGCAAAATTAACCCACTAATAAAATTAATTAATCACTC P_paniscus ATGACCCCAACACGCAAAATCAACCCACTAATAAAATTAATTAATCACTC H_sapiens ATGACCCCAATACGCAAAATTAACCCCCTAATAAAATTAATTAACCACTC G_gorilla ATGACCCCTATACGCAAAACTAACCCACTAGCAAAACTAATTAACCACTC P_pygmaeus ATGACCCCAATACGCAAAACCAACCCACTAATAAAATTAATTAACCACTC H_lar ATGACCCCCCTGCGCAAAACTAACCCACTAATAAAACTAATCAACCACTC P_troglod ATTTATCGACCTCCCCACCCCATCCAACATTTCCGCATGATGGAACTTCG P_paniscus ATTTATCGACCTCCCCACCCCATCCAATATTTCCACATGATGAAACTTCG H_sapiens ATTCATCGACCTCCCCACCCCATCCAACATCTCCGCATGATGAAACTTCG G_gorilla ATTCATTGACCTCCCTACCCCGTCCAACATCTCCACATGATGAAACTTCG P_pygmaeus ACTCATCGACCTCCCCACCCCATCAAACATCTCTGCATGATGGAACTTCG H_lar ACTTATCGACCTTCCAGCCCCATCCAACATTTCTATATGATGAAACTTTG end; Formáty souborů Clustal: P_troglod ATGACCCCGACACGCAAAATTAACCCACTAATAAAATTAATTAATCACTCATTTATCGAC P_paniscus ATGACCCCAACACGCAAAATCAACCCACTAATAAAATTAATTAATCACTCATTTATCGAC H_sapiens ATGACCCCAATACGCAAAATTAACCCCCTAATAAAATTAATTAACCACTCATTCATCGAC G_gorilla ATGACCCCTATACGCAAAACTAACCCACTAGCAAAACTAATTAACCACTCATTCATTGAC P_pygmaeus ATGACCCCAATACGCAAAACCAACCCACTAATAAAATTAATTAACCACTCACTCATCGAC H_lar ATGACCCCCCTGCGCAAAACTAACCCACTAATAAAACTAATCAACCACTCACTTATCGAC ******** ******* ***** *** **** **** ** ****** * ** *** P_troglod CTCCCCACCCCATCCAACATTTCCGCATGATGGAACTTCGGCTCACTTCTCGGCGCCTGC P_paniscus CTCCCCACCCCATCCAATATTTCCACATGATGAAACTTCGGCTCACTTCTCGGCGCCTGC H_sapiens CTCCCCACCCCATCCAACATCTCCGCATGATGAAACTTCGGCTCACTCCTTGGCGCCTGC G_gorilla CTCCCTACCCCGTCCAACATCTCCACATGATGAAACTTCGGCTCACTCCTTGGTGCCTGC P_pygmaeus CTCCCCACCCCATCAAACATCTCTGCATGATGGAACTTCGGCTCACTTCTAGGCGCCTGC H_lar CTTCCAGCCCCATCCAACATTTCTATATGATGAAACTTTGGTTCACTCCTAGGCGCCTGC ** ** **** ** ** ** ** ****** ***** ** ***** ** ** ****** Formáty souborů ENTREZ GenBank BLAST konverze sekvencí: Complementary Sequence Conversion Tool Seřazení sekvencí (alignment) Sekvence 1 TTGTACGACGG Sekvence 2 TTGTACGACG TTGTACGACGG TTGT---ACGACGG ½½½½½½½½½½ ½½½½ ½½½ TTGTACGACG TTGTACGACG Sekvence 1 ACTTGTGCTTC Sekvence 2 ACGTGCTGCTC ACTTG-TGCTTC Path 1 ½½ ½½ ½½½½ ACGTGCTGCTC ACTTGTGCTTC Path 2 ½½ ½½½½½ ½ AC--GTGCTGCTC gap penalty GP = g + hl g - gap penalty h – gap extension penalty l – gap length Progresivní seřazení - ClustalX 1.Seřazení dvojic sekvencí ® párové distance 2.Konstrukce „guide tree“ (NJ) 3.Seřazení všech sekvencí podle stromu I. I. II. III. 3 fáze: Problém progresivního seřazení: gorila AGGTT kůň AG-TT panda AG-TT 6 druhů: tučňák A-GTT kuře A-GTT pštros AGGTT gorila AGGTT kůň AG-TT panda AG-TT tučňák A-GTT kuře A-GTT pštros AGGTT AGGTT AG-TT AG-TT AG-TT AG-TT AGGTT AGGTT A-GTT A-GTT A-GTT A-GTT AGGTT • UPGMA • neighbor- joining • Fitch- Margoliash • minimum evolution • maximum parsimony • maximum likelihood • Bayesian a. distance znaky Typy dat Rozdělení metod výkonnost (efficiency): jak rychlá je metoda? síla (power): kolik znaků je třeba? konzistence (consistency): vede zvyšující se počet znaků ke správnému stromu? robustnost (robustness): jak metoda funguje při neplatnosti předpokladů? falzifikovatelnost (falsifiability): umožňuje testování platnosti předpokladů? Jak hodnotit jednotlivé metody? Maximální úspornost (maximum parsimony, MP) I II III A 1 0 1 B 0 0 1 C 1 0 0 D 0 1 0 E 1 0 1 2 kroky 1 krok 2 kroky William of Occam (c. 1285 - c. 1349): Occamova břitva minimální počet kroků = 3 skutečný počet kroků = 5 Þ 2 extra kroky ® analogie = homoplasie Odhad počtu kroků Fitchův (1971) algoritmus 1. arbitrární kořen Odhad počtu kroků Fitchův (1971) algoritmus 1. arbitrární kořen 2. top ® bottom: w = C nebo T x = T y = A nebo T z = T MP1 Odhad počtu kroků Fitchův (1971) algoritmus 1. arbitrární kořen 2. top ® bottom: w = C nebo T x = T y = A nebo T z = T 3. bottom ® top: z = T nebo A celková délka = 3 DELTRAN (DELayed TRANsformation) ACCTRAN (ACCelerated TRANsformation) • parsimony-informative and non-informative characters (sites) - invariant sites (symplesiomorphies) - singletons (autapomorphies) • • • index konzistence (consistency i., CI) • retenční index (retention i., RI) • upravený CI (rescaled CI, RC) • index homoplasie (homoplasy i., HI) RC = CI ´ RI HI = 1 - CI Problém homoplasie: m = min. no. of possible steps s = min. no. needed for explaining the tree g = max. no. of steps for any tree Metody parsimonie • Fitch parsimony: X ® Y and Y ® X unordered characters (A ® T or A ® G etc.) • Wagner parsimony: X ® Y and Y ® X ordered characters (1 ® 2 ® 3) Dollo • Dollo parsimony: X ® Y and Y ® X, then no X ® Y … restriction-site and restriction-fragment data • Camin-Sokal p.: X ® Y, no Y ® X … SINE, LINE • weighed (transversion) p. • generalized parsimony: cost matrix (step matrix) “relaxed Dollo criterion” BaB1 Hledání optimálního stromu a měření spolehlivosti 1.Exaktní metody: a) vyčerpávající hledání (exhaustive search) b) branch-and-bound 2.Heuristický přístup: stepwise addition star decomposition branch swapping Bayes1 2.Heuristický přístup: a) stepwise addition b) star decomposition c) branch swapping * nearest-neighbor interchanges (NNI) * subtree prunning and regrafting (SPR) * tree bisection and reconnection (TBR) Swap Branch swapping: Parsimonie a konzistence ((A,B),(C,D)) p>>q “správný” ((A,C),(B,D)) “chybný” Konzistence_obr Felsensteinova zóna Parsimonie a konzistence Simulation Parsimonie a konzistence LBA dlouhé větve Konzistence_tab2 „přitažlivost dlouhých větví“ (long-branch attraction, LBA) Parsimonie a konzistence Jukes-Cantor (JC): stejné frekvence bází stejné frekvence substitucí Evoluční modely a distanční metody Báze po substituci A C G T A -¾ ¼ ¼ ¼ Původní báze C ¼ -¾ ¼ ¼ G ¼ ¼ -¾ ¼ T ¼ ¼ ¼ -¾ - a a a a - a a a a - a a a a - Q = Kimura 2-parameter (K2P): transice ≠ transverze TsTv - b a b b - b a a b - b b a b - Q = Jestliže a = b, K2P = JC - pCb pGa pTb pAb - pGb pTa pAa pCb - pTb pAb pCa pGb - Q = Jestliže pA = pC = pG = pT, F81 = JC Felsenstein (F81): různé frekvence bází - pC pG pT pA - pG pT pA pC - pT pA pC pG - Q = Hasegawa-Kishino-Yano (HKY): různé frekvence bází transice ≠ transverze General time-reversible (GTR, REV): různé frequence bází různé frekvence všech substitucí Jukes-Cantor (JC) pA=pC=pG=pT a=b Felsenstein (F81) pA¹pC¹pG¹pT a=b Kimura‘s two-parameter (K2P) pA=pC=pG=pT a¹b Hasegawa-Kishino-Yano (HKY) pA¹pC¹pG¹pT a¹b Felsenstein (F84) pA¹pC¹pG¹pT a=c=d=f=1, b=(1+K/pR), e=(1+K/pY), kde pR=pA+pG pY=pC+pT Kimura’s three-substitution-type (K3ST) pA=pC=pG=pT a¹b Tamura-Nei (TrN) pA¹pC¹pG¹pT a¹b General-time reversible (GTR) pA¹pC¹pG¹pT a, b, c, d, e, f nestejné frekvence bází více než 1 typ substituce 2 typy transicí Heterogenita substitučních rychlostí v různých částech sekvence Gama Gama (Γ) rozdělení: • parametr tvaru α • diskrétní gama model • invariantní pozice ® GTR+ Γ+I Porovnání modelů: Comparison Který model vybrat? Likelihood ratio test (LRT): nested models LR = 2(lnL2 – lnL1) Chi-square, p2 – p1 d.f. Akaike information criterion (AIC): nonnested models AIC = -2lnL + 2p, where p = number of free parameters better model ® smaller AIC Bayesian information criterion (BIC): nonested models BIC = -2lnL + plnN, where N = sample size Porovnání modelů: Hierarchický LRT – ModelTest (Crandall and Posada) Porovnání modelů: Dynamický LRT LRT Porovnání modelů: Comparison Více parametrů Þ více realismu, ale … … také více neurčitosti, protože jsou odhadovány ze stejného množství dat Porovnání modelů Distance počítány pro každý pár taxonů, z matice distancí (nebo podobností) konstruován strom distanční metody založeny na předpokladu, že pokud bychom znali skutečné distance mezi všemi studovanými taxony, mohli bychom velmi jednoduše rekonstruovat správnou fylogenii výhoda: velmi rychlé a jednoduché (lze i na kalkulačce) 1 10 20 30 sekvence 1: ACCCGTTAAGCTTAACGTACTTGGATCGAT sekvence 2: ACCCGTTAGGCTTAATGTACGTGGATCGAT p-distance: p = k/n = 3/30 = 0.10 Diff problém saturace: Distance Distance pro některé modely: Dist2 Distance pro některé modely: Shluková analýza - UPGMA Š B Č G O 1.Najdi min d(ij) 2.Vypočítej novou matici d(ŠB-k) = [d(B-k)+d(Š-k)]/2 3.Opakuj 1 a 2. šimp. bonobo gorila člověk orang. šimpanz (Š) -- bonobo (B) 0,0118 -- gorila (G) 0,0427 0,0416 -- člověk (Č) 0,0382 0,0327 0,0371 -- orangutan (O) 0,0953 0,0916 0,0965 0,0928 -- ŠB gorila člověk orang. ŠB -- gorila (G) 0,0422 -- člověk (Č) 0,0355 0,0371 -- orangutan (O) 0,0935 0,0965 0,0928 -- Š B Č G O UPGMA: d[(BŠČ)G] = {d(BG)+d(ŠG)+d(ČG)}/3 WPGMA: d[(BŠČ)G] = {d[(BŠ)G] + d(ČG)}/2 single-linkage complete-linkage Shluková analýza - UPGMA UPGMA a konzistence: aditivní distance: dAB + dCD £ max (dAC + dBD, dAD + dBC) • tj. vzdálenost mezi 2 taxony je rovna součtu větví, které je spojují ultrametrické distance: dAC £ max (dAB, dBC) A B C D A B C aditivní strom ultrametrický strom Simulation UPGMA a konzistence: Algoritmická metoda Princip minimální evoluce ® minimalizuje součet délek větví S Každý pár uzlů adjustován na základě divergence od ostatních Konstrukce jediného aditivního stromu Spojení sousedů (neighbor-joining, NJ) NJ2 Spojení sousedů (neighbor-joining, NJ) hvězdicový strom nalezení nejbližších sousedů přepočítání distancí opakování postupu … S = 32,4 S = 29,5 S = 28,0 Nevýhody distančních dat: 1.ztráta části informace během transformace 2.jakmile data transformována na distance, nelze se vrátit zpět (odlišné sekvence mohou dát stejné distance) 3. 3.nelze sledovat evoluci na různých částech sekvence 4. 4.obtížná biologická interpretace délek větví 5. 5.nelze kombinovat různé distanční matice