Atomové orbitaly Molekulové orbitaly H2O molecular orbitals http://en.citizendium.org/images/thumb/c/ce/Oxygen_molecule_orbitals_diagram.JPG/400px-Oxygen_molec ule_orbitals_diagram.JPG http://employees.csbsju.edu/hjakubowski/classes/ch331/oxphos/MONO.gif File:Nitric oxide.svg http://www.chemistry.wustl.edu/%7Eedudev/LabTutorials/AirQuality/images/o2Lewis.jpg Bez interakce s-pz S interakcí s-pz \includegraphics[scale=0.5]{O2_paramagnetism.eps} http://www.science.uwaterloo.ca/%7Ecchieh/cact/fig/mo-hf.jpg Molekulové orbitaly Lewisovy struktury Oktetové pravidlo Ve většině sloučenin zaujímají prvky stabilní konfiguraci vzácného plynu. Týká se pouze prvků 2. a 3. periody. http://apchemcyhs.wikispaces.com/file/view/143mgo.GIF/31902665/143mgo.GIF Výjimky z oktetového pravidla http://www.uwec.edu/boulteje/Boulter103Notes/2December_files/image022.jpg http://www.mikeblaber.org/oldwine/chm1045/notes/Bonding/Except/IMG00020.GIF Formální náboj FC = (č. skupiny) - [(počet vazeb) + (počet nevazeb. el.)] http://upload.wikimedia.org/wikipedia/commons/3/38/Diazomethane-resonance-structures-2D.png diazomethan http://www.biologie.uni-hamburg.de/b-online/library/newton/Chy251_253/Lectures/AcidBase/PhenolateRe sonance.GIF Rezonance (fenolát) Hybridizace http://intro.chem.okstate.edu/1515SP01/Lecture/Chapter11/CEL2.GIF https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcQSISCJ_lnOicNkBjL9L4lpBLmgr2dwvtuDFtF_GYKC93l U6gex https://encrypted-tbn3.gstatic.com/images?q=tbn:ANd9GcRzuMMmI6i_9HAFb96y56iQL_7yHiu56NMPRY708QTg00r TReAVqw http://mrstinechemistry.wikispaces.com/file/view/methane.jpg/78070087/methane.jpg http://img.sparknotes.com/figures/9/9005bd81e1ce84d70031e984a922c7d4/Hybrid_Orbitals.jpg http://wps.prenhall.com/wps/media/objects/3081/3155729/blb0905/b09eq005.gif http://wps.prenhall.com/wps/media/objects/3081/3155729/blb0905/bl09p311.jpg http://wps.prenhall.com/wps/media/objects/3081/3155729/blb0905/bl09p312.jpg http://wps.prenhall.com/wps/media/objects/3081/3155729/blb0905/bl09fg14.jpg http://wps.prenhall.com/wps/media/objects/3081/3155729/blb0905/bl09fg15.jpg http://wps.prenhall.com/wps/media/objects/3081/3155729/blb0905/bl09p312b.jpg sp sp2 http://wps.prenhall.com/wps/media/objects/3081/3155729/blb0905/bl09p313.jpg http://wps.prenhall.com/wps/media/objects/3081/3155729/blb0905/bl09fg16.jpg sp3 http://wps.prenhall.com/wps/media/objects/3081/3155729/blb0905/bl09p313b.jpg http://wps.prenhall.com/wps/media/objects/3081/3155729/blb0905/bl09fg17.jpg http://wps.prenhall.com/wps/media/objects/3081/3155729/blb0905/bl09p315.jpg d- orbitaly http://image.tutorvista.com/content/atomic-structure/sp3d-hybrid-orbitals-formation.jpeg VSEPR VSEPR Dipólový moment http://fikus.omska.cz/%7Ebojkovsm/termodynamika/Obrazky/vdws_obrazky/vdws_clip_image002_0002.jpg http://www.chem.ufl.edu/%7Eitl/2045/react/0918.jpg http://image.tutorvista.com/content/chemical-bonding/dipole-moment-bf3-nh3.gif http://www.ecmwf.int/newsevents/training/rcourse_notes/DATA_ASSIMILATION/REMOTE_SENSING/Remote_sens ing105.gif Symetrie Symetrie KOMPLEXY http://images.tutorvista.com/cms/images/80/Ligand-Binding.jpg http://www.chem.uic.edu/marek/apintropage/ap_notes/chapter16/electronModel.jpg http://www.chem1.com/acad/webtext/chembond/CB-images/ccdefin.gif http://www.chem1.com/acad/webtext/chembond/CB-images/cc-dblock.gif http://www.dlt.ncssm.edu/tiger/diagrams/complexions/Hi-LoSpin.gif http://www.chem1.com/acad/webtext/chembond/CB-images/CCdorbsplit.gif http://www.chem1.com/acad/webtext/chembond/CB-images/CC-dorbsplitting.gif http://www.chem1.com/acad/webtext/chembond/CB-images/CC-Ti%28III%29.gif http://images.flatworldknowledge.com/averillfwk/averillfwk-fig23_009.jpg http://chemwiki.ucdavis.edu/@api/deki/files/14823/=weak_Field.png http://www.chem1.com/acad/webtext/chembond/CB-images/ligand_strength.png http://www.chem1.com/acad/webtext/chembond/CB-images/cc-highlowfield.gif strong Field.png weak Field.png http://www.dlt.ncssm.edu/tiger/diagrams/complexions/Octahed_Complex_CoF6.gif http://www.dlt.ncssm.edu/tiger/diagrams/complexions/Octahed_Complex_CoNH3.gif oct.png Oktaedrální komplex In an octahedral complex, there are six ligands attached to the central transition metal. The d-orbital splits into two different levels. The bottom three energy levels are named dxy, dxz, and dyz (also referred to as t2g). The two upper energy levels are named dx²-y², and dz² (also referred to as eg). The reason they split is because of the electrostatic interactions between the electrons of the ligand and the lobes of the d-orbital. In an octahedral, the electrons are attracted to the axes. Any orbital that has a lobe on the axes moves to a higher energy level. This means that in an octahedral, the energy levels of eg are higher (0.6∆o) while t2g is lower (0.4∆o). http://www.dlt.ncssm.edu/tiger/diagrams/complexions/Complex_Ions-Octahedral.jpg In a tetrahedral, there are four ligands attached to the central metal. The d orbital also splits into two different energy levels. The top three energy levels are named dxy, dxz, and dyz. The two bottom d energy levels are named dx²-y², and dz². The reason for this is because the electrons are attracted away from the axes. Any orbital that has a lobe in-between the axes, it moves to a higher energy level. This means that dxy, dxz, and dyz have higher energy levels. tet.png Tetraedrální komplex http://www.dlt.ncssm.edu/tiger/diagrams/complexions/Complex_Ions-Tetrahedral.jpg sq plan.png Čtvercový planární komplex In a square planar, there are four ligands as well. However, the difference is that the electrons of the ligands are only attracted to the xy plane. Any orbital in the xy plane has a higher energy level. There are four different energy levels for the square planar (from the highest energy level to the lowest energy level): dx2-y2, dxy, dz2, and both dxz and dyz. http://www.dlt.ncssm.edu/tiger/diagrams/complexions/Complex_Ions-SqPlanar.jpg Tetraedr u komplexů s a p-prvků (např. [BF4]-) a u těch d-prvků, které buď dosáhly skupinového oxidačního čísla (všechny orbitaly prázdné, např. Mn+7 - MnO4-), nebo mají konfiguraci d5 příp. d10 (symetrické konfigurace, např. Fe+3, Cu+ - [Cu(py)4]+, Ni0 - [Ni(CO)4]). Čtverec Centrální atomy s jinou konfigurací budou preferovat čtvercové uspořádání komplexů. Platí to především pro konfiguraci d8 (Pd+2, Pt+2), která ve většině případů vede ke čtvercovému uspořádání (výjimku tvoří Ni2+, který tvoří běžně také tetraedrické komplexy). Čtvercové uspořádání ovšem vyžaduje alespoň jeden volný d-orbital pro hybridizaci dsp2. Jsou-li rozdíly v energii mezi čtvercovým a tetraedrickým uspořádáním malé (např. u některých komplexů Ni+2 nebo Cu+2), mohou existovat komplexy v obou geometriích nebo může mezi oběma docházet k vzájemné přeměně - (NH4)2[CuCl4] je čtvercový a Cs2[CuBr4] je přibližně tetraedrický. Čtverec a tetraedr jsou pak spíše extrémními možnostmi uspořádání ligandů a skutečný tvar leží někde mezi nimi. Tento jev se nazývá konformační izomerií http://images.flatworldknowledge.com/averillfwk/averillfwk-fig23_014.jpg http://bouman.chem.georgetown.edu/S02/lect32/e01.gif Complex ion [Fe(Cl)6]3- Step 1: Determine the oxidation state of Fe. Here it is Fe3+. Based on its electron configuration, Fe3+ has 5 d-electrons. Step 2: Determine the geometry of the ion. Here it is an octahedral which means the energy splitting should look like: http://chemwiki.ucdavis.edu/@api/deki/files/14827/=level.png Step 3: Determine whether the ion is low or high spin by looking at the spectrochemical series. Cl- is high spin. Therefore, electrons fill all orbitals before being paired. http://chemwiki.ucdavis.edu/@api/deki/files/14832/=%25252330.png Step 4: Count the number of lone electrons. Here, there are 5 electrons. Step 5: lone pairs are paramagnetic. This ion is paramagnetic. [Ti(H2O)6]2+ http://chemwiki.ucdavis.edu/@api/deki/files/14828/=%2525231.png octahedral, paramagnetic [NiCl4]2- http://chemwiki.ucdavis.edu/@api/deki/files/14829/=%2525232.png tetrahedral, paramagnetic [CoF6]3- http://chemwiki.ucdavis.edu/@api/deki/files/14830/=%2525233.png octahedral, paramagnetic, high spin http://chemwiki.ucdavis.edu/@api/deki/files/14831/=%2525234.png octahedral, diamagnetic, low spin [Co(NH3)6]3+ http://chemwiki.ucdavis.edu/@api/deki/files/826/=ligand.jpg magnetic properties.jpg Multiplicita = 2*S + 1 S = celkový spin