# **Cellular Communication**

#### **Genomics Lectures**

Kamil Růžička FGP CEITEC MU

#### How does fluorescence work?



# How does a fluorescence microscope work?



# How does a confocal microscope work?



#### Protein localization live imaging

GFP discovery - Nobel Prize 2008



Osamu Shimomura Martin Chalfie Roger Tsien

#### **GFP** fusions

#### N-terminal fusion

| promoter | here can<br>he GFP | your gene | terminator |
|----------|--------------------|-----------|------------|
|          |                    |           |            |

#### C-terminal fusion

|          |           | 1. A     |            |
|----------|-----------|----------|------------|
| promoter | vour gene | here can | terminator |
| promoter | your gene | he GFP   | cernnacor  |
|          |           |          |            |

#### fusion inside the coding sequence



### GFP and membrane proteins



It is good to have GFP tag localized inside the cell

# Fluorescent proteins on the market



### Excitation and emission







# Multicolored fluorescent protein (neurones)



# Transport among compartments



Alberts et al. 2008

# Also RNA can be differentially localized



#### **RNA ZIP codes for localization**



Mikko Frilander

## ZIP codes often motor protein bound

| Table 1   Cr | oss species c | omparison of | proteins | involved in c | yto | plasmic | mRNA | localization |
|--------------|---------------|--------------|----------|---------------|-----|---------|------|--------------|
|--------------|---------------|--------------|----------|---------------|-----|---------|------|--------------|

| Function/feature                                                        | Yeast                                          | Drosophila<br>melanogaster                                                                                                             | Vertebrates                                                                                                                                                              |
|-------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zip-code-binding hnRNP<br>protein (located in nucleus<br>and cytoplasm) | Not yet identified                             | Squid ( <i>grk</i> )²⁰                                                                                                                 | hnRNP A2 ( <i>MBP</i> ) <sup>21</sup><br>VgRBP60* ( <i>Vg1</i> ) <sup>52</sup><br>Vera/VgRBP* ( <i>Vg1</i> ) <sup>59,60</sup><br>ZBP-1* ( <i>B-actin</i> ) <sup>22</sup> |
| Cytoplasmic zip-code-<br>binding RNP                                    | She2 ( <i>ASH1, IST2</i> ?) <sup>6,63,64</sup> | Staufen ( <i>osk, pros</i> ) <sup>65</sup><br>Swallow* ( <i>bcd</i> ) <sup>82</sup><br>Ypsilon-Schachtel* ( <i>osk</i> ) <sup>83</sup> | mStaufen* (?) <sup>68,79,80</sup><br>VILIP* ( <i>trk</i> ) <sup>69</sup><br>TB-RBP ( <i>CaMKII?</i> ) <sup>98,99</sup>                                                   |
| Motor protein for RNP                                                   | Myo4 ( <i>ASH1, IST2?</i> ) <sup>4,6</sup>     | Kinesin I ( <i>osk</i> ) <sup>88</sup><br>Dynein* ( <i>bcd</i> ) <sup>82</sup>                                                         | Kinesin* ( <i>MBP, CaMKII</i> ) <sup>75,99</sup>                                                                                                                         |
| RNP motor adaptor                                                       | She3 ( <i>ASH1, IST2</i> ?) <sup>6,63</sup>    | Dynein light chain ( <i>bcd</i> ) <sup>82</sup>                                                                                        | Not yet identified                                                                                                                                                       |
| mRNA/RNP anchor                                                         | Bni1*, Bud6* (ASH1) <sup>32</sup>              | Staufen ( <i>bcd</i> )³⁰<br>Oskar ( <i>osk</i> )³7                                                                                     | Xlsirt mRNAs* (Vg1) <sup>38</sup>                                                                                                                                        |

#### Mikko Frilander

### Delivering at the correct address



**1. Localisation complex** assembly starts already in the nucleus

2. Cytoplasmic mRNP is "matured", nuclear export proteins removed, additional proteins attached.

3. mRNP is associated with motor and transport system and delivered to the destination

4. Delivered mRNP is anchored to the destination (for storage) or translated directly.

Mikko Frilander

#### Localization of mRNA RNA hybridization *in situ*



Localization of mRNA RNA hybridization *in situ* 

- classical technique, no alternative in developmental biology
- results often clear
- can be done without generating transgenic lines
- tedious
- only on "dead" samples





nuclear localization signal



viral RNA binding protein

# Also mRNA can be differentially localized



#### Ash1 mRNA localized to the tip of the daughter cell

# Also mRNA can be differentially localized



# Also mRNA can be differentially localized



#### Protein localization immunolocalization - fluorescently



# Protein localization

#### immunolocalization - immunogold





electron microscope

# Transport among compartments



Alberts et al. 2008

# Protein sorting – target peptides

| Location              | Type of targeting signal                  | Properties                                         |
|-----------------------|-------------------------------------------|----------------------------------------------------|
| Nucleus               | Nuclear localization signal (NLS)         | Short clusters of basic<br>amino acids             |
| Endoplasmic reticulum | Signal peptide                            | Cleavable N-terminal<br>presequence                |
|                       | ER retention signal                       | C-termini, H/KDEL motif                            |
| Plastid               | Transit peptide                           | Usually cleavable N-terminal<br>presequence        |
| Mitochondrion         | Presequence/Transit peptide               | Usually cleavable N-terminal<br>presequence        |
| Peroxisome            | Peroxisome targeting sequence 1<br>(PTS1) | C-termini, a conserved short<br>motif              |
|                       | Peroxisome targeting sequence 1<br>(PTS2) | Cleavable N-terminal<br>presequence                |
| Tonoplast/vacuole     | Signal peptide                            | Cleavable N-terminal                               |
|                       | Vacuolar sorting signals                  | Internal short sequence at near<br>N-terminal      |
|                       |                                           | C-termini, targeting to protein<br>storage vacuole |
| Apoplast              | Signal peptide                            | Cleavable N-terminal<br>presequence                |

### Nuclear transport



#### nucleoporins

### Nuclear import



### Nuclear import



### Mitochondrial transport



TIM and TOM complexes decide at which side of mitochondria the protein will be transported.

### Advanced confocal techniques

- FRAP
- photoactivatable FP
- FCS



#### <u>Fluorescence</u> <u>Recovery</u> <u>After</u> <u>Photobleaching</u>











#### **iFRAP** inverse FRAP



# iFRAP – dissociation of premRNA from specles



#### FRAP - advantages

not only proteins (also other dyes)

#### FRAP – disadvantages

- your cells are moving
- high energy needed to bleach the ROI

  can damage your material
  long time needed to bleach
- usually only one ROI can be observed time consuming

#### FRAP derivatives FLIP Fluorescence Loss After Photobleaching



continuous bleaching here

- bleaching process is repeated during the experiment
- for studying general protein turnovers in compartments
- less often used

#### FRAP derivatives FLAP <u>F</u>luorescence Localization after Photobleaching



 two fluorochromes on one protein
 – one bleached, non bleached as control

# Intermezzo: story from a conference

#### even top scientists can be wrong

#### Photoactivable proteins



#### photoactivation (UV)

#### Photoactivable proteins



Copyright © (2005) Nature Publishing Group Nature Reviews | Molecular Cell Biology

#### Dronpa, Kaede, Eos – probably most popular

#### Photoactivable proteins

Advantages: - most elegant, most convincing

Disadvantages:

- very weak signal
- each material needs optimization

#### Remarks

- your material is 3D
- protein *de novo* synthesis in some experiments (e.g. cycloheximide stops translation)



#### <u>Fluorescence</u> <u>Life</u> <u>Time</u> Imaging <u>Microscopy</u>

Fluorochromes

- excitation spectra
- emission spectra
- unique lifetime

Lifetime sensitive to almost everything:

- pH
- ionic strength
- polarity
- other fluorochrome

### **FLIM - applications**

Protein-protein interactions (FRET-FLIM) (other lecture)

### **FLIM - applications**

#### phosphorylation assay



lifetime decreased by site specific IgG injection

#### FCS

#### Fluorescence Correlation Spectroscopy



It is counted, how many times the fluorescent molecule comes through the focal plane.

Autocorrelation analysis: the way how to discriminate the diffusions speeds of particles.

#### FCS



control membrane bound GFP and RFP (crosscorrelation curve)



free GFP and RFP

#### FCS



control membrane bound GFP and RFP (crosscorrelation curve)

channel crosstalk threshold





control membrane bound GFP and RFP (crosscorrelation curve)



receptor with two labels

channel crosstalk threshold





#### receptor with two labels



the crosscorelation curve is above threshold -> EGFR protein dimerizes

Liu et al., 2007