
Plant-based material, protein and biodegradable plastic
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Fibrous proteins from spiders, proteins with synthetic multiple

repeats and mammalian structural proteins such as collagen

have been produced in transgenic plants. Recent advances

in the production of biodegradable plastic in plants also

show the potential of molecular farming for research into

and production of materials. Selection of a growing variety

of such products, optimization of expression, and the

development of effective purification strategies will

further promote this growing field of biotechnology.
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Introduction
Plant materials such as cellulose, starch or even latex from

rubber trees have traditionally been used for several

purposes by mankind. In the past century, the chemical

industry opened the way to modify plant-based materials,

and products such as cellulose acetate or cellulose nitrate

were invented. The development of genetic engineering

technology and efficient transformation methods for sev-

eral crops has opened the way for the genetic modification

of traditional plant products; for example, the develop-

ment of modified starch. Furthermore, interesting pro-

teins originating from animals and novel polymers can

now be synthesized in transgenic plants [1]. Silk proteins,

from either spiders or insects, are especially interesting as

basic materials for the production of silk fibers that have

mechanical properties superior to those of chemical

fibers. Synthetic proteins that have multiple repeats,

elastin derivatives for example, could be used as basic

material for medical use in artificial organ technology or

for coating transplanted tissue. Similar applications are

imagined for collagen produced by plants. Biodegradable

plastics isolated from transgenic plants, which might have

packaging and coating applications for example, might be

environmentally friendly alternatives to synthetic petro-
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chemical polymers and a further field of an imagined

plant-based material economy. Different agricultural

expression systems that can be used for large-scale pro-

duction of recombinant proteins have been developed in

recent years. These systems include promoters, intracel-

lular targeting and organ-specific expression (for review

see [2]). In this review, we focus on recent work on the

production of new biopolymers in transgenic plants.

New protein-based materials from plants
Naturally occurring proteins often exhibit interesting

properties as fibers or adhesives. For example, larvae

from insects produce fibrous glues in the form of sericin

(produced by Bombyx mori for example [3]) or Balbiani

Ring Gene proteins (produced by Chironomus tendans [4]).

Other fibrous proteins, such as silks from spiders and

insects or elastin and collagen from mammals, have

remarkable importance for the survival of the animals

that produce them. They are therefore in the focus of

evolutionary research [5]. All of these proteins are also

useful for the creation of new biomaterials because of

their exceptional material properties including toughness,

strength and elasticity [1]. The proteins consist of short

blocks of amino-acid repeats [5]. Some animals, such as

spiders, combine different proteins into one material.

This opens the way for biotechnology to join several

protein-based materials by gene fusions, by posttransla-

tional combination and by mixing on a technical level.

Silk proteins from spiders and insects and
their production in transgenic plants
During evolution, spiders have become highly diverse in

production and use of silks (for review see [6,7]). This

diversity is forced by the central roles played by silk

throughout the whole life of spiders. Silk is used by

spiders not only to capture prey but also to construct

shelter and in reproduction. Araneoid spiders can spin

seven types of silk from their spinnerets. One of the

strongest fibers, dragline silk, is used by spiders for the

frames of their webs and as safety lines [8–11]. Dragline

silk is stronger than and one-tenth the weight of high

tensile steel; it has a tensile strength similar to that of the

high-performance p-aramid fiber KEVLAR [12]. The

capture spiral silk (i.e. flagelliform silk) has a lower tensile

strength than dragline silk but can be stretched to more

than twice its length before breaking [13,14]. Aciniform

silk is used by araneoid spiders to wrap and immobilize

prey, to construct web decorations and to encase eggs

[15]. X-ray diffraction and NMR data from spider silk, as

well as from insect fibroin silk, show that the fibers

contain crystalline and non-crystalline components [5].

The crystalline arrays are thought to be responsible for
www.sciencedirect.com
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the stiffness of the fiber. The amorphous regions (which

make up 55–60% of dragline spider silk) are more or less

kinetically free and can change their shape under the

influence of external load, but they show entropic elas-

ticity [16].

The structures of the genes encoding several spider silk

proteins and insect fibroins from different species have

been determined, and the implications of this information

on our evolutionary understanding has been discussed

(for reviews see [5,9,11,15,17,18]). All these proteins are

typified by a modular nature. The repetitive portions of

11 characterized silk proteins from spiders can be general-

ized as typical sets of consensus repeats containing six

types of amino acid motifs as poly-A, poly-(GA), GGX,

GPGXX, GPX and spacers. The repetitive amino-acid

motifs of the different silk proteins are thought to be

directly responsible for the mechanical properties of

spider silk fibers [19]. Poly-A regions and poly-(GA)

sequences were found in b-sheet regions of major and

minor ampullate silks [20]. b-sheet regions are able to link

and form the crystalline areas in the fibers. Crystalline

regions might contribute to the extremely high tensile

strength of silk fibers [11]. Furthermore, the GPGXX

motif is also thought to contribute to the mechanical

properties of silks. Every GPGXX motif could form a

type II b-turn. GPGXX motifs that occur in tandem could

result in a series of b-turns [21]. Such consecutive turns

could form a structure showing homology at a structural

level to the b-spiral of elastin [22]. To date, only major

ampullate (MaSpI and MaSpII proteins) and flagelliform

silks (Flag) have been found to contain GPGXX motifs.

These silks are the stretchiest of spider silks [11,21,23].

The function of the non-repetitive carboxy-terminal

regions of MaSpI, MaSpII and Flag is still unclear.

The sequencing of Flag has revealed that it also contains

a non-repetitive amino-terminal region of unknown func-

tion. It is therefore likely that MaSpI and MaSpII also

contain non-repetitive amino-terminal regions.

In general, all fibrous proteins of spiders and insects are

large (several hundred kDa) and have highly repetitive

amino-acid sequences. When expressed in microorgan-

isms such as Escherichia coli [P1] [24–27] or in lower

eukaryotes such as Pichia pastoris [28], transgenic

spider-silk-like proteins accumulated only to low levels.

Because spider-silk proteins largely consist of the hydro-

phobic amino acids glycine and alanin, an extended pool

of these two building blocks must be provided if spider-

silk proteins are to be produced by fast-growing micro-

organisms such as bacteria or yeast. Alternatively, frag-

ments of the spider-silk proteins MaSpI, MaSpII and

Adf3 of 60–140 kDa were produced in cultured mamma-

lian cells [29]. These experiments might lead to the

generation of transgenic animals that secrete spider-silk

proteins into their milk. However, the mass production of

a structural protein for technical purposes from animal
www.sciencedirect.com
cells or transgenic animals seems to be too expensive and

time consuming in terms of fermentation or animal

breeding. Nevertheless, the genetically programmed

synthesis of protein polymers allows precise control of

molecular mass and amino-acid monomer composition,

and therefore could lead to the design and synthesis of

polymers whose differing physical and functional proper-

ties are exactly controlled. Such controlled synthesis is

difficult using chemical technologies [30]. To date, the

development of protein-based biomaterials for commer-

cial application has often been limited by difficulties in

producing sufficient material to allow the study of struc-

ture-dependent functions [1].

We believe that transgenic plants are powerful protein

factories that can overcome the problems mentioned

above. Therefore, we constructed stable transgenic

tobacco and potato lines to express various synthetic

spider-silk genes ranging from 420 to 3600 basepairs in

size. The genes were assembled so as to achieve very high

homology to the native MaSpI gene from Nephila clavipes
(more than 90%). Accumulation of up to 2% spider-silk

protein of total soluble protein (TSP) in the endoplasmic

reticulum (ER) of tobacco leaves was achieved, and this

production was relatively independent of the size of the

spider-silk protein. The recombinant spidroins exhibited

extreme heat stability. This property, together with resis-

tance against acidification and fractionated ammonium

sulfate precipitation, was used to purify the plant-

produced spidroins by a simple and efficient procedure

[31]. Barr et al. [32�] showed the expression of synthetic

spider silk proteins in Arabidopsis thaliana driven by the

ubiquitous CaMV35S promoter and by the seed-specific

b-conglycinin a0 subunit promoter. In Arabidopsis leaves,

a 64 kDa artificial silk protein mimicking MaSpI was

accumulated to 1.65% TSP and a 127 kDa protein to

0.06% TSP [32�]. In seeds, the 64 kDa protein was

accumulated to 1.4% TSP and the 127 kDa protein to

1% TSP. The 64 kDa protein could also be detected in

transformed somatic embryos of soybean.

A protocol similar to that described by Scheller et al. [31]

has been used for successful purification of spidroins from

plant tissues. Menassa et al. [33] reported the production

of native MaSpI and MaSpII in transgenic tobacco plants

in the greenhouse and in a field trial. However, the

expression levels achieved in these trials were relatively

low (69 g per hectare resulting from 0.1% TSP) in com-

parison to the levels achieved with artificial spider silk

proteins [31,32�]. It is not yet clear if the small sequence

differences between artificial spider silk proteins and

‘native’ MaSpI and MaSpII are responsible for this

difference in expression levels. In further experiments,

we constructed a fusion protein of 94.4 kDa made of the

synthetic spider silk protein SO1 (51.2 kDa) and the

synthetic elastic biopolymer 100xELP (100 repeats of

pentapeptide Val-Pro-Gly-Xaa-Gly [where Xaa is Gly,
Current Opinion in Plant Biology 2005, 8:188–196



190 Plant biotechnology
Val or Ala]) [34]. The ‘best-producer’ plants accumulated

up to 4% of TSP as spider-silk–elastin fusion proteins [35�].

Natural elastin fibers provide elasticity to many tissues

that require the ability to be deformed repetitively and

reversibly [36]. Synthetic elastin-like polypeptides con-

sist of oligomeric repeats of the pentapeptide

Val-Pro-Gly-Xaa-Gly (where Xaa is any amino acid

except for proline) [37]. Even when expressed as a fusion

protein, elastin-like polypeptides become reversibly inso-

luble if the temperature is raised above their transition

temperature [34]. When the temperature decreases, the

elastin-like polypeptides and their fusion proteins

become soluble again (‘inverse transition cycling’) [37].

The proposed secondary structure of elastin is the

b-turn spiral. A first step towards the production of

new biomaterials that have useful industrial and medical

properties has been taken by combining a spider silk

protein that exhibits a high tensile strength with an elastic

biopolymer, such as an elastin-like polypeptide.

A new purification strategy has been developed using the

unique properties of ELP fusions. First, the spider silk

proteins from plants were enriched by boiling. We used

heat treatment at 95 8C for 60 min and clearance by

centrifugation of tobacco leaf extracts to enrich the

spider-silk–ELP fusion protein in the supernatant. For

the selective precipitation of the SO1-100XELP, NaCl

was added to a final concentration of 2 M and the tem-

perature was raised to 60 8C. Under these conditions, the

recombinant spider-silk–elastin fusion proteins aggregated

and could be precipitated by centrifugation. Cellular

proteins remained in the supernatant. The precipitated

recombinant proteins were resolved at a lower tempera-

ture and without salt to a final concentration of 1 mg/ml of

nearly homogenous product. Dialysis against water and

drying led to the formation of silk-proteins in the form of

storable membranes. Extraction of 1 kg tobacco leaf

resulted in 80 mg pure recombinant spider-silk–elastin

protein. Transgenic plants for spider silk and spider-silk–

elastin fusion proteins were phenotypically indistinguish-

able from wildtype plants. In addition, the expression of

recombinant proteins in second generation plants was

comparable to that in first-generation plants. In summary,

expression and purification systems for plant-based silk

proteins have been developed. Expression in storage

organs such as tubers and seeds has been generally shown.

The selection of suitable spidroin and fibroin sequences

for defined applications and commercialization is still at

an early stage. To date, there are no reports of the

successful spinning of plant-derived silk proteins. The

first example of possible medical use has, however, been

reported [35�]. Adherent mammalian cells need extra

cellular matrix (ECM) proteins for attachment, prolifera-

tion and differentiation in vivo as well as in vitro. For

successful medical application, recombinant ECM-like
Current Opinion in Plant Biology 2005, 8:188–196
proteins should enhance cell growth in cell culture,

inhibit differentiation and exhibit a high biocompatibil-

ity. The production of such proteins in plants will avoid

contamination with mammalian viruses. In a first attempt

to test spider-silk–ELP fusion proteins as substitutes for

original ECM proteins, the growth of human chondro-

cytes (HCH-371) and CHO cell lines on this plant-

derived fusion protein were compared with the growth

of these cells on fetal calf serum and collagen. The growth

of the cells on spider-silk–ELP was comparable to that on

to collagen. The plant-derived spider-silk–elastin fusion

protein seems to be an effective, biocompatible matrix

that promotes the growth of mammalian cells of various

characters. Studies of the surface-coating of implants and

of in vivo immunological acceptance are in preparation.

Production of mammalian-derived structural
proteins in plants
Elastin is a strong elastic fiber that is present in ligaments

and in arterial walls. Synthetic proteins that are con-

structed from multiple repeats also show elastic proper-

ties. Such polymers have also been shown to prevent post-

surgical adhesions and scars in rats [38]. A bioelastic

protein-based polymer with the amino-acid sequence

121xGVGVP was successfully expressed in transgenic

tobacco plant either after nuclear or after chloroplastic

transformation [39,40], but the purification of this protein

has not yet been reported. 100xELP could also be

produced and purified from transgenic tobacco leaves

and from transgenic tobacco tubers in a similar process

to that described for spidroin–ELP fusions (J Scheller,

M Rakhimova, U Conrad, unpublished). Possible appli-

cations for this protein in cell cultivation are currently

under study.

Collagens form a family of extra-cellular matrix proteins

that are detectable in all connective tissues of mammals.

They represent 30% of total body weight of proteins.

Collagen molecules consist of three polypeptides called a

chains, which assemble to form triple helical domains.

The collagen a chains contain the repeating triple

sequence Gly-X-Y, where X and Y are frequently proline

and hydroxyproline residues, respectively. This sequence

is necessary for the correct formation of the triple helix

[41]. Fibrillar collagen I, the collagen that is most widely

distributed in tissues, consists of either two a1(I) chains

and one a2(I) chain or of the homotrimer (a1[I])3. Even

the homotrimer can form a stable triple helix. Ruggiero

et al. [42] showed that tobacco plants transformed with a

cDNA that encodes the human preproa1 chain of col-

lagen are able to produce fully processed triple helical

molecules. The recombinant collagen was synthesized in

plantlets as a precursor, which was disulfide-linked via its

C-propeptides. The precursor was further processed by

removing the C-propeptides but retaining the complete

N-propeptide. The final recombinant product was fully

processed to collagen. As a consequence of the lack of
www.sciencedirect.com
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prolyl-hydroxylation in plants, the thermal stability of the

recombinant product was decreased in comparison to that

of the homotrimer purified from bovine tissues [42]. To

solve this problem, Merle et al. [43] produced tobacco

plants that are co-transformed with a human type-I col-

lagen and a chimeric proline-4-hydroxylase. By this tech-

nique, the thermal stability of recombinant collagen I

from plants was significantly improved. Hydroxylation

was necessary for the receptor-binding properties of col-

lagen. Prolyl hydroxylation was required for efficient

binding to integrin a1b1 and glycoprotein VI [44].

Biodegradable plastics (PHB): natural
producers and properties
Biodegradable plastics have been proposed as environ-

mentally friendly alternatives to synthetic petrochemical

polymers for use, for example, in packaging and coatings.

Poly(3-hydroxyalkanoates) (PHAs) are a group of biode-

gradable, structurally simple macromolecules that are

synthesized by several microorganisms. These molecules

have material properties that are similar to those of some

common plastics, such as polypropylene [45]. Physiolo-

gically, PHAs are believed to play a role as a sink for

carbon and energy [46]. Since the discovery of PHAs by

Lemoigne [47] at the Institute Pasteur in 1926, a growing

number of mainly linear, head-to-tail polyesters that are

composed of 3-hydroxy fatty acid monomers have been

described. In head-to-tail polyesters, the monomers are

assembled in such a way that they are all oriented in the

same direction. The molecular mass of PHAs varies with

PHA producer but is generally between 50 and 1000 kDa.

Historically, poly(3-hydroxybutyrate) (PHB) has been

studied most extensively and has triggered commercial

interest in this class of polymers. The bacterium Ralstonia
eutropha can synthesize PHB from glucose and store it as
Figure 1
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discrete granules to levels as high as 85% of the cell dry

weight. The homopolymer PHB from bacteria has char-

acteristics that are similar to those of petrochemical plas-

tics such as polypropylene, but the material is somewhat

brittle, making it less stress resistant for industrial appli-

cation [48]. Therefore Imperial Chemical Industries (ICI)

has developed the PHB copolymer poly(3-hydroxybuty-

rate-co-hydroxyvalerate ([PHBV], also known as Biopol),

which is less stiff and less brittle than bacterial PHB [49].

This copolymer has been produced by Ralstonia eutropha
on glucose and propionate, leading to the incorporation

of 3HV (3-hydroxyvalerate) into the polymer [50].

Because of the high-production cost of PHB from natural

producers in comparison to the cost of synthetic plastics,

alternative hosts for the production of PHBs have been

evaluated. Enzymes that are responsible for the biosynth-

esis of PHB have therefore been transferred to E. coli
[51,52], Saccharomyces cerevisiae [53] and the cells of insects

[54], organisms that normally do not synthesize PHB.

Furthermore, molecular breeding of transgenic plants

that express functionally active biopolyester pathways

has been carried out and might be an economically viable

alternative for the production of biopolyester [1].

The biosynthetic pathway of PHB
In general, the biosynthetic pathway for PHB comprises

the three enzymes b-ketoacyl-CoA thiolase (PhbA), acet-

oacetyl-CoA reductase (PhbB) and PHB-polymerase/

synthase (PhbC), which are often clustered in bacterial

genomes ([55]; Figure 1). PhbA catalyzes the condensa-

tion of two acetyl coenzyme A (acetyl CoA) molecules

into acetoacetyl-CoA. PhbB catalyses the reduction of

acetoacetyl-CoA to (R)-3-hydroxybutyryl-CoA. Finally,

the (R)-3-hydroxybutyryl-CoA monomers are polymer-

ized into PHB by PhbC (Figure 2; [56]). PHAs can differ
CoASH

PhbA

NADPH

NADP+

PhbB

CoASH

PhbC

CH2

C
S

CoA

C

CH

OH

CH3

CH2

C
S

CoA

O

C
CH3

O

(R)-3-Hydroxybutyryl-CoA

Acetoacetyl-CoA

Current Opinion in Plant Biology

that is catalyzed by the enzymes b-ketoacyl-CoA thiolase (PhbA),

6].
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Figure 2
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Optimal expression systems for proteins in transgenic plants [2] include ubiquitous expression, expression in storage organs and targeting

to specific compartments [80]. This knowledge has been partially applied to the expression of polymeric proteins in plants [31,40].

Biodegradable plastic production has been shown in the chloroplasts and peroxisomes of transgenic plants [66–70].
in the length of their side chains, the illustrated PHB in

Figure 2 carries a methyl-group but even larger side-chain

groups have been found. Monomers ranging from 3–5

carbons are called short-chain-length PHAs (SCL-PHAs),

monomers ranging from 6–16 carbons are called medium-

chain-length PHAs (MCL-PHAs). In general, longer

monomers tend to form more elastic and sticky polymers

whereas shorter monomers form stiffer polymers [49].

The wide range of material properties found among

different PHAs make them interesting biomaterials.

Beside the bacterial protein machinery for PHB produc-

tion, the same bacteria provide proteins for the degrada-

tion of these macromolecules to CO2 and H2O under

optimal conditions.

Biodegradable plastics and PHB from
transgenic plants
Until now, the commercial production of PHBs has been

restricted by high production costs, making bacterial

fermentation of PHB at least five times more expensive

than chemical synthesis of polyethylene. Plants might be

a suitable alternative for the low-cost production of PHBs.

It was calculated that polymer concentrations in plants

will need to reach at least 15% of dry weight for economic-

ally useful production.

The general feasibility of the production of PHB in plants

was shown in 1992 in pilot experiments in which PHB

synthesis was directed into the cytoplasm of Arabidopsis
thaliana. The accumulation of 0.1% of leaf dry weight as

PHB was low in comparison to PHB accumulation in

bacteria. Nevertheless, the plant-produced PHB formed
Current Opinion in Plant Biology 2005, 8:188–196
granules whose size and appearance were comparable to

those of the granules formed by bacteria. Unfortunately,

these Arabidopsis plants displayed a stunted-growth phe-

notype, leading to the assumption that the redirection of

cytoplasmic acetyl-CoA to PHB production results in

insufficient production of isoprenoids and flavoids, which

are needed for normal growth [57].

Major improvements in PHB accumulation were achieved

by targeting the bacterial PHB-biosynthesis pathway to

other compartments of plant cells in transgenic plants.

In 1994, Nawrath et al. [58] produced constitutive expres-

sion of the enzymes of the PHB biosynthetic pathway in

chloroplasts of A. thaliana by nuclear transformation and

fusion of transit peptides to the three PHB enzymes. They

reported PHB accumulation of up to 14% of leaf dry

weight.

In contrast to the cytoplasm, plastids are compartments in

which there is a high flux of acetyl-CoA, which is mainly

utilized as precursor for the fatty-acid biosynthesis of

membrane lipids. Plants in which the bacterial PHB-

biosynthesis pathway was targeted to plastids showed

nearly wildtype growth and fertility but, in high PHB

producers, chlorosis of the leaves was observed. One

crucial issue that was not addressed by Nawrath et al.
[58] is whether stable, high-level polymer production in

plants could be maintained over many generations. Later,

transgenic A. thaliana plants were directly screened for

high accumulation of PHB in the plastids of leaves using

gas chromatography and mass spectrometry (GC-MS).

Accumulation of up to 40% of leaf dry weight as PHB
www.sciencedirect.com
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was reported. Unfortunately, a strong negative correlation

between PHB accumulation and plant growth was

detected once again, and even moderate concentrations

of PHB (i.e. 3% of leaf dry weight) were accompanied by

reduced plant growth, which was probably caused by

exhausted acetyl-CoA pools in the plastids. In addition,

T2 progeny plants were analyzed and had moderately

reduced PHB levels, indicating that PHB production

might be lost or reduced to physiologically compatible

amounts over the generations [59].

Although most work on PHB biosynthesis has been done

in the model plant A. thaliana, there are also some reports

of high accumulation of PHB in commercial crop plants.

By targeting PHB synthesis to the plastids of maize and

rape (Brassica napus) PHB accumulation of up to 5.7% and

7.7%, respectively, was achieved [1,60]. Growth retarda-

tion was not observed. An integrated processing system to

extract PHB, oil and meal from rapeseeds was proposed,

but any effect of PHB production on oil yield was not

analyzed. Accumulation of PHB up to a concentration of

5% of dry weight has also been produced in the plastids of

the hairy roots of sugar beet (Beta vulgaris L.) by nuclear

transformation [61].

Even though attempts have been made to produce PHB

by introducing the PHB-biosynthetic pathway into the

plastid genome of transgenic tobacco, this strategy has not

yet led to PHB production in desirable amounts [62] and

strong growth defects were observed [63].

The syntheses of PHB in transgenic cotton and flax were

examples of introducing a new polymer into existing

fibers [64,65]. The transgenic cotton fibers exhibited

normal strength, length and micronaire (i.e. fineness)

but had enhanced insulating properties. The changes

to thermal properties were small, however, perhaps

because only small amounts of PHB accumulated in

the cytoplasm of fiber cells (0.34% fiber weight) [64].

The transgenic flax showed a clear correlation of plastidial

PHB content and growth retardation, the best-producer

plants accumulated PHB to 0.5% of dry weight. In addi-

tion, the amounts of glucose, starch and linolenate, the

most abundant fatty acid in flax seeds, decreased with

increasing PHB content [65].

There is an obvious need to further improve transgenic

PHB production by producing higher accumulation with-

out side-effects such as chlorosis, male sterility and

growth retardation, but genetic engineering has already

yielded the first examples of the production of PHA-

copolymers in transgenic plants (SLC- and MCL-PHA).

PHB is a highly crystalline polymer whose usefulness is

restricted by its physical properties, being relatively stiff

and brittle. SLC- and MCL-PHA are less stiff and brittle,

even having rubber-like properties, and therefore exhibit

a greater potential for commercial applications.
www.sciencedirect.com
In 1999, Slater and colleagues [66] from Monsanto

succeeded in the production of a PHBV-copolymer

(SLC-PHA) in the plastids of A. thaliana and B. napus
(at up to 3% of plant tissue dry weight or seed weight,

respectively). This was achieved by transformation of the

plants with four different genes: ilvA, bktB, phbB and phbC,

the last three being standard enzymes of the PHB biosyn-

thetic pathway (a ketoliase, a reductase and a synthase).

IlvA from E. coli encodes the protein threonine deaminase

and converts threonine to 2-ketobutyrate. The endogen-

ous pyruvate dehydrogenase complex catalyzes the synth-

esis of propionyl-CoA from 2-ketobutyrate. Acetyl-CoA

and propionyl-CoA are then further processed and copo-

lymerized into PHBV [66]. Whether the accumulation of

PHB remained stable in the progeny was not analyzed.

In contrast to peroxisomal fatty acids in mammals, those

in plants can be completely oxidized by the acyl-CoA

oxidase (SC-ACOX) to acetyl-CoA (a process known as

b-oxidation) [67]. This system has been evaluated for the

production of SCL-PHAs in transgenic plants. Trans-

genic Arabidopsis plants that accumulate up to 0.23% of

leaf dry weight as the SLC-PHB poly(3-hydroxybutyrate-

co-3-hydroxyvalerate-co-3-hydroxyhexanoate) have been

engineered [68]. Therefore, SLC-PHA accumulation in

transgenic plants indicates that SLC intermediates of the

b-oxidation of SCL-fatty acids exist in peroxisomes.

Furthermore, peroxisomal production of MCL-PHAs

by b-oxidation has been observed, leading to a broad

range of (R)-3-hydroxyacyl-CoA intermediates. These

intermediates were further processed by the transgenic

PHA-biosynthetic pathway, but the overall yield was still

low (0.6% of dry weight) compared to that of PHB

synthesis in plastids [69–71].

Recently, the synthesis of SCL-MCP-copolymers by

E. coli, with glucose as carbon source, was reported

[72,73]. The enzyme 3-ketoacyl-acyl-carrier protein

synthase (fabH) normally catalyses the condensation of

malonyl-CoA and acetyl-CoA, generally accepting sub-

strates of 2–4 carbons in length. A genetically engineered

fabH enzyme was obtained that accepted substrates of

2–10 carbons in length. When co-expressed with the phaC
enzyme, PHA-copolymers accumulated that contained

SCL (C4) and MCL (C6–10) monomers. Nomura and

colleagues now aim to study how this system might be

transferred to plants. Because the accumulation of PHB

and simple PHBV copolymers in plastids is more effec-

tive than SLC and MCL-PHA accumulation in perox-

isomes, plastids might serve as suitable sites for improved

production of SLC-MCL-PHA co-polymers.

Plastic-like biomaterial from polymerization
of amino acids
Biomaterials that are composed of polyamino acids, such

as poly-g-glutamate, polyaspartate or poly-g-lysine, are

components of dispersants, thickeners or hydrogels
Current Opinion in Plant Biology 2005, 8:188–196
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[74,75]. Although poly-g-glutamate and polyaspartate can

be produced by bacteria, polyaspartate has to be produced

by chemical synthesis or by hydrolysis of cyanophycin

under mild conditions [P2]. The synthesis of cyanophy-

cin, which accumulates mainly in a water-insoluble form

in cyanobacteria, is dependent on the action of the

cyanophycin synthetase (cphA) [76–79]. Recently, the

expression of a water-soluble form of cyanophycin was

shown in E. coli transformed with cyanophycin synthetase

[79]. In addition, tobacco and potato transgenics for

cyanophycin synthetase can produce cyanophycin in high

amounts (I Broer, K Neumann, EK Pistorius, personal

communication).

Conclusions and perspectives
The production of biomaterials from transgenic plants has

been developed in recent years. Spider-silk proteins,

elastins and collagen have been expressed in transgenic

plants. In the case of spider-silk proteins, only the major

ampullate spidroins I and II or their artificial derivatives

have been produced in plants. A systematic study of the

expression of a greater variety of spider-silk or insect-silk

proteins in plants is still lacking. This is one of the

challenges in the further development of the biotechnical

potential of these interesting biomolecules. The expres-

sion of spider-silk or insect-silk proteins in some indivi-

dual storage organs, such as seeds and tubers, has already

been studied, but a general study of the expression of a

collection of different molecules that includes targeting

to different compartments (such as chloroplasts, ER and

storage vacuoles) would also help to define optimal

expression systems. Extraction and purification methods

have been developed for spider-silk proteins and ELP,

but extraordinary properties, such as heat resistance and

temperature-dependent solubility, could be explored

further. The silk produced from transgenic plants must

have properties that are clearly better then those of

technical fibres, otherwise the production and purification

costs of proteins from transgenic plants will be too high for

them to compete successfully with those from other

sources.

Collagens have also been produced and processed in

transgenic plants, in which the introduction of a second

gene for successful processing was necessary. In case of

biodegradable plastic-like compounds, high expression of

PHB has been achieved but, in most cases, a negative

correlation between PHB accumulation and plant growth

has been reported. There is a need for further improve-

ments in PHB production in transgenic plants aimed at

higher accumulation without side-effects such as chloro-

sis, male sterility and growth retardation. Success in

producing biopolymers in plants on a commercial scale

depends not only on high levels of production of well-

processed polymers but also on the development of

efficient extraction and purification strategies that keep

costs, especially energy costs, low.
Current Opinion in Plant Biology 2005, 8:188–196
The world market price of plastics derived from petro-

leum is below US $1 per kilogram, whereas the bacterial

production of biodegradable plastics costs 5–10 times this

figure. It has been estimated that the polymer concentra-

tions that are required for commercialisation are at least

15% of dry weight. At present, it is not clear whether

stable high-level polymer production can be obtained

without severe side-effects, such as growth retardation.
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