RECONSTRUCTING THE PAST, UNDERSTANDING THE PRESENT AND PREDICTING THE FUTURE BASED ON ISOTOPIC ANALYSIS VIA MULTI-COLLECTOR ICP - MASS SPECTROMETRY

Frank Vanhaecke

Ghent University, Belgium

ICP – MASS SPECTROMETRY

Analytical technique for (ultra)trace element analysis

▶ ° 1983

- Compared to AAS
 Even lower LODs
 Multi-element capabilities
- Compared to ICP-OES
 Lower LODs

ICP – MASS SPECTROMETRY

- Analytical technique for (ultra)trace element analysis
 - ▶ ° 1983
- Compared to AAS
 Even lower LODs
 Multi-element capabilities
- Compared to ICP-OES
 Lower LODs

Compared to AAS & ICPOES
 Isotopic information !!

ISOTOPES ?

- Isotopes of an element M:
 - same atomic number A
 - Same number of protons in their nuclei
 - Same number of electrons in their shells
 - ⇒ Identical chemical behaviour
 - First approximation statement will be refined later on
 - Different mass number Z
 - Different number of neutrons in their nuclei
 - ⇒ Different masses
- Notation

$$^{A}_{Z}X$$
 or ^{A}X

Terminology?

- Isotope: same place in PSE
- Todd & Soddy (early 20th century)

DISCOVERY OF ISOTOPES

- Separation of isotopes according to their mass in MS
 - Thomson: separation of Ne⁺ isotopes in magnetic field

• Later on: Aston \rightarrow isotopes for a suite of elements

ISOTOPES ?

1]	Pe	er	io	di	ic	Т	al	bl	e						Z
2	1.00794 3	11 A 4		0	f t	he	F	le	m	en	ts	-	III A S	IVA 6	VA 7	МА 8 р	MIA 9	4(
2	6.941 11	Ве 9.01218 12		U.									10.811 13	12.011	14.0087 15	16.00 16	18.9984 17	20. 18
3	Na 22.9999	Mg 24.005	ШВ	IVB	VB	MB	MIB	76	— MII -	170	• IB	18	AI 27.99	Si 29.096	P 30.974	\$ 32.066	CI 35,453	9 39
4	к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	F
5	37 Rb	38 Sr	39 Y	4⊡ Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	45 Pd	47 Ag	⁴⁸ Cd	49 In	so Sn	51 Sb	sz Te	ຄ 	54 X
6	ss Cs	se Ba	57 • La	72 Hf	73 Та	74 W	75 Re	76 05	77 Ir	78 Pt	79 Au	so Hg	81 TI	82 Pb	83 Bi	84 Po	≋s At	≫ R
7	87 Fr	88 Ra	89 + Ac	104 Rf	105 Ha	106 106	107 107	108 108	109 109	110 110								

028

797

п

• Lanthanide	s≋	se	®0	61	€Z	ං	⁶⁴	es	ee	हर	e≋	ප	70	71
Senes	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
 Actinide Series 	90	91	92	93	94	s∈	s∈	97	⁹⁸	99	100	101	102	1009
	Th	Pa	U	Np	Рц	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Mono-isotopic elements?

⁹Be, ¹⁹F, ²³Na, ²⁷AI, ³¹P, ⁴⁵Sc, ⁵⁵Mn, ⁵⁹Co, ⁷⁵As, ⁸⁹Y, ⁹³Nb, ¹⁰³Rh, ¹²⁷I, ¹³³Cs, ¹⁴¹Pr, ¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁶⁹Tm, ¹⁹⁷Au, ²⁰⁹Bi, ²³¹Pa, ²³²Th

• Other elements?

2 – 10 isotopes

First approximation:

all elements show an isotopic composition that is stable in nature

• Why ?

Thorough mixing during formation of our solar system (4.6 . 10⁹ years BP)

The solar system was formed approximately 4.5 billion years ago. The material making up the solar system all came from a single, mostly <u>homogeneous</u> cloud of material (solar nebula). The matter rotated in a flattened plane, splayed out in a disk due to the angular momentum. With time, material not falling to the central sun, would either be thrown out of the system or begin to collect and build up planetesimals. At safe relative distances, planetesimals built up to form the planets.

- 1. Decay of naturally occurring, long-lived radionuclides
- 2. Natural isotope fractionation effects
- 3. Man-made variations
- 4. Interaction of cosmic rays with terrestrial matter
- 5. Variations observed in extra-terrestrial materials

- 1. Decay of naturally occurring, long-lived radionuclides
- 2. Natural isotope fractionation effects
- 3. Man-made variations
- 4. Interaction of cosmic rays with terrestrial matter
- 5. Variations observed in extra-terrestrial materials

- 1. Decay of naturally occurring, long-lived radionuclides
- 2. Natural isotope fractionation effects
- 3. Man-made variations
- 4. Interaction of cosmic rays with terrestrial matter
- 5. Variations observed in extra-terrestrial materials

Importance of isotope ratio precision?

MULTI-COLLECTOR ICP – MASS SPECTROMETRY

Isotope ratio precision: down to 0,002 % RSD !

MULTI-COLLECTOR ICP – MASS SPECTROMETRY INSTRUMENTAL MASS DISCRIMINATION

- Caused by space-charge effects
- Preferential transmission of the heavier isotope
- Afftected by
 - Matrix composition
 - Target element concentration

CHROMATOGRAPHIC ISOLATION OF TARGET ELEMENT

Class-10 clean lab facilities

< 10 particles / ft³ @ 0.5 µm vs. millions particles / ft³ Ultrapure water & acids Discipline!

LECTURE CONTENT ?

Real-life applications

Ghent University & international literature

MEASURING NATURAL VARIATION ELEMENTS WITH RADIOGENIC ISOTOPES

The Classics

	238 U \rightarrow 206 Pb, 235 U	\rightarrow ²⁰⁷ Pb, ²³² Th \rightarrow ²⁰⁸ Pb
STATISTICS PROPERTY PARTY	Pb isotope	Natural range of relative isotopic abundance
In the second second interest success and the states	²⁰⁴ Pb	1.04 – 1.65 %
and a second and a second s	²⁰⁶ Pb	20.84 – 27.48 %
	²⁰⁷ Pb	17.62 – 23.65 %
	²⁰⁸ Pb	51.28 – 56.21 %
	IL	JPAC, 1997
Sal Pro Sala	⁸⁷ Rb →	→ ⁸⁷ Sr + β⁻ + v
PROVENES S	Sr isotope	Natural range of
		relative isotopic abundance
1	⁸⁴ Sr	0.55 – 0.58 %
Contraction of the second second	⁸⁶ Sr	9.75 – 9.99 %
	⁸⁷ Sr	6.94 – 7.14 %
a substance and su	⁸⁸ Sr	82.29 – 82.75 %
and the second		

NATURAL VARIATIONS IN THE ISOTOPIC COMPOSITION OF PB

NATURAL VARIATIONS IN THE ISOTOPIC COMPOSITION OF PB

Pronounced variation

Pb isotope	Natural range of relative isotopic abundance			
²⁰⁴ Pb	1.04 – 1.65 %			
²⁰⁶ Pb	20.84 – 27.48 %			
²⁰⁷ Pb	17.62 – 23.65 %			
²⁰⁸ Pb	51.28 – 56.21 %			
Böhlke et al., J. Phys. Ref. Data, 2005				

Pb in the earth's crust

- Shows isotopic variation, but ²⁰⁶Pb/²⁰⁷Pb ~ 1.20
- Pb in ores
 - Shows isotopic variation, but << 1.20</p>
 - Separated from Th & U @ time of ore formation

PROVENANCE DETERMINATION OF GLAZED TILES FROM A MEDIAEVAL CASTLE USING PB ISOTOPIC ANALYSIS

PIETER BLADELIN

• Pieter Bladelin

- Governor general of all finances of Philip the Good
 - Duke of Burgundy & Count of Flanders
- Built a castle in 1448

Painting by Rogier van der Weyden

CASTLE OF MIDDELBURG NEAR TO BRUGES (BELGIUM)

CASTLE OF MIDDELBURG NEAR TO BRUGES (BELGIUM)

CASTLE OF MIDDELBURG NEAR TO BRUGES (BELGIUM)

TILES FROM CASTLE OF MIDDELBURG NEAR TO BRUGES (BELGIUM)

Sn-glazed tiles

- ► PB → Pieter Bladelin
- Completely different from 15th century local & regional tiles
 - Calcareous instead of siliceous & iron-rich
 - Tin/lead glaze instead of salt or copper glaze
 - Diring technology
- Resemblance to Valencian (Spain) tiles?
 - Floral & islamic designs

ISOTOPIC ANALYSIS OF PB IN GLAZE

- Sample preparation
 - Extraction of Pb out of glaze using acetic acid
 - Isolation of Pb using extraction chromatography

- Apporpriate dilution & addition of TI
 - Internal standard for correction for mass discrimination
- Isotopic analysis
 - Neptune MC-ICP-MS unit
- Data handling
 - Correction for mass discrimination via TI
 - Exponential law

3-ISOTOPE PLOT FOR LEAD

3-ISOTOPE PLOT FOR LEAD

3-ISOTOPE PLOT FOR LEAD ²⁰⁸PB/²⁰⁶PB VS. ²⁰⁷PB/²⁰⁶PB

TILES FROM MIDDELBURG CASTLE

ARCHAEOMETRIC INVESTIGATION – CONCLUSIONS

Next to Pb isotopic analysis:

- LA-ICP-MS
- ► XRF
- Raman spectroscopy
- Thin sections for petrographical assessment

• All results: tiles from

- Middelburg castle
- Castle of Alfonso V (Valencia)

common technological context & common origin

TILES FROM MIDDELBURG CASTLE ARCHAEOLOGICAL CONCLUSION

Historic sources

- Strong socio-economical and cultural contacts between Philip the Good and Alfonso V between 1444 and 1451
- "Presents" were a well-known practice in the context of 15th century European elites

PROVENANCE DETERMINATION OF SKELETAL REMAINS USING SR ISOTOPIC ANALYSIS

VARIATIONS IN THE ISOTOPIC COMPOSITION OF SR

Variations in Sr isotopic composition due to:

 87 Rb \rightarrow 87 Sr + β^{-} + ν^{-}

- ⁸⁷Rb = naturally occurring, long-lived radionuclide
 - $T_{1/2} = 48.8 \times 10^9 \text{ y}$
 - Isotopic composition of Rb has changed through time
 - Isotopic composition of Rb presently equal for all terrestrial materials
- Isotopic composition of Sr: variable!
 - E.g., rocks: dependent on elemental Rb/Sr ratio + age

Sr isotope	Natural range of				
	relative				
	isotopic abundances				
⁸⁴ Sr	0.55 – 0.58%				
⁸⁶ Sr	9.75 – 9.99%				
⁸⁷ Sr	6.94 - 7.14%				
⁸⁸ Sr	82.29 - 82.75%				
Böhlke et al., J. Phys. Ref. Data, 2005					

PROVENANCE DETERMINATION VIA SR ISOTOPIC ANALYSIS

Varying geology Varying Sr isotopic composition

NATURAL VARIATIONS IN THE ISOTOPIC COMPOSITION OF **S**R – PROVENANCE DETERMINATION OF AGRICULTURAL PRODUCTS

Transfer of Sr without measurable isotopic fractionation

NATURAL VARIATIONS IN THE ISOTOPIC COMPOSITION OF **S**R – PROVENANCE DETERMINATION OF AGRICULTURAL PRODUCTS

- Provenancing agricultural products ?
 - To detect incorrect indication of geographical origin (fraud)
- Which products?
 - Of plant origin:
 - Wine: Almeida & Vasconselos, JAAS, 2001, Barbaste et al., JAAS, 2002
 - Cider: Garcia-Ruiz et al., ACA, 2007
 - Rice: Kawasaki et al., Soil Sci Plant Nutr, 2002
 - Ginseng: Choi et al., Food Chem, 2008
 - Asparagus: Swoboda et al., ABC, 2008
 - • •
 - Of animal origin:
 - Cheese: Fortunato et al., JAAS, 2004

GFNT

- Caviar: Rodushkin et al., ACA, 2008
- ...

AUTHENTICATION OF KALIX (NE SWEDEN) VENDACE CAVIAR RODUSHKIN ET AL., ACA, 583, 310, 2007

 <u>87Sr/86Sr:</u>
 seasonal variation Kalix
 geographical variation complemented with:
 trace element fingerprint Os isotopic analysis

⁸⁷ Sr/ ⁸⁶ Sr	
------------------------------------	--

	ICP-SFMS	CP-SFMS				
N S	Day 1 (n=3)	Day 2 (<i>n</i> = 3)	Both days	(<i>n</i> =2)		
Kalix, (2005)	0.7102 (17)	0.7102 (14)	0.71017 (4)	0.710646 (6)		
Kalix (2004)	0.7106 (10)	0.7102 (10)	0.71040 (48)	0.710700 (12)		
Kalix (2003)	0.7110 (10)	0.7108 (12)	0.71087 (29)	0.710990 (18)		
Kalix (2003–2005)	0.7106 (8)	0.7104 (6)	0.7105 (8)	0.7108 (4)		
Finland	0.7217 (6)	0.7212 (6)	0.72141 (69)	0.721315 (3)		
Vänern	0.7224 (14)	0.7222 (22)	0.72231 (19)	0.722270 (10)		
USA	0.7185 (10)	0.7181 (12)	0.71834 (54)	0.718257 (36)		
Salt	0.7109 (4)	0.7102 (8)	0.71057 (96)	0.710611 (40)		
Standard	0.7079 (9)	0.7074 (14)	0.70766 (67)	0.707793 (40)		

SR ISOTOPIC ANALYSIS FOR PROVENANCE DETERMINATION

SR ISOTOPIC ANALYSIS FOR PROVENANCE DETERMINATION OF HUMAN REMAINS

Enamel

- Formed during early childhood
- ▶ ⁸⁷Sr/⁸⁶Sr ~ food age 1 7

Dentine

- Continuously renewed
- Faster Sr turnover rate
- ⁸⁷Sr/⁸⁶Sr ~ food last years
- Useful info
 Archaeology

SR ISOTOPIC ANALYSIS FOR PROVENANCE DETERMINATION OF HUMAN REMAINS

- St-Servatius basilica
 - Maastricht, Netherlands
 - 1600 years of history
 - Early christianity in the Maas valley
 - Important archaeological excavations
 - Analysis of the grave-field population
 - Locals and/or immigrants?

- Sr isotopic analysis of tooth tissue & soil (UGent & ETH)
 - Acid digestion of samples (open beaker HNO3 & HCI)
 - Isolation of Sr using Sr-spec (Eichrom Technologies)
 - Sr isotopic analysis using multi-collector ICP-MS
 - Internal correction, based on constant ⁸⁶Sr/⁸⁸Sr

UNIVERSITEIT GENT

Russell's equation

SR ISOTOPIC ANALYSIS FOR PROVENANCE DETERMINATION OF HUMAN REMAINS

← Pandhof population I: incisor, M: molar

STILL VALID IN A GLOBAL WORLD ?

FROM A GAME TO A REAL-LIFE APPLICATION: FORENSICS

Case A: infant killed a few days after birth

⁸⁷Sr/⁸⁶Sr: if Belgium ⇒ coastal region

UNIVERSITEIT

Police enquiry

- ⇒ mother not natively living in that region?
- Lived mostly in that region during pregnancy

FROM A GAME TO A REAL-LIFE APPLICATION: FORENSICS

<u>Case B</u>

- ⁸⁷Sr/⁸⁶Sr: if Belgium ⇒ coastal region
- No match with missing person from that area
- Search in other European areas with similar ⁸⁷Sr/⁸⁶Sr
- ► Possible match found ⇒ assumed origin confirmed later

<u>Case C</u>

- ⁸⁷Sr/⁸⁶Sr: difference between bone & teeth (enamel)
 - Bone: ⁸⁷Sr/⁸⁶Sr; if in Belgium ⇒ central Flanders
 - Enamel ⁸⁷Sr/⁸⁶Sr: outside Benelux

GENT

- Police enquiry
 - Victim came from outside Europe & lived for > 10 years in central Flanders

Degryse et al;, Anal Meth, <u>4</u>, 2674-2679, 2012

GOING BACK FURTHER IN TIME ...

THE ¹⁸²HF-¹⁸²W CHRONOMETER

S.B. JACOBSEN, EPSL, <u>33</u>, 531, 2005

THE ¹⁸²HF-¹⁸²W CHRONOMETER

S.B. JACOBSEN, EPSL, <u>33</u>, 531, 2005

- Formation of a planet ?
 - Accretion
 - Growth of an object by attracting more matter (gravity)
 - Differentiation
 - Core formation

THE ¹⁸²HF-¹⁸²W CHRONOMETER

S.B. JACOBSEN, EPSL, <u>33</u>, 531, 2005

Effect of planetary differentiation?

- Situation 1: Hf & W only separated after extinction of ¹⁸²Hf
 - Hf/W ratio ~ chondritic meteorites (unfractionated reservoir)
- Situation 2: Hf & W were separated while ¹⁸²Hf was still around
 - High Hf/W ratio in crust \Rightarrow higher enrichment in ¹⁸²W
- ¹⁸²Hf-¹⁸²W chronometer
 - Timing of planetary differentiation

MEASURING NATURAL VARIATION ISOTOPE FRACTIONATION EFFECTS

- Different isotopes of an element
 - Chemically identical
 - Determined by number of electrons / protons
 - Different mass
 - Different efficiency in participation to
 - Chemical reactions
 - Physical processes
- Magnitude of isotope fractionation?
 - Degree of participation to processes & reactions
 - Relative mass difference between isotopes
 - More pronounced for lighter elements
 - H, C, N, O, S ⇒ IRMS
 - *Li,* B
 - All elements !

Thermodynamics & kinetics

VARIATIONS IN ISOTOPIC COMPOSITION NATURAL FRACTIONATION EFFECTS

¹¹B/¹⁰B AS A PALEO PH SEAWATER PROXY

• B in seawater:

Present as B(OH)₃ & B(OH)₄⁻ / distribution dependent on pH

▶ ¹¹B/¹⁰B isotope ratio in the past? \Rightarrow foraminifera & corals

¹¹B/¹⁰B AS A PALEO PH SEAWATER PROXY

In seawater:

RELEVANCE OF PH OF SEAWATER ?

Determined by CO₂ concentration in the atmosphere

Information on CO₂ level over geological times
 Is the current increase in CO₂ level exceptional ?

RELEVANCE OF PH OF SEAWATER ?

Year AD

Data Source Temperature: ftp://ftp.ncdc.noaa.gov/pub/data/anomalies/annual_land.and.ocean.ts Data Source CO2 (Siple Ice Cores): http://cdiac.esd.ornl.gov/ftp/trends/co2/siple2.013 Data Source CO2 (Mauna Loa): http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2

Graphic Design: Michael Ernst, The Woods Hole Research Center

OTHER ISOTOPE RATIOS AS PALEOPROXIES ?

- Paleoredox proxies: oxic/anoxic conditions in seawater
 - Mo
 U
 e.g., marine sediments
- Paleotemperature proxy: seawater

► Ca - e.g., bivalves

Paleoproxy for p(CO₂)
 Si ______e.g., diatoms

S ISOTOPIC ANALYSIS FOR TRACING DOWN COUNTERFEIT DRUGS R. CLOUGH ET AL., ANAL. CHEM., <u>78</u>, 6126, 2006.

- Counterfeit drugs
 - violation of intellectual property laws
 - inappropriate quantities of active ingredients

UNIVERSITEIT

- may contain ingredients that are not on the label (purity)
- often inaccurate, incorrect or fake packaging & labeling
- "Money making" drugs

S ISOTOPIC ANALYSIS FOR TRACING DOWN COUNTERFEIT DRUGS R. CLOUGH ET AL., ANAL. CHEM., <u>78</u>, 6126, 2006.

S isotopic analysis in viagra using MC-ICP-MS

counterfeit Viagra 1 counterfeit Viagra 2

$\delta^{34} \mathrm{S}\mathrm{rel}$ ative to) Pfizer Viagra
bulk tablet by laser ablation (%)	sildenafil citrate by HPLC (%)
-8.0 ± 0.36 $+10.5 \pm 0.39$	$-3.0 \pm 0.9 +5.0 \pm 1.1$

WHAT ABOUT THE FUTURE?

NATURAL ISOTOPE RATIO VARIATIONS IN A BIOMEDICAL CONTEXT **PIONEERING WORK – VON BLANCKENBURG & WALCZYK**

Walczyk and von Blanckenburg, Science, 295, 2065 (2002)

NATURAL ISOTOPE RATIO VARIATIONS IN A BIOMEDICAL CONTEXT **PIONEERING WORK – VON BLANCKENBURG & WALCZYK**

2005 105: 3812-3816 Prepublished online Jan 21, 2005; doi:10.1182/blood-2004-07-2807

Hereditary hemochromatosis is reflected in the iron isotope composition of blood

Pierre-Alexandre Krayenbuehl, Thomas Walczyk, Ronny Schoenberg, Friedhelm von Blanckenburg and Georg Schulthess

NATURAL ISOTOPE RATIO VARIATIONS IN A BIOMEDICAL CONTEXT RESEARCH PROJECT @ GHENT UNIVERSITY

- Other diseases affecting the metabolism of essential elements ⇒ change in isotopic composition in blood ?
- Our study
 - 🕨 Fe, Cu & Zn
 - Step 1: spread in the reference population
 - Determining factors ?

REMOVAL OF MATRIX ELEMENTS SERONORM TRACE ELEMENTS WHOLE BLOOD

GENT

Van Heghe et al., JAAS, <u>27</u>, 1327-1334, 2012

ISOLATION OF CU, FE & ZN SERONORM TRACE ELEMENTS WHOLE BLOOD

100 % target element recovery \Rightarrow no effect of potential on-column fractionation

RESULTS FE ISOTOPIC ANALYSIS HUMAN BLOOD / REFERENCE POPULATION

MD correction based on Ni as int. std.

RESULTS ZN ISOTOPIC ANALYSIS HUMAN BLOOD / REFERENCE POPULATION

RESULTS CU ISOTOPIC ANALYSIS HUMAN BLOOD / REFERENCE POPULATION

Van Heghe et al., JAAS, <u>27</u>, 1327-1334, 2012

RESULTS FE + ZN ISOTOPIC ANALYSIS HUMAN BLOOD / REFERENCE POPULATION

- Vegetarian Female
- Vegetarian Males
- Omnivorous Females
- Omnivorous Males

Van Heghe et al., JAAS, <u>27</u>, 1327-1334, 2012

FE, CU, ZN ISOTOPIC ANALYSIS IN HUMAN BLOOD

- Factors affecting isotope ratios in reference population
 - Gender
 - Feeding habits
- Comparison Reference population vs. patient groups
 - Diseases affecting Fe, Cu and/or Zn metabolism
 - Diagnostic means?
 - Less invasive
 - Earlier stage of disease ⇒ prediction
 - Use in archaeology?

ISOTOPIC ANALYSIS USING MC-ICP-MS CONCLUSIONS

- Determining (geographical) provenance
- Unraveling history
- Solving crimes
- Diagnosing diseases

Wild Salmor

ISOTOPIC ANALYSIS USING MC-ICP-MS CONCLUSIONS

- Determining (geographical) provenance
- Unraveling history
- Solving crimes
- Diagnosing diseases
- But be careful !

Wild Salmor

ISOTOPIC ANALYSIS USING MC-ICP-MS CONCLUSIONS

- Determining (geographical) provenance
- Unraveling history
- Solving crimes
- Diagnosing diseases
- But be careful !

