

Sensor	Organization	Country	Number of Bands	Wavelength Range (μm
AVIRIS	NASA	United States	224	0.4 - 2.5
AISA	Spectral Imaging Ltd.	Finland	286	0.45 - 0.9
CASI	ltres Research	Canada	288	0.43 - 0.87
DAIS 2115	GER Corp.	United States	211	0.4 - 12.0
HYMAP	Integrated Spectronics Pty Ltd	Australia	128	0.4 - 2.45
PROBE-1	Earth Search Sciences Inc.	United States	128	0.4 - 2.45
'IRIS (Ai ASI (Com	rborne Visible - Infrare npact Airborne Spectro	d Imaging graphic In	Spectrom nager).	eter).

Základní etapy analýzy dat obrazové spektrometrie

- kalibrace dat
- tvorba spektrálních knihoven
- vizualizace hyperspektrálních dat a knihoven spekter
- redukce dimenzionality, výběr (transformace) pásem
- automatické porovnání spekter
- definování elementárních povrchů (tzv. endmembers)
- analýza a automatická klasifikace heterogenních pixelů

Kalibrace dat

atmosférické korekce a korekce na vlivy topografie jsou nezbytnou prvotní částí zpracování

 cílem je převést naměřená data, která obsahují charakteristiky celkového vyzařování objektů (angl. radiance), na data charakterizující odrazové vlastnosti objektů (angl. reflectance)

Tvorba spektrálních knihoven

- Uchovávají laboratorně zjištěná spektra odrazivosti stovek nejběžnějších materiálů a druhů povrchů
- Obsahují údaje o absolutních hodnotách odrazivosti, lze jich využívat obecně jako určitých "vzorových" spekter
- Mají význam interpretačních klíčů.

http://speclab.cr.usgs.gov/spectral.lib04/spectral-lib04.html http://speclib.jpl.nasa.gov

Vizualizace dat

- Spektrální kostka
- Spektrální profily
- Vektor ve vícerozměrném prostoru (viz. klasifikace spektrálním úhlem)

Minimum Noise Fraction (MNF) transformace (redukce dimensionality)

- cílem je odstranit nadbytečnou (redundantní) informaci a potlačit šum v datech
- výsledkem je menší množství tzv. MNF snímků
- aplikuje metodu PCA ve dvou krocích
 - Odstraní korelaci šumové složky mezi jednotlivými pásmy a transformuje snímky tak, že šum má jednotkový rozptyl
 - V nově transformovaných snímcích (MNF) odděluje užitečnou informaci od šumové složky

Hledání "endmembers"

Hledání spektrálně "čistých" pixelů na snímcích, ze kterých byl odstraněn šum metodou MNF.

Čisté pixely (endmembers) se nacházejí na okrajích příznakového proctrou

Pixel Purity Index (PPI)

Zaznamenává, kolikrát byl daný pixel nalezen na okraji (konvexním obalu) spektrálního prostoru. Následným prahováním se vybírají "čisté" povrchy.

