
Abstract
This paper explores the possibility of incorporating remote
sensing information in modeling house values in the City
of Milwaukee, Wisconsin, U.S.A. In particular, a Landsat
ETM� image was utilized to derive environmental character-
istics, including the fractions of vegetation, impervious
surface, and soil, with a linear spectral mixture analysis
approach. These environmental characteristics, together
with house structural attributes, were integrated to house
value models. Two modeling techniques, a global OLS
regression and a regression tree approach, were employed
to build the relationship between house values and house
structural and environmental characteristics. Analysis of
results indicates that environmental characteristics gener-
ated from remote sensing technologies have strong influ-
ences on house values, and the addition of them improves
house value modeling performance significantly. Moreover,
the regression tree model proves as a better alternative to
the OLS regression models in terms of predicting accuracy.
In particular, based on the testing dataset, the mean average
error (MAE) and relative error (RE) dropped from 0.202 and
0.434 for the OLS model to 0.134 and 0.280 for the regression
tree model, while the correlation coefficient between the
predicted and observed values increased from 0.903 to
0.960. Further, as a nonparametric and local model, the
regression tree method alleviates the problems with the
OLS techniques and provides a means in delineating urban
housing submarkets.

Introduction
Urban analysis has become an important research topic
across a range of disciplines due to the continuous increase
of population residing in urban environments (United
Nations, 1997; Newman and Kenworthy, 1999). To satisfy
the demands of urban analysis, innovative remote sensing
technologies and their applications in urban environments
have emerged recently (Carlson, 2003; Mesev, 2003). One
major aspect of urban remote sensing lies in direct estima-
tion of urban biophysical parameters and socio-economic
characteristics. Urban biophysical parameter estimation
includes extracting urban land-use and land-cover features
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(Treitz et al., 1992; Harris and Ventura, 1995), deriving
impervious surface distribution (Rashed et al., 2003; Wu and
Murray, 2003), evaluating urban vegetation fraction (Small,
2001; 2002), and determining urban surface temperature
(energy patterns) and associated heat-island effects (Lo et al.,
1997; Weng et al., 2004). Socio-economic characteristic
estimation includes population density estimation (Lo, 1995;
Sutton et al., 1997; Harvey, 2002a; 2002b), housing informa-
tion estimation (Forster, 1983; Weber and Hirsch, 1992),
employment distribution estimation (Lo, 2004), quality of
life index estimation (Lo, 1997), and urban racial segregation
estimation (Yu and Wu, 2004). The other aspect of urban
remote sensing aims at incorporating remote sensing infor-
mation, along with other spatial data, into urban prediction
models. In particular, remote sensing generated land-use
information has been incorporated into cellular automata
models to predict future urban development (Yeh and
Li, 2003). Dobson et al. (2000) reported the results of the
LandScan global population project, in which population
distribution was modeled with remote sensing generated
variables (e.g., land-cover and nighttime lights) and other
spatial variables (e.g., road network, slope, and census
counts). Weeks et al. (2004) applied remote sensing informa-
tion, together with socio-economic information from census
data, to predict fertility patterns in Cairo, Egypt using a
spatially filtered regression model.

This study intends to achieve two major objectives. The
first is to explore the possibility of incorporating remote
sensing information in modeling house values. The other
objective is to address technique issues of hedonic models.
Traditionally, house values are modeled with house struc-
tural and/or locational attributes (such as building area and
number of bathrooms) through ordinary least squares (OLS)
regression analyses. Such models are also called hedonic
regression models, and have been applied extensively in
housing market studies (Dubin, 1998; Mulligan, 2002). These
models generally focus on building the relationship between
house values/prices and various house structural characteris-
tics and/or locational attributes. For environmental attrib-
utes, the appraisal community focuses more on the influence
of environmental risks/contamination on property values
(Roddewig and Keiter, 2001; Jackson, 2003; 2004). Other
environment related neighborhood attributes, such as expo-
sure to water views (Benson et al., 2000) and distance to
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Figure 1. Location of the City of Milwaukee (Color
version available at the ASPRS Web Site, URL:
www.asprs.org).

coastal beach (Major and Lusht, 2004), are included in
hedonic models. However, inclusion of environmental
information that can be generated from remote sensing
imagery in the hedonic models has attracted less attention.
The environmental information, as pointed out by Forster
(1983), might have essential influences on residents’ deci-
sion making, therefore affecting house values. Hence, eval-
uating the influence of environmental characteristics, which
can be effectively extracted from remote sensing imagery, on
house values merits further investigation.

In addition, traditional hedonic models are usually
constructed and calibrated through linear OLS regression
techniques. Linear regression techniques, though widely
adopted in the literature (Kim, 2003), with multiple house
and locational attributes involved, might produce problems
such as collinearity, residual heteroscedasticity, and spatial
dependency that may adversely affect modeling results
(Anselin, 1988; Basu and Thibodeau, 1998; Dublin, 1998;
Pace et al., 1998; Orford, 1999; 2000). Thus, it is imperative
to investigate new modeling techniques instead of relying
solely on the linear models.

In this paper, environmental characteristics, including
the fractions of vegetation, impervious surface, and soil,
were generated from a Landsat ETM� image. These envi-
ronmental characteristics, together with house structural
attributes, were integrated to model house values in the
City of Milwaukee. A global OLS regression and a regres-
sion tree approach were developed to model house values.
Results were mapped to explore potential spatial patterns.

The remainder of this paper is organized as follows.
The next section describes the study area and utilized data,
including house values and structural information extracted
from the 2003 Master Property (MPROP) dataset of the City of
Milwaukee, and environmental characteristics generated
from Landsat ETM� imagery. Next, two modeling techniques,
a linear OLS regression and a regression tree approach, are
described followed by results obtained from these two
techniques, respectively and the spatial patterns of the
analytical results. Finally, conclusions and future research
are given.

Study Area and Data
Study Area
The City of Milwaukee was selected as our study area. Located
on the western shore of Lake Michigan (Figure 1), Milwaukee
has a population of about 597,000 according 2000 Census.
Population grew rapidly during the early 20th Century, pri-
marily due to immigration from Central and Eastern Europe.
The City’s boundary has been more or less fixed since the
late 1950s, and after the completion of the current highway
network in the late 1960s, Milwaukee stepped into a relatively
stable period of property development.

Milwaukee is usually referred to as a “hyper-segregated”
city (Massey and Denton, 1993; Yu and Wu, 2004). Spa-
tially, African Americans are highly concentrated in the
areas near the current downtown to the west (Yu and Wu,
2004), with a high residential density and poor environmen-
tal conditions. Residential segregation is still a discernible
social issue, and has profound impacts on housing markets
in the city.

Data
House Values and Structural Characteristics
House values and structural characteristics were extracted
from the 2003 Master Property (MPROP) data file of Milwau-
kee. The MPROP data file has approximately 160,000 records
of all real properties within the city boundary. Each record

contains more than 80 various attributes including house’s
location, assessed value, owner information, and physical
characteristics. With the emphasis of this paper focusing
on owner-occupied single-family houses, 68,906 records
with various house attributes were extracted and utilized
for this study. From the MPROP data file, it is noticed that
only assessed house values, instead of sale prices, can
be obtained. Although the sales price can be calculated
through the conveyance fee and the conveyance date that
are recorded (Kim, 2003), the calculation might introduce
new uncertainty in evaluating houses’ market prices. In
addition, according to Wisconsin law, the assessed value
and the market value of a house cannot vary by more than
10 percent. Therefore, the assessed house values were
utilized as an approximation for current house market
values.

Environmental Characteristics from Landsat ETM� Imagery
In addition to the house structural characteristics obtained
from the MPROP data file, environmental characteristics
were generated from a Landsat ETM� image (see Figure 1)
acquired on 09 July 2001. This image was provided by the
WisconsinView project (WisconsinView, 2004), and has an
average root mean square error of 0.2 pixels after georefer-
enced with ground reference information collected from
aerial photographs. With this Landsat ETM� image, three
environmental characteristics, the fractions of vegetation,
impervious surface, and soil for each pixel, were generated
using the normalized spectral mixture analysis method
proposed by Wu (2004). In particular, a brightness normal-
ization method (see Equation 1) was applied to reduce or
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eliminate brightness variation within a land-cover type
(e.g., spectra variation within different soil types):

(1)

where is the normalized reflectance for band b in an ETM�
pixel; Rb is the original reflectance for band b; and � is the
average reflectance for that pixel. With the normalized ETM�
image, three endmembers, vegetation, impervious surface, and
soil, were selected to model urban land-cover types. These
endmembers were obtained based on the feature space repre-
sentation of the normalized image after principal component
(PC) transformation, in company with visual interpretation of
the ETM� imagery. Detailed information about endmember
calculation can be found in Wu (2004). Subsequently, a spec-
tral mixture analysis method (Equation 2) was applied to
calculate the fraction of each endmember for every ETM� pixel:

(2)

where , which was calculated using Equation 1, is the
normalized reflectance for each band b in a pixel; , which
was determined from analyzing the image spectra, is the
normalized reflectance of endmember i in band b for that pixel;

is the fraction of endmember i, and it is constrained that the
sum of endmember fractions equals one and each fraction is
greater or equal to zero; and eb is the model residual. The frac-
tions of endmember vegetation, impervious surface, and soil in
an ETM� pixel can be obtained through a least squares method
in which the model residual eb is minimized. By applying this
normalized spectral mixture analysis method in the study area,
the fractions of vegetation, impervious surface, and soil for each
pixel were calculated (Figure 2).

Data Aggregation
With the extracted house values, structural attributes, and
environmental characteristics, it is necessary to preprocess

fi
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Rb � a
N

i�1
fi Ri,b � eb

Rb

Rb �
Rb

m � 100

these data such that they can share a unified spatial unit.
Since it is unrealistic and impractical to obtain detailed
remote sensing information for a single house, a model to
incorporate remote sensing information has to be constructed
on aggregated data. Ideally, the aggregated spatial units should
be relatively homogeneous in describing the housing informa-
tion as well as capable to handle subtle remote sensing
information. Census block group was chosen to accomplish
the aggregation since block groups are delineated primarily
according to neighborhood homogeneity. There are in total
591 census block groups in the City of Milwaukee. How-
ever, only 571 of them contain owner-occupied single-family
houses. The 20 block groups (mainly in the downtown area of
the city) that do not contain the required data were hence
deleted from the analysis. The aggregation of house attributes
is essentially an average of individual data items within a
census block group. For continuous variables, such as house
values and building areas, the average represents their arith-
metic mean within a census block group. The average of
dummy variables, such as whether or not have air condition-
ers, changes to represent the percentage of houses in a census
block group that have the attributes (e.g., air conditioners).

Methodology
A Linear Model Specification
Following the literature of constructing a house hedonic
model (Berry and Bednarz, 1975; Goodman, 1978; Thibodeau,
1989; Cheshire and Sheppard, 1995; Kim, 2003), initially six
independent variables describing various house attributes
were identified and retrieved from the MPROP data file. In
particular, two dummy variables, AIRCD and FIREPLC, indicat-
ing whether central air-conditioners and fireplaces are present
or not, and four continuous variables including floor size
(FLSIZE), number of bathrooms (NOFBATH), number of stories
(NOFST), and house age (HSAGE), were chosen to model house
values. Intuitively, AIRCD, FIREPLC, FLSIZE, NOFBATH, and NOFST

Figure 2. Fraction images of vegetation, impervious surface, and soil generated from the Landsat
ETM� image: (a) Vegetation, (b) Impervious surface, and (c) soil using the normalized spectral
mixture analysis method proposed by Wu (2004).

(a) (b) (c)
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are hypothesized to be positively related with house values;
while HSAGE is hypothesized to be negatively related with
house values. According to each house attribute’s distribution
characteristics, a classical semi-log hedonic price model is
constructed below:

(3)

where the Xs are continuous variables including FLSIZE,
HSAGE, NOFBATH, and NOFST; �s is their coefficient; Ds are the
aggregated dummy variables that include AIRCD and FIREPLC,
and �s is their coefficient.

To examine whether remote sensing generated environ-
mental characteristics can improve house value modeling
results, a remote sensing hedonic model is constructed by
adding relevant environmental factors to the above model:

(4)

where Rs are environmental factors generated using remote
sensing technologies, and �s are their coefficients. During
our preliminary data analysis, we found that all of the three
remote sensing derived environmental factors (fractions of
vegetation, impervious surface, and soil in a census block
group) project significant influences on house values. The
most important factor, however, is the product of the soil
fraction and impervious surface fraction (SOILIMP). This
factor, representing the combined effects of soil and impervi-
ous surfaces and usually deemed to be an indicator of
deteriorated environmental conditions, is hypothesized to
have a negative relationship with house values.

Regression Tree Specification
In calibrating hedonic models, an ordinary least square
(OLS) algorithm is often employed. However, it is noticed
that the OLS calibration might possess many problems, such
as collinearities and residual heteroskedesticity, that may
adversely affect the model’s accuracy. More importantly, as
the OLS calibration is essentially a global treatment of the
relationship, it assumes such a relationship will hold for
any houses. In practice, this speculation is doubtful. For
instance, it might be reasonable to think that certain house
attributes, such as the number of bathrooms, have much
more of an influence on house values for expensive houses
than for inexpensive ones. Actually, many have argued that
the impacts of house characteristics on house values may
vary considerably within a metropolitan housing market
(for example, see Straszheim, 1975; Maclennan, 1982;
Rothenberg et al., 1991; Orford, 2000). Hence, a functional
metropolitan housing market operates as a series of inter-
linked housing submarkets (Maclennan, 1982). The stratifica-
tion methods of such submarkets are still under debate
(Adair et al., 1996), which focus on whether such submar-
kets should be stratified by house structural characteristics
or geographical areas. However, as argued by Orford (2000),
such dichotomy might be problematic as locational and
house structural attributes are very likely interconnected
instead of separated.

Following the spirit of these arguments, a classification
and regression tree (CART, Breiman et al., 1984; Ripely, 1996)
algorithm was employed in this study. As a non-parametric
algorithm, the CART may be a better alternative to model
house values without the problems that make the OLS tech-
nique untenable. Moreover, the CART is essentially a local
algorithm, which may be appropriate to investigate housing
submarkets and how such submarkets being divided in
the city.

� p � g1R1i � g2R2i � p � �i

log Pi � b0 � b1 log X1i � p � a1D1i � a2D2i

� a1D1i � a2D2i � p � �i

log Pi � b0 � b1 log X1i � b2 log X2i � p

In general, the CART algorithm is composed of two parts,
i.e., the classification tree and regression tree algorithms.
The former is usually used to deal with categorical depend-
ent variables; while the latter is concerned with continuous
dependent variables, which is of the interest in this study.
In brevity, the regression tree algorithm conducts a recursive
binary partition on the data. Depending on how the depend-
ent variable and the independent variables interact with
each other, it grows a (inverted) categorical tree by repeat-
edly splitting the data according to specific rules, which
define the conditions for data splitting. The goal of the
algorithm is to categorize the data into more homogeneous
groups by uncovering the predictive structure of the problem
under consideration (Breiman et al., 1984). In a highly
condensed form, the regression tree algorithm is imple-
mented in two steps. First, it grows a tree by splitting the
predictors (independent variables) using various splitting
rules (Breiman et al., 1984) to achieve the best predicting
accuracy. Obviously, this step will yield a very complex
tree that has many different classes with only a few cases
in each (Breiman et al., 1984; Steinberg and Colla 1995).
Second, the large tree will be “pruned” by minimizing the
cost-complexity measurement described by Brieman et al.
(1984). After the initial tree is pruned, the new tree will
assign all cases to rule-defined groups. For each group, a
multivariate regression model can be established for explor-
ing the relationship between independent and dependent
variables within that group. Therefore, the regression tree
algorithm is considered as a local model, in which different
relationships hold for different groups. The performance of
the regression tree model was reported to be more accurate
than ordinary regression models (Huang and Townshend,
2003; Yang et al., 2003). Furthermore, Quinlan (1993) argued
that a combination of rule-based and instance-based algo-
rithms might provide an even better model performance
than a pure rule-based regression tree model. For a better
prediction of a target case, the combined algorithm initially
finds the most similar cases (neighboring cases) to the target
case within the training dataset. Then, a rule-based model is
applied to predict the target case and these neighboring
cases. Finally, the difference between the predicted value
and the true value of each neighboring case is evaluated and
taken into account in predicting the value of the target case.

Accuracy Assessment
As a nonparametric method, the regression tree algorithm
does not assume any a priori distribution of the variables in
the model. This relaxation of variable distribution assump-
tions enables the algorithm to be quite robust in dealing
with outliers, collinearities among independent variables,
heteroskadesticity, and/or distributional error structures that
might cause problems in parametric analyses (Breiman et al.,
1984). However, this also makes it impossible to carry out
hypothesis testing as conducted in parametric models. In
practice, three statistics are employed to assess the model’s
performance. They are the mean average error (MAE), the
relative error (RE), and the product-moment correlation
coefficient (R) between the predicted values and the actual
values of the model’s dependent variable.

The MAE measures the absolute prediction error of the
model. It is obtained through the formula:

(5)

where n is the number of observations, yi is the dependent
variable at observation i, and ŷi is the estimated value of yi
at observation i.

MAE �
1
na

n

i�1
0yi � ŷi 0
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TABLE 1. ORDINARY LINEAR REGRESSION WITHOUT REMOTE SENSING

INFORMATION

Dependent Variable: House Price, Log Transformed.
Residual Standard Error: 0.306 (training data), 0.274 (testing data)

Coefficients: Estimate Std. Error t-Value Pr(	�t�)

Intercept 8.345 1.184 7.048 0.000
AIRCD 1.623 0.101 16.147 0.000
FLSIZE 0.056 0.181 0.310 0.756
FIREPLC 1.088 0.127 8.567 0.000
HSAGE 0.368 0.073 5.014 0.000
NOFBATH 0.692 0.179 3.871 0.000
NOFST 0.119 0.146 0.816 0.415

Adjusted R-square: 0.689
F-statistic: 190.8 on 6 and 507 DF, p-value: 
2.2e-16
Accuracy statistics:
Training data
MAE 0.224
RE 0.517
Correlation Coefficient R 0.832
Testing data
MAE 0.212
RE 0.457
Correlation Coefficient R 0.892

The relative error indicates a relative improvement of
the model on the global mean, and is taken the form:

(6)

where all the labels are as defined above with representing
the global mean of the dependent variable.

The product-moment correlation coefficient R between the
actual and predicted values measures the quality of least square
fitting for the predicted values to the actual ones. It follows:

(7)

In the software package used in this study, Cubist (see
http://www.rulequest.com/cubist-info.htm for detailed infor-
mation), these three statistics are calculated automatically
when a model is built. They are hence used to measure the
quality of the regression tree model and compare the perform-
ance of the regression tree model against the OLS model.

Furthermore, since the judgment of the model perform-
ance is more informative using different dataset than the
one that constructs it, a regression tree model is usually con-
structed and tested using disjointed sets of data (the training
and testing datasets). In this study, the training and testing
datasets are generated randomly following a 90 percent-
training to 10 percent-testing division. The choice of 90 to
10 reflects our intention to use as many cases as possible to
ensure better model performance for the OLS algorithm. For
comparison purposes, the exact same training and testing
datasets were used in the OLS and regression tree models.

Results
Linear Regression Model
Two linear regression analyses were conducted to determine
whether remote sensing generated environmental character-
istics would contribute in explaining the variation of house
values in the City of Milwaukee. Models were constructed
based on the 90 percent training dataset and validated using
the 10 percent testing dataset. The first model regressed
the house values on the six house attributes, and the second
one added remote sensing generated environmental charac-
teristics. Results are reported in Table 1 and Table 2. In
addition to regular statistics such as t-values of the coeffi-
cients, F statistics of the models, and adjusted R-squares, the
three accuracy statistics (MAE, RE, and R) were calculated for
further comparisons with the regression tree model.

From the two tables, three inferences can be made:

1. The F-statistics of the two models indicate that the relation-
ship between house values and the six elected house attributes
and remote sensing generated environmental characteristics is
significant. The adjusted R-squares in both models indicate
that the constructed models can explain around 70 percent of
the variation of the house values in the City of Milwaukee.

2. When comparing the adjusted R-squares of these two
regression models, we found that the inclusion of remote
sensing generated environmental characteristics in the second
model increases the explaining power of the model by around
4 percent. Moreover, the hypothesis of negative relationship
between the composite factor of soil and impervious surfaces
and house values is supported by the analysis as well. This

R �
a
n

i�1
(yi � y)( ŷi � ŷ)

B ani�1
(yi � y)2a

n

i�1
(ŷi � ŷ)2

 .

y

RE �
a
n

i�1
0yi � ŷi 0

a
n

i�1
0yi � y 0

means that house values are generally low in regions where
impervious surfaces and soil are abundant. As the abundance
of soil and impervious surfaces generally indicates a relatively
deteriorated neighborhood environmental condition, this
relationship is quite intuitive. This result indicates that
remote sensing generated information can be a valuable
addition to the traditional house value models.

3. With a close inspection on the coefficient and p-value for
each independent variable, most of the hypotheses seem to be
supported by the data except for house age (HSAGE) and floor
size (FISIZE). In the model without the environmental variable,
house age projects highly significant positive influences on
house values (Table 1), although it turns to be insignificant
when the environmental variable is added (Table 2). Fur-
thermore, the floor size (FISIZE) does not have a significant
influence on house values (see Tables 1 and 2). These results
seem to be quite counter-intuitive. However, correlation

TABLE 2. ORDINARY LINEAR REGRESSION WITH REMOTE SENSING

INFORMATION

Dependent Variable: House Price, Log Transformed
Residual Standard Error: 0.285 (training data), 0.263 (testing data)

Coefficients: Estimate Std. Error t-value Pr(	�t�)

Intercept 10.476 1.131 9.262 0.000
AIRCD 1.498 0.095 15.792 0.000
FLSIZE �0.031 0.170 �0.184 0.854
FIREPLC 0.839 0.122 6.877 0.000
HSAGE 0.090 0.076 1.189 0.235
NOFBATH 0.844 0.168 5.032 0.000
NOFST 0.289 0.138 2.099 0.036
SOILIMP �5.626 0.643 �8.747 0.000

Adjusted R-square: 0.730
F-statistic: 198.8 on 7 and 506 DF, p-value: 
2.2e-16
Accuracy statistics:
Training data
MAE 0.213
RE 0.493
Correlation Coefficient R 0.856
Testing data
MAE 0.202
RE 0.434
Correlation Coefficient R 0.903
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analyses on the six house attributes and the remote sensing
generated environmental variable (SOILIMP) revealed that there
exist strong collinearities among these predictors. In particu-
lar, Table 3 indicates that FISIZE is highly positively correlated
with FIREPLC, NOFBATH, and NOFST, while HSAGE is highly

negatively correlated with AIRCD, and is negatively correlated
with SOILIMP. The existence of such collinearities among the
predictors might be the reason for the results in Table 1
and 2. Therefore, there is a need for better modeling tech-
nologies to address these problems.

Regression Tree Analysis
The exact same sets of data were processed using the regres-
sion tree model previously outlined. The combined rule-based
and instance-based algorithm was utilized with nine nearest-
neighbors for constructing the model. The data were split into
eight groups according to the rules defined by Cubist, and were
illustrated in Table 4 in an ascending order according to the
mean of house values. Moreover, Table 4 shows rule defini-
tions (conditions), the coefficients of independent variables,
and the relative importance of each independent variable in
each group. In addition, the three accuracy statistics (MAE, RE,
and correlation coefficient R) are reported as well.

Analysis of these results indicates that the regression
tree model has very promising performance compared to the

TABLE 3. COLLINEARITIES AMONG THE FIVE HOUSE ATTRIBUTES

AND THE REMOTE SENSING INFORMATION

AIRCD FLSIZE FIREPLC HSAGE NOFBATH NOFST SOILIMP

AIRCD 1.000 �0.236 0.207 �0.767* 0.325 �0.182 0.418*
FLSIZE 1.000 0.754* 0.305 0.724* 0.806* �0.182
FIREPLC 1.000 �0.180 0.825* 0.512* 0.120
HSAGE 1.000 �0.303 0.340* �.637*
NOFBATH 1.000 0.514* 0.180
NOFST 1.000 �0.204
SOILIMP 1.000

*: indicates significant correlation at 0.01 level between the two
crossed variables.

TABLE 4. CART REGRESSION TREE MODEL

Dependent variable: House Price, log transformed
Use instances and rules, 9 nearest neighbors are used, no extrapolation is allowed
Residual standard error: 0.218 (training data), 0.178 (testing data)

Rule I Rule II Rule III Rule IV

Conditions AIRCD 
� 0.375 FIREPLC 
� 0.280 AIRCD 
� 0.375 AIRCD 
� 0.375
FLSIZE 	 7.242 HSAGE 	 4.584 FLSIZE 
� 7.242 FIREPLC 
� 0.280
HSAGE 	 4.584 NOFST 	 0.363 FIREPLC 
� 0.280 HSAGE 
� 4.584
NOFST 
� 0.363 SOILIMP 	 0.041 NOFST 
� 0.363 SOILIMP 	 0.041

SOILIMP 	 0.041
Mean 10.341 10.718 10.780 10.909

Coefficients:
Intercept 10.045 10.180 9.866 10.036
AIRCD 1.580 (1)* 1.260 (1) 2.370 (1) 1.840 (1)
FLSIZE –– 0.180 (5) 0.180 (5) 0.140 (5)
FIREPLC 1.140 (2) 0.090 (6) 0.540 (2) 0.090 (6)
HSAGE –– �0.170 (3) �0.170 (4) �0.130 (4)
NOFBATH –– 0.090 (7) 0.090 (7) 0.850 (2)
NOFST 0.220 (4) 0.270 (4) 0.170 (6) ––
SOILIMP �1.900 (3) �4.400 (2) �3.500 (3) �1.900 (3)

Rule V Rule VI Rule VII Rule VIII

Conditions AIRCD 
� 0.375 AIRCD 	 0.375 FIREPLC 
� 0.280 AIRCD 
� 0.375
NOFST 
� 0.353 NOFST 	 0.353 FIREPLC 	 0.280

SOILIMP 
� 0.041 SOILIMP 
� 0.041
Mean 11.056 11.580 11.674 12.063

Coefficients:
Intercept 9.711 6.115 7.282 11.318
AIRCD 1.430 (1) 1.290 (1) 1.330 (1) 1.710 (1)
FLSIZE 0.190 (3) 0.520 (2) 0.600 (2) ––
FIREPLC 0.090 (6) 0.400 (4) 0.090 (5) 0.300 (4)
HSAGE �0.090 (5) 0.250 (3) �0.090 (4) �0.100 (5)
NOFBATH 0.730 (2) –– 0.090 (6) 1.580 (2)
NOFST –– –– –– 0.100 (6)
SOILIMP �1.600 (4) �1.100 (5) �1.600 (3) �8.700 (3)

Accuracy statistics:
Training data MAE 0.160

RE 0.370
Correlation Coefficient R 0.920

Testing data MAE 0.134
RE 0.280
Correlation Coefficient R 0.960

*Numbers in paranthesis indicate the rank of importance of the factors under the specific rules; and “––” indicates the factor is not
important enough to be included in the model under that rule.
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linear regression model. The residual standard errors of the
regression tree model are smaller than those from the OLS
regression models. All three accuracy statistics (MAE, RE
and R) of the regression tree model on both training and
testing data have salient improvement compared to the OLS
counterpart (Table 4 and Table 2). These results reveal that
the regression tree model is a better alternative in terms of
predicting house values with house structural attributes and
environmental characteristics.

Moreover, the regression tree model seems to reduce
many of the adverse effects of collinearities among the
predictors. The two predictors that were found holding
opposite signs as hypothesized in the linear regression
models, i.e., FISIZE and HSAGE (Table 2), seem to be holding
the anticipated signs in the regression tree generated model.
Specifically, except for groups I and VIII, FISIZE appears in
all other six groups and projects positive influences on
house values. For HSAGE, except for group VI, the hypothe-
sized negative relationship was observed in all other rules
that it appears. However, within group VI, the result implies
that with more than one third of the houses within that
census block group having air conditioners installed, house
age might project positive influences on its average house
values. A possible speculation on this relationship might be
that older houses with air conditioner usually indicate that
they are located in a relatively well-to-do neighborhood.
Houses within such a neighborhood might have historical
values that can add to house values. Such subtle categorical
differentiation among relationships between the dependent
variable and the predictors, is masked however in the OLS
regression model.

In addition, being consistent with the OLS regression
model, the regression tree model indicates that remote
sensing-derived environmental characteristics play a signifi-
cant role in modeling house values in the City of Milwaukee.
In five of the eight rules generated by the regression tree
algorithm, the remote sensing generated variable, SOILIMP,
acts as a criterion to define the rules. In particular, the
value 0.041 for SOILIMP serves as a standard for data split-
ting, with high-value houses grouped with low SOILIMP value

and low-value houses grouped with high SOILIMP value.
This result is quite intuitive because the lower fractions
of soil and impervious surface indicate better environmen-
tal conditions, therefore promoting house values. Indeed,
the hypothesized negative relationship between the SOILIMP
factor and house values is supported under all rules. More-
over, among the seven predictors, SOILIMP ranked high
(2 to 5) according to the importance in the regression tree
model.

Spatial Patterns of the Analytical Results
Model Residuals in Space
In addition to the above statistical assessment of the models’
performance, modeling accuracy on spatial data could be
further assessed through GIS’s visualization capability. From
Tables 1, 2, and 4, it is noticed that the residual standard
errors of the three models, i.e., the classical hedonic model,
the remote sensing hedonic model and the regression tree
model, keep decreasing for both training and testing data.
While this fact provides solid evidence that the models
are improving, it reveals little about where and how they
improve. This concern is addressed through mapping the
residuals of the three models. The residual maps of these
three models are presented in Figure 3. The spatial distribu-
tion of each model’s residuals reflects the model’s improve-
ment and where such improvement occurs as well.

Through a close inspection of Figure 3, two results
stand out. First, although there are variations between the
two linear models, a discernable spatial pattern of the
their residuals emerges. That is, a distinct under- and over-
prediction divide presents in the middle of the city (see
Figure 3). The house values at the lakeside are highly under-
predicted, while at its immediate western neighboring regions
house values are over-predicted. Though spatially con-
nected, these two regions are separated by the Milwaukee
River with African-American population concentrated in the
western regions (Yu and Wu, 2004). Such spatial patterns
imply that housing markets in the City of Milwaukee can

(a) (b) (c)

Figure 3. Spatial distribution of the model residuals: (a) Residuals from the classical hedonic model;
(b) Residuals from the remote sensing information supported hedonic model; and (c) Residuals
from the regression tree algorithm generated model (Color version available at the ASPRS Web Site,
URL: www.asprs.org).
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be stratified into submarkets instead of a uniformed one as
suggested by the OLS models.

Second, the regression tree model provides a much
better model residual surface. Comparing Figure 3a and 3b
with 3c, it is quite salient that the variation of the residuals
is smoothed. It is found that for about 80 percent of the
census block groups (460 out of 571) the modeling residuals
are within the range of �0.25 to 0.25 (representing a rela-
tively accurate prediction), while in the linear models,
only 67 percent of census block groups have model residu-
als within this range. Sparse over- and under-predictions
using the regression tree algorithm still occur in the central
part (over-prediction) and near the Lake Michigan (under-
prediction), but in a much smoother way compared to its
linear counterparts.

Spatial Structure of House Groups Split by Regression Tree Rules
To explore the spatial patterns of house groups that are split
by the eight rules of the regression tree model, these house
groups were mapped using ARCGIS®. Under the theory of the
regression tree algorithm, the houses within a group are
relatively homogeneous and can be modeled with a single
rule. Figure 4 shows the spatial locations of house groups
under regression tree rules. During the process, we find that
group III and group IV have many overlapping cases. In this

research, these two groups are merged to generate one single
spatial group for better representation.

The spatial distribution of the rule-defined groups
manifests interesting spatial patterns. There exists strong
coincidence of data homogeneity and spatial homogeneity.
Since the regression tree algorithm’s categorization is entirely
based on the house structural and environmental attributes,
the coincidence of data homogeneity and spatial homogene-
ity provides solid evidence that in identifying housing
submarkets in the City of Milwaukee, locational and struc-
tural attributes are indeed inter-connected instead of sepa-
rated. That is, the implicit influences of house attributes and
related environmental characteristics on house values vary
along both structural and geographical lines. Moreover, the
relative spatial consistence of the regression tree generated
rules might present a means of delineating the boundaries of
these submarkets in the City of Milwaukee.

Discussion and Conclusions
Aiming at incorporating remote sensing information in a
house hedonic model and improving the model perform-
ance, this study constructed a remote sensing hedonic model
and applied a regression tree approach utilizing data from
Milwaukee. The results from the analyses were further
visualized and analyzed spatially. Overall, three important
conclusions can be drawn from the study.

1. At the aggregated census block group level, environmental
characteristics generated from remote sensing imagery act as
an important factor in modeling urban house values. In
particular, the addition of the SOILIMP variable, representing
the product of soil fraction and impervious surface fraction,
increases the explaining power of the linear OLS model by
around 4 percent. Moreover, in the regression tree model,
SOILIMP also serves as an important factor in splitting house
groups and modeling house values for each group. This
research proves that environmental variables, which may be
generated from remote sensing imagery, might serve as a
valuable addition to the appraisal measurements that are
regularly employed in hedonic studies. However, it is also
noticed that the remote sensing imagery used in this study
has a resolution of 30 meters. Although the findings are
promising, the resolution might be coarse for capturing
subtle urban morphological characteristics. In future studies,
higher resolution imagery may provide better information in
understanding urban housing markets.

2. Although the linear OLS regression technique is capable of
capturing most of the essential relationships between house
values and house structural attributes, it fails to capture
subtle categorical differentiation among the data. Further-
more, collinearities among the predictors adversely affect the
interpretation of some house value determinants, such as the
floor size in this study. The regression tree approach, on the
other hand, successfully recognizes the categorical differenti-
ation among the data, and splits them accordingly. Beyond
the improvement of modeling accuracy, the adverse effects
of collinearities among the predictors are reduced to an
acceptable level as well.

3. Although the study did not intentionally include a spatial
factor in the model construction, the analyses from the
regression tree approach give support to the hypothesis that
there is a coincidence between data and locational homo-
geneity. Since the regression tree algorithm is capable of
generating a series of house structural attributes-based rules,
which can be deemed as attributes in defining housing
submarkets, such coincidence provides some insights in
delineating housing submarkets in the City of Milwaukee.
More importantly, such coincidence does not seem to be
present by chance. The inter-connection between house
structural attributes and geographical areas in determining
house values might be found in metropolitan areas other
than the city of Milwaukee. More case studies on this
subject need to be conducted to verify such assertion.

Figure 4. Spatial patterns of regression tree rules (I
through VIII label the eight rules, with rule I indicating
the house group with lowest values, and VIII indicating
the house group with highest values) (Color version
available at the ASPRS Web Site, URL: www.asprs.org).
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