

JTS Topology Suite

Developer’s Guide

Version 1.4

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.4
Developer’s Guide

 Page 2

Document Change Control

REVISION NUMBER DATE OF ISSUE AUTHOR(S) BRIEF DESCRIPTION OF CHANGE

1.4 October 17, 2003 Jonathan Aquino Initial draft, created for JTS 1.4

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.4
Developer’s Guide

 Page 3

Table of Contents

1. OVERVIEW ... 4

1.1 OTHER RESOURCES.. 4

2. GETTING STARTED ... 4

3. COMPUTING SPATIAL RELATIONSHIPS ... 5

4. COMPUTING OVERLAY OPERATIONS ... 5

5. COMPUTING BUFFERS ... 7

5.1 BASIC BUFFERING.. 7

5.2 END CAP STYLES... 7

5.3 SPECIFYING THE APPROXIMATION QUANTIZATION............................... 8

6. POLYGONIZATION.. 9

7. MERGING A SET OF LINESTRINGS ... 10

8. USING CUSTOM COORDINATE SEQUENCES .. 11

9. TIPS & TECHNIQUES ... 11

9.1 NODING A SET OF LINESTRINGS .. 11

9.2 UNIONING MANY POLYGONS EFFICIENTLY ERROR! BOOKMARK NOT DEFINED.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.4
Developer’s Guide

 Page 4

1. OVERVIEW

The JTS Topology Suite is a Java API that implements a core set of spatial data operations
using an explicit precision model and robust geometric algorithms. It provides a complete
model for specifying 2-D linear Geometry. Many common operations in computational
geometry and spatial data processing are exposed in a clear, consistent and integrated API.
JTS is intended to be used in the development of applications that support the validation,
cleaning, integration and querying of spatial datasets.

This document is intended for developers who would like to use JTS to accomplish their
spatial data processing requirements. It describes common uses of the JTS API and gives
code examples.

 Note: This document is under construction

1.1 OTHER RESOURCES
• OpenGIS Simple Features Specification For SQL Revision 1.1 (referred to as SFS in this

document). The reference specification for the spatial data model and the spatial
predicates and functions implemented by JTS.

• JTS Technical Specifications. The design specification for the classes, methods and
algorithms implemented in the JTS Topology Suite.

• JTS JavaDoc. Documentation for all of the packages, classes and methods in JTS.

2. GETTING STARTED

The most common JTS tasks involve creating and using Geometry objects. The easiest way
to create a Geometry by hand is to use a WKTReader to generate one from a Well-Known
Text (WKT) string. For example:

Geometry g1 = new WKTReader().read("LINESTRING (0 0, 10 10, 20 20)");

A precise specification for WKT is given in the JTS Technical Specifications. And many
examples of WKT may be found in the files in the test directory.

In a real program, it’s easier to use a GeometryFactory, because you don’t need to build up
a WKT string; rather, you work with the objects directly:

Coordinate[] coordinates = new Coordinate[] {
new Coordinate(0, 0), new Coordinate(10, 10),
new Coordinate(20, 20) };

Geometry g1 = new GeometryFactory().createLineString(coordinates);

Once you’ve made your Geometry, there are many things you can do with it. You can easily
find the intersection of two Geometries:

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.4
Developer’s Guide

 Page 5

Geometry g3 = g1.intersection(g2);

Other computations built into Geometries include: area, envelope, centroid, and buffer. For
more information about what a Geometry can do, see the JavaDoc for Geometry in the
com.vividsolutions.jts.geom package, as well as subsequent sections in this document.

3. COMPUTING SPATIAL RELATIONSHIPS

An important application of JTS is computing the spatial relationships between Geometries.
Various methods of computing relationships are provided. JTS follows the Dimensionally-
Extended 9 Intersection Matrix model specified by the OGC. To compute the DE-9IM for
two Geometries, use the relate method:

Geometry a = . . .
Geometry b = . . .
IntersectionMatrix m = a.relate(b);

Most relationships of interest can be specified as a pattern which matches a set of
intersection matrices. JTS also provides a set of boolean predicates which compute
common spatial relationships directly. These are:

Method Meaning
Equals The Geometries are topologically equal
Disjoint The Geometries have no point in common
Intersects The Geometries have at least one point in common (the inverse of Disjoint)
Touches The Geometries have at least one boundary point in common, but no

interior points
Crosses The Geometries share some but not all interior points, and the dimension

of the intersection is less than that of at least one of the Geometries.
Within Geometry A lies in the interior of Geometry B
Contains Geometry B lies in the interior of Geometry A (the inverse of Within)
Overlaps The Geometries share some but not all points in common, and the

intersection has the same dimension as the Geometries themselves

In some cases the precise definition of the predicates is subtle. You should refer to the JTS
Technical Specifications to determine exactly what will be returned in any given case.

4. COMPUTING OVERLAY OPERATIONS

The previous section discussed functions that return true or false, like Intersects and
Contains. We will now present the JTS overlay operations, some of which are illustrated
in Figure 4-1 below.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.4
Developer’s Guide

 Page 6

(2)
A.intersection(B)

(3)
A.union(B)

(4)
A.difference(B)

(5)
B.difference(A)

(6)
A.symDifference(B)

A

B

Figure 4-1 – Overlay Operations

Descriptions for the overlay operations are tabulated below.

Method Meaning
Buffer The Polygon or MultiPolygon which contains all points within a specified

distance of the Geometry. For more information, see 5 Computing Buffers
on page 7.

ConvexHull

The smallest convex Polygon that contains all the points in the Geometry.

Intersection The intersection of two Geometries A and B is the set of all points which lie
in both A and B.

Union The union of two Geometries A and B is the set of all points which lie in A
or B.

Difference The difference between two Geometries A and B is the set of all points
which lie in A but not in B.

SymDifference The symmetric difference of two Geometries A and B is the set of all points
which lie in either A or B but not both.

As with the spatial relationships described in the previous section, these overlay operations
have precise definitions given in the JTS Technical Specifications.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.4
Developer’s Guide

 Page 7

5. COMPUTING BUFFERS

In GIS, buffering is an operation which in GIS is used to compute the area containing all
points within a given distance of a Geometry. In mathematical terms, this is called
computing the Minkowski sum of the Geometry with a disc of radius equal to the buffer
distance. Finding positive and negative buffers is sometimes referred to as the operations
of erosion and dilation. In CAD/CAM buffer curves are called offset curves.

You can use JTS to compute the buffer of a Geometry using the Geometry buffer method
or the BufferOp class. The input Geometry to the buffer operation may be of any type
(including arbitrary GeometryCollections). The result of a buffer operation is always an area
type (Polygon or MultiPolygon). The result may be empty (for example, a negative buffer
of a LineString).

You can compute buffers with both positive and negative buffer distances. Buffers with a
positive buffer distance always contain the input Geometry. Buffers with a negative buffer
distance are always contained within the input Geometry. A negative buffer of a
LineString or a Point results in an empty Geometry.

Figure 5-1 – Positive and Negative Buffers

Buffer distances of 0 are also supported. You can use this to perform an efficient union of
multiple polygons.

5.1 BASIC BUFFERING
To compute a buffer for a given distance, call the buffer() method on the Geometry:

Geometry g = . . .
Geometry buffer = g.buffer(100.0);

5.2 END CAP STYLES
Buffer polygons can be computed with different line end cap styles. The end cap style
determines how the linework for the buffer polygon is constructed at the ends of linestrings.
The following different kinds of end cap styles are supported:

Style Name Description

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.4
Developer’s Guide

 Page 8

CAP_ROUND The usual round end caps
CAP_BUTT End caps are truncated flat at the line ends
CAP_SQUARE End caps are squared off at the buffer distance beyond the line ends

The following diagrams illustrate the effects of specifying different end cap styles:

CAP_ROUND CAP_BUTT CAP_SQUARE
Figure 5-2 - Different End Cap Styles

To specify the buffer end cap style, the BufferOp class in the package
com.vividsolutions.jts.operation.buffer is used directly:

Geometry g = . . .
BufferOp bufOp = new BufferOp(g);
bufOp.setEndCapStyle(BufferOp.CAP_BUTT);
Geometry buffer = bufOp.getResultGeometry(distance);

5.3 SPECIFYING THE APPROXIMATION QUANTIZATION
Since the exact buffer outline of a Geometry usually contains circular sections, the buffer
must be approximated by the linear Geometry supported by JTS. The degree of
approximation may be controlled by the user. In JTS this is done by specifying the number
of quadrant segments used to approximate a quarter-circle. Specifying a larger number of
segments results in a better approximation to the actual area, but also results in a larger
number of line segments in the computed polygon.

To specify a value for the quadrant segments, use the Geometry buffer method with a
second argument:

Geometry g = . . .
Geometry buffer = g.buffer(100.0, 16);

The default number of segments is 8. This gives less than a 2% maximum error in the
distance of the computed curve approximation to the actual buffer curve. This error can be
reduced to less than 1% by using a value of 12. The diagram below shows the effect of
increasing the number of approximation curve segments.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.4
Developer’s Guide

 Page 9

Quadrant Segments = 3 Quadrant Segments = 8
(default)

Quadrant Segments = 20

Figure 5-3 - Using Different Curve Approximation Levels

6. POLYGONIZATION

Polygonization is the process of forming polygons from linework which encloses areas.
Linework to be formed into polygons must be fully noded – that is, linestrings must not
cross and must touch only at endpoints.

JTS provides the Polygonizer class to perform Polygonization. The Polygonizer takes a set
of fully noded LineStrings and forms all the polygons which are enclosed by the lines.
Polygonization errors such as dangling lines or cut lines can be identified and reported.

Collection lines = new ArrayList();

lines.add(read("LINESTRING (0 0 , 10 10)")); // isolated edge
lines.add(read("LINESTRING (185 221, 100 100)")); //dangling edge
lines.add(read("LINESTRING (185 221, 88 275, 180 316)"));
lines.add(read("LINESTRING (185 221, 292 281, 180 316)"));
lines.add(read("LINESTRING (189 98, 83 187, 185 221)"));
lines.add(read("LINESTRING (189 98, 325 168, 185 221)"));
polygonizer.add(lines);

Collection polys = polygonizer.getPolygons();
Collection dangles = polygonizer.getDangles();
Collection cuts = polygonizer.getCutEdges();

If the set of lines is not correctly noded the Polygonizer will still operate on them, but the
resulting polygonal Geometries will not be valid. The MultiLineString union technique can be
used to node a set of LineStrings (see 9.1 Noding A Set Of LineStrings on page 11).

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.4
Developer’s Guide

 Page 10

Input – a set of fully noded LineStrings Output – Polygons, dangling lines and
cut lines

Figure 6-1 - The Polygonization Operation

7. MERGING A SET OF LINESTRINGS

Sometimes a spatial operation such as #union will produce chains of small LineStrings.
The JTS LineMerger is a simple utility to sew these small LineStrings together, as shown
below.

Input – a set of fully noded LineStrings Output – Merged LineStrings

Figure 7-1 – The Line-Merging Operation

The LineMerger assumes that the input LineStrings are noded (i.e. they do not cross;
only their endpoints can touch. See 9.1 Noding A Set Of LineStrings on page 11). Note that
the output LineStrings are also noded.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.4
Developer’s Guide

 Page 11

If LineStrings to be merged do not have the same direction, the direction of the resulting
LineString will be that of the majority.

The LineMerger is used as follows:

LineMerger lineMerger = new LineMerger();
Collection lineStrings = . . .
lineMerger.add(lineStrings);
Collection mergedLineStrings = lineMerger.getMergedLineStrings();

8. USING CUSTOM COORDINATE SEQUENCES

By default JTS uses arrays of Coordinates to represent the points and lines of Geometries.
There are some cases in which you might want Geometries to store their points using some
other implementation. For example, to save memory you may want to use a more
compact sequence implementation, such as an array of x’s and an array of y’s. Another
possibility is to use a custom coordinate class to store extra information on each coordinate,
such as measures for linear referencing.

You can do this by implementing the CoordinateSequence and
CoordinateSequenceFactory interfaces. You would then create a GeometryFactory
parameterized by your CoordinateSequenceFactory, and use this GeometryFactory to create
new Geometries. All of these new Geometries will use your CoordinateSequence
implementation.

For an example, see the following sample programs in the
com.vividsolutions.jtsexample.geom package:

ExtendedCoordinateExample An example of using adding information to the

basic coordinate representation
TwoArrayCoordinateSequenceExample An example of using a more memory-efficient

sequence implementation

A note on performance: If your CoordinateSequence is not based on an array of the
standard JTS Coordinates (or a subclass of Coordinate), it may incur a small performance
penalty. This is due to the marshalling and unmarshalling required for JTS to convert the
user coordinates into arrays of JTS coordinates.

9. TIPS & TECHNIQUES

9.1 NODING A SET OF LINESTRINGS
Many spatial operations assume that their input data is noded, meaning that LineStrings
never cross. For example, the JTS Polygonizer and the JTS LineMerger described earlier
assume that their input is noded.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.4
Developer’s Guide

 Page 12

The noding process splits LineStrings that cross into smaller LineStrings that meet at a
point, or node, as illustrated below.

Not noded (3 LineStrings) Noded (9 LineStrings)

Figure 9-1 – Before and After Noding

A simple trick for noding a group of LineStrings is to union them together. It turns out
that the unioning process will node the LineStrings for us. For example, the following
code will node a collection of LineStrings:

Collection lineStrings = . . .
Geometry nodedLineStrings = (LineString) lineStrings.get(0);
for (int i = 1; i < lineStrings.size(); i++) {
 nodedLineStrings = nodedLineStrings.union((LineString)lineStrings.get(i));
}

10. UNIONING MANY POLYGONS EFFICIENTLY

Calling Polygon#union repeatedly is one way to union several Polygons together. But here’s
a trick that can be significantly faster (seconds rather than minutes) – add the Polygons to a
GeometryCollection, then apply a buffer with zero distance:

Polygon[] polygons = . . .
GeometryCollection polygonCollection =

geometryFactory.createGeometryCollection(polygons);
Geometry union = polygonCollection.buffer(0);

 Note: This document is under construction

Document converted by PDFMoto freeware version

