
Genetic parts to program bacteria
Christopher A Voigt
Genetic engineering is entering a new era, where

microorganisms can be programmed using synthetic

constructs of DNA encoding logic and operational commands.

A toolbox of modular genetic parts is being developed,

comprised of cell-based environmental sensors and genetic

circuits. Systems have already been designed to be

interconnected with each other and interfaced with the control

of cellular processes. Engineering theory will provide a

predictive framework to design operational multicomponent

systems. On the basis of these developments, increasingly

complex cellular machines are being constructed to build

specialty chemicals, weave biomaterials, and to deliver

therapeutics.
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Introduction
The genome contains commands dictating how cells eat,

reproduce, communicate, move and interact with their

environment. Cells can be programmed by introducing

synthetic DNA containing new commands that instruct

the cell to perform a set of artificial tasks in series or in

parallel. These programs consist of multiple genes and

regulatory elements that function as a system composed

of sensors, circuits and converters to control biological

responses.

A rudimentary language is emerging to genetically pro-

gram bacteria [1]. Sensors have been developed that

respond to small molecules, light and temperature

[2,3��]. Genetic circuits are available that function as

inverters, logic gates, pulse generators, band pass filters

and oscillators [4,5,6�,7]. Sender and receiver components

enable cells to communicate [8��]. Based on these genetic

parts, strains of bacteria have been developed that can

communicate to form two-dimensional patterns [8��],
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control their population density [9��], synthesize antima-

larial and cancer-fighting drugs [10,11], and attack malig-

nant cells in response to environmental cues present in a

tumor [12��] (Figure 1).

The analogy with electronic parts is useful in constructing

genetic circuits that perform signal processing tasks. How-

ever, the analogy is less applicable for the design of systems

composed of many parts. Genetic parts have problems with

interference — where one part inadvertently affects

another part — because their functions are carried out

by molecular interactions and reactions that occur in the

same confined space of the cell. This imposes the restric-

tion that a particular genetic circuit can only be used once

in a design. Thus, the language to program cells is going to

require redundancy, or breadth, in the available parts.

A second problem is that cells are alive. They eat, grow,

avoid stress and evolve. Bacteria undergo remarkable

changes in cell state as a function of their growth stage.

The cell volume, metabolism, membrane composition,

and global regulators change in response to the growth

media and cell state. All of these factors can impact the

function of synthetic sensors and circuits. Some are more

fragile than others and recent designs have attempted to

build genetic parts whose function is as detached from the

cell state as possible. Also, evolution can effectively

‘break’ a synthetic part by introducing mutations over

many generations.

This review has been written to introduce readers to the

most robust genetic parts that have been reused in differ-

ent designs. They have been loosely divided into three

categories (Table 1 and Supplementary material). Sensors

encompass all means by which information is received by

the cell. Genetic circuits represent how information is

processed and decisions made. Actuators describe how

the circuits and sensors can be used to control processes

in the cell. The sequences and performance characteristics

for many of these parts are available at the Massachusetts

Institute of Technology (MIT) Registry of Standard Bio-

logical Parts (http://parts.mit.edu). When given, the part

number refers to the Registry numbering system. When

available, the transfer function of a genetic part is pro-

vided. This is an empirical measurement that describes

how the output changes as a function of the input [4,13]

(Box 1). The focus of this review is on bacteria, although

there has been much recent work in eukaryotes [14].

Sensors and inputs
Cell-based sensors can be used to identify a microenvir-

onment, to direct communication between cells or to
www.sciencedirect.com
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Figure 1

Using genetic parts to program bacteria. Programmed bacteria can (a) autonomously form spatial patterns [8��], (b) record images of light [3��],

(c) form a biofilm in response to UV light [35��], and (d) commit suicide (left-hand panel) or kill tumor cells (right-hand panel) after reaching

a critical population density [9��,12��]. Each design involves the linkage of cellular sensors to the control of biological processes, mediated

by genetic circuits. In (a), spatial patterns are formed by using a quorum sensing system to program the communication between bacteria.

The enzyme LuxI produces a small molecule (green dots) that diffuses through the cell membrane. Once the molecule accumulates to a

sufficient concentration in the media, it binds to a regulatory protein (LuxR). This regulatory protein is then connected to a pulse generator,

which controls the expression of green fluorescent protein. Thus, cells only turn green at an intermediate concentration of the signal. This forms

rings of gene expression (green, red) around the source of the signal (blue dot). In (b), bacterial photography was achieved using a light-sensing

sensor from a cyanobacterial two-component system. The protein domain that responds to light (light blue) was fused to a signal transduction

domain from E. coli (dark blue). In addition, the metabolic enzymes (green) that produce the required chromophore (pentagons) were included.

The output of the light sensor was connected to the expression of an enzyme that turns the media black. In (c), the toggle switch (yellow, magenta)

was used to control the expression of a protein that causes the bacteria to form a biofilm. One of the repressors in the toggle switch is sensitive

to UV. Thus, in the presence of UV light, the bacteria will form a biofilm. In (d), two similar quorum sensing systems are used to control

different responses as outputs. On the left, a gene is controlled that causes the cell to commit suicide (ccdB). Once the cell density reaches a

critical threshold, the cells begin to die. On the right, a gene is controlled that causes E. coli to invade malignant cells (invasin). This gene is only

turned on when there is a high concentration of bacteria. (Note that the same parts are reused in different designs and appear in Table 1 or

Supplementary material.)

www.sciencedirect.com Current Opinion in Biotechnology 2006, 17:548–557
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Table 1

DNA parts for programming bacteria.

Name Genesa Performance Notes References

Sensors – small molecule inducers
Lac

lacI       Ptrc or Ptac

� Graded population induction [64]
� LacI can exist in the genome or on a plasmid

Tet

tetR            Ptet

� Intermediate induction difficult [64]
� tetR can exist in the genome or on a plasmid

Ara � All-or-none response [65]
� 300-fold induction
� Strain must transport (araE), but not metabolize (DaraBCD)
arabinose
� Sensitive to glucose

Ara–lac � Dual control by arabinose and IPTG [64,66]
� Many mutants/detailed parameters available

Sensors – environmental inducers
Lightb

PompC    cph8  ompR

pcyA  ho1

� Tenfold induction/high basal activity [3��]
� Responds to red light
� Requires E. coli RU1012 [16]
� cyA/ho1 make the chromophore PCB
� cph8 is chimera with EnvZ

UVc � The wild-type cI repressor is proteolyzed in response to UV [67]
� Turns on after a UV dose of 5 J/m2

Genetic circuits – switches and logic
Inverter � Transfer function shown with IPTG input driving

the cI repressor
[4,68�]

� Can be built with other repressors (e.g. TetR and LacI)
� Mutants available with different transfer functions (e.g. A, C, R)e
� Can also amplify a signal

Biphasic switch � The promoter has multiple cI binding sites with varying affinity
that either activate or repress transcription

[33�]

� Pl off at both low and high input
Toggle switch

cI      Ptrc   Pλ     lacI

� All-or-none response [34]
� Inputs either small molecules or promoters that
are linked to either repressor
� Bistable; hysteresis in switch
� Epigenetic memory

Cell–cell communicationd � Mutants available with different transfer functions (e.g. F, C)e [6�]
� Parallel communication using lasIR and rhlLR [68�]
� LuxR can also repress promoters [69]

Genetic circuits – dynamic responses
Pulse generator

cI      t0     

luxR     

� The response can be controlled by changing the cI rbs [6�]
� Is an incoherent feedforward regulatory motif [41]

Actuators
Suicide

ccdB

� Kills bacterium when expressed [9��]

Biofilm
traA

� Induces biofilm formation [35��]

Adhesion/invasion
invasin

� Causes E. coli to adhere to and invade mammalian cells
expressing b1-integrins, including malignant cells

[12��]

au, arbitrary units; ara, arabinose; AHL, actylhomoserinelactone; aTc, anhydrotetracycline; IPTG, isopropyl-b-D-thiogalactopyranoside; PCB, phycocyanobilin;
rbs, ribosome-binding site. aThe following notation is used to describe the genetic parts. Large colored arrows and the corresponding colored circles represent
genes and their encoded proteins. The black arrows are promoters. Gray arrows represent activating interactions and lines with blunt ends are repressing
interactions. The double dotted line represents the cell membrane. Dots without black borders are small molecules. Small-molecule transporters are shown as
purple boxes in the membrane. bThe green pentagon represents the synthesis of the required chromophore PCB. The red lightning bolt shows the activation of
the light sensor with red light. cUV light activates RecA, which leads to the proteolytic cleavage (yellow) of cI. dLuxI (green hexagon) is an enzyme that produces
the quorum signal AHL (green dots). eThe notation (A, C, R) and (F,C) represent genetic mutants that have different transfer functions. See references for details.

Current Opinion in Biotechnology 2006, 17:548–557 www.sciencedirect.com
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Box 1 The transfer function.

The transfer function is an empirical measurement that describes

how the output changes as a function of the input [4,13]. For

example, for a light sensor, the transfer function might be the level of

gene expression as a function of light intensity [3��]. When the

transfer functions are known, they can be used to predict how

multiple connected parts will behave as a system.

There is a stochastic component to the transfer function, as was

demonstrated beautifully by Elowitz and co-workers [41��]. This

arises from cell-to-cell variation, fluctuations owing to small numbers

of molecules, and noise in transcription and translation [47,70]. When

multiple parts are connected in series, the noise from an upstream

part can influence all of the downstream processes [43��]. Stochastic

effects represent a challenge to the assembly of parts, especially

those which have multiple parts operating in series. Formal

mathematics are being developed to incorporate the stochastic

component into the transfer function [71�].

Ideally, all of the transfer functions would be measured using a

standardized strain, genetic system and reporter. This is often not

the case, so these functions are now only a qualitative guide and

cannot yet be used to quantitatively predict how multiple circuits will

function in series or the interference between circuits operating in

parallel. There is currently an effort to standardize the measurement

of part performance, which will ultimately enable computer-aided

design.
make the system respond to external commands. Sensors

can be wired to turn genes on or off or to directly influence

cellular behavior; for example, the direction in which it is

swimming. There are four major classes of sensors that are

commonly engineered: cytoplasmic regulatory proteins,

two-component systems, regulatory RNAs, and environ-

ment-responsive promoters (Table 1 and Supplementary

material).

Cytoplasmic regulatory proteins

Inducible systems allow specific genes to be turned on by

adding a small molecule to the growth media. Typically,

the inducer passes through the cell membrane and binds

to a cytoplasmic regulatory protein. This either turns on

an activator or turns off a repressor, leading to the activa-

tion or derepression of a promoter, respectively. There

are many variations of these systems that are appropriate

for different applications.

There are several key parameters that describe the trans-

fer function of an inducible system. First, there is the

dynamic range of the induction. This is the difference

between the basal activity in the absence of inducer and

the maximally induced state. The form of the transfer

function is also important; for example, some systems are

strongly cooperative, making it difficult to obtain inter-

mediate ranges of expression.

Inducible systems can also have different population-

level behaviors. All of the cells in a population can

behave identically and expression increases in a graded
www.sciencedirect.com
manner as a function of inducer concentration. By con-

trast, some systems produce an all-or-none response,

where a percentage of the population turn on and a

greater fraction of the cells express the gene as more

inducer is added.

Two-component systems

Two-component systems represent the most prevalent

natural sensing motif in prokaryotes [15]. Bacteria contain

many two-component systems that are simultaneously

expressed (Escherichia coli has 32) and respond to different

stimuli, such as light, temperature, touch, metals, meta-

bolites and chemicals. The canonical system consists of a

membrane-bound sensor which, when stimulated, phos-

phorylates a response regulator. The phosphorylated reg-

ulator then binds to promoters to activate or repress gene

expression.

The intracellular parts of two-component systems are

homologous, with similar structures and mechanisms.

This homology can be exploited to rewire the system

by genetically fusing the extracellular sensing domain to a

new, heterologous intracellular signal transduction

domain [16,17]. This was recently demonstrated through

the construction of a synthetic sensor that gives E. coli the

ability to see light [3��]. The extracellular domain of a

cyanobacterial light sensor was fused to a signal transduc-

tion domain from E. coli, which was used to control the

expression of a gene that produces a black pigment. This

strain can record images of light projected at a two-

dimensional lawn of growing bacteria (Figure 1).

A modified two-component system has been used to

sense metabolic changes [18]. Using a strain where the

cognate sensor (NRII) has been knocked out, the NRI

protein was used to sense acetyl phosphate, which

changes in response to glucose flux. This sensor was used

to optimize the production of lycopene by diverting the

carbon flux away from the toxic byproduct, acetate. The

system has also been used to maximize protein produc-

tion [19].

The bacterial chemotaxis sensing apparatus has a similar

organization to a two-component system. Chimeras have

been made between the extracellular domain of tar (a

chemosensory protein) and the intracellular domain of

EnvZ (a two-component sensor), such that chemo-attrac-

tants can be used to regulate gene expression [17,20]. The

inverse chimeras can also be made, where the extracel-

lular portion of a two-component system is fused to the

intracellular portion of tar (see Supplementary material).

This enables cells to move towards the signal received by

the two-component systems; for example, a Nar–tar chi-

mera produced cells that move towards nitrate [21].

Mutations affecting the tar ligand-binding site have also

been shown to direct chemotaxis towards alternate amino

acids [22].
Current Opinion in Biotechnology 2006, 17:548–557
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Maltose-binding protein (MBP) is a periplasmic protein

that interacts with tar to direct chemotaxis towards mal-

tose. Hellinga and co-workers have used computational

protein design to reengineer the ligand-binding pocket of

MBP to bind to unnatural chemicals, such as trinitroto-

luene (TNT) [2], L-lactate, Zn2+ [23], and a nerve agent

analog [24�]. When the engineered MBPs are co-

expressed with the tar–EnvZ chimera, gene expression

can be controlled by these chemicals.

Environment-responsive promoters

Cells change their patterns of gene expression in response

to different environmental conditions. There are several

conditions, such as pH, temperature, oxygen concentra-

tion or UV light, for which bacteria have existing sensing

systems. Promoters that turn on under these conditions

can be used as sensory inputs. The transcription factors

acting on a promoter do not have to be known. For

example, promoters identified through microarray experi-

ments, where little else is known about their activation,

could be used as inputs. The transfer function of a

promoter can be characterized like an inducible system,

where gene expression is determined as a function of the

input (e.g. temperature or pH).

There are several examples where an environment-indu-

cible promoter has been used as an input for a genetic

circuit. Recently, Voigt and co-workers used an anaerobic

inducible promoter to create a bacterium that can invade

malignant cells in the low-oxygen microenvironment of a

tumor [12��]. Promoters involved in the bacterial heat-

and cold-shock responses have also been used as tem-

perature sensors [25]. A common problem is that the

dynamic range of a promoter does not match the range

required to obtain an inducible phenotype. Methods to

overcome this problem are described at the end of this

review.

RNA aptamers

An aptamer is a small RNA molecule that changes con-

formation when bound to a protein, peptide or small

molecule [26�]. Aptamers can be rationally fused to ele-

ments that regulate translation, such as antisense RNAs

that inhibit translation by interfering with a ribosome-

binding site [27��]. Translation only occurs in the pre-

sence of a ligand. Aptamers can also be used to control the

activation of other regulatory mRNA motifs, such as

ribozymes, which can regulate genes by cutting a target

transcript [28��].

RNA regulators are easily engineered as compared with

their protein counterparts and can frequently transcend

organismal boundaries [29]. In addition, they can poten-

tially regulate any gene through the specification of base-

pairing, and their performance characteristics can be

easily fine-tuned. This enables rational design to change

the form and threshold of the transfer function [27��].
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Genetic circuits
Genetic circuits enable cells to process input signals,

make logical decisions, implement memory and to com-

municate with each other (Table 1 and Supplementary

material). A variety of synthetic genetic circuits have

been constructed to mimic the information-processing

capability of electronic circuits, such as inverters, logic

gates, pulse generators and oscillators. These circuits can

be used to convert a sensor output into a biological

response and used to program the cell to perform a series

of coordinated tasks.

Switches

Genetic switches are used to turn on gene expression

once an input has crossed a threshold required for activa-

tion. A switch can also be used as an intermediary to

connect the output of a sensor to control a biological

response. A switch can be constructed using transcrip-

tional activators or repressors or using post-transcriptional

mechanisms, such as DNA-modifying enzymes [30�] or

riboregulators [31��] (Supplementary material). Switches

are characterized by similar performance parameters as

inducible systems: the activation threshold, the coopera-

tivity of the transition, and the cell-to-cell variation.

An inverter is a switch that produces a reciprocal response.

When the input to the inverter is on, then the output is

off, and vice versa. Weiss and co-workers [4] built an

inverter by linking an input promoter to the expression of

a repressor, which then turned off a downstream promo-

ter. The transfer function of this inverter can be varied by

using directed evolution to modify the genetic control

elements or by using different repressors [4] (http://parts.

mit.edu; e.g. BBa_Q01121).

Biphasic switches combine positive and negative regula-

tion so that they are only turned on by a small band of

input. A promoter can be made biphasic by introducing a

binding site where a regulator can behave as an activator

and one where it behaves like a repressor. When the

regulator has a higher affinity for the first site, then small

concentrations induce transcription and larger concentra-

tions repress it. The CI promoter from phage l naturally

contains this type of regulation and has been used in

synthetic applications [32,33�].

A toggle switch has been constructed using two repressors

that cross-regulate each other’s promoter [34]. The sys-

tem can exist in two states, where one or the other

repressor is fully expressed. The switch can be flipped

between states by changing the activity of a repressor,

either by directly modifying the protein or by altering its

expression. For example, the toggle switch has been

linked to quorum sensing and a UV-sensitive repressor

has been used as an input [35]. A toggle switch can also act

like a memory device. Once the switch has been latched

into one state, a large perturbation is required to switch it
www.sciencedirect.com
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into the other state. This introduces irreversibility into

the switch.

Riboswitches regulate gene expression by blocking trans-

lation [36]. The addition of a hairpin to the 50-end of an

mRNA transcript that overlaps the ribosome-binding site

will efficiently prevent ribosome binding [31��]. This

hairpin can be disrupted by the expression of a small

regulatory RNA. This exposes the ribosome-binding site

and activates expression. The transfer function of this

circuit can be tuned by making nucleotide substitutions

to vary the binding free energy competition between the

internal hairpin and the small RNA.

Logic gates
Logic gates are the building blocks of digital circuits.

They apply a computational operation to convert one or

more inputs into a single output. For example, the output

of an AND gate is only on when both inputs are on. By

contrast, an OR gate is on if either (or both) inputs are

on. Many forms of logic have been demonstrated in

biological circuits, including NOT, AND, OR and

NOR (NOT OR) gates [7,37]. For truly digital logic,

the inputs and outputs are either on or off (1 or 0).

Biological logic is often fuzzy, where intermediate levels

of induction are possible [38].

Two-input logic gates have been built based on the

interactions between synthetic rRNA and mRNA. Rack-

ham and Chin [39��] used selection to obtain orthogonal

rRNA–mRNA pairs that would only result in protein

function when both were expressed. Orthogonal pairs

do not cross-react with their endogenous counterparts,

which makes them ideal substrates for logic. This was

demonstrated by using different topologies of orthogonal

pairs to construct OR and AND gates [40].

Dynamic circuits

The circuit functions described in the previous two sec-

tions are defined by their steady-steady state input-out-

put response. Circuits can also generate a dynamic

response; for example, by functioning as a pulse generator

or oscillator. A challenge in the design of dynamic circuits

is to make them robust to environmental conditions and

to reduce cell-to-cell variation.

Cascades are a common motif in natural regulatory net-

works. A transcriptional cascade is formed when a chain of

transcription factors concurrently regulates each other.

Cascades can be used to temporally order the expression

of proteins, which is important in metabolic pathways

and processes involving self-assembly. Synthetic two-

and three-stage cascades have been constructed and

analyzed extensively [41��,42��]. In addition to a temporal

ordering, each stage of a cascade modifies the transfer

function and stochastic characteristics of the overall cir-

cuit [43��].
www.sciencedirect.com
A pulse generator can be formed by an incoherent feed-

forward motif [6�,44]. A feedforward motif occurs when

the input signal is split by turning on an intermediate

transcription factor that, together with the input, regu-

lates a downstream process [45]. An incoherent motif

occurs when the intermediate regulator and the input

have opposite downstream effects [44]; for example,

when the input activates a repressor and together they

influence the output promoter. This can form a pulse

generator when the repressor is turned on slowly and

strongly affects the downstream promoter.

A coherent feedforward motif can function as a time delay

[46]. This motif occurs when both the input and inter-

mediate regulator have the same effect on a downstream

promoter. This delay can act as a filter, where short pulses

of inputs do not lead to the activation of the circuit.

Several synthetic oscillators have been constructed by

combining a ring of three repressors, a repressor and an

activator, and incorporating parts that sense metabolic

flux [47,48,49��]. The period of these oscillators varies

from 40 min to 10 h. All of the synthetic oscillators are

uncoupled and a population rapidly desynchronizes after

a few oscillations.

Cell–cell communication

Bacteria use chemical signals to communicate with each

other. In their natural setting, these quorum systems are

used to detect the cell density and to distinguish between

species [50]. Genetic circuits participating in quorum

sensing have sender and receiver components. The signal

is sent by an enzymatically synthesized small molecule

that can freely diffuse through the cell membrane. When

the quorum molecule accumulates beyond a threshold, it

binds to and activates a regulatory protein (either cyto-

plasmic or a two-component system). Quorum sensing has

been used to program cell–cell communication between

bacteria [1,6�,8��,9��,12��].

Different species of bacteria communicate using varia-

tions of the quorum molecule. If these systems function

independently (i.e. do not cross-react), then they provide

multiple channels by which bacterial communication can

be programmed [51�,52��]. Interference occurs when the

quorum molecule from different species binds non-spe-

cifically to the regulator protein. Arnold and co-workers

have used directed evolution to change the specificity of

the regulator towards different quorum molecules

[51�,52��]. To avoid the interference problem entirely,

synthetic systems have been developed that use meta-

bolic products as the quorum signal [53].

Actuators: controlling cells
Cellular behavior can be controlled by using the output

from a synthetic genetic circuit to drive a natural or

transgenic response (Table 1 and Supplementary
Current Opinion in Biotechnology 2006, 17:548–557
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material). Implementing synthetic control over a biologi-

cal process is one of the least explored areas in synthetic

biology. Research has to be done to determine how to

decouple these systems from their natural inputs and to

ultimately control their function with synthetic circuits.

Sometimes this is as simple as knocking out a transcription

factor from the genome and then placing it under the

control of a new circuit. For example, Collins and co-

workers linked a UV-responsive toggle switch to a gene

that induces biofilm formation (Figure 1) [35��]. In

the presence of UV light, this strain will form a visible

biofilm. Similarly, Voigt and co-workers used a cell–cell

communication circuit to drive the expression of a protein

that enables E. coli to adhere to and invade cancer cells

[12��]. Control over cellular movement has also been

implemented by placing a single gene under inducible

control [54].

In other instances, linking synthetic sensing and logic to

cellular behavior is significantly more challenging. Often

the dynamic range of the circuitry does not match the

physiological response, either producing a constitutively

on or off phenotype. Regulatory feedback can also com-

plicate the control. Finally, processes that rely heavily on

core cellular processes, such as central metabolism, often

generate unintended consequences when perturbed.

Obtaining synthetic control over a complicated, multi-

gene function might require deconstruction of the natural

regulation and the use of synthetic regulation to control

the entire system. A step towards this goal was recently

demonstrated by refactoring and synthesizing a version of

T7 bacteriophage, which was engineered to contain sim-

plified regulation [55��].

Debugging and tuning complex systems
Operationally, it is difficult to connect parts to obtain a

functioning system. Two parts cannot be connected in

series when their timing and dynamic range do not match.

To overcome this problem, it is necessary to tune the

performance characteristics of one of the parts. Some-

times, it is possible to rationally mutate a part by replacing

an operator or ribosome-binding site with an alternative

that is expected to fix the problem [6�]. A growing

database of parameterized genetic parts (http://parts.

mit.edu) is making this approach more accessible. A

successful alternative has been to use directed evolution,

where random mutagenesis is either applied across an

entire part [4] or used to target a specific region [12��,56�].

Ultimately, it might be possible to use computer-aided

design tools to accelerate the construction of a system.

Before this can happen, it is necessary to first obtain a

sufficiently large toolbox of standardized and parameter-

ized parts and then to develop simplified theoretical

techniques to understand how these parts will function

together. This theory may require a combination of

detailed biochemical data to characterize the inner
Current Opinion in Biotechnology 2006, 17:548–557
workings of a part with higher level, empirical relation-

ships that can be used to engineer the linkage between

parts. Considering promoter regulation, statistical

mechanics can be used to link the transfer function to

the thermodynamics of transcription factor binding [57�].
Computational methods can also be used to predict which

regulatory elements are the most fruitful targets for

combinatorial mutagenesis [56�].

Conclusions
DNA synthesis and cloning technology have far out-

stripped our design capacity. Chemical synthesis can

now routinely build 50 kilobases of contiguous DNA at

a reasonable cost [58]. Improved transformation techni-

ques enable us to put this much synthetic DNA into a cell

[59��]. Sequencing the whole genome of a microbe is

becoming faster and cheaper [60]. New microfluidics

technologies are being developed that could facilitate

the rapid determination of transfer functions at the level

of individual cells [61��]. Despite all of these advances,

we are not at the point where we can design an integrated,

working system on the 50 kilobase scale. Increasing the

complexity of the designs will require improvements in

four areas: the construction of new robust parts that can be

easily interchanged; increased understanding of how to

routinely wire parts in series; the development of new

theory and computer design methods; and standardized

data sharing between laboratories.

The focus of this review has been on the individual

genetic parts that can be combined to create more com-

plex systems. These parts can be used to encode when,

where, how much, and under what conditions genes are

expressed. They can be used to drive the expression of

transgenic genes, to manipulate metabolism or to drive

natural processes in the cell. Cells can be programmed to

perform a series of tasks. For example, genetic circuits can

be used to control the expression of a series of metabolic

proteins at the precise time and amount required for the

maximal synthesis of a drug or energetic compound, while

diverting the flux from competing pathways [10,11,18].

Bacteria could weave complex materials by temporally

and spatially controlling the expression of biopolymer and

modifying proteins. Cells could be used as therapeutics,

programmed to find and fix medical problems in the body

[12��,62��,63]. Entire multicomponent machines and

organelles (e.g. photosystems, secretions systems, pili

and metabolic pathways) could be transferred between

species and placed under complete synthetic control.

These projects represent a revolution in genetic engi-

neering, where cells are programmed to undertake large

and complex tasks.
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