10/14/2013 1 Karel Klepárník Oddělení bioanalytické instrumentace Ústav analytické chemie Akademie věd České republiky Brno Moderní analytická instrumentace pro genetický výzkum, lékařskou diagnostiku a molekulární identifikaci organizmů Capillary electrophoresis CE detection system outlet electrode chamber mobilityelectrophoretic electroosmotic B)+ mobility electrophoretic electroosmotic A)- high voltage inlet electrode chamber purge pressure detection window detail injection point separation capillaryBGE BGE capillary effective length (LD) capillary total length (LC) Capillary electrophoresis scheme Why capillary electrophoresis? T L R   4 22 0 RE TTT R  solid – solidair – solid LrdrUUdIQ J /2 2  dr dT rLQ C 2 T0 TR ΔT Miniature capillary: low R => fast separation 1) high resistivity  low current at high voltage  low heat production 2) efficient heat transport  low temperature difference inside the capillary DNA electromigration K. Klepárník, P. Boček, DNA diagnostics by Capillary Electrophoresis Chemical Reviews 107, 5279 – 5317, 2007. DNA primary structure Homogeneous polyelectrolyte 10/14/2013 2 DNA electromigration regimes in sieving media Size separations of homogeneous polyelectrolytes are impossible in free solutions Short DNA fragments Low concentration of media Long DNA fragments High concentration of media Ogston regime Ogston (1958): * distribution of spaces in a random network of rigid rods available to a spherical molecule * penetration probability ) 3 4 2(exp 3 2 r LrP rD    ν average density of number of fibers 2L fiber length D „pore“ radius r particle radius Rodbard Chrambach (1970): )(exp 00 cK V V P r a rD    Ferguson plot (1964): cK r  0 loglog  31 )(   n r drK µ el. mobility µ0 free electrolyte el. mobility Va accessible volume V0 void volume Kr retardation coef. c gel concentration d gel fibre radius Fergusson plot Ferguson plots of DNA molecules in agarose gels. The logarithm of the mobility, extrapolated to zero electric field strength at each gel concentration, is plotted as a function of agarose concentration, %A. cK r  0 loglog    r q 6 0  kbp Biased Reptation Model M 1  2 2 L hq x           3 1 3 2    N q ε <<1 Tk qEa B 2  L tube legth ξ friction inside x field direction N reptation segments ε scaled el. field q segment charge a segment length 1/(3N) N<<ε-2 µ/µ0 ~ ε2/9 N>> ε-2 log M log Ogston sieving reptation without stretching reptation with stretching Rs  m   1/M Rs < m Rs > m a b c 0   Dependence of DNA electrophoretic mobility on molecular mass Polymerase chain reaction PCR amplification 10/14/2013 3 PCR amplification scheme DNA template DNA dissociation 90 ºC Primer annealing 62 ºC DNA synthesis 72 ºC Correct copies N=2n+1 – 2(n+1) 1st cycle: n=1 22 – 2∙2 = 0 2nd cycle: n=2 23 – 2∙3 = 2 3rd cycle: n=3 24 – 2∙4 = 8 DNA primer DNA primer Human Genome Project J. CRAIG VENTER, Ph.D., PRESIDENT, CELERA GENOMICS REMARKSAT THE HUMAN GENOME ANNOUNCEMENT THE WHITE HOUSE MONDAY, JUNE 26, 2000 Mr. President, Honorable members of the Cabinet, Honorable members of Congress, distinguished guests. Today, June 26, 2000 marks an historic point in the 100,000-year record of humanity. We are announcing today that for the first time our species can read the chemical letters of its genetic code. At 12:30 p.m. today, in a joint press conference with the public genome effort, Celera Genomics will describe the first assembly of the human genetic code from the whole genome shotgun sequencing method. Starting only nine months ago on September 8, 1999, eighteen miles from the White House, a small team of scientists headed by myself, Hamilton O. Smith, Mark Adams, Gene Myers and Granger Sutton began sequencing the DNA of the human genome using a novel method pioneered by essentially the same team five years earlier at The Institute for Genomic Research in Rockville, Maryland. The method used by Celera has determined the genetic code of five individuals.... …There would be no announcement today if it were not for the more than $1 billion that PE Biosystems invested in Celera and in the development of the automated DNA sequencer that both Celera and the public effort used to sequence the genome… DNA sequencing Analysis of Sanger sequencing fragments DNA sequencing strategy 10/14/2013 4 Fluorescence chemistry N C S O - O C N + (C H 3 )2O (C H 3 )2 N N H 2 -R N O 2 N H (C H 2 )5 C O O N O O N H 2 -R C H 2 C H 2 F F B N N H 3 C H 3 C C O O N O O N H 2 -R O 3 S S O 3 - N + N O O O O N N H 2 R n n = 1 : C y 3 n = 2 : C y 5 n = 3 : C y 7 N N + O SO O C l N H 2 -R N C S C O O H OOH O N H 2 -R Fluorescein Rhodamine Texas Red NBD BODIPY Cy3,5,7 Fluorescent lebels Cy3 488 nm 610 nm ROX ACCEPTOR DONOR PRIMER SEQUENCE Sequencing primer attached to Fluorescence Resonance Energy Transfer NH 5'-TTTTCCCAGTCACGACG-3' (CH)2(CO) NH (CH2)6 C O COOH O N+ N O O N N N N O NH2 O O -O P O (CH2)6 NH O C (CH2)5 N+ CH3 C2H5 O CH CH CH O N CH3 N (C H 3 )2(C H 3 )2 N O C O 2 C l C l O N H O N H OO - O O 2 C O H N O O N H ON O 3 H O 9 P 3 O A C C E P T O R D O N O R d d T T P T E R M IN A T O R 595 nm 488 nm Dideoxy terminator attached to Fluorescence Resonance Energy Transfer LIF detection Ar-ion laser 40 mW separation capillary ID 50 mm objective 40x; 0.65 blocker 520 nm beam splitter band pass 610 nm PMT blocker 520 nm band pass 540 nm band pass 590 nm band pass 570 nm 50% 488 nm 50% 514 nm lens Four channel LIF detection arrangement Spectral filtering 10/14/2013 5 SENSOR LASER PINHOLE OPTICS BEAM SPLITTER MICROSCOPE OBJECTIVE FOCUS SCHEME OF CONFOCAL DETECTOR Space filtering excited sample laser beam polymer filled capillaries sheath-flow cuvette open tubings electrode chamber electrode chamber Sheath-flow cuvette DNA sequencing record DNA sequencing over 1000 bases in 1.5 hour Separation matrix: LPA 2.0% (w/v) 5.5 MDa E: 150 V/cm, T: 50 °C DNA sequencing up to 1300 bases in 2 hours Separation matrix: LPA 2.0% (w/w) 17 MDa, 0.5% (w/w) 270 kDa E: 125 V/cm, T: 70 °C DNA mutation analysis 10/14/2013 6 Restriction (amplification) fragment legth polymorphism RFLP (AFLP) Size based separation of ds or ss DNA fragments Resolution: ss > 1000 ds > 400 Single Strand Conformation Polymorphism SSCP wild type point mutation native dsDNA denatured ssDNA native environment Principle of SSCP technique dsDNA ssDNA dsDNA relativeabsorbanceat260nm a) health homozygote time ssDNA SSCP analysis Detection of point mutation C > T in phenylalanine hydroxylase gene on chromosome 12 Separation conditions: 2% solution of agarose SeaPrep in 1xTBE with 10% formamide T - 30 °C LC - 55 cm LD - 50 cm E – a) 183 V/cm, b) 135 V/cm. Phenylketonuria b) heterozygote Single nucleotide primer extension Minisequencing SNuPE Next generation sequencing 10/14/2013 7 Helicos The HeliScope™ Sequencer 2 . 109 b/day 109 reads/run 25 – 55 bp read lengths Genome Sequencer FLX System 3 . 108 b/day 100 Mb/7.5 hour run 400 000 reads/7.5 hour 200 – 300 bp read lengths Solexa Illumina Genome Analyzer 6 . 108 b / day 3 . 109 b / 5 days run 50 . 106 oligo clusters 36 – 50 bp read lengths Parallel single molecule sequencing by synthesis Photocleavable dideoxy nucleotides Pacific Biosciences Single molecule real time sequencing SMRTTM www.pacificbiosciences.com DNA sequencing – DNA polymerase RNA sequencing – reverse transcriptase Codone-resolved translation elongation by single ribosomes Tens of nucleotide peaks in 1 sec Read length 1 – 15 kb 80 000 detection points 15 min/genome: 50 n/s * 80 000 points * 15 min * 60 s = 3.6 Gb DNA polymerase 529 processivity 20 kB – 400 b/s Some enzymes are not processive $ 100/genome Ion Torrent The Ion Personal Genome Machine (PGM™) sequencer Different templates in microwells Washing steps by individual nucleotides G, C, T, A The world's smallest solid-state pH meter Digital output http://www.iontorrent.com/