NONPROLIFERATION  AND  NUCLEAR   FORENSICS:  DETAILED,  MULTIANALYTICAL   INVESTIGATION  OF  TRINITITE  POST-­‐ DETONATION  MATERIALS   Antonio  Simonetti   Dept.  Civil  &  Environmental  Engineering  &  Earth  Sciences   University  of  Notre  Dame   University  of  Notre  Dame-­‐ TEAM   Dr.  Jeremy  Bellucci   Dr.  Christine  Wallace   Elizabeth  Koeman   Dr.  Peter  C.  Burns   Nuclear  Forensics   !    As  “the  technical  means  by  which  nuclear   materials,  whether  intercepted  intact  or   retrieved  from  post-­‐explosion  debris,  are   characterized  (as  to  composition,  physical   condition,  age,  provenance,  history)  and   interpreted  (as  to  provenance,  industrial   history,  and  implications  for  nuclear  device   design).”  Joint  Working  Group  of  the  American  Physical  Society   and  the  American  Association  for  the  Advancement  of  Science  (2010)   Questions  addressed  by  nuclear  forensic   analysis  &  associated  time  frames   !   What  the  event  a  nuclear  explosion?   What  was  the  yield?   !   Was  U  or  Pu  used?  or  both?     Level  of  sophistication  of  device?   !   Isotopic  composition  of  fuel  components?   Provenance  and  history?   Do  isotope  compositions  of  debris  match  any  from  known   weapon  tests?   !   What  was  the  most  probable  design  of  the  device?   Do  these  match  any  existing  designs?   Any  other  materials  present  that  might  suggest  a  particular   source?                       Hours   Hours-­‐   Days   Days   Several   weeks   Forensic  Analysis   Post-­‐Detonation  Materials  (PDMs)   Historic  Test  Sites     !   Ideal  for  establishing  and  developing  nuclear  forensics  protocols   since  the  chemical  and  isotopic  composition  of  weapons   employed  are  well  documented;  PDMs  provide  a  means  to   validate  forensic  results   !   Once  these  new  forensic  techniques  have  been  established,   these  can  be  applied  to  more  recent  and  sophisticated  nuclear   detonations   ! Source  attribution  is  the  ultimate  goal  of  nuclear  forensics!!   !   Trinity  Test  –  Detonation  of  First  Nuclear   Device     Why  is  the  study  of  post-­‐detonation   materials  from  the  Trinity  test  a  good   starting  point?     !   Design  of  trinity  device  was  relatively   “simple”  and  detonated  in  a  remote   location  with  “simple”  geologic   background  (i.e.,  desert  sand)     http://www.trinityremembered.com/ photos/index.html   TRINITY  TEST   !   World’s  first  detonation   of  a  nuclear  device   !   Nicknamed  “Gadget”   !   July  16,  1945  at  White   Sands  Missile  Range,  NM   !   Detonated  from  a  ~30  m   high  tower   !   239Pu-­‐implosion  device   !   Equiv.  to  21  kilotons  of   TNT   http://www.trinityremembered.com/ photos/index.html   www.awesomestories.com   WHAT  IS  TRINITITE?   •  The  explosion  resulted  in  the   partial  melting  of  the  surrounding   desert  sand  and  incorporated   components  of  the  device  and  test   site  materials,  which  subsequently   fused  into  blast-­‐melt  glass  referred   to  as  Trinitite.   -­‐  Predominantly  composed  of  silica-­‐ rich  glass     -­‐  Contains  remnant  mineral  grains   from  desert  (arkosic  sand):   Quartz,  Feldspars,  Micas,  Calcite,   Gypsum,  minor  amounts  of   ferromagnesian  minerals,   zircons     -­‐  Can  contain  remnants  of  the   device,  tower,  diagnostic   equipment:  mostly  copper  and  iron   !   SITE  SELECTION:   Flat  area  –  minimize  extraneous   effect  of  the  blast;   Good  weather  –  necessary  for   good  optical  information;   Minimum  20  km  distance  -­‐  from   nearest  settlement;   Proximity  to  Los  Alamos  –   minimize  transportation  of   personnel  and  materials;       A=  Red  inclusions;  B=  Black  inclusions;  C=  “Coke  Bottle”;  D=  “Regular”,  green  trinitite   Trinitite  Samples   !   A  =  glass-­‐like  fused  surface;  B  =  large  gas  pockets  on  surface/perimeter   C  =  rough  texture  of  desert  surface;  D  =  red  inclusions;  E  =  black   inclusions;  F  =  light  colored  glass;  G  =  blue  inclusions;  H  =  white   inclusions;  I  =  “Coke-­‐bottle”  inclusions;  J  =  light/dark  colored  layered   glass;  K  =  protuberances/casts;  L  =  metallic-­‐like  coating;  M  =  elongated   extrusions;  N  =  lace-­‐like  structures;  O  =  iron  inclusions     Glass-­‐like  fused   top  surface   Bottom  side  shows   rough  texture  of   precursor  desert   sand   Vesicles       “Multi-­‐scale  Separation  &  Analysis  of   Heterogeneous  Trinitite  Phases”    !  GOALS  and  OBJECTIVES   !   Conduct  detailed  chemical  and  isotopic  characterization   of  trinitite  samples  at  high  spatial  resolution,  i.e.  micron   scale  –  development  of  ‘forensic  tools’   !   The  latter  will  be  accomplished  using  a  combination  of   micro-­‐analytical  techniques  such  as  Electron  Microprobe   Analysis  (EMPA),  Scanning  Electron  Microscopy  (SEM),   Focused  Ion  Beam  (FIB),  Transmission  Electron   Microscopy  (TEM),  and  Laser-­‐Ablation-­‐Inductively   Coupled  Plasma  Mass  Spectrometry  (LA-­‐ICP-­‐MS).   !   Development  of  scientific  expertise  in  the  area  of   nuclear  forensics  for  graduate  students  and   postdoctoral  researcher  involved.   Analytical  Methods   !   BULK  SAMPLE:      -­‐  Opitcal  microscopy      -­‐  Gamma  spectroscopy      -­‐  Alpha  track  radiography      -­‐  Beta  autoradiography      -­‐  Micro-­‐  XRF      -­‐  Laser  fluorination  (stable  oxygen  isotope)   !   Micron-­‐scale:      -­‐  SEM-­‐EDS      -­‐  EMP      -­‐  FIB/  TEM      -­‐  LA-­‐(MC)-­‐ICP-­‐MS     Origin  of  Radionuclides-­‐   Gamma  Spectroscopy   Bulk  Analysis  –  Gamma  Spectroscopy   Bellucci  et  al.  (2013a,  JNRC)   Bellucci  et  al.  (2013a,  JNRC)   Bellucci  et  al.  (2013a,  JNRC)   Bellucci  et  al.  (2013a,  JNRC)   Bellucci  et  al.  (2013a,  JNRC)   Gamma  Spectroscopy  –   Conclusions   !    Based  on  the  relative  activities  of  137Cs,  155Eu,   239Pu,  and  241Am,  a  similar  behavior  of  these   isotopes  during  the  Trinity  test  is  observed.   !    The  behavior  of  133Ba  does  not  correlate  with   any  of  the  bomb-­‐derived  isotopes,  and   therefore,  its  exact  origin  remains  ambiguous.   !    Based  on  the  activity  of  152Eu,  a  spatial  model   calculation  for  the  radioisotopes  indicates  their   homogeneous  distribution.   Bellucci  et  al.  (2013a,  JNRC)   Detailed,  In-­‐situ   Microanalysis   SEM  Investigation  of  Inclusions  –   Trinitite  Surfaces   Bellucci  &  Simonetti  (2012,  J.  Radioanalytical  Nuclear  Chemistry)   Bellucci  &  Simonetti  (2012,  J.  Radioanalytical  Nuclear  Chemistry)   TRINITITE-­‐HOSTED  INCLUSIONS   Origin  –  desert  sand   Origin  –  gadget  device  &  materials,  blast  tower,     Bellucci  &  Simonetti  (2012,  J.  Radioanalytical  Nuclear  Chemistry)   TRINITITE-­‐HOSTED  INCLUSIONS   Fe-­‐Si   Fe-­‐Si   X-­‐ray  surface  map   BSE-­‐  chemistry   TRINITITE-­‐HOSTED  INCLUSIONS   Bellucci  &  Simonetti  (2012,  J.  Radioanalytical  Nuclear  Chemistry)   Pb   X-­‐ray  surface  map   BSE-­‐  chemistry   TRINITITE-­‐HOSTED  INCLUSIONS   Bellucci  &  Simonetti  (2012,  J.  Radioanalytical  Nuclear  Chemistry)   Ba   W-­‐Ta-­‐Ga   X-­‐ray  surface  map   BSE-­‐  chemistry   TRINITITE-­‐HOSTED  INCLUSIONS   Bellucci  &  Simonetti  (2012,  J.  Radioanalytical  Nuclear  Chemistry)   Ti   Fe-­‐Ti   X-­‐ray  surface  map   BSE-­‐  chemistry   Blast  modeling  –  Inclusion  work   Two-­‐stage  process   Bellucci  &  Simonetti  (2012,  J.  Radioanalytical  Nuclear  Chemistry)   Conclusions  –     Trinitite-­‐hosted  inclusions   ! RELIEF:    –  “Flat”  or  “Bell-­‐shaped”  inclusions  formed   simultaneously  with  main  phase  of  blast  melt   -­‐  “Topographic”  inclusions  precipitated  (“rained   down”)  later     ! ORIGIN  of  ELEMENTS:   -­‐  Fe-­‐Ti  –  blast  tower   -­‐  Pb,  Ta,  W  –  tamper  of  device   -­‐  Ga  –  alloyed  with  Pu  during  enrichment  process   -­‐  Ba  –  device  +  natural   Bellucci  &  Simonetti  (2012,  J.  Radioanalytical  Nuclear  Chemistry)   Distribution  of  Radioactive  Elements-­‐   Micron  scale   Optical map (PPL) Alpha track radiography Beta autoradiography Wallace  et  al.  (2013,  JRNC)     Trinitite   !   Composed  mostly  of   relict  quartz  grains   (dark)  and  trinitite   “glass”  light   !   Constrain  the   composition  of  melt   BSE  image  of  trinitite.  Courtesy  of  T.  Hainley    BSE  image  of  trinitite.  Courtesy  of  T.  Hainley     Wallace  et  al.  (2013,  JRNC)     Trace  Element  Analysis   !   Laser  Ablation  ICP-­‐MS     !   Parameters:   !   Standard:  NIST  612   !   Spot  Size:  55μm   !   Frequency:  5  Hz   ! Fluence:  ~12  J/cm2   !   New  Wave  Research  UP-­‐213   Nd:YAG  laser  &  Element2  HR-­‐ ICP-­‐MS   Midwest  Isotope  and  Trace  Element   Research  Analytical  Center  (MITERAC)   LA-­‐ICP-­‐MS  Analyses  -­‐  Radionuclides       Wallace  et  al.  (2013,  JRNC)     Wallace  et  al.  (2013,  JRNC)     Wallace  et  al.  (2013,  JRNC)     Pu/Zr  >0.014   Wallace  et  al.  (2013,  JRNC)     Wallace  et  al.  (2013,  JRNC)     Wallace  et  al.  (2013,  JRNC)     240Pu/239Pu  =  0.0208  ±  0.0012   235U/238U  =  0.00718  ±  0.00018   Distribution  of  Radioactive  Elements  –   Conclusions   !   Demonstrate  for  the  first  time  that  device-­‐related   radionuclides  (e.g.,  U,  Pu)  are  found  primarily  within   the  melt  (glassy)  component  of  trinitite.   !    In  areas  characterized  by  higher  Pu  ion  signals  (i.e.,   abundances),  these  also  contain  elevated  contents  of   U  and  fission  products  (e.g.,  137Cs),  which  confirm  their   association  with  the  device.   !    In  contrast,  crystalline  (relatively  intact,  precursor)   mineral  phases,  such  as  quartz,  K-­‐feldspar,  are   essentially  devoid  of  radionuclides  and  other  device-­‐ related  components.   Wallace  et  al.  (2013,  JRNC)     Distribution  of  Major  &  Trace  Elements   !   Can  the  distribution  of  major  and  trace   element  abundances  for  Trinitite   obtained  in-­‐situ  by  Electron  Microprobe   &  LA-­‐ICP-­‐MS  be  used  to  decipher   natural  vs.  anthropogenic  (device-­‐ related)  components?   !   13  Trinitite  samples  were  investigated  –   total  of  117  LA-­‐ICP-­‐MS  analyses   FeO% SiO2 % MnO% FeO% 2 NaO% FeO% Al2 O3 % To Quartz FeO% MgO% FeO% TiO2 % FeO% To Quartz K2 O% CaO% FeO% Calcite K-Feldspar 40 45 50 55 60 65 70 75 80 0 1 2 3 4 5 6 7 8 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0 1 2 3 4 5 6 7 8 0 0.5 1 1.5 2 2.5 3 3.5 0 1 2 3 4 5 6 7 8 FeO% Anthropogenic? Anthropogenic? Anthropogenic? To K-spar To Calcite To K-spar To Quartz To Calcite To Plagioclase, Chlorite To Quartz 0 5 10 15 20 25 0 1 2 3 4 5 6 7 8 0 0.5 1 1.5 2 2.5 3 3.5 0 1 2 3 4 5 6 7 8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 1 2 3 4 5 6 7 8 0 2 4 6 8 10 12 14 16 18 0 1 2 3 4 5 6 7 8 1-3.59a 3-5.25b 4F 2.36a 4C-10.60a 4F 2.36 4D-9.18a 4e-5.22b 4b-2.64b 4a-1.95a 5D-1.72B 5B-10.4B 4F-5.37 5A-6.06 0 10 20 30 40 50 60 0 1 2 3 4 5 6 7 8 Bellucci  et  al.  (in  press,  Chemical  Geology)   Bellucci  et  al.  (in  press,  Chemical  Geology)   Trace  Elements  Patterns   !   Normalize  to   upper   continental   crust     !   Looking  for   anomalous   compositions   !   Order  by   condensation   temperature   <-­‐-­‐-­‐-­‐-­‐Highest  condensation  temperature   Samples  with  no  clear  mineral   enrichments     Bellucci  et  al.  (in  press,  Chemical  Geology)   Nb  and  Ta:  Enriched   Anthropogenic   Bellucci  et  al.  (in  press,  Chemical  Geology)   Nb  and  Ta:  Enriched   Anthropogenic   Bellucci  et  al.  (in  press,  Chemical  Geology)   Natural  Enrichments   Zircon   Apatite   Monazite   Bellucci  et  al.  (in  press,  Chemical  Geology)   U  enrichment  without  geologic   indicators   Bellucci  et  al.  (in  press,  Chemical  Geology)   Metals  define  linear  correlations   Indicate  mixing  between   sand  and  likely  materials   from  the  bomb  tower   Bellucci  et  al.  (in  press,  Chemical  Geology)   Pb   Cu   Koeman  et  al.  (in  prep.)   Lead  Concentrations  (ppm)   FOV  2.5mm   8100   15,600   12,500   7000   6900   Origins  of  Trace  Elements   !   Most  trace  elements  can  be  attributed  to  precursor     minerals  within  desert  sand:   !   Calcite/Gypsum:  Sr   !   Barite:  Ba   !   K-­‐feldspar:  Cs,  Rb,  Ga   ! Ilmenite:  Nb,  Ta   !   Apatite,  Monazite,  Zircon:  U,  Th,  Y,  Hf,  REEs   !   Except  for  metals:  Nb,  Ta,  Cu,  Co,  Cr,  Pb   !    Some  U  is  not  from  natural  background   Bellucci  et  al.  (in  press,  Chemical  Geology)   U  &  Pb  isotope  compositions  of  Trinitite   Bellucci  et  al.  (2013b,  Analytical  Chemistry)   Uranium  isotopes   !   238U   !   236U:  Produced  by  neutron  capture  of  un-­‐ fissioned  235U    and  decay  of  240Pu   !   235U:  Produced  by  decay  of  239Pu   !   234U:  Produced  by  decay  of  238Pu   !   All  U  have  half-­‐lives  that  are  long  enough  to   make  them  appear  stable  since  the  time  of   detonation   Bellucci  et  al.  (2013b,  Analytical  Chemistry)   Pu-­‐Isotope  Systematics   !   240Pu-­‐-­‐>236U     !   Half  life:  6,560  y   !   239Pu-­‐-­‐>235U   !   Half  life:  24,100  y   !   238Pu-­‐-­‐>234U   !   Half  life:  87.7  y   Bellucci  et  al.  (2013b,  Analytical  Chemistry)   Isotope  Analysis   61   Laser  Ablation  Multi  Collector  ICP-­‐MS   !   Nu  Plasma  II  Parameters   !   ESI  New  Wave  193  Excimer   Uranium  isotopes   Natural  U  in  tamper   Natural  U  in  geology   Bellucci  et  al.  (2013b)   Uranium  isotopes   Fission  changes  tamper  composition   &  mixes  with  natural   Bellucci  et  al.  (2013b)   Uranium  Isotopes   Least  diluted  tamper  isotopic   composition   Tamper   Bellucci  et  al.  (2013b)   Influence  of  Pu   !   Assuming  an  initial  U  isotopic   composition   !   Known  half-­‐lives   !   One  can  mathematically  predict  the  U   isotopic  composition  resulting  from   the  in-­‐growth  of  Pu  over  ~68  years   !   235U/238U  (present)  =  235U/238U  (initial)  +  239Pu/238U  *  (eλ239Put  –1)   !   236U/238U  (present)  =  236U/238U  (initial)  +  239Pu/238U  *240Pu/239Pu  *   (eλ240Put  –1)   !   234U/238U  (present)  =  234U/238U  (initial)  +  239Pu/238U  *238Pu/239Pu  *   (eλ238Put  –1)   Pu  model  of  “super  grade  Pu”   Tamper   Bellucci  et  al.  (2013b)   Spots  with  high  Pu   concentrations   Tamper   Bellucci  et  al.  (2013b)   Bellucci  et  al.  (2013b)   Bellucci  et  al.  (2013b)   Pu-­‐model   Tamper   Bellucci  et  al.  (2013b)   Spots  with  high  Pu   concentrations   Tamper   Bellucci  et  al.  (2013b)   Conclusions   !   Forensic  investigation  of  PDMs  is  complex  and   requires  a  multi-­‐analytical  approach  for  accurate   assessment  of  device’s  chemical  &  isotopic   composition   !   Traditional  protocols  involving  “bulk”  samples  are   time-­‐consuming  and  will  tend  to  “average  out”  the   chemical  and  isotopic  signals  from  device  and  matrix   components   !   Micro-­‐analytical  approach  can  provide  both  rapid  and   accurate  forensic  information  –  key  attributes  for   source  attribution  purposes   On-­‐going  Research  -­‐  Trinitite   ! Pu  isotope  analysis  –  LA-­‐MC-­‐ICP-­‐MS  (Dr.  S.   Mana)   !   Oxygen  isotope  analysis  –  laser  fluorination  (E.   Koeman  et  al.,  in  press,  Analytical  Chemistry)   ! Pb  isotope  analysis  of  “Red  areas”  –  LA-­‐MC-­‐ ICP-­‐MS  (E.  Koeman  &  J.  Bellucci)   !   Li  isotope  analysis  –  MC-­‐ICP-­‐MS  (T.  Magna,   Czech  Geol.  Survey)   Lead  Isotopes  in  Trinitite   75   36.50   37.00   37.50   38.00   38.50   39.00   39.50   40.00   16.50   17.00   17.50   18.00   18.50   19.00   19.50   208Pb/204Pb   206Pb/204Pb   15.30   15.40   15.50   15.60   15.70   15.80   15.90   16.50   17.00   17.50   18.00   18.50   19.00   19.50   207Pb/204Pb   206Pb/204Pb   36.50   37.00   37.50   38.00   38.50   39.00   39.50   40.00   16.50   17.00   17.50   18.00   18.50   19.00   19.50   208Pb/204Pb   206Pb/204Pb   Trini0te  Glass   Red  Area   15.30   15.40   15.50   15.60   15.70   15.80   15.90   16.50   17.00   17.50   18.00   18.50   19.00   19.50   207Pb/204Pb   206Pb/204Pb   Trini0te  Glass   Red  Area   Koeman  et  al.  (in  prep.)   Pb  Isotopes   77   Estimated  Device  Composition   36.50   37.00   37.50   38.00   38.50   39.00   39.50   40.00   16.50   17.00   17.50   18.00   18.50   19.00   19.50   208Pb/204Pb   206Pb/204Pb   Trini0te  Glass   Red  Area   15.30   15.40   15.50   15.60   15.70   15.80   15.90   16.50   17.00   17.50   18.00   18.50   19.00   19.50   207Pb/204Pb   206Pb/204Pb   Trini0te  Glass   Red  Area   Est.  Device   Comp.   Est.  Device   Comp.   Koeman  et  al.  (in  prep.)   ! Buchans  Mine,  NFLD  (Canada)   !   Only  mine  active     !   Mined  by  American  Smelting   and  Refining  Co.  from   1928-­‐1984