1 Revision 11 Oxy-schorl, Na(Fe2+ 2Al)Al6Si6O18(BO3)3(OH)3O, a new mineral from Zlatá Idka, Slovak2 Republic and Přibyslavice, Czech Republic3 4 Peter Bačík1 *, Jan Cempírek2,3 , Pavel Uher1 , Milan Novák4 , Daniel Ozdín1 , Jan Filip5 , Radek5 Škoda4 , Karel Breiter6 , Mariana Klementová7 and Rudolf Ďuďa8 6 7 1 Department of Mineralogy and Petrology, Comenius University, Mlynská dolina, 842 158 Bratislava, Slovakia9 2 Department of Mineralogy and Petrography, Moravian Museum, Zelný trh 6, 659 37 Brno,10 Czech Republic11 3 Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia,12 6339 Stores Road, Vancouver, BC, V6T 164 Canada13 4 Department of Geological Sciences, Masaryk University, Kotlářská 2, 611 37 Brno, Czech14 Republic15 5 Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc,16 17. listopadu 12, 771 46 Olomouc, Czech Republic17 6 Geological Institute of the Academy of Science of Czech Republic, v.v.i., Rozvojová 269,18 165 00 Praha 6, Czech Republic19 7 Institute of Physics of the AS CR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic20 8 Bystrická 87, 040 11 Košice, Slovakia21 *E-mail: bacikp@fns.uniba.sk22 23 ABSTRACT24 Oxy-schorl (IMA 2011-011), ideally Na(Fe2+ 2Al)Al6Si6O18(BO3)3(OH)3O, a new25 mineral species of the tourmaline supergroup, is described. In Zlatá Idka, Slovak Republic26 (type locality), fan-shaped aggregates of greenish black acicular crystals ranging up to 2 cm in27 size, forming aggregates up to 3.5 cm thick were found in extensively metasomatically altered28 metarhyolite pyroclastics with Qtz+Ab+Ms. In Přibyslavice, Czech Republic (co-type29 locality), abundant brownish black subhedral, columnar crystals of oxy-schorl, up to 1 cm in30 size, arranged in thin layers, or irregular clusters up to 5 cm in diameter, occur in a foliated31 muscovite-tourmaline orthogneiss associated with Kfs+Ab+Qtz+Ms+Bt+Grt. Oxy-schorl32 from both localities has a Mohs hardness of 7 with no observable cleavage and parting. The33 measured and calculated densities are 3.17(2) and 3.208 g cm-3 (Zlatá Idka) and 3.19(1) and34 2 3.198 g cm-3 (Přibyslavice), respectively. In plane polarized light, oxy-schorl is pleochroic –35 O = green to bluish-green, E = pale yellowish to nearly colorless (Zlatá Idka) and O = dark36 greyish-green, E = pale brown (Přibyslavice), uniaxial negative, ω = 1.663(2), ε = 1.641(2)37 (Zlatá Idka) and ω = 1.662(2); ε = 1.637(2) (Přibyslavice). Oxy-schorl is trigonal, space group38 R3m, Z=3, a = 15.916(3) Å, c = 7.107(1) Å, V = 1559.1(4) Å3 (Zlatá Idka) and a = 15.985(1)39 Å, c = 7.154(1) Å, V = 1583.1(2) Å3 (Přibyslavice). The composition (average of 5 electron40 microprobe analyses from Zlatá Idka and 5 from Přibyslavice) is (in wt.%): SiO2 33.8541 (34.57), TiO2 <0.05 (0.72), Al2O3 39.08 (33.55), Fe2O3 not determined (0.61), FeO 11.5942 (13.07), MnO <0.06 (0.10), MgO 0.04 (0.74), CaO 0.30 (0.09), Na2O 1.67 (1.76), K2O <0.0243 (0.03), F 0.26 (0.56), Cl 0.01 (<0.01), B2O3 (calc.) 10.39 (10.11), H2O (from the crystal-44 structure refinement) 2.92 (2.72), sum 99.29 (98.41) for Zlatá Idka and Přibyslavice (in45 parenthesis). A combination of EMPA, Mössbauer spectroscopy and crystal-structure46 refinement yields empirical formulae47 (Na0.591Ca0.103□0.306)Σ1.000(Al1.885Fe2+ 1.108Mn0.005Ti0.002)Σ3.000(Al5.428Mg0.572)Σ6.000(Si5.506Al0.494)Σ648 .000O18(BO3)3(OH)3(O0.625OH0.236F0.136Cl0.003)Σ1.000 for Zlatá Idka, and49 (Na0.586Ca0.017K0.006□0.391)Σ1.000(Fe2+ 1.879Mn0.015Al1.013Ti0.093)Σ3.00(Al5.732Mg0.190Fe3+ 0.078)Σ6.000(Si50 5.944Al0.056)Σ6.000O18(BO3)3(OH)3(O0.579F0.307OH0.115)Σ1.000 for Přibyslavice. Oxy-schorl is51 derived from schorl end-member by the AlOFe-1(OH)-1 substitution. The studied crystals of52 oxy-schorl represent two distinct ordering mechanisms: disorder of R2+ and R3+ cations in53 octahedral sites and all O ordered in the W site (Zlatá Idka), and R2+ and R3+ cations ordered54 in the Y and Z sites and O disordered in the V and W sites (Přibyslavice).55 56 Keywords: oxy-schorl, tourmaline-supergroup minerals, new mineral, electron57 microanalysis, crystal-structure refinement, Přibyslavice, Zlatá Idka58 59 INTRODUCTION60 61 Minerals of tourmaline-supergroup are common in many geological environments.62 Complexity of their structure, variability of structural sites and chemical composition are63 manifested in a relatively large number of mineral species (Henry et al. 2011). Oxy-schorl,64 ideally Na(Fe2+ 2Al)Al6Si6O18(BO3)3(OH)3O, is a new member of the alkali group and oxy-65 series of the tourmaline supergroup (sensu nomenclature of Henry et al. 2011). The coupled66 general substitution Y R2+ +W (OH) ↔ Y Al+W O derived from ideal schorl67 NaFe2+ 3Al6Si6O18(BO3)3(OH)3OH and leading to the ideal oxy-schorl was discussed already68 3 by Foit and Rosenberg (1977); Povondra (1981), Povondra et al. (1985, 1987) and Foit (1989)69 published several chemical analyses of tourmalines corresponding to oxy-schorl including70 samples from the co-type locality Přibyslavice (Povondra et al. 1987). However, the term71 oxy-schorl was first introduced by Hawthorne and Henry (1999). Subsequently, oxy-schorl72 was described from several localities worldwide (e.g., Henry and Dutrow 2001, Novák et al.73 2004, Baksheev et al. 2011). Finally, oxy-schorl was defined as a potential new species of the74 tourmaline supergroup in the recent tourmaline nomenclature (Novák et al. 2009, Henry et al.75 2011). Oxy-schorl is likely quite a common mineral species; however, many tourmaline76 compositions are close to the simplified formula (Na0.5□0.5)Fe2+ 2AlAl6Si6O18 (BO3)3 (OH)377 (OH0.5O0.5) (see e.g., Povondra 1981, Foit 1989, Novák et al. 2004) and owing to problems78 with the determination of H (and other light elements), exact classification of such schorlitic79 tourmalines is complicated.80 Oxy-schorl was approved by the Commission on New Minerals, Nomenclature and81 Classification of the International Mineralogical Association under the number IMA 2011–82 011. The holotype material from the type locality (Zlatá Idka, Slovak Republic) is preserved83 in the collection of the East-Slovak Museum, Košice, Slovakia (specimen number G-12760),84 and in the collection of Department of Mineralogy and Petrology, Comenius University,85 Bratislava, Slovakia (specimen number 7279). Oxy-schorl from co-type locality (Přibyslavice,86 Czech Republic) is deposited in the collections of the Department of Mineralogy and87 Petrography, Moravian Museum, Brno, Czech Republic, specimen number B10521. We88 provide here a description of physical, chemical and structural characteristics of oxy-schorl as89 a new mineral species.90 91 OCCURRENCE AND PHYSICAL PROPERTIES92 93 Oxy-schorl was found in fracture fillings cutting altered metarhyolite pyroclastics, in the94 abandoned Marianna adit, ca 2.5 km WNW from Zlatá Idka village (48°46'7"N, 20°57'50"E),95 Slovak Ore Mountains (Slovenské Rudohorie), near Košice, eastern Slovakia. The acid96 metapyroclastic rocks of Middle Ordovician age belong to the Bystrý Potok Formation of the97 Gelnica Group, Gemeric Superunit, Central Western Carpathians (Vozárová et al. 2010).98 Associated minerals of the host-rock include quartz, albite and muscovite. Oxy-schorl is99 probably a product of interaction between the metarhyolite pyroclastics and boron-enriched,100 hydrothermal fluids generated from adjacent Permian tourmaline-bearing leucogranites. Oxy-101 schorl from Zlatá Idka occurs in fan-shaped aggregates of greenish black acicular crystals102 4 ranging up to 2 cm in size, with aggregates up to 3.5 cm across. Tourmaline aggregates103 display chemical zoning in back-scattered electron (BSE) images (Fig. 1), locally with more104 Mg-rich (dravite to oxy-dravite) and also X-site vacant composition (“□-Fe-O root name”105 according to Henry et al., 2011) but oxy-schorl composition prevails.106 The second occurrence of oxy-schorl is in a foliated muscovite-tourmaline orthogneiss107 at Přibyslavice (Tisá skála outcrop, ~1 km ENE from Přibyslavice, 49°50'48"N, 15°25'1"E)108 near Kutná Hora, Central Bohemia Region, Czech Republic. The host Lower Palaeozoic109 muscovite-tourmaline alkali-feldspar granite was metamorphosed during the Variscan110 orogeny in the amphibolite facies (Breiter et al., 2010). The orthogneiss is composed of K-111 feldspar (orthoclase perthite), albite, quartz, muscovite, biotite, garnet and apatite with112 accessory zircon, magnetite, pyrite and ilmenite. Oxy-schorl from Přibyslavice formed as a113 primary magmatic mineral of the granite, but its composition was influenced by the later114 metamorphic processes (e.g., Povondra et al. 1987, 1998). It forms abundant subhedral,115 columnar homogeneous crystals, up to 1 cm in size, arranged in thin layers, or irregular116 clusters up to 5 cm in diameter.117 Oxy-schorl from both localities has vitreous luster and is translucent in thin edges, non-118 fluorescent and paramagnetic. Its Mohs hardness is 7, it is brittle and has conchoidal fracture;119 cleavage and parting were not observed. The streak is pale grey. The density was measured120 using a pycnometric method as 3.17(2) and 3.19(1) g cm-3 ; calculated density using empirical121 formula and unit-cell data yields 3.208 and 3.198 g cm-3 for oxy-schorl from Zlatá Idka and122 Přibyslavice, respectively. Oxy-schorl is negative uniaxial with the following optical123 properties: ω = 1.663(2), ε = 1.641(2), birefrigence: 0.022 (589.9 nm) in Zlatá Idka and ω =124 1.662(2); ε = 1.637(2); birefringence: 0.025 (589.9 nm) in Přibyslavice: At both localities,125 oxy-schorl has distinct pleochroism; O = green to bluish-green, E = pale yellowish to nearly126 colorless (Zlatá Idka) and O = dark greyish-green, E = pale brown (Přibyslavice).127 128 ANALYTICAL METHODS129 130 Chemical composition131 Representative chemical analyses (5 from Zlatá Idka, 5 from Přibyslavice) were carried132 out on crystals used for structure refinement using a CAMECA SX100 electron microprobe133 (WDS mode, 15 kV, 10 and 20 nA, 5 μm beam diameter) and the following standards:134 almandine (Si Kα, Fe Kα), titanite (Ti Kα), sanidine (Al Kα, K Kα), chromite (Cr Kα),135 vanadinite (V Kα), spessartine (Mn Kα), MgO (Mg Kα), grossular (Ca Kα), albite (Na Kα),136 5 topaz (F Kα) and NaCl (Cl Kα). Detection limits of the measured elements vary between 0.01137 and 0.05 wt.%. Formulae of tourmalines were calculated on a basis of 15 Y+Z+T cations. H2O138 was calculated on the basis of electroneutral formula and structure refinement results. The139 presence of H2O was confirmed by IR spectroscopy. B2O3 was calculated from ideal formulae140 since the structure refinement data indicate full occupancy of the B-site and absence of [4] B in141 the T-site. Ti and Cl were below detection limits (0.05 and 0.01 wt.%, respectively).142 Analytical data are given in Table 1. The content of Li in oxy-schorl from Zlatá Idka was143 determined by LA-ICP-MS analysis with a laser ablation system UP 213 (New Wave, USA)144 and quadrupole ICP-MS spectrometer Agilent 7500 CE (Agilent, Japan), at the Central145 European Institute of Technology, Masaryk University, Brno. It was always lower than a146 detection limit which corresponded to 0.04 wt. % Li2O. Oxy-schorl from Přibyslavice yielded147 Li2O ≤ 0.06 wt. % determined by wet chemical analysis (Povondra et al. 1987).148 149 Mössbauer spectroscopy150 The 57 Fe Mössbauer spectrum of powdered tourmaline (ground under acetone using an151 agate mortar) was acquired at constant acceleration mode using a 57 Co in Rh source at room152 temperature (293 K), at the Department of Nuclear Physics, Slovak Technical University,153 Bratislava, Slovakia (Zlatá Idka) and Centre for Nanomaterial Research, Faculty of Science,154 Palacký University in Olomouc (Přibyslavice). The isomer shift was calibrated against an α-155 Fe foil at room temperature. Spectra were fitted by Lorentz functions using the NORMOS156 program (Brand 1997) on the Zlatá Idka sample and CONFIT2000 program (Žák and157 Jirásková 2006) on the Přibyslavice sample. The fitting results are listed in Table 2.158 159 Infrared spectroscopy160 The FTIR spectrum of tourmaline from Přibyslavice was recorded using a Nicolet161 Nexus 670 spectrometer equipped with DTGS detector and XT-KBr beamsplitter. The sample162 was prepared by mixing 1 mg of powdered sample with 300 mg of KBr (dried beforehand at163 150 °C) and pressing in an evacuated die at 10 tons. A total of 32 scans in air were carried out164 for the sample in the wavenumber range 4000–400 cm–1 at a resolution of 4 cm–1 . The165 spectrum is shown in Figure 2, and a basic interpretation of the peaks (after Reddy et al. 2007)166 is listed in Table 3.167 168 Thermogravimetric analysis169 6 Thermal decomposition of oxy-schorl from Zlatá Idka and Přibyslavice was studied in170 an inert atmosphere (Ar) using a simultaneous thermal analyzer (STA 449 C Jupiter, Netzsch)171 including both thermogravimetric analysis (TGA) and differential scanning calorimetry172 (DSC) in the range of 30 - 1100 °C on the Department of Inorganic Chemistry, Comenius173 University in Bratislava (Zlatá Idka) and Department of Physics, Palacký University in174 Olomouc (Přibyslavice). The sample from Zlatá Idka was placed into Pt crucible with lid and175 dynamically heated with a heating rate of 20 Kmin-1 . TG correction: 020/5000 mg, DSC176 correction: 020/50 mV. The Přibyslavice sample was dynamically heated in open alumina177 crucible with a heating rate of 5 K/min.178 179 180 Powder X-ray diffraction181 Powder XRD measurements of oxy-schorl from Zlatá Idka were made on the BRUKER182 D8 Advance diffractometer (Department of Mineralogy and Petrology, Faculty of Natural183 Sciences, Comenius University in Bratislava, Slovakia) under the following conditions:184 Bragg-Brentano geometry, Cu anticathode, Ni Kβ filters, accelerating voltage: 40 kV, beam185 current: 40 mA. Data was obtained by the BRUKER LynxEye detector. The step size was186 0.01° 2θ, the step time was 5 s per one step, and the range of measurement was 4 – 65° 2 θ.187 Measured data was fitted and lattice parameters were refined with DIFFRACplus TOPAS188 software (Bruker 2010) using pseudo-Voight function. Indexed diffraction data are listed in189 Table 4.190 Powder XRD data for oxy-schorl from Přibyslavice were recorded with a PANalytical191 X’Pert PRO MPD diffractometer (CoKα radiation) in Bragg-Brentano geometry, equipped192 with an X´Celerator detector and programmable divergence and diffracted beam anti-scatter193 slits. Diffraction pattern of the sample on a zero-background Si slide was scanned with a step194 size of 0.017° in 2θ range 5-90°. Data were indexed and refined with Stoe WinXPow package195 (version 1.06), using built-in Treor (Werner et al. 1985) and least-square refinement routines196 (Stoe & Cie 1999). Indexed diffraction data are listed in Table 5.197 198 Crystal structure refinement199 Single-crystal X-ray studies were carried out using a 4-circle Oxford Diffraction KM-200 4/Xcalibur diffractometer with a Sapphire2 (large Be window) CCD detector. The CrysAlis201 (Oxford Diffraction Ltd) and SHELXTL (PC Version) (Sheldrick 2000) program packages202 7 were used for data reduction and structure refinement, respectively, using neutral scattering203 factors and anomalous dispersion corrections. The structure of oxy-schorl was refined in R3m204 and converged to a final R index of 3.32% for Zlatá Idka and 1.91% for Přibyslavice data.205 Crystal and refinement details of tourmaline from Zlatá Idka are listed in Table 6, structural206 data are summarized in Tables 7 to 9 and bond-valence table is presented in Table 10. Crystal207 and refinement details of tourmaline from Přibyslavice are listed in Table 11 and structural208 data are summarized in Tables 12 to 14; its bond-valence table is presented in Table 15.209 210 211 212 RESULTS213 214 The samples of oxy-schorls from Zlatá Idka and Přibyslavice display some differences in215 chemical composition and site allocation. A combination of EMPA, Mössbauer spectroscopy216 and crystal-structure refinement yields following empirical formulae:217 (Na0.591Ca0.103 0.306)Σ1.000(Al1.885Fe2+ 1.108Mn0.005Ti0.002)Σ3.000(Al5.428Mg0.572)Σ6.000(Si5.506Al0.494)Σ6.218 000O18(BO3)3(OH)3(O0.625OH0.236F0.136Cl0.003)Σ1.000 and219 (Na0.586Ca0.017K0.006□0.391)Σ1.000(Fe2+ 1.879Mn0.015Al1.013Ti0.093)Σ3.00(Al5.732Mg0.190Fe3+ 0.078)Σ6.000(Si220 5.944Al0.056)Σ6.000O18(BO3)3(OH)3(O0.579F0.307OH0.115)Σ1.000 for oxy-schorl from Zlatá Idka and221 Přibyslavice, respetively. They are in good agreement with the end-member formula222 Na(Fe2+ 2Al)Al6Si6O18(BO3)3(OH)3O requiring SiO2 35.22, Al2O3 34.87, FeO 14.04, Na2O223 3.03, B2O3 10.20, H2O 2.64, total 100.00 wt.%. As suggested by the empirical formulae, oxy-224 schorl from Zlatá Idka is moderately disordered in the octahedral sites, while disorder in oxy-225 schorl from Přibyslavice is only negligible.226 The content of OHwas calculated from electroneutral formula based on the crystal-227 structure refinement and Mössbauer spectroscopy data. Ferric iron takes only 4 % of all Fe in228 oxy-schorl from Přibyslavice and it was not detected in the sample from Zlatá Idka. The229 content of H2O was also measured using TGA; the TGA curve shows a mass change –2.96 %230 (Zlatá Idka) and –2.69 % (Přibyslavice) at ca. 950-1020 °C which corresponds to breakdown231 of the structure and release of water (bound in form of OH). Reduced content of W OH is also232 supported by the low intensity of the O–H stretching peak at 3628 cm-1 in the infrared233 absorption spectrum (Fig. 2). With regard to the possible chemical inhomogeneity of the234 samples (Fig. 1), the calculated H2O contents were preferred to the TGA results.235 8 Both tourmalines slightly differ structurally as represented by lattice parameters: a =236 15.9134(9) Å, c = 7.1012 Å, V = 1557.4(2) Å3 (powder XRD) and a = 15.916(3) Å, c =237 7.107(1) Å, V = 1559.1(4) Å3 (crystal-structure refinement) for Zlatá Idka and a =238 15.9865(8), c = 7.1608(3) Å, V = 1584.9(2) Å3 (powder XRD) and a = 15.985(1) Å, c =239 7.154(1) Å, V = 1583.1(2) Å3 (crystal-structure refinement) for Přibyslavice. Differences in240 lattice parameters result from different Fe2+ , Fe3+ and Al3+ occupancies in Y, Z and T sites in241 both tourmalines.242 Despite all differences between studied samples, they both belong to alkali group (Fig.243 3a), they represent oxy species (Fig. 3b) and their contents of Fe and Mg correspond to the244 composition of oxy-schorl (Fig. 3c).245 246 DISCUSSION AND CONCLUSIONS247 248 Oxy-schorl is chemically and structurally related to schorl. The name oxy-schorl has249 been abundantly used for tourmalines with the composition similar to schorl but containing250 more than 6.5 apfu Al, and O in the W site if known (e.g. Hawthorne & Henry 1999; Henry &251 Dutrow 2001; Buriánek & Novák 2004, 2007; Novák et al. 2004; Ertl et al. 2010a, 2010b;252 Baksheev et al. 2011; Bosi 2011). Since the current classification of the tourmaline253 supergroup (Henry et al. 2011) uses ordered formulae for tourmaline classification, it is254 generally possible to recognize oxy-schorl from electron microprobe data using the255 approximate limits: Na > 0.5 apfu, Al > 6.5 apfu, Fe > Mg and F < 0.5 apfu . However,256 ordering of ions in the structure of different samples can be variable. In the tourmaline257 structure the W site is located on the 3-fold axis passing through the unit cell, and surrounded258 by three Y sites (Hawthorne 1996, 2002). From the crystallographic point of view there are259 two different possible arrangements: 1) W = OH or F with valence bond ca. 0.33 vu; 2) W = O260 - valence bond is ca. 0.67 vu (vu = valence units, Hawthorne 1996, 2002). The substitution of261 O for OH results in the increase of charge requirements in the neighboring Y sites and the262 substitution of Al for divalent cations, or disorder of divalent and trivalent cations among the263 octahedral Y and Z sites. If the W site is fully occupied by O, the structural arrangements with264 3Y R2+ or 2Y R2+ +Y R3+ cations are less favorable than the arrangements with 3Y R3+ or265 2Y R3+ +Y R2+ (Hawthorne 2002). Therefore, in natural samples with the mixed occupancy of the266 W site, combination of 2Y R2+ +Y R3+ and 2Y R3+ +Y R2+ arrangements is the most probable.267 The crystal-structure refinement of oxy-schorl from Zlatá Idka showed that significant268 amount of divalent cations is allocated in the Z site, resulting in the content of Y Al3+ of 1.885269 9 apfu, the possible Y site short-range arrangements favor dominant O2in W site. The observed270 Al-Mg disorder in tourmalines was already studied (e.g., Grice and Ercit 1993; Hawthorne et271 al. 1993; Bloodaxe et al. 1999; Bosi & Lucchesi 2004). Although the Fe2+ -Al3+ disorder could272 be allowed by local short- and long-range arrangements (Bosi 2011), Mg is more likely273 substituting for Al in the Z site due to its smaller ionic radii similar to Al3+ , as was observed in274 the oxy-schorl from Zlatá Idka. In contrast, the oxy-schorl from Přibyslavice shows only275 negligible disorder of Al and (Mg,Fe) in octahedral sites; the vast majority of R2+ (Fe2+ >>276 Mg) is allocated to the Y site. However, the calculated bond valence values for the O1 and O3277 sites suggest a disorder of O and OH among the anion sites V and W (Table 15).278 The formula of end-member oxy-schorl may be expressed either as279 Na(Fe2+ Al2)(Fe2+ Al5)Si6O18(BO3)3(OH)3O with cations disordered in two structural sites, or280 with cations disordered only in one structural site such as281 NaAl3(Al4Fe2+ 2)Si6O18(BO3)3(OH)3O and Na(Fe2+ 2Al)Al6Si6O18(BO3)3(OH)3O – the formula282 used in the valid nomenclature (Henry et al. 2011). It recommends allocation of trivalent283 cations to the Z site initially, followed by assignment of the remainder of R3+ to Y site.284 Nevertheless, this end-member formula could not be stable owing to the local charge285 requirements, and the first formula with cations disordered in two sites is closely approaching286 the composition of natural samples (Hawthorne 2002).287 These two studied oxy-schorl samples confirm the two distinct ordering mechanisms in288 natural oxy-tourmalines: (1) disorder of divalent and trivalent cations in octahedral sites and289 all O ordered in the W site (favored by the Mg-bearing oxy-schorl from Zlatá Idka); (2)290 cations ordered in the Y and Z sites and O disordered in the V and W sites (in Fe-dominant291 oxy-schorl from Přibyslavice). The elevated content of Mg in oxy-schorl from Zlatá Idka (Fig.292 3c, Table 1) very likely facilitates higher degree of disorder in Y and Z sites and higher293 ordering in W site relative to Mg-poor oxy-schorl from Přibyslavice. Since formula with294 ordered V and W sites is recommended for the classification purposes (Henry et al. 2011),295 both compositions result in the same ordered formula that meets nomenclatural requirements296 for oxy-schorl.297 The presence of oxy-schorl does not necessary imply oxidizing geological environment.298 Mineral association in the Přibyslavice orthogneiss suggests more reductive conditions299 documented by magnetite and pyrite (e.g., Povondra et al. 1987, 1998). Thus the reasons of300 the formation of oxy-schorl in spite of schorl are different than high oxygen fugacity. It could301 take a part in oxy-tourmalines with an increased proportion of Fe3+ as buergerite (e.g. Donnay302 et al. 1966; Grice and Ercit 1993) or povondraite component (e.g. Grice et al. 1993; Bačík et303 10 al. 2008; Baksheev et al. 2011; Novák et al. 2011), respectively, in which the deprotonization304 is driven by Y Fe2+ + W+V OH↔ Y Fe3+ + W+V O2reaction (Pieczka and Kraczka 2004; Bačík et305 al. 2011). In contrast, the deprotonization was driven by Y R2+ + W+V OH↔ Y Al + W+V O2- 306 reaction in studied samples of oxy-schorl from both localities. Consequently, the307 deprotonization in studied oxy-schorls was likely the result of local charge-balance308 requirements owing to the excess of Al and the formation of Al-enriched oxy-schorl is the309 result of the specific geochemistry of the host rock.310 311 Acknowledgement:312 Authors would like to thank Tomáš Vaculovič for LA-ICP-MS analysis. This work was313 supported by projects APVV-VVCE-0033-07 to PB, PU and DO and GAP210/10/0743 to JC,314 JF, MN and RŠ and by the Operational Program Research and Development for Innovations -315 European Regional Development Fund (Project No. CZ.1.05/2.1.00/03.0058 of the Ministry316 of Education, Youth and Sports of the Czech Republic) to JF. We thank Martin Kunz and317 Fernando Colombo for editorial handling and for their detailed reviews and fruitful318 discussion.319 320 321 11 REFERENCES:322 323 Bačík, P., Uher, P., Sýkora, M., and Lipka, J. (2008) Low-Al tourmalines of the schorl-324 dravite-povondraite series in redeposited tourmalinites from the Western Carpathians,325 Slovakia. Canadian Mineralogist, 46, 1117–1129.326 Bačík, P., Ozdín, D., Miglierini, M., Kardošová, P., Pentrák, M., and Haloda, J. (2011)327 Crystallochemical effects of heat treatment on Fe-dominant tourmalines from Dolní328 Bory (Czech Republic) and Vlachovo (Slovakia). Physics and Chemistry of Minerals,329 38, 599–611.330 Baksheev, I.A., Prokof’ev, V.Y., Yapaskurt, V.O., Vigasina, M.F., Zorina, L.D., and331 Solov’ev, V.N. (2011) Ferric-iron-rich tourmaline from the Darasun gold deposit,332 Transbaikalia, Russia. Canadian Mineralogist, 49, 263–276.333 Bloodaxe, E.S., Hughes, J.M., Dyar, M.D., Grew, E.S., and Guidotti, C.V., (1999) Linking334 structure and chemistry in the schorl-dravite series. American Mineralogist, 84, 922–335 928.336 Bosi, F. (2011) Stereochemical constraints in tourmaline: From a short-range to a long-range337 structure. Canadian Mineralogist, 49, 17–27.338 Bosi, F. and Lucchesi S. (2004) Crystal chemistry of the schorl-dravite series. European339 Journal of Mineralogy, 16, 335–344340 Brand, R.A. (1997) NORMOS: Mossbauer fitting program, version 1997, unpublished.341 Breiter, K., Škoda, R. and Novák, M. (2010) Field stop 5: Přibyslavice near Čáslav – complex342 of peraluminous phosphorus-rich tourmaline-bearing orthogneiss, and associated granite343 and pegmatite with garnet, tourmaline, and primary Fe-Mn phosphates. In: Novák, M.344 and Cempírek, J. (eds) Granitic pegmatites and mineralogical museums in the Czech345 Republic. Acta Mineralogica-Petrographica, Field Guide Series, 6, 29-36.346 Bruker (2010) DIFFRACplus TOPAS. http://www.bruker-axs.de/topas.html347 Buriánek, D. and Novák, M. (2004) Morphological and compositional evolution of tourmaline348 from nodular granite at Lavičky near Velké Meziříčí, Moldanubicum, Czech Republic.349 Journal of Czech Geological Society, 49, 81–90.350 Buriánek, D. and Novák, M. (2007) Compositional evolution and substitutions in351 disseminated and nodular tourmaline from leucocratic granites: Examples from the352 Bohemian Massif, Czech Republic. Lithos, 95, 148–164.353 12 Donnay, G., Ingamells, C. O., and Mason B. (1966) Buergerite, a new species of tourmaline.354 American Mineralogist, 51, 198–199.355 Ertl, A., Marschall, H.R., Giester, G., Henry, D.J., Schertl, H.P., Ntaflos, T ., Luvizotto, G.L.,356 Nasdala, L., and Tillmanns, E. (2010a): Metamorphic ultrahigh-pressure tourmaline:357 Structure, chemistry, and correlations to P-T conditions. American Mineralogist, 95, 1–358 10.359 Ertl, A., Rossman, G.R., Hughes, J.M., London, D., Wang, Y., O'Leary, J.A., Dyar, M.D.,360 Prowatke, S., Ludwig, T., and Tillmanns, E. (2010b) Tourmaline of the elbaite-schorl361 series from the Himalaya Mine, Mesa Grande, California: A detailed investigation.362 American Mineralogist, 95, 24–40.363 Foit, F.F. (1989) Crystal chemistry of alkali-deficient schorl and tourmaline structural364 relationships. American Mineralogist, 74, 422–431.365 Foit, F.F. Jr. and Rosenberg, P.E. (1977) Coupled substitutions in the tourmaline group.366 Contributions to Mineralogy and Petrology, 62, 109–127.367 Grice, J.D. and Ercit, T.S. (1993) Ordering of Fe and Mg in tourmaline: The correct formula.368 Neues Jahrbuch fur Mineralogie Abhandlungen, 165, 245–266.369 Grice, J. D., Ercit, T. S., and Hawthorne, F. C. (1993) Povondraite, a redefinition of the370 tourmaline ferridravite. American Mineralogist, 78, 433–436.371 Hawthorne, F.C. (1996) Structural mechanisms for light elements in tourmaline. Canadian372 Mineralogist, 34, 123–132.373 Hawthorne, F.C. (2002) Bond-valence constraints on the chemical composition of tourmaline.374 Canadian Mineralogist, 40, 789–797.375 Hawthorne, F.C., MacDonald, D.J., and Burns, P.C. (1993) Reassignment of cation site376 occupancies in tourmaline: Al-Mg disorder in the crystal structure of dravite. American377 Mineralogist, 78, 265–270.378 Hawthorne, F.C. and Henry, D.J. (1999) Classification of the minerals of the tourmaline379 group. European Journal of Mineralogy, 11, 201–215.380 Henry, D.J. and Dutrow, B. (2001) Compositional zoning and element partitioning of381 nickeloan tourmaline in a metamorphosed karstbauxite from Samos, Greece. American382 Mineralogist, 86, 1130–1142.383 Henry, D., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B., Uher, P., and Pezzotta, F.384 (2011) Nomenclature of the tourmaline supergroup-minerals. American Mineralogist,385 96, 895–913.386 13 Novák, M., Henry, D., Hawthorne F.C., Ertl, A., Uher, P., Dutrow, B., and Pezzotta, F. (2009)387 Nomenclature of the tourmaline-group minerals. Report of the Subcommittee on388 Tourmaline Nomenclature to the International Mineralogical Association’s Commission389 on New Minerals, Nomenclature and Classification.390 Novák, M., Povondra, P., and Selway, J.B. (2004) Schorl-oxy-schorl to dravite-oxy-dravite391 tourmaline from granitic pegmatites; examples from the Moldanubicum, Czech392 Republic. European Journal of Mineralogy, 16, 323–333.393 Novák, M., Škoda, R., Filip, J., Macek, I., and Vaculovič, T. (2011) Compositional trends in394 tourmaline from intragranitic NYF pegmatites of the Třebíč Pluton, Czech Republic;395 electron microprobe, Mössbauer and LA-ICP-MS study. Canadian Mineralogist, 49,396 359–380.397 Povondra, P. (1981) The crystal chemistry of tourmalines of the schorl-dravite series. Acta398 Universitatis Carolinae, Geologica, 223–264.399 Povondra, P., Čech, F., and Staněk, J. (1985) Crystal chemistry of elbaites from some400 pegmatites of the Czech Massif. Acta Universitatis Carolinae, Geologica, 1–24.401 Povondra, P., Lang, M., Pivec, E., and Ulrych, J. (1998) Tourmaline from the Přibyslavice402 peraluminous alkali-feldspar granite, Czech Republic. Journal of Czech Geological403 Society, 43, 3–8.404 Povondra, P., Pivec, E., Čech, F., Lang, M., Novák, F., Prachař, I., and Ulrych, J. (1987)405 Přibyslavice peraluminous granite. Acta Universitatis Carolinae, Geologica, 183–283.406 Reddy, B.J., Frost, R.L., Martens, W.N., Wain, D.L. and Kloprogge, J.T. (2007)407 Spectroscopic characterization of Mn-rich tourmalines. Vibrational Spectroscopy, 44,408 42–49.409 Sheldrick, G. M. (2000) SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin,410 USA411 Stoe & Cie (1999) WinXPow. Stoe & Cie, Darmstadt, Germany.412 Vozárová, A., Šarinová, K., Larionov, A., Presnyakov, S., and Sergeev, S. (2010) Late413 Cambrian/Ordovician magmatic arc type volcanism in the Southern Gemericum414 basement, Western Carpathians, Slovakia: U-Pb (SHRIMP) data from zircons.415 International Journal of Earth Sciences, 99 (Suppl. 1), 17–37.416 Werner, P.-E., Eriksson, L., and Westdahl, M. (1985) TREOR, a semi-exhaustive trial-and-417 error powder indexing program for all symmetries. Journal of Applied Crystallography,418 18, 367-370.419 14 Žák, T. and Jirásková, Y. (2006) CONFIT: Mössbauer spectra fitting program. Surface and420 Interface Analysis, 38, 710–714.421 422 423 424 15 425 Figure 1. BSE image of oxy-schorl from Zlatá Idka. The zoning is given by the variation in426 Fe, Mg and Al content; dark grey zone corresponds to transitional oxy-schorl to “□-Fe-O root427 name” tourmaline composition.428 429 Figure 2. FTIR spectrum of oxy-schorl from Přibyslavice.430 431 Figure 3. Ternary diagrams for minerals of tourmaline group used for determination of432 dominant occupancy at the X (a), W (b) and Y site (c).433 434 16 TABLE 1. CHEMICAL COMPOSITION AND FORMULA OF OXY-SCHORL FROM ZLATÁ IDKA AND435 PŘIBYSLAVICE436 437 Zlatá Idka Přibyslavice SiO2 wt% 33.10 Si apfu 5.506 SiO2 wt% 34.57 Si apfu 5.944 TiO2 0.02 Z Al 0.494 TiO2 0.72 Z Al 0.056 B2O3* 10.45 Sum T 6.000 B2O3* 10.11 Sum T 6.000 Al2O3 39.81 Al2O3 33.55 FeO 7.97 B 3.000 Fe2O3 0.61 B 3.000 MgO 2.31 FeO 13.07 MnO 0.03 Z Al 5.428 MnO 0.10 Z Al 5.732 CaO 0.58 Z Mg 0.572 MgO 0.74 Z Mg 0.190 Na2O 1.83 Sum Z 6.000 CaO 0.09 Fe3+ 0.078 F 0.26 K2O 0.03 Sum Z 6.000 Cl 0.01 Ti 0.002 Na2O 1.76 H2O** 2.92 Y Al 1.885 Cl 0.00 Y Al 1.013 O=F 0.11 Fe2+ 1.108 F 0.56 Ti4+ 0.093 Total 99.18 Mn 0.005 H2O** 2.72 Fe2+ 1.879 Sum Y 3.000 -O = F,Cl -0.24 Mn2+ 0.015 Total 98.39 Sum Y 3.000 Ca 0.103 Na 0.591 Ca 0.017 □ 0.306 Na 0.586 Sum X 1.000 K 0.006 □ 0.391 V OH 3.000 Sum X 1.000 W OH 0.236 V OH 3.000 F 0.136 Cl 0.003 W OH 0.115 O 0.625 O 0.579 Sum W 1.000 F 0.307 * calculated by structural refinement; ** calculated on the basis of electroneutral formula and438 structure refinement results439 440 17 441 TABLE 2. HYPERFINE PARAMETERS (MÖSSBAUER SPECTROSCOPY) OF OXY-SCHORL442 443 Isomer shift Quadrupole splitting Assignment Relative abundance (mm s-1 ) (mm s-1 ) (%) Zlatá Idka 0.98 2.45 Y1 Fe2+ 43 0.98 2.13 Y2 Fe2+ 13 0.98 1.64 Y3 Fe2+ 44 Přibyslavice 1.09 2.47 Y1 Fe2+ 37 1.08 2.15 Y2 Fe2+ 35 1.04 1.58 Y3 Fe2+ 25 0.37 0.32 Y Fe3+ 4 444 445 TABLE 3. IR SPECTROSCOPIC DATA FOR OXY-SCHORL FROM PŘIBYSLAVICE446 447 Peak [cm-1 ] Assignment 400 – 840 lattice vibrations 840 – 1200 Si6O18 stretching vibrations (Fe,Mg)-OH bending vibrations 1200 – 2000 BO3 stretching vibrations ~ 3000 – 3600 O–H stretching (at O3; overlapping peaks from variable configurations of Y- and Zsite cations around O3) 3600 – 3700 O–H stretching (at O1; overlap of peaks from variable configurations of Y-site cations) 448 449 18 TABLE 4. POWDER X-RAY DIFFRACTION DATA FOR OXY-SCHORL FROM ZLATÁ IDKA.450 THE 5 STRONGEST LINES ARE HIGHLIGHTED451 452 h k l dobs. [Å] I [%] dcalc. [Å] h k l dobs. [Å] I [%] dcalc. [Å] 1 1 0 7.957 10 7.957 1 6 1 2.01524 15 2.01524 1 0 1 6.312 49 6.312 4 4 0 1.98918 12 1.98918 0 2 1 4.9452 27 4.9452 3 4 2 1.90993 23 1.90993 3 0 0 4.5938 28 4.5938 3 5 1 1.89721 11 1.89721 2 1 1 4.2001 52 4.2001 1 4 3 1.86002 11 1.86001 2 2 0 3.9784 100 3.9784 6 2 1 1.84547 12 1.84548 0 1 2 3.4383 64 3.4383 7 1 0 1.82539 9 1.82540 1 3 1 3.3657 25 3.3657 6 1 2 1.80857 9 1.80857 2 0 2 3.1562 18 3.1562 3 3 3 1.76601 10 1.76601 4 0 1 3.0998 20 3.0998 1 0 4 1.76075 10 1.76074 4 1 0 3.0074 25 3.0074 6 3 0 1.73629 9 1.73630 1 2 2 2.9338 52 2.9338 5 3 2 1.72180 10 1.72180 3 2 1 2.8883 21 2.8883 0 2 4 1.71916 10 1.71915 3 3 0 2.6522 16 2.6522 5 4 1 1.71245 9 1.71246 3 1 2 2.6014 18 2.6014 2 6 2 1.68284 10 1.68285 0 5 1 2.5695 62 2.5695 2 1 4 1.68038 13 1.68037 0 4 2 2.47260 15 2.47260 0 8 1 1.67412 9 1.67412 2 4 1 2.44517 15 2.44518 0 6 3 1.64840 14 1.64840 0 0 3 2.36707 22 2.36705 2 7 1 1.63825 12 1.63825 2 3 2 2.36122 23 2.36121 5 2 3 1.61413 8 1.61412 5 1 1 2.33730 21 2.33730 1 3 4 1.61010 9 1.61010 6 0 0 2.29690 13 2.29691 5 5 0 1.59134 13 1.59134 1 1 3 2.26880 12 2.26878 4 5 2 1.58016 10 1.58016 5 2 0 2.20679 12 2.20680 4 0 4 1.57812 10 1.57811 5 0 2 2.17725 17 2.17725 8 1 1 1.57293 10 1.57293 4 3 1 2.15845 16 2.15846 8 0 2 1.54989 8 1.54989 3 0 3 2.10416 16 2.10415 3 2 4 1.54796 8 1.54796 4 2 2 2.10005 17 2.10004 4 6 1 1.54306 9 1.54307 2 2 3 2.03423 27 2.03422 9 0 0 1.53127 9 1.53127 1 5 2 2.03051 31 2.03051 453 19 TABLE 5. POWDER X-RAY DIFFRACTION DATA FOR OXY-SCHORL FROM PŘIBYSLAVICE.454 THE 5 STRONGEST LINES ARE HIGHLIGHTED455 456 h k l dobs. [Å] I [%] dcalc. [Å] h k l dobs. [Å] I [%] dcalc. [Å] 1 0 1 6.3637 75 6.3604 0 2 4 1.7333 2.0 1.7332 0 2 1 4.9775 28 4.977 5 3 2 1.7312 1.5 1.7312 3 0 0 4.6157 12 4.6149 2 6 2 1.692 1.9 1.692 2 1 1 4.2254 48 4.225 6 0 3 1.6589 14.1 1.659 2 2 0 3.9969 52 3.9966 2 7 1 1.6461 6.7 1.6461 0 1 2 3.4664 100 3.4664 1 3 4 1.6227 0.6 1.6225 1 3 1 3.3839 6 3.384 5 5 0 1.5986 7.3 1.5987 2 0 2 3.1803 1 3.1802 4 0 4 1.5896 2.4 1.5901 4 0 1 3.1164 2 3.1163 8 1 1 1.5804 0.7 1.5804 4 1 0 3.0211 8 3.0212 3 2 4 1.5591 1.0 1.5595 1 2 2 2.9549 79 2.9549 4 6 1 1.5504 1.9 1.5504 3 2 1 2.9035 5 2.9034 9 0 0 1.5383 1.8 1.5383 3 1 2 2.6188 3 2.6186 7 2 2 1.5293 1.6 1.5293 0 5 1 2.5826 65 2.5826 7 3 1 1.5221 0.8 1.5221 0 4 2 2.4883 3 2.4885 8 2 0 1.5105 2.6 1.5106 2 4 1 2.4576 3 2.4575 0 5 4 1.5033 9.3 1.5034 0 0 3 2.3868 12 2.3869 2 4 4 1.4772 2.3 1.4775 2 3 2 2.3761 16 2.376 5 1 4 1.4528 10.2 1.4529 5 1 1 2.349 9 2.349 7 4 0 1.4355 1.6 1.4356 6 0 0 2.3072 1 2.3075 0 1 5 1.4247 3.1 1.4246 1 1 3 2.2869 1 2.2871 6 5 1 1.4224 3.5 1.4224 5 2 0 2.2171 1 2.2169 4 3 4 1.4072 6.6 1.4071 5 0 2 2.1903 9 2.1904 3 8 1 1.3793 0.6 1.3794 4 3 1 2.1692 7 2.1691 10 0 1 1.3593 3.8 1.3593 3 0 3 2.12 11 2.1201 9 1 2 1.345 2.0 1.345 4 2 2 2.1125 4 2.1125 6 6 0 1.3321 1.2 1.3322 2 2 3 2.0494 12 2.0493 7 0 4 1.3277 2.8 1.3273 1 5 2 2.0423 31 2.0424 0 4 5 1.3234 1.7 1.3234 1 6 1 2.0252 5 2.0251 10 1 0 1.314 3.5 1.3141 4 4 0 1.9983 2 1.9983 8 3 2 1.3087 1.0 1.3085 3 4 2 1.9207 17 1.9208 2 3 5 1.3055 1.2 1.3056 7 0 1 1.9065 2 1.9064 9 0 3 1.2931 0.5 1.293 4 1 3 1.8729 8 1.8729 0 10 2 1.2913 0.7 1.2913 6 2 1 1.8545 4 1.8544 8 4 1 1.2869 0.8 1.2869 7 1 0 1.834 1 1.8338 9 3 0 1.2799 1.3 1.2799 6 1 2 1.8186 2 1.8187 8 2 3 1.2765 1.0 1.2764 3 3 3 1.7779 3 1.7779 5 0 5 1.272 4.1 1.2721 1 0 4 1.7754 3 1.7754 457 20 TABLE 6. CRYSTAL AND REFINEMENT DATA FOR OXY-SCHORL FROM ZLATÁ IDKA458 459 a = 15.916(3) Å Space group: R3m c = 7.1071(12) Å Mo Kα radiation, λ = 0.71073 Å V = 1559.1(4) Å3 Cell parameters from 1225 reflections Z = 3 Elongated grain, brown 0.20 × 0.10 × 0.10 mm θ = 3.2–36.1° (-26≤ h ≤17, -17≤ k ≤26, -11≤ l ≤11) µ = 1.68 mm−1 F(000) = 1468 T = 293 K Reflections measured: 3174 Independent reflections: 1474 Reflections > 2σ : 1111 R [F2 > 2σ(F2 )] = 0.034 (Δ/σ)max = <0.001 wR(F2 ) = 0.066 extinction coef. : none S = 0.84 92 parameters refined Δρmax = 0.67 e Å−3 Δρmin = −0.38 e Å−3 460 461 TABLE 7. FRACTIONAL ATOMIC COORDINATES AND ISOTROPIC OR EQUIVALENT ISOTROPIC462 DISPLACEMENT PARAMETERS (Å2 ) OF OXY-SCHORL FROM ZLATÁ IDKA463 464 x y z Uiso*/Ueq Occ. (<1) Na 0.0000 0.0000 0.0825 (5) 0.0229 (12) 0.859 (14) Y (Al) 0.12237 (7) 0.06118 (4) 0.50346 (13) 0.0119 (3) 0.799 (7) Y (Fe) 0.12237 (7) 0.06118 (4) 0.50346 (13) 0.0119 (3) 0.201 (7) Z (Al) 0.29700 (6) 0.36937 (6) 1.14311 (12) 0.0104 (2) 0.959 (5) Si 0.19214 (5) 0.19002 (5) 0.86941 (10) 0.0080 (2) 0.899 (5) O1 0.0000 0.0000 0.6394 (8) 0.0269 (12) O2 0.06060 (11) 0.1212 (2) 0.3556 (4) 0.0210 (7) O3 0.2620 (2) 0.13101 (12) 0.3745 (4) 0.0189 (7) O4 0.1869 (2) 0.09346 (11) 0.9640 (4) 0.0198 (6) O5 −0.1883 (2) −0.09417 (11) −0.0580 (4) 0.0192 (6) O6 0.19549 (14) 0.18438 (14) 0.6403 (3) 0.0150 (4) O7 0.28759 (14) 0.28731 (13) 0.9447 (3) 0.0142 (4) O8 0.20909 (14) 0.26975 (14) 1.3046 (3) 0.0145 (4) B 0.10971 (18) 0.2194 (4) 0.3182 (6) 0.0142 (8) 465 466 467 468 21 TABLE 8. ATOMIC DISPLACEMENT PARAMETERS (Å2 ) OF OXY-SCHORL FROM ZLATÁ IDKA469 470 U11 U22 U33 U12 U13 U23 Na 0.0223 (15) 0.0223 (15) 0.024 (2) 0.0111 (8) 0.000 0.000 Y (Al) 0.0113 (5) 0.0098 (4) 0.0151 (5) 0.0057 (2) −0.0019 (3) −0.00095 (17) Y (Fe) 0.0113 (5) 0.0098 (4) 0.0151 (5) 0.0057 (2) −0.0019 (3) −0.00095 (17) Z (Al) 0.0113 (4) 0.0109 (4) 0.0098 (4) 0.0060 (3) 0.0001 (3) −0.0004 (3) Si 0.0081 (4) 0.0082 (4) 0.0076 (3) 0.0041 (3) −0.0002 (3) −0.0008 (3) O1 0.0314 (19) 0.0314 (19) 0.018 (3) 0.0157 (9) 0.000 0.000 O2 0.0251 (13) 0.0147 (14) 0.0197 (14) 0.0073 (7) 0.0001 (6) 0.0002 (12) O3 0.0291 (17) 0.0171 (11) 0.0144 (13) 0.0146 (8) 0.0005 (12) 0.0003 (6) O4 0.0243 (16) 0.0168 (10) 0.0208 (14) 0.0121 (8) −0.0001 (12) 0.0000 (6) O5 0.0250 (16) 0.0188 (11) 0.0160 (13) 0.0125 (8) 0.0018 (11) 0.0009 (6) O6 0.0165 (10) 0.0169 (10) 0.0111 (8) 0.0080 (8) 0.0012 (7) 0.0008 (7) O7 0.0135 (9) 0.0138 (9) 0.0133 (8) 0.0053 (8) 0.0002 (7) −0.0003 (7) O8 0.0136 (9) 0.0152 (10) 0.0153 (9) 0.0075 (8) −0.0001 (7) 0.0018 (7) B 0.0172 (16) 0.015 (2) 0.0094 (16) 0.0077 (10) −0.0002 (7) −0.0004 (14) 471 472 TABLE 9. SELECTED BOND LENGTHS FOR OXY-SCHORL FROM ZLATÁ IDKA473 474 Site Anion Distance s.d. Site Anion Distance s.d. X O2i 2.561 (4) Z O6vii 1.869 (2) O2ii 2.561 (4) O7 1.876 (2) O2 2.561 (4) O8 1.889 (2) O4iii 2.710 (3) O8viii 1.918 (2) O4iv 2.710 (3) O7ix 1.925 (2) O4v 2.710 (3) O3vii 1.9890 (15) O5i 2.781 (3) avg. 1.911 O5ii 2.781 (3) O5 2.781 (3) T O7 1.625 (2) avg. 2.684 O5x 1.6298 (12) O6 1.633 (2) Y O1 1.944 (3) O4 1.6412 (15) O6vi 1.965 (2) 1.632 O6 1.965 (2) O2 1.981 (2) B O2 1.380 (6) O2i 1.981 (2) O8iii 1.373 (3) O3 2.132 (3) O8xi 1.373 (3) avg. 1.995 avg. 1.375 Symmetry codes: (i) −x+y, −x, z; (ii) −y, x−y, z; (iii) x, y, z−1; (iv) −y, x−y, z−1; (v) −x+y, −x, z−1; (vi) x, x−y, z; (vii) −x+y+1/3, −x+2/3, z+2/3; (viii) −x+y+1/3, −x+2/3, z−1/3; (ix) −y+2/3, x−y+1/3, z+1/3; (x) −x+y, −x, z+1; (xi) −x+y, y, z−1. 475 22 TABLE 10. BOND VALENCE TABLE FOR OXY-SCHORL FROM ZLATÁ IDKA476 477 X Y Z B T ∑ Na0.591Ca0.10 3 K0.004□0.302 Al1.808 Fe2+ 1.105 Ti0.002 Mn0.005 Mg0.079 Al5.5 Mg0.5 B Si5.509 Al0.491 O1*† 0.478 1.435 O2 0.098 0.450 0.946 1.973 0.098 0.450 0.098 O3* 0.299 0.405 1.109 O4 0.065 0.960 1.986 0.065 0.065 O5 0.054 0.991 2.035 0.054 0.054 O6 0.469 0.560 0.982 2.012 0.469 O7 0.550 1.003 2.035 0.482 O8 0.531 0.995 2.016 0.491 0.995 ∑ 0.649 2.616 3.019 2.965 3.937 IC(avg) 0.801 2.603 2.917 3.000 3.918 Δ 0.152 -0.013 -0.102 0.035 -0.019 IC(avg) = average ionic charge of atoms occupying the site. *Hydrogen bond donor. † content of the O1 site is: O0.536 OH0.328 F0.136. 478 479 480 481 482 483 23 TABLE 11. CRYSTAL AND REFINEMENT DATA FOR OXY-SCHORL FROM PŘIBYSLAVICE484 485 486 a = 15.9853(12) Å Space group: R3m c = 7.1538(6) Å Mo Kα radiation, λ = 0.71073 Å V = 1583.1(2) Å3 Cell parameters from 2936 reflections Z = 3 Elongated grain, brown 0.30 × 0.10 × 0.10 mm θ = 2.9–36.1° (-26≤ h ≤18, -25≤ k ≤23, -8≤ l ≤11) µ = 2.20 mm−1 F(000) = 1501 T = 293 K Reflections measured: 4166 Independent reflections: 1380 Reflections > 2σ : 1285 R [F2 > 2σ(F2 )] = 0.0191 (Δ/σ)max = 0.001 wR(F2 ) = 0.0400 extinction coef. = 0.00058(10) S = 0.98 96 parameters refined Δρmax = 0.65 e Å−3 Δρmin = −0.49 e Å−3 487 488 TABLE 12. FRACTIONAL ATOMIC COORDINATES AND ISOTROPIC OR EQUIVALENT ISOTROPIC489 DISPLACEMENT PARAMETERS (Å2 ) FOR OXY-SCHORL FROM PŘIBYSLAVICE490 491 Site x/a y/b z/c Uiso*/Ueq Occup. X Na 0 0 0.9019 (5) 0.0266 (11) 0.676(10) Y Fe 0.87496 (3) 0.937481 (16) 0.50264 (6) 0.00869 (12) 0.621(4) Al 0.87496 (3) 0.937481 (16) 0.50264 (6) 0.00869 (12) 0.379(4) Z Al 0.70355 (3) 0.63191 (3) −0.14783 (6) 0.00590 (13) 0.974(3) Fe 0.70355 (3) 0.63191 (3) −0.14783 (6) 0.00590 (13) 0.026(3) T Si 0.80806 (3) 0.81008 (3) 0.12963 (6) 0.00569 (10) O1 O1 0 0 0.3485 (5) 0.0363 (9) 0.69** F 0 0 0.3485 (5) 0.0363 (9) 0.31** O2 O2 0.93822 (6) 0.87643 (12) 0.6435 (3) 0.0151 (4) O3 O3 0.73144 (14) 0.86572 (7) 0.6201 (2) 0.0123 (3) O4 O4 0.81267 (12) 0.90634 (6) 0.0387 (2) 0.0103 (3) O5 O5 0.18631 (12) 0.09316 (6) 0.0618 (2) 0.0104 (3) O6 O6 0.80182 (8) 0.81238 (8) 0.35415 (17) 0.0089 (2) O7 O7 0.71481 (8) 0.71419 (8) 0.05039 (16) 0.0086 (2) O8 O8 0.79017 (8) 0.72936 (8) −0.31139 (16) 0.0097 (2) B B 0.88991 (10) 0.77981 (19) 0.6753 (4) 0.0076 (4) H3 H3 0.735 (2) 0.8677 (12) 0.732 (5) 0.21 (2)* * Isotropic displacement parameter (Å2 ). **Fixed according to EMPA analyses. 492 493 24 TABLE 13. ANISOTROPIC DISPLACEMENT PARAMETERS (Å2 ) FOR OXY-SCHORL FROM494 PŘIBYSLAVICE495 496 Site U11 U22 U33 U12 U13 U23 X 0.0267 (13) 0.0267 (13) 0.0263 (18) 0.0134 (7) 0 0 Y 0.0087 (2) 0.00611 (15) 0.0121 (2) 0.00433 (10) −0.00216 (15) −0.00108 (7) Z 0.0062 (2) 0.0058 (2) 0.0058 (2) 0.00309 (18) 0.00034 (15) −0.00008 (16) T 0.0054 (2) 0.00520 (19) 0.0064 (2) 0.00266 (15) −0.00021 (15) −0.00044 (14) O1 0.0494 (15) 0.0494 (15) 0.0102 (15) 0.0247 (8) 0 0 O2 0.0207 (7) 0.0069 (7) 0.0132 (8) 0.0035 (4) 0.0004 (3) 0.0008 (6) O3 0.0213 (9) 0.0123 (6) 0.0063 (7) 0.0107 (4) 0.0007 (6) 0.0004 (3) O4 0.0145 (8) 0.0074 (5) 0.0114 (8) 0.0072 (4) 0.0011 (6) 0.0006 (3) O5 0.0149 (8) 0.0082 (5) 0.0105 (7) 0.0075 (4) 0.0012 (6) 0.0006 (3) O6 0.0090 (5) 0.0103 (5) 0.0070 (5) 0.0047 (4) −0.0003 (4) −0.0009 (4) O7 0.0088 (5) 0.0068 (5) 0.0082 (5) 0.0024 (4) −0.0009 (4) −0.0008 (4) O8 0.0075 (5) 0.0115 (5) 0.0111 (5) 0.0054 (5) 0.0010 (4) 0.0021 (4) B 0.0077 (7) 0.0074 (10) 0.0074 (10) 0.0037 (5) 0.0000 (4) 0.0000 (8) 497 TABLE 14. SELECTED BOND LENGTHS FOR OXY-SCHORL FROM PŘIBYSLAVICE498 499 Site Anion Distance s.d. Site Anion Distance s.d. X O2i 2.519 (3) Z O6xiii 1.8615 (13) O2ii 2.519 (3) O7 1.8804 (12) O2iii 2.519 (3) O8 1.8857 (12) O4iv 2.772 (2) O8xiv 1.9264 (12) O4v 2.772 (2) O7xv 1.9589 (12) O4vi 2.772 (2) O3xiii 1.9814 (9) O5vii 2.821 (2) avg. 1.916 O5viii 2.821 (2) O5ix 2.821 (2) T O6 1.6108 (13) avg. 2.704 O7 1.6149 (11) O5xvi 1.6253 (7) Y O2 1.9941 (12) O4 1.638 (8) O2x 1.9942 (12) 1.622 O6xi 2.0387 (13) O6 2.0387 (13) B O2 1.357 (3) O1xii 2.052 (2) O8viii 1.3841 (18) O3 2.1572 (19) O8xvii 1.3841 (18) avg. 2.046 avg. 1.375 Symmetry codes: (i) x−1, y−1, z; (ii) −x+y, −x+1, z; (iii) −y+1, x−y, z; (iv) −x+y, −x+1, z+1; (v) x−1, y−1, z+1; (vi) −y+1, x−y, z+1; (vii) −y, x−y, z+1; (viii) x, y, z+1; (ix) −x+y, −x, z+1; (x) −x+y+1, −x+2, z; (xi) x, x−y+1, z; (xii) x+1, y+1, z; (xiii) −x+y+2/3, −x+4/3, z−2/3; (xiv) −x+y+2/3, −x+4/3, z+1/3; (xv) −y+4/3, x−y+2/3, z−1/3; (xvi) −x+y+1, −x+1, z; (xvii) −x+y+1, y, z+1. 25 TABLE 15. BOND VALENCE TABLE FOR OXY-SCHORL FROM PŘIBYSLAVICE500 501 X Y Z B T ∑ O1* 0.363 1.088 O2 0.091 0.466 1.039 2.063 0.091 0.466 0.091 O3* 0.298 0.411 1.119 O4 0.046 0.965 1.975 0.046 0.046 O5 0.040 0.997 2.033 0.040 0.040 O6 0.415 0.571 1.033 2.020 0.415 O7 0.545 1.021 2.005 0.439 O8 0.535 0.964 1.978 0.480 0.964 ∑ 0.531 2.423 2.980 2.966 4.015 IC(avg) 0.632 2.400 2.968 3.000 3.991 Δ 0.101 -0.024 -0.012 0.034 -0.025 IC(avg) = average ionic charge of atoms occupying the site. *Hydrogen bond donor. 502 503