AppendEjcP ^ •7 Pronunciation of letters of the alphabet English alphabet a /«/ g /d3i:/ m /em/ t /«:/ b /bi:/ h >tj/ n /en/ u /ju:/ c /si:/ i /«/ o /*>/ V /vi:/ d /di:/ J /d3«/ P /Pi:/ w /'dAblju:/ c M k /kci/ q /kju:/ X /eks/ f /ef/ 1 /el/ r toft y /wai/ s /«/ z /zed/ AmE/zi:/ Greek alphabet Letters Name Pron. Capital Small A a alpha /'alfa/ B P beta /'birta/ r y gamma /'gtema/ A 5 delta /'delta/ E E epsilon /'epsdan/ Z f zeta /'ziita/ H eta /'i:ta/ e e tbeta /■Gi:ta/ i i iota /ai'auta/ K K kappa /'kspo/ A X lambda /'laemda/ M mu /mju:/ Letters Name Pron. Capital Small N V nu /nju:/ B \ xi /ksai/ O 0 omicron /'aumikran/ n K P« /pai/ p P rho liwj z sigma /'sigma/ T T tau /tau/ Y V upsilon /'jupsilan/ * + phi that X X chi /kai/ psi /psai/ a CO omega /'aumiga/ Appendix II Pronunciation of some common mathematical expressions Individual mathematicians often have their own way of pronouncing mathematical expressions and in many cases there is no generally accepted 'correct* pronunciation. Distinctions made in writing are often not made explicit in speech; thus the sounds fx /'ef'eks/ may be interpreted as any of: fx, fl(x), ft, FX, FX. The difference is usually made clear by the context; it is only when confusion may occur, or where he wishes to emphasise the point, that the mathematician will use the longer forms: f multiplied by x, the function of x, f subscript x, line FX, vector FX. Similarly, a mathematician is unlikely to make any distinction in speech (except sometimes a difference in intonation or length of pauses) between pairs such as the following: ■x-f^y+z) and (x+y) + z ^/ax+b and ^/(ax + b) a"-l and a"-1 The most common pronunciations are given in the list below. In general, the shortest versions are preferred (unless greater precision is necessary). x + l x-1 x±l xy (x-y)(x+y) x y x = 5 x = y x > y xS:y x > or > the set of positive integers and zero, {0,1.2.3, ......} the set of integers, {0. ±1, ±2, ±3.......} the set of positive integers, {1, 2, 3,......\ the set of rational numbers the set of positive rational numbers, {x\x&Q, x>0} the set of real numbers the set of positive real numbers, the set of complex numbers, a complex number die complex conjugate of z the modulus of z the argument of z the real part of t the imaginary part of z the set with elements x\, X2, ..... die number of elements in the finite set A the. set of all X such that is an element of is not an element of the empty (null) set the universal set intersection ■ ' the complement of (he set A a to the power of ^, nth root of a (if 0 > 0 then 5= 0) a to the power square root of a (if a > 0 then Ja ^ 0) the modulus or absolute value of xr that is f 3; for * > 0 xeR \ -x for x x A derives x A =^> x A derives x in some number of steps A x A derives x according to G A =f x A derives x according to G in some number of steps (q, aa) h (p, a) (q, aa) yields (p, a) in one step * (q, aa) h (p, a) (q, aa) yields (p, a) in some number of steps {q,aa) h (p,a) M (q, aa) yields (p, a) in one step according to M * (g,aa) h (p,a) M (q, aa) yields (p, a) in some number of steps according to M the Turing machine M halts on string w M / w the Turing machine does not M halt on string w And remember... 0! = 1_ Vn G Z, Vm € N, m > 0 => n — (n div m)m + (n mod m) I^TßXsource available at http://www.cs.ucr.edu/~ciardo/teaching/Notation.tex A partial list of mathematical symbols and how to read them Greek alphabet A a alpha B ß beta r 7 gamma A s delta E e, e epsilon Z C zeta H V eta e 9, ů theta I L iota K K kappa A A lambda M M mu N v nu zs xi 0 0 omicron n •K,VJ Pi P P, Q rho v, í sigma T r tau T v upsilon , >P phi X X chi 4> psi a omega Important sets 0 empty set N natural numbers {0,1,2,...} N+ positive integer numbers {1,2,...} Z integer numbers {...,-2,-1,0,1,2,...} Q rational numbers {m/n : m € Z,n 6 M+} R real numbers (-oo, +oo) R+ positive real numbers (0, +oo) C complex numbers {x + iy : x,y € 1R} (i is the imaginary unit, i2 = —1) Logical operators V for all, universal quantifier Vn e N, n > 0 3 exists, there is, existential quantifier 3n e N, n > 7 3! there is exactly one 3!n e N, n < 1 A and (3 > 2) A (2 > 1) ... over an index set AieN Bi = Bo A Bi A S2 A ■ • • V or (2 > 3) V (2 > 1) ... over an index set Vi€Nßi = ß0Vßi VBjV". implication, if-then Va, b e M, (o = b) => {a > b) biimplication, if-and-only-if Va, b € M, (a = b) (6 = a) —i negation, not -.(2 > 3) alternative notations for negation (2 > 3), 2 ;ť 3 Arithmetic operators 1 1 absolute value |-7| = |7| = 7 D summation n product factorial 7! = l- 2- 3- 4- 5- 6- 7 = 5040 ( m j n choose m, combinatorial number / n\ n! \mj (n-m)!m! mod modulo, remainder 7 mod 3 = 1, -8 mod 5 = 2 div integer quotient 7 div 3 = 2, -8 div 5 = -2