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Preface

This textbook follows the years of lecturingMathematics at the Faculty of Informatics at Masaryk
University in Brno. The programme requires introduction to genuine mathematical thinking and
precision, but there is not much time dedicated.

Thus, we want to cover seriously, but quickly, about as much of mathematical methods as usual in
bigger courses in the classical Science and Technology programmes. At the same time, we do not want
to give up the completeness and correctness of the mathematical exposition. We want to introduce
and explain more demanding parts of Mathematics, together with elementary explicit examples how
to use the results. But we do not want to solve for the reader how much of theory or practice to enjoy
and in which order.

All these requests have lead us to the two collumn format where the rahter theoretical explanation
and the practical examples are split. This way, we want to please and help the readers to �nd their
own way. Either to go through the examples and algorithms �rst, and then to come to explanations
why the things work, or the other way round. We also hope to overcome the usual stress of the readers
horri�ed by the amount of the stu�. With our text, they are not supposed to read through everything
in a linear order. On the opposit, the readers should enjoy browsing through the text and �nding their
own paths.

In both collumns, we intend to present rather standard exposition of basic Mathematics, but focus-
ing on the essence of the concepts and their relations. The examples are solving simple mathematical
problems but we also try to show thei use in mathematical models in practise as much as possible.

We are aware thath the theoretical text is written in a very compact way. A lot of details are left
to readers, in particular in the more di�cult paragraphs. Similarly, the examples display the variety
from very simple ones to those reuqesting some deeper thoughts.

We would very much like to help the reader

• to formulate precise de�nitions of basic concepts and to prove simple mathematical results,
• to percieve the meaning of roughly formulated properties, relations and outlooks for explor-
ing mathematical tools,

• to understand the instructions and algorithms creating mathematical models and to appreti-
ate their usage.

The goals are ambitions and nearly everyone needs his or her own paths, including failures. This
is one of the reasons why we come back to basic ideas and concepts several times with growing
complexity and width of the discussions. Of course, this might also look as chaotic, but we very
much hope that this approach gives a much better chance to those who will persit in their e�ort.

Clearly this textbook cannot be the only source for everybody. Actually, the only really good
proceeding is the combine several sources and to think about their di�erences on the way. But we
hope, it should be a perfect begin and help for everybody who is ready to return back to the individual
parts again and again.

To make this task simpler, we have added emotive icons. We hope they will not only spirit the dry
mathematical text but also indicate which parts should be rather be read carefully or better jumped
over in the �rst round. The usage of the icons follows the feelings of the authors and we tried to use
them in a systematic way. Roughly speaking, we are using icons warning before complexity, di�culty
etc.:

Further icons indicated unpleasant technicality and need of patiance:



Finally, there also icons showing up the joy of the game:

The practical collumn with the examples should be readable nearly independently o� the theory.
Without the ambition to know the deeper reasons why the algorithms work, it should be possible to
read just here. Some de�nitions and descriptions in the theoretical text are marked to be catched easily
when reading the examples, too. The examples and theory are partly coordinated to allow jumping
there and back, but the links are not tight.



The goal of the �rst chapter is to introduce the reader to the

fascinating world of mathematical thinking. For that we choose

our examples of mathematical modelling of real situations using

abstract object and connections to be as speci�c as possible. We

also go through a few topics and mechanisms to which we will sub-

sequently return in the rest of the book, and in the end of the chapter

we will speak about the language of mathematics itself (which we

will mostly use in an intuitive way).

The easier the objects and settings we work with are, the more

it is di�cult to understand in depth the nuances of the use of par-

ticular tools and mechanisms. Mostly it is possible to reach the

core ideas only through their connection to others. Therefore we

introduce them from many points of view at once.

Changing the topics very often might be confusing, but it will

surely get better when we return to speci�c ideas and notions in

later chapters.

The name of this chapter can be also understood as an encour-

agement to patience. Even the simplest tasks and ideas are easy

only for those who have already seen similar ones. Full knowledge

and mathematical thinking can be reached only through a long and

complicated.

Let us start with the simplest thing: common numbers.

1. Numbers and functions

Since the dawn of ages people wanted to know "how much"

of something they had, or "how much" is some-

thing worth, "how long" will a particular task

take, etc. The result of such ideas is usually

some "number". We consider something to be

a number, if we can multiply it and add it, and it behaves accord-

ing to the usual rules � either according to all rules we except, or

only to some. For instance, the result of multiplication does not

depend on the order of multiplicands, we have the number zero

whose adding does not change the result, we have the number one

which behaves in a similar manner with respect to addition, and so

on.

The simplest example are the so-called natural numbers,

which we denote N = {0, 1, 2, 3, . . . }. Note that we consider

zero to be a natural number, as it is usual especially in computer

science.

To count "one, two, three, . . . " is learned already by little chil-

dren in their pre-school age. Some time later we meet the integers

Z = {. . . ,−2,−1, 0, 1, 2, . . . } and �nally we get used to �oating-
point numbers, and we know what a 1.19-multiple of the price

means thanks to the 19% tax.

CHAPTER 1

Initial warmup

"value, di�erence, position"

� what it is and how to comprehend it?

A. Numbers and functions

We can already work with natural, integer, rational and real num-

bers. We arguewhy rational numbers are not su�cient for us (although

computers are actually not able to work with any other) and we recall

the so-called complex numbers (because even reals are not enough for

some calculations).

1.1. Find some real number which is not rational.

Solution. One among many possible answers is
√

2. Already the old
Greeks knew that if we prescribe the area of rectangle a2 = 2, then
we cannot �nd rational a which would satisfy it. Why?

Assume we know that it holds (p/q)2 = 2 for natural numbers p

and q that do not have common divisors di�erent from 1 (otherwise

we can further reduce the fraction p/q). Then p2 = 2q2 is an even

number. Thus, on the left-hand side p2 is even, and so is p. Hence, p2

is divisible by 4, and so q must be even that implies p and q have 2 as

a common factor, which is a contradiction.

□

1.2. Remark. It can be even proven that n-th root of a rational number,

where n is natural, is either natural or is not rational (see ∥G∥
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1.1. Properties of numbers. In order to be able to properly work

with numbers, we need to be more careful with

their de�nition and properties. In mathematics,

the basic statements about properties of objects,

whose validity is assumed without the need to prove them, are

called axioms. A good choice of axioms determines the range of

the theory they give rise to, and also to its usability in mathematical

models of reality.

Let us now list basic properties of the operations of addition

and multiplication for our calculations with numbers, which we

denote by numbers a, b, c, . . . . Both operations work by taking

two numbers a, b and by applying addition or multiplication we

obtain the resulting values a + b and a · b.
Properties of scalars

Properties of numbers:

(a + b)+ c = a + (b + c), for all a, b, c(KG1)

a + b = b + a, for all a, b(KG2)

there exists 0 such that for all a it holds that a + 0 = a(KG3)

for all a there exists b such that a + b = 0(KG4)

The properties (KG1)-(KG4) are called the properties of commuta-

tive group. They are called associativity, commutativity, existence

of neutral element (when speaking of addition we usually say zero

element), existence of inverse element (when speaking of addition

we also say the negative of a and denote it by −a), respectively.
Properties of multiplication:

(a · b) · c = a · (b · c), for all a, b, c(O1)

a · b = b · a, for all a, b(O2)

there exists 1 such that for all a it holds that 1 · a = a(O3)

a · (b + c) = a · b + a · c, for all a, b, c.(O4)

The properties (O1)-(O4) are called associativity, commutativity,

existence of unit element and distributivity of addition with respect

to multiplication, respectively.

The sets with operation +, · that satisfy the properties

(KG1)-(KG2) and (O1)-(O4) are called commutative rings.

Further properties of multiplication:

for every a ̸= 0 there exists b such that a · b = 1.(P)

if a · b = 0, then either a = 0 or b = 0(OI)

The property (P) is called existence of inverse element with respect

to multiplication (this element is then denoted by a−1) and the

property (OI) then says that there exists no "divisors of zero".

Properties of the operations of addition andmultiplication will

be often used, even if we do not know what object are

we really working with. In this way we obtain very

general mathematical tools. However, it is good to

have some idea of typical examples of object we work

with.

The integers Z are a good example of commutative group, the

natural numbers are not since they do not satisfy (KG4) (and possi-

bly do not even contain the neutral element if one does not consider

zero to be natural).

If a commutative ring also satis�es the property (P), we speak

of �eld (often also about commutative �eld).
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1.3. Find all solutions to the equation x2 = b for any real number b.

Solution. We know that this equation always has a solution x in the

domain of real numbers, whenever b is non-negative. If b < 0, then
such real x cannot exist. Thus we need to �nd a bigger domain, where

this equation has a solution.

First we add to the real numbers a new number i, so-called imag-

inary unit, and try to extend the de�nitions of addition and multipli-

cation in order to preserve the usual behaviour of numbers (as sum-

marised in 1.1).

Clearly we need to be able to multiply the new number i by real

numbers and sum it with real numbers. Therefore we need to work in

our newly de�ned domain of complex numbers C with formal expres-

sions of the form z = a + i b.

In order to satisfy all the properties of associativity and distributiv-

ity, we de�ne the addition so that we add independently the real parts

and the imaginary parts. Similarly, we want the multiplication to be-

have as if we multiply the tuples of real numbers, with the additional

rule that i2 = −1, that is,

(a + i b)+ (c + i d) = (a + c)+ i (b + d),

(a + i b) · (c + i d) = (ac − bd)+ i (bc + ad).

□
The real number a is called the real part of the complex number z,

the real number b is called the imaginary part of the complex number

z, and we write re(z) = a, im(z) = b.

1.4. Assert that all the properties (KG1-4), (O1-4) and (P) of scalars

from 1.1 hold.

Solution. Zero is the number 0 + i 0, one is the number 1 + i 0, both
these numbers are for simplicity denoted as before, that is, 0 and 1. All

properties are obtained by direct calculations. □
Complex number is given by a tuple of real numbers, therefore it

is a point in the real plane R2.

1.5. Show that the distance of the complex number z = a+ i b from
the origin (we denote it by |z|) is given by the expression zz̄, where z̄,
the complex conjugate, is a − i b.

Solution. The product

zz̄ = (a2 + b2)+ i (−ab + ba) = a2 + b2

is always a real number and indeed gives us the square of the distance

from the number z to the origin. Thus it holds |z|2 = zz̄. □
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The last stated property (OI) is automatically satis�ed if (P)

holds. However, it does not work the other way and thus we say

that the property (OI) is weaker than (P). For instance the ring of

integers Z does not satisfy (P) but satis�es (OI). In such case we

use the term integral domain.

Let us note that the set of all non-zero elements in the �eld

along with the operation of multiplication satis�es (O1), (O2),

(O3), (P) and thus is also a commutative group. Only, instead of

addition we speak of multiplication. As an example, we can take

all non-zero real numbers.

The elements of some set with operations + and · satisfying
(not necessarily all) stated properties (that is, commutative �eld,

integral domain, �eld) will be called scalars. To denote them we

use lowercase Latin letters, either from the beginning or from the

end of the alphabet.

All properties (KG1)-(KG4), (O1)-(O4), (P), (OI) from our

consideration are necessary to be considered an axiomatic de�ni-

tion of the corresponding mathematical terms. For our needs it is

enough to keep in mind that in further discussions we will use only

these properties of scalars and thus our results will hold for any

objects with such properties.

Exactly this is the true power of mathematical theories � they

do not hold just for a speci�c solved example. Quite the opposite,

when build in a rational way they are always universal. We will try

to emphasise this aspect, although our ambitions are very humble

due to the limited size of the book.

1.2. Existence of scalars. In order to build a mathematical the-

ory, we need to ensure that such objects can exist. Thus

we will show how to construct basic sets of numbers. For

the construction of natural numbers let us start with the

assumptions that we know what sets are.

Let us denote the empty set by ∅ and de�ne

(1.1) 0 := ∅, n+ 1 := n ∪ {n} ,
in other words

0 := ∅, 1 := {∅}, 2 := {0, 1}, . . . , n+ 1 := {0, 1, . . . , n}.
This notation says that if have already de�ned the numbers

0, 1, 2, . . . n, then the number n + 1 is de�ned as the set of all

previous numbers.

In this waywe identify the natural numbers with the number of

elements of some speci�c sets. The number n is a set with exactly

n elements, and two natural numbers a, b are identical if and only

if the corresponding sets have the same number of elements. In

the set theory we say "cardinality" of a set instead of "the number

of elements" of a set. This term makes sense even for in�nite sets

(the other does not).

At �rst sight we also see the usual de�nition of ordering of

natural numbers according to their size (the number a is strictly

smaller then b if and only if a ̸= b and a ⊂ b as a set). A further

formal step should be the de�nition of addition and multiplication

and a proof of all basic properties of natural numbers, including

the afore-stated axioms of commutative ring. For instance, we can

easily show that every subset inN has a smallest element and many

other properties about which we usually don't think too long and

consider them trivial.

We will not deal with the construction of numbers deal in

much detail and assume that the reader knows the rational numbers
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1.6. Remark. The distance |z| is also called the absolute value of the
complex number z.

1.7. Polar form of complex numbers. Let us �rst consider complex

numbers of the form z = cosφ + i sinφ, where φ is a real parameter

giving the angle between the real axis and the line from z to the origin

(measured in the positive sense and taking values between 0 and 2π
to avoid ambiguity). These numbers describe exactly all points on the

unit circle in the complex plane. Every non-zero number z can be then

written in a unique way as

z = |z|(cosφ + i sinφ).

The number φ is called the argument of complex number z.

1.8. Multiplication of complex numbers in the polar

form. Let the numbers z1 = |z1| (cos(φ1)+ i sin(φ1)) and

z2 = |z2| (cos(φ2)+ i sin(φ2)) be given, and let us calculate

their product:

z1 · z2 = |z1| (cos(φ1)+ i sin(φ1)) · |z2| (cos(φ2)+ i sin(φ2))

= |z1||z2|
[

cos(φ1) cos(φ2)− sin(φ1) sin(φ2)+

+i (cos(φ1) sin(φ2)+ sin(φ1) cos(φ2))

]
= |z1||z2| [cos(φ1 + φ2)+ i sin(φ1 + φ2)] ,

the last equality is a result of addition formulas for trigonometric func-

tions. Repeated application of the previous formula on the product of

the number z with itself yields the so-called "Moivre theorem":

zn = [|z|(cosφ + i sinφ)]n = |z|n(cos(nφ)+ i sin(nφ)).

1.9. Express the number z1 = 2 + 3i in the polar form and express

the number z2 = 3(cos(π/3)+ i sin(π/3)) in the algebraic form.

Solution. The absolute value of the given number (the distance of the

point with Cartesian coordinates [2, 3] in the plane from the origin)

is
√

22 + 32 = √
13. From the right triangle in the picture we can

easily compute sin(φ) = 3/
√

13, cos(φ) = 2/
√

13. Thus it is φ =
arcsin(3/

√
13) = arccos(2/

√
13) .= 53, 3◦. In total,

z1 = √
13
(

2√
13

+ i · 3√
13

)
=

√
13
[

cos
(

arccos
(

2√
13

))
+ i sin

(
arcsin

(
3√
13

))]
.

Transition from the polar form to algebraic is even simpler:

z2 = 3
(

cos
(π

3

)
+ i sin

(π
3

))
= 3

(
1
2

+ i ·
√

3
2

)
= 3

2
+ i · 3

√
3

2
.

□
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(Q), the real numbers (R) and the complex numbers (C). From

time to time we will recall some theoretical and practical connec-

tions during the course of the book. In detail, the construction of

rational numbers from the natural numbers is done in 1.40. The

construction of real numbers is closely connected to the limit pro-

cesses which we do later, and some time sooner we will deal with

complex numbers from various algebraic viewpoints. The �gure

depicts how can we perceive number domains as embedded one

into another (that is, the complex plane contains many copies of

natural and integer numbers, the real line, and so on).

Furthermore, as it is usual in mathematics, we will use vari-

ables (letters of alphabet or other symbols) to denote numbers, and

it does not matter whether we know their value beforehand or not.

1.3. Scalar functions. We often work with some value which is

not given as a particular number. Instead, we some-

thing about the dependence of the value on other val-

ues. Formally we write that the value y = f (x) of

our "dependent" variable value y is give by the "inde-

pendent" value x. We can consider the knowledge of f formally

(it is just some unspeci�ed dependence) or operationally � f (x) is

given by a formula which consists of known operations (for now,

we assume a there is just a �nite number). If the value is scalar,

we speak of a scalar function. Every function is de�ned over some

set, we speak of domain of a function, and the range of all values

of the function is then the so-called codomain of the function.

We can have the values of f to be given only approximately

or with some probability.

The point of mathematical considerations is then to derive,

from a non-formal description of dependencies, explicit formulas

for functions which describe them, or at least explicit evaluations

for speci�c values of dependent values, or their approximation. Ac-

cording to the type of he task and the goal we work with

• exact �nite expression,

• in�nite expression,

• approximation of an unknown function with a known value

(usually with explicitly evaluated possible error of the approx-

imation),

• approximation of values with evaluation of their probability,

etc.

Scalar function is for instance yearly pay of a worker in some

company (the values of of independent variable, that is, the do-

main of the function, are individual workers x from the set of all

considered workers, f (x) is their yearly pay for the given year).

Analogously, we can observe monthly pay of a particular worker

in time (the independent variable is then time inmonths, dependent

variable is the pay in the given month). Another example is then

the area of a planar object, volume of an object in space, speed of a

particular car in time, etc. We can surely imagine that in all given

cases the value can be given by some loosely described connection

or measured approximately, etc.

1.4. Functions de�ned by operations. Functions can be given by

listing their values � for instance in a company there

are only �nitely many employes and we can compose

a table with their actual monthly pays. More often,

we have some rules how to obtain the values instead of de�nite

tables.

6

1.10. Express z = cos 0 + cos π3 + i sin π
3 in polar form.

Solution. To express number z in polar form, we need to �nd out its

absolute value and argument. Let us �rst calculate the absolute value:

|z| =
√(

cos 0 + cos π3
)2 + sin2 π

3 =
√(

1 + 1
2

)2 +
(√

3
2

)2 = √
3.

Now for the argument φ we have:

cosφ = re(z)
|z| = 1+ 1

2√
3

=
√

3
2 , sinφ = im(z)

|z| = 1
2 ,

therefore φ = π/6. Thus we have obtained

z = √
3
(
cos π6 + i sin π

6

)
.

□

1.11. Using the Moivre theorem calculate(
cos π6 + i sin π

6

)31
.

Solution. We immediately obtain(
cos π6 + i sin π

6

)31 = cos 31π
6 + i sin 31π

6 = cos 7π
6 + i sin 7π

6 =
−

√
3

2 − i 1
2 .

□
More examples about complex numbers can be found at ∥1.111∥

1.12. Complex numbers are not just a tool to obtain "weird" solutions

to quadratic equations, but are necessary to determine solutions to cu-

bic equations, even if these solutions are real. How can we express

solution to the cubic equation

x3 + ax2 + bx + c = 0

in real coe�cients a, b, c? We show a method developed in sixteenth

century by Ferro, Cardano, Tartaglia and possibly others. Let us sub-

stitute x := t − a/3 (to remove the quadratic part from the equation)

to obtain the equation:

t3 + pt + q = 0,

wherep = b−a2/3 and q = c+(2a3−9ab)/27. Now let us introduce

unknowns u, v satisfying conditions u + v = t and 3uv + p = 0.
Plugging the �rst condition to the previous equation we obtain

u3 + v3 + (3uv + p)(u+ v)+ q = 0,

and then plugging the second yields

u6 + qu3 − p3

27
= 0,

which is a quadratic equation in the unknown s = u3. Thus we have

u = 3

√
−q

2
±
√
q2

4
+ p3

27
,
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Factorial function

An important scalar function de�ned over natural numbers is

the so-called factorial, de�ned by the relation

f (0) = 1, f (n) = n · f (n− 1)

for n = 1, 2, . . . . We write f (n) = n! and the de�nition clearly

means that

n! = n · (n− 1) · · · 1.

Our de�nition of the factorial function says how its value f (n)

changes when we change the value of n by one. The formula for

n! then explicitly says, how much is that in total. In this case it

is not a very e�ective formula, since its complexity increases with

increasing n, but it is hard to �nd a better one.

Let us have a look on the natural number addition as on a scalar

function de�ned by operations. The domain is then the set of all

tuples (a, b) of natural numbers. We de�ne a+ b as a result of the
procedure of adding 1 to a a couple of times. Recall that we have

de�ned a + 1 in general in the equation (1.1). For every addition

of one we remove the greatest element from b, and we carry this

on until b is not empty (e�ectively, for every addition we subtract

one from b, whose value at any given time tells us how many more

ones shall we add).

It is evident that addition de�ned in this way is given by an

(iterative) formula, but this approach is not very e�cient for practi-

cal addition. This will happen in our exposition often � theoretical

correct de�nition of a term or an operation does not mean that the

given procedure can be carried e�ectively. For this reason we will

develop theories to obtain practical tools. As for natural numbers,

we are able to deal with them quickly (while they are small), and for

the large ones we know the algorithm for reducing it to addition of

more smaller numbers, and for the really large ones we have com-

puters (unless they are very very large).

2. Combinatorics

A typical "combinatorial" problem is to enumerate in how

many ways something can happen. For instance, in

how many ways can we choose two di�erent sand-

wiches from the daily o�er in a grocery shop? Is this

the situation where we consider that all sandwiches

that are there are pairwise distinct or do we consider only distinct

kinds of sandwiches? Do we then allow to take two of the same

type? Many such question occur in the context of card and other

games.

When solving particular problems we usually use either the

so-called "rule of product", where in mutually independent tasks

we combine all possible results, or the "rule of sum", where we sum

the number of ways for distinct incompatible tasks. Practically we

demonstrate it in many examples.

1.5. Permutations. If from a set of n elements we create some

order of the elements, we can choose the �rst element in n ways,

the second can be then chosen in n − 1 ways and so on, until we

take the last element for which there is only one choice. Therefore

for a given �nite set S with n elements there are exactly n! distinct
orders (we have used the product rule). The process of ordering

elements of a set S is called permutation of the elements of S. The

result of a permutation is always some ordering of the elements.
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By substituting back, we obtain

x = −p/3u+ u− a/3.

In the expression for u there is cubic root, and in order to obtain

all three solutions we need to work with complex roots. The equation

x3 = a, a ̸= 0, with the unknown x has exactly three solutions in the
domain of complex numbers (The fundamental theorem of algebra, see

(∥??∥)). All these three solutions are called cubic root of a. Therefore
the expression 3

√
a has three meanings in the complex domain. If we

want to have a single meaning for that expression, we usually consider

it to be the solution with the smallest argument.

Let us further add that in the used method there could possible

arise division by zero. In this case another method (usually simpler)

is necessary.

1.13. Solve the equation

x3 + x2 − 2x − 1 = 0.

Solution. As we can easily �nd out, this equation has no rational

roots (methods to determine rational roots will be introduce in the part

(∥??∥)). Plugging into obtained formulas we yield p = b − a2/3 =
−7/3, q = −7/27, for u we then have

u =
3
√

28 ± 12
√−147

6
,

where we can theoretically choose up to six possibilities for u (two for

the choice of the sign and three independent choices of the cubic root).

But as we can easily see, we obtain only three distinct values for x.

Plugging into (∥1.12∥) one of the roots is of the form
14

3
√

3(28 − 84i
√

3)
+

3
√

28 − 84i
√

3
6

− 1
3
.= 1, 247,

similarly for the other two (approximately −0, 445 and −1, 802). As
we have said before, we see that even if we have used complex number

during the course, the result is real. □

B. Combinatorics

In this section we will work with natural numbers that describe

some indivisible items located in our real life space, and deal with ques-

tions like how to compute the number of their (pre)orderings, choices,

and so on. In a great number of these problem, "common sense" is suf-

�cient. We just need to use the rules of product and sum in the right

way, as we show in the next examples:
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If we �rst number the elements in S, that is, we identify S with

the set S = {1, . . . , n} of n natural numbers, then permutations

correspond to possible orderings of numbers from one to n. Thus

we have an example of a simple mathematical theorem and this

discussion can be considered to be its proof:

Number of permutations

Proposition. The number p(n) of distinct orderings of a �nite set

with n elements is given by the factorial function:

(1.2) p(n) = n!

1.6. Combinations and variations. Another simple example of

a value determined by formula are so-called binomial

coe�cients, which express in howmany ways can we

choose k distinguishable items from a set of n items.

Clearly we have

n(n− 1) · · · (n− k + 1)
of possible results of a subsequential choosing of our k elements,

but we obtain the same k-tuple in k! distinct orders. If we want to
choose the items along with an ordering, we speak of a variation

of k-th degree.

As we have just checked, the number of combinations and vari-

ations are given by the following formula, which are not very ef-

fective for calculations with k and n large, since they contain fac-

torials.

Combinations and variations

Proposition. For the number c(n, k) of combinations of k-th de-

gree among n elements, where 0 ≤ k ≤ n, it holds that

(1.3)

c(n, k) =
(
n

k

)
= n(n− 1) . . . (n− k + 1)

k(k − 1) . . . 1
= n!
(n− k)!k!

.

For the number v(n, k) of variations it holds that

(1.4) v(n, k) = n(n− 1) · · · (n− k + 1)

for all 0 ≤ k ≤ n (and zero otherwise).

We pronounce binomial coe�cient
(
n
k

)
as "n over k". The

name stems from the so-called binomial expansion, which is the

expansion of (a + b)n. If we expand (a + b)n, the coe�cient at

akbn−k equals for every 0 ≤ k ≤ n exactly the number of ways

to choose a k-tuple from n parentheses in the product (from these

parentheses, we take a, from the others, we take b). Therefore we

have

(1.5) (a + b)n =
n∑
k=0

(
n

k

)
akbn−k

and note that for the derivation only distributivity, commutativity

and associativity of multiplication and summation was necessary.

The formula (1.5) therefore holds in every commutative ring.

Let us present another simple example of a mathematical

proof � a few simple propositions about binomial coe�cients. For

a simpli�cation of formulations we de�ne
(
n
k

) = 0 whenever k < 0
or k > n.

1.7. Proposition. For all natural numbers k and n we have

8

1.14. Mother wants to give John and Mary �ve pears and six apples.

In howmanyways can she divide the fruits among them? (We consider

both pears and apples to be indistinguishable. We also allow that one

of the children might not get anything.)

Solution. Five pears can be divided in six ways (it is determined by

the number of pears given to John, the rest goes to Mary.) Six apples

can be independently divided in seven ways. Using the rule of product,

the total number is 6 · 7 = 42. □

1.15. Determine the number of four-digit numbers, which start with

the digit 1 and do not end with the digit 2, or that end with the digit 2
but do not start with the digit 1.

Solution. The set of the numbers described in the statement consists of

two disjoint sets, that is, of numbers which start with the digit 1 but do
not end with the digit 2 (the �rst set), and of numbers that do not begin
with the digit 1 and end with the digit 2 (the second set). The total

number is then obtained using the rule of sum by summing the number

of numbers in these two sets. In the �rst set there are numbers of the

form "1XXY" where X is an arbitrary digit and Y is any digit except

2. Thus we can choose the second digit in ten ways, independently of
that the third digit in ten ways and again independently the third digit

in nine ways. These three choices then uniquely determine a number

and using the rule of product we then have 10 · 10 · 9 = 900 of such

numbers. Similarly in the second set we have 8·10·10 = 800 numbers
of the form "YXX2" (for the �rst digit we have only eight ways, since

the number cannot start with zero and one is forbidden). Using the

rule of sum we have 900 + 800 = 1700 numbers. □

1.16. Determine the number of ways of placing white tower and

black tower on the chessboards (of size 8 × 8), that they don't threat

each other (that is, they are neither in the same column nor in the row).

Solution. Let us �rst place the white tower. For it we can choose

among 82 positions. In the second step we place the black tower. Now

we have "to our disposal" 72 positions. Using the rule of some the total

number of ways is 82 · 72 = 3 136. □
In the following examples we will use the notions of combination,

permutation, variation (possibly with repetitions), which we have de-

�ned.

1.17. During the conference, 8 speakers are scheduled. Determine

the number of all possible orderings in which two given speakers do

not speak one right after the other.

Solution. Let us denote the two given speakers as A and B. If right

after the speaker A follows B, we can see it as a speech of a single
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(1)
(
n
k

) = (
n
n−k

)
(2)

(
n+1
k+1

) = (
n
k

)+ (
n
k+1

)
(3)

∑n
k=0

(
n
k

) = 2n

(4)
∑n
k=0 k

(
n
k

) = n2n−1.

Proof. The �rst proposition is immediate directly from the

formula (1.3). If we expand the right-hand side of (2), we obtain(
n

k

)
+
(

n

k + 1

)
= n!
k!(n− k)!

+ n!
(k + 1)!(n− k − 1)!

= (k + 1)n! + (n− k)n!
(k + 1)!(n− k)!

= (n+ 1)!
(k + 1)!(n− k)!

which is the left-hand side of (2).

In order to prove (3), we use the so-calledmathematical induc-

tion. This tool is very suitable for statements saying

that something should hold for every natural number

n. The mathematical induction consists of two steps.

In the �rst, base step we assert the claim for n = 0 (in general, for

the smallest n the claim should hold for). In the second, inductive

step we assume that the claim holds for some n (and all smaller

numbers) and using this we prove that that this implies the claim

for n + 1. Putting it together, we obtain that the claim holds for

every n.

The claim (3) clearly holds for n = 0, since
(0

0

) = 1 = 20.

(Similarly easy is it also for n = 1.) Now let us assume that the

claim holds for some n and calculate the corresponding sum for

n+ 1 using the claims (2) and (3). We yield

n+1∑
k=0

(
n+ 1
k

)
=

n+1∑
k=0

[(
n

k − 1

)
+
(
n

k

)]

=
n∑

k=−1

(
n

k

)
+
n+1∑
k=0

(
n

k

)
= 2n + 2n = 2n+1.

Note that the formula (3) gives the number of all subsets of an

n-element set, since
(
n
k

)
is the number of all subsets of size k. Note

also that (3) follows from (1.5) by choosing a = b = 1.
To prove (4) we again employ induction, as in (3). For n = 0

the claim clearly holds. Inductive assumption says that (4) holds

for some n. Let us now calculate the corresponding sum for n+ 1
using (2) and the inductive assumption. We obtain

n+1∑
k=0

k

(
n+ 1
k

)
=

n+1∑
k=0

k

[(
n

k − 1

)
+
(
n

k

)]

=
n∑

k=−1

(k + 1)
(
n

k

)
+
n+1∑
k=0

k

(
n

k

)

=
n∑
k=0

(
n

k

)
+

n∑
k=0

k

(
n

k

)
+

n∑
k=0

k

(
n

k

)
= 2n + n2n−1 + n2n−1 = (n+ 1)2n.

This completes the inductive step and the claim is proven for all

natural n. □
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speaker AB. The number of all orderings where B speaks right af-

ter A is then equal to the number of permutations of seven elements.

Clearly, the same number is for the number of all orderings where A

speaks right after B. Since the number of all possible orderings of

eight speakers is 8!, the result is 8! − 2 · 7!. □

1.18. How many anagrams of the word PROBLEM are there, such

that

a) the letters B and R are next to each other,

b) the letters B and R are not next to each other.

Solution. a) The pair of letters B and R can be assumed to be a sin-

gle indivisible "double-letter". In total we have six distinct letters and

there are 6! words of six indivisible letters. In our case we have to

multiply this by two, since are double-letter can be either BR or RB.

Thus the result is 2 · 6!.
b) 7! − 2 · 6! the complement to the part a) to the number of all

seven-letter words of distinct letters. □

1.19. In how many ways can an athlete place 10 distinct cups to 5
shelves, if into every shelf all 10 cups �t?

Solution. Let us add 4 indistinguishable items, say separators, to the

cups. The number of all distinct orderings of cups and separators is

clearly 14!/4! (the separators are indistinguishable). Every placement
of cups into shelves corresponds to exactly one ordering of cups and

separators. It is enough to say that the cups before the �rst separator

in the ordering are placed in the �rst shelf (preserving the order), the

cups between the �rst and the second separator in the second shelf, and

so on. Thus the number 14!/4! is the result. □

1.20. Determine the number of four-digit numbers with exactly two

distinct digits.

Solution. Two distinct letters used for the number can be chosen in(10
2

)
ways, from two chosen digits we can compose 24 − 2 distinct

four-digit numbers (we subtract the 2 for the two one digit numbers).

In total we have
(10

2

)
(24 − 2) = 630 numbers. But in this way, we

have also computed the numbers that start with zero. Of these there

are
(9

1

)
(23 − 1) = 63. Thus we have 630 − 63 = 567 numbers. □

1.21. Determine the number of even four-digit numbers composed

of exactly two distinct digits.

Solution. Analogously to the previous example, let us �rst ignore the

peculiarities of the digit zero. We thus obtain
(5

2

)
(24 −2)+5·5(23 −1)

numbers (we �rst count only the number that consist only of even dig-

its, the second summand gives the number of even four-digit numbers
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The second property from our claim allows us to compose all

binomial coe�cients into the so-called Pascal triangle, where ev-

ery number is obtained as a sum of two coe�cients situated right

"above" it:

n = 0 : 1
n = 1 : 1 1
n = 2 : 1 2 1
n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1
n = 5 : 1 5 10 10 5 1

Note that in individual rows we have exactly the coe�cients at in-

dividual powers in the expression (1.5), for instance the last given

row says

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5.

1.8. Choice with repetitions. The ordering of n elements, where

some of them are indistinguishable is called permuta-

tion with repetitions.

Let there be among n given elements p1 elements

of �rst kind, p2 elements of second kind, . . . , pk of

the k-th kind, where p1 + p2 + · · · + pk = n, then the number

of permutations with repetitions of these elements is denoted as

P(p1, . . . , pk).

Similarly to permutations and combinations without repeti-

tions, for the choice of the �rst element we have n possibilities,

for the second n − 1 and so on, until the last element, for which

we have only one choice. But we consider the orderings which dif-

fer only in the order of indistinguishable elements to be identical.

Elements of every kind can be ordered in pi! ways, thus we have
Permutations with repetitions

P(p1, . . . , pk) = n!
p1! · · ·pk! .

Free choice of k elements from n elements, when order mat-

ters, is called variation of k-th degree with repetitions, the number

of those is denoted V (n, k). Free choice in this case means that

we assume that for every choice we have the same number of pos-

sibilities � for instance, when we return the elements back before

the next choice, when we throw the same dice, and so on. The

following clearly holds:

Variations with repetitions

V (n, k) = nk.

If we are interested in choice without taking care of order, we

speak of combinations with repetitions and for their number we

write C(n, k). At �rst sight, it does not seem to be easy to deter-

mine the number. The proof of the following theorem is typical for

mathematics � we reduce the problem to another problem we have

already dealt with. In our case it is reduction to standard combina-

tions without repetitions:

Combinations with repetitions

Theorem. The number of combinations with repetitions of k-th

order from n elements equals for every k ≥ 0 and n ≥ 1

C(n, k) =
(
n+ k − 1

k

)
.
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with one digit even and one digit odd). Again we have to subtract the

numbers that start with zero, of those there are (23 − 1)4 + (22 − 1)5.
The �nal number is thus(

5
2

)
(24 − 2)+ 5 · 5(23 − 1)− (23 − 1)4 − (22 − 1)5 = 272.

□

1.22. There are 677 people at a concert. Do some of them have the

same name initials?

Solution. There are 26 letters in the alphabet. Thus the number of all

possible name initials are 262 = 676. Thus at least two people have

the same initials. □

1.23. New players meet in a volleyball team (6 people). How many

times do they shake hands when introducing to each other (everybody

shakes with everybody)? How many times do they shake hands with

the opponent after playing a match?

Solution. Every tuple of players shakes hands at the introduction. The

number of handshakes is then equal to the combination C(2, 6) =(6
2

) = 15. After a match each of the six players shakes hands six times
(with each of six opponents). Thus the number is 62 = 36. □

1.24. In how many ways can �ve people be seated in a car for �ve

people, if only two of them have driver licence? In how many ways

can 20 passengers and two drivers be seated in a bus for 25 people?

Solution. On the driver's place we have two choices and the other

places are then arbitrary, that is, for the second seat we have four

choices, for the third three choices, then two and then 1. That makes

2.4! = 48 ways. Similarly in the bus we have two choices for the dri-

ver, and then the driver plus the passengers can be seated among the

24 seats arbitrarily. Let us �rst choose the seats to be occupied, that

is,
(24

21

)
, and among these the people can be seated in 21! ways. That

makes 2.
(24

21

)
21! = 24!

3 ways. □

1.25. In how many ways can we insert into three distinct envelopes

�ve identical 10-bills and �ve identical 100-bills such that no envelope

stays empty?

Solution. Let us �rst compute the number of insertions ignoring

the non-emptiness condition. Using the rule of product (we insert

the 10-bills and 100-bills independently) we have C(2, 7)2 = (7
2

)2
.

Let us now subtract the insertions such that exactly one envelope is

empty and then the insertions such that two are empty. We have

C(2, 7)2 − 3(C(1, 6)2 − 2) − 3 = (7
2

)2 − 3(62 − 2) − 3 = 336.
□
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Proof. The proof is based on a trick (a simple one, as soon

as we understand it). We show two di�erent ap-

proaches.

Assume �rst, that we are drawing cards from a

deck of n di�erent cards and in order to make it pos-

sible to draw some card multiple times, we add to the deck k − 1
di�erent jokers (we de�nitely want to draw at least one of the orig-

inal cards). Say that we have drawn r original cards and s jokers,

that is, r + s = k. It seems that we should devise a method how to

assign "substitute" jokers to original cards, so that we know how

many times we have drawn each original card. But we actually

need to discuss only the number of ways how to do that.

For that we can use the mathematical induction and assume

that the claim holds for any arguments smaller than n and k. We

need to obtain the combination with repetition of the s-th order

from r original cards, which gives
(
r+k−r−1

s

) = (
k−1
s

)
, which is

exactly the number of combinations without repetitions of s-th or-

der from all jokers. Thus the theorem is proven.

Alternative approach (induction-free): Over the set

S = {a1, . . . , an},
from which we choose the combination, we �x an ordering of the

elements and for our choices of elements of S we prepare n boxes

into which we give (in the �xed order) the elements of S (one ele-

ment into every box).

The individual choices xi ∈ S are then given to the box which
already contains this element. Now let us realize that in order to

detect the original combination we just need to know how many

elements are there in individual boxes. For instance,

a | bbb | cc | d ≃ ∗ | ∗ ∗ ∗ | ∗∗ | ∗,
determines the choice b, b, c from the set S = {a, b, c, d}.

In the general case of the choice of k elements from n possible

we have a chain of n+ k elements and the number C(n, k) equals

the number of possible placements of the boxes | among individual
elements. This amount to the choice of n−1 positions from n+k−1
possible. Since we have(

n+ k − 1
k

)
=
(

n+ k − 1
n+ k − 1 − k

)
=
(
n+ k − 1
n− 1

)
,

the theorem is proven (for the second time). □

3. Di�erence equations

In the previous paragraphs we have seen formulas, which de-

termined the value of a scalar function de�ned on natural numbers

(factorial) or on tuples of natural numbers (binomial coe�cients)

using already de�ned values. In the paragraph 1.5 the binomial co-

e�cients are de�ned with a directly computable formula, but we

can also understand them using the relationship exhibited in 1.8 �

instead of the value of the function we give the di�erence corre-

sponding to a change of the variable.

Such approach can be seen very often when formulating math-

ematical models that describe real systems in econ-

omy, biology, etc. We will observe only a few sim-

ple examples and we will return to this topic in the

future.
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1.26. Determine the number of distinct sentences which can arise by

permuting letters in the individual words in the sentence "Skokan na

koks" (the arising sentences and words do not have to make any sense).

Solution. Let us �rst compute the number of anagrams of individ-

ual words. From the word "skokan" we obtain 6!/2 distinct anagrams

(permutation with repetition P(1, 1, 1, 1, 2)), similarly "na" yields

two and "koks" 4!/2. Therefore, using the rule of product, we have

6!4!/4 = 4320. □

1.27. How many distinct anagrams of the word "krakatit", such that

between the letters "k" there is exactly one other letter.

Solution. In the considered anagrams there are exactly six possibilities

of placement of the group two "k", since the �rst of the two "k" can be

placed at any of the positions 1 − 6. If we �x the spots for the two "k",
then the other letters can be placed arbitrarily, that is, in P(1, 1, 2, 2)
ways. Using the rule of product, we have

6 · P(1, 1, 2, 2) = 6 · 6!
2 · 2

= 1080.

□

1.28. In how many ways can we insert �ve golf balls into �ve holes

(into every hole one ball), if we have four white balls, four blue balls

and three red balls?

Solution. Let us �rst solve the problem in the case that we have �ve

balls of every colour. In this case it amounts to free choice of �ve

elements from three possibilities (there is a choice out of three colours

for every hole), that is variations with repetitions (see ). We have

V (3, 5) = 35.

Now let us subtract the con�gurations where there are either balls of

one colour (there are three such), or exactly four red balls (there are

2 · 5 = 10; we �rst choose the colour of the non-red ball � two ways �
and then the hole it is in � �ve ways). Thus we can do it in

35 − 3 − 10 = 230

ways. □

1.29. In how many ways could have the English Premier League

league �nished, if we know that no two of the three teams Newcas-

tle United, Fulham and Tottenham Hotspur are not "adjacent" in the

�nal table? (There are 20 teams in the league.)

Solution. First approach. We use the inclusion-exclusion principle.

From the number of all possible resulting tables we subtract the tables
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1.9. Linear di�erence equations of �rst order. General di�er-

ence equation of the �rst order is an expression of the form

f (n+ 1) = F(n, f (n)),

where F is a known scalar function with two parameters. If we

know the "initial" value f (0), we can compute f (1) = F(0, f (0)),
then f (2) = F(1, f (1)) and so on. Using this approach we can

compute the value f (n) for arbitrary n ∈ N. Note that this idea
resembles the construction of natural numbers from the empty set

or the principle of mathematical induction.

An example of such equation is the de�nition of the factorial

function:

(n+ 1)! = (n+ 1) · n!

We see that the value of f (n+ 1) depends on both n and the value
of f (n).

Another, very simple example is f (n) = C for some �xed

scalar C and all n, and the so-called linear di�erence equation of

�rst order

(1.6) f (n+ 1) = a · f (n)+ b,

where a ̸= 0 and b are known scalars.

Such di�erence equation is easy to solve if b = 0. Then it is
the well-known recurrent de�nition of the geometric progression

and it holds that

f (1) = af (0), f (2) = af (1) = a2f (0) and so on

Thus for all n we have

f (n) = anf (0).

This is also the relation for the so-called Malthusian population

growth model, which is based on the assumption that during a

given time interval the populations grows with a constant ratio a

to the state before the interval.

We will prove a general result for �rst order equations, which

are similar to linear, but allow varying coe�cients of a and b,

(1.7) f (n+ 1) = an · f (n)+ bn.

First let us think about what such equations can describe.

Linear di�erence equation (1.6) can we nicely interpret as a

mathematical model for �nance, e.g. savings or loan payo� with

a �xed interest rate a and �xed repayment b (the cases of savings

and loans di�er only in the sign of b).

With varying parameters a and b we obtain a similar model

with varying interest rate and repayment. We can

imagine for instance that n is the number of months,

an is the interest rate in the nth month, bn the repay-

ment in the nth month.

Do not be afraid of the seemingly di�cult calculations in the

following result. It is a typical example of technical mathematical

statement for which it is hard to "guess" precisely how it should be

formulated. On the other hand, it is then a simple exercise on the

properties of scalars andmathematical induction to prove it. Really

interesting are then the corollaries, see 1.11 later.

In the formulation we use along with the usual notation for

sum
∑

the similar notation for the product
∏
. In the rest of the text

we will also use the convention that when the index set is empty,

then the sum is zero and that the product is one.
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where some two of the three teams are adjacent and then add the tables

where all three teams are adjacent. The number is then

20! −
(

3
2

)
· 2! · 19! + 3! · 18! = 1741445647958016000.

Second approach. Let us consider the three teams to be "separa-

tors". The remaining teams have to be divided such that between any

two separators there is at least one team. The remaining teams can be

arbitrarily permuted, as can the separators. Thus we have(
18
3

)
· 17! · 3! = 1741445647958016000.

ways. □

1.30. For any �x n ∈ N determine the number of all solutions to the

equation

x1 + x2 + · · · + xk = n

on the set of strictly positive integers.

Solution. Every solution (r1, . . . , rk),
∑k

i=1 ri = n can be uniquely

encoded as a sequence of separators and ones, where we �rst write r1
ones, then a separator, then r2 ones, then another separator, and so one.

Such sequence then clearly contains n ones and k−1 separator. Every
such sequence clearly determines some solution of the given equation.

Thus there are exactly that many solutions as there are sequences, that

is,
(
n+k−1
n

)
. □

C. Di�erence equations

Di�erence equations (also called recurrence relations) are rela-

tions between elements of some sequence, where an element of the

sequence depends on previous elements. To solve a di�erence equa-

tions means �nding an explicit formula for n-th (that is, arbitrary) ele-

ment of the sequence. Recurrence relation allows us only to compute

n-th element by computing all previous elements.

If an element of the sequence is determined only by the previous

element, we speak about �rst order di�erence equation. Those are

present in our real world, for instance when we want to �nd out how

long will repayment of a loan take for �xed monthly repayment, or

when we want to �nd out how much shall we pay per month if we

want to repay a loan in a �xed time.

1.31. Michael wants to buy a new car. The car costs C30, 000.
Michael wants to take out a loan and repay it with a �xed month repay-

ment. The car company o�ers him to buy the car with yearly interest

of 6%. Michael would like to �nish repaying the loan in three years.

How much should he pay per month?



CHAPTER 1. INITIAL WARMUP

1.10. Proposition. General solution of the di�erence equation

(1.7) of �rst order with the initial condition f (0) = y0 is given

by the formula

(1.8) f (n) =
(
n−1∏
i=0

ai

)
y0 +

n−2∑
j=0

 n−1∏
i=j+1

ai

 bj + bn−1.

Proof. We will prove the proposition using mathematical in-

duction. It clearly holds for n = 1 where

it amounts directly to the de�nition f (1) =
a0y0 + b0.

Assuming that the statement holds for some �xed n, we can

easily compute:

f (n+ 1) = an

(n−1∏
i=0

ai

)
y0 +

n−2∑
j=0

 n−1∏
i=j+1

ai

 bj + bn−1


+ bn

=
(

n∏
i=0

ai

)
y0 +

n−1∑
j=0

 n∏
i=j+1

ai

 bj + bn,

as can be directly seen by multiplying out. □

Let us again note that for the proof we did not need anything

about the scalars we used except for the properties of commutative

ring.

1.11. Corollary. General solution of linear di�erence equation

(1.6) with a ̸= 1 and initial condition f (0) = y0 is

(1.9) f (n) = any0 + 1 − an

1 − a
b.

Proof. If we set ai and bi to be constants and use the general

formula (1.8) we obtain

f (n) = any0 + b

(
1 +

n−2∑
j=0

an−j−1
)
.

For evaluating the sum of products in the second summandwe need

to observe that these are expressions (1+a+· · ·+an−1)b. The sum

of this geometric progression can be computed using the formula

1 − an = (1 − a)(1 + a+· · ·+ an−1), and that yields the required

result. □

Note that for calculating the sum of a geometric progression

we required the existence of the inverse element for

non-zero scalars. We could not do that with integers

only. Thus the last result holds for �eld of scalars

and we can thus use it for linear di�erence equations

where the coe�cients a, b and the initial condition f (0) = y0 are

rational, real or complex numbers; and also in the ring of remainder

classes Zk with prime k (we will de�ne remainder classes in the

paragraph 1.41).

It is noteworthy that the formula (1.9) actually holds even with

the integer coe�cients and initial condition. Then we know in ad-

vance that all f (n) are integer, and integers are a subset of rational

numbers. Thus our formula necessary gives correct integer solu-

tions.

Observing the proof inmore detail, we see that 1−an is always
divisible by 1−a, thus the last paragraph should not have surprised
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Solution. Let S denote the sum Michael has to pay per month. After

�rst month Michael repays S, part of it is a repayment of the loan, part

of it repays the interest. Let dk stand for the loan after k months. After

�rst month dk is

d1 = 30000 − S + 0, 06
12

· 30000.

In general, after k-th month we have

(1.1) dk = dk−1 − S + 0, 06
12

dk−1.

Using the relation (1.9) is dk given by

dk =
(

1 + 0, 06
12

)k
30000 −

[(
1 + 0, 06

12

)k
− 1

](
12S
0, 06

)
.

Repaying the loan in three years means d36 = 0, thus we obtain

(1.2) S = 30000

(
0,06
12

1 − (1 + 0,06
12 )

−36

)
.= 912.7.

□
Note that the recurrence relation (∥1.1∥) can be used for our case

as long as all y(n) are positive, that is, as long as Michael still has to

repay something.

1.32. Consider the case from the previous example. For how long

would Michael have to pay, if he would like to repay C500 per month?

Solution. Setting q = (
1 + 0,06

12

) = 1.005, c = 30000 the condition

dk = 0 gives the equation

qk = 200S
200S − c

,

by taking logarithms of both sides we obtain

k = ln 200S − ln(200S − c)

ln q
,

which for S = 500 gives approximately k = 71, 5, thusMichael would

be paying for six years (and the last repayment would be less than

C500). □

1.33. Determine the sequence {yn}∞n=1, which satis�es the following

recurrence relation

yn+1 = 3yn
2

+ 1, n ≥ 1, y1 = 1.

⃝
Linear recurrence can appear for instance in geometric problems:
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us. However it can be seen that with scalars fromZ4 and say a = 3
we fail since 1 − a = 2 is a divisor of zero.

1.12. Nonlinear example. Let us return for a while to the �rst

order equation (1.6) we have used for a very primitive

population growth model which directly depends on

the momentary population size p. On �rst sight it is

clear that such model with a > 1 leads to a very rapid
and unbounded growth.

A more realistic model has such population change 1p(n) =
p(n+ 1)−p(n) only for small values of p, that is1p/p ∼ r > 0.
Thus if we want to let population grow by 5% for a time interval

only for small p, we choose r to be 0, 05. For some limit valuep =
K > 0 the population does not grow and for even greater values

it even decreases (since for instance the resources for the feeding

of the population are limited, individuals in a big population are

obstacles to each other etc).

Let us assume that exactly the values yn = 1p(n)/p(n)

change linearly in p(n). Graphically we can imagine this depen-

dence as a line in the plane of variables p and y, which goes

through the points [0, r] (that is when p = 0 we have y = r)

and [K, 0] (which gives the second condition � when p = K the

population does not change). Thus we set

y = − r

K
p + r.

By setting y = yn and p = p(n) we obtain

p(n+ 1)− p(n)

p(n)
= − r

K
p(n)+ r,

that is bymultiplying out we obtain a di�erence equation �rst order

(where the value of p(n) is present as both �rst and second power).

(1.10) p(n+ 1) = p(n)
(
1 − r

K
p(n)+ r

)
.

Try to thing through the behaviour of this model for various

values of r and K. On the picture we can see the

values for parameters r = 0, 05 (that is, �ve percent

growth in the ideal state), K = 100 (the resource

limit the population to the size 100) and p(0) are two individuals.

Note that the original almost exponential growth slows later

down and the value approaches the desired limit of 100 individuals.
For p close to one and K way greater than r the right side of the

equation (1.10) is approximately p(n)(1+ r), that is the behaviour
is similar to that of the Malthusian model. On the other hand, for

p almost equal toK the right side of the equation is approximately

p(n). For initial value of p greater thanK the values will decrease,

for smaller than K they will grow, thus the system will basically

oscillate about the value K.
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1.34. Suppose n lines divide the plane into areas, what is the maxi-

mal number of areas that can arise this way?

Solution. Let the number of areas bepn. If there is no line in the plane,

then the whole plane is an area, thus p0 = 1. If there are n lines, then
by adding (n+ 1)-st line increases the number of areas by the number
of areas this new line interesects. If no lines are parallel and no three

lines intersect at the same point, the number of areas the (n + 1)-st
line crosses equals to one plus the number of its intersections with the

previous lines (the crossed area will then be divided into two, thus the

total number increases by one at every crossing). The new line has at

most n intersections with the already-present n lines. The segment of

the line between two intersections crosses exactly one area, thus the

new line crosses at most n+1 areas. Before adding the line, there was
at most pn areas (by the de�nition of pn).

Thus we obtain the recurrence relation

pn+1 = pn + (n+ 1),

from which we obtain an explicit formula for pn either by applying the

formula 1.10 or directly:

pn = pn−1 + n = pn−2 + (n− 1)+ n =

= pn−3 + (n− 2)+ (n− 1)+ n = · · · = p0 +
n∑
i=1

i =

= 1 + n(n+ 1)
2

= n2 + n+ 2
2

□
Recurrence relation can be more complex than �rst order. Let us

list example of combinatorial problems, for whose solution a recur-

rence relation can be used.
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4. Probability

Let us have a look on another frequent example of scalar-

valued functions � the observed values are of-

ten known neither explicitly by a formula nor

implicitly by some description. They are a re-

sult of some randomness and we try to describe

the probability of some outcome happening.

1.13. What is probability? As a simple example we can use com-

mon six-sided dice throwing, with sides labelled as

1, 2, 3, 4, 5, 6.

If we describe mathematical model of such throwing with a "fair"

dice, we expect and thus also require that every side occurs with

the same frequency. In words, we say that "every in advance chose

side occurs with the probability 1
6".

But if you try tomanufacture with a knife such dice fromwood,

you probably observe that the relative frequencies will not be the

same. In such situation, we can after a large number of tries count

the relative frequencies of each label, and set these to be the prob-

abilities in our mathematical description. But no matter how large

the number of tries is, we cannot exclude the possibility that all the

tries we did was some unlikely combination of the result and thus

our model is not well chosen.

In the following part we will work with abstract mathemati-

cal description of probability in the simplest approach.

The question how accurate or adequate for a speci�c

real-world problem is out of the realms of mathemat-

ics. But that does not mean that such question are not

for mathematician, quite the opposite (most likely in cooperation

with some experts in the given area). Later we will return to prob-

ability and see it as a theory describing the behaviour of random

processes or fully deterministic processes where not all determin-

ing parameters are known.

Mathematical statistics allows us to say how much can we ex-

pect that a given model corresponds to reality, or allows us to de-

termine the parameters of the model in such way that the corre-

spondence with the observations is high and simultaneously can

estimate the reliability of the chosen model.

For both probability and statistics a complexmathematical the-

ory is required, which we build over the course of few semesters.

On the example of our dice we can imagine it as follows: in the

probability theory we work with the parameters pi for the proba-

bilities of individual sides and only require that these probabilities

are non-negative and their sum is

p1 + p2 + p3 + p4 + p5 + p6 = 1.

When choosing speci�c values pi for a speci�c dice in mathemat-

ical statistics we can then estimate the reliability of our mathemat-

ical model of the die.

Our humble goal for now is just to indicate how to abstractly

capture the probabilistic considerations in formal

mathematical objects. The following paragraphs are

thus basically just exercises in simple operations with

sets and combinatorics (that is, calculating the num-

ber of possibilities of satisfying the condition for �nite sets).
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1.35. Howmany words of length 12 that consist only of lettersA and

B, but do not contain a sub-word BBB, are there?

Solution. Let an denote the number of words of length n consisting of

letters A and B but without BBB as a sub-word. Then for an (n ≥ 3)
the following recurrence holds

an = an−1 + an−2 + an−3,

since the words of length n that satisfy the given condition either end

with an A, or with an AB, or with an ABB. There are an−1 words

ending with an A (preceding the last A there can be an arbitrary word

of length n − 1 satisfying the condition). Analogously for the two

remaining groups. Further, we can easily compute that a1 = 2, a2 = 4,
a3 = 7. Using the recurrence relation we can then compute

a12 = 1705.

We could also derive an explicit formula for n-th element of the

sequence using the theory we have developed. Characteristic polyno-

mial of the recurrence relation is x3 − x2 − x − 1 with one real and

two complex roots, which we can express using the relations (∥1.12∥).
□

1.36. Score of a basketball match between the teams of Czech Re-

public and Russia is after the �rst quarter 12 : 9 for

the Russian team. In howmany ways could the score

have developed?

Solution. If we denote P(k,l) the

number of ways in which the score

could have developed for a quar-

ter that ended with k : l, then for

k, l ≥ 3 the following recurrence

relation holds:

P(k,l) = P(k−3,l) + P(k−2,l) + P(k−1,l) + P(k,l−1) + P(k,l−2) + P(k,l−3).

(We can divide all possible evolutions of the quarter with the �nal

score k : l into six mutually exclusive possibilities, according to which
team scored a goal and how worth it was (1, 2 or 3 points)). Using the

symmetry of the problem, it clearly holds that P(k,l) = P(l,k). Further
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1.14. Random events. We work with a non-empty �xed set � of

all possible outcomes, which we call the sample space. For sim-

plicity the set� is �nite with elements ω1, . . . , ωn, corresponding

to individual possible outcomes. Every subset A ⊂ � represent a

possible event. The set of subsets A of the sample space is called

the set of events, if

• � ∈ A (the sample space is an event),

• if A,B ∈ A, then A \ B ∈ A (that is, for every two events

their set di�erence is also an event),

• if A,B ∈ A, then A ∪ B ∈ A (that is, for every two events

their union is also an event).

Clearly also the complement Ac = � \ A of an event A is

an event, which we call the opposite event to the event A. The

intersection of two events is again an event, since for every two

subsets A, B ⊂ � holds

A \ (� \ B) = A ∩ B.
Inwords, the set of events can be also characterised as a system

of subsets of (�nite) sample space closed on intersection, union and

set di�erence. Individual sets A ∈ A are called random events

(with respect to A).

For our dice throwing is � = {1, 2, 3, 4, 5, 6} and the set of

events consists of all subsets of the set �. For instance the event

{1, 3, 5} is interpreted as "the result of the throw is an odd number".

Now for some terminology, which should remind of the con-

nections with the description of real models:

• the whole sample space � is called the sure event, the empty

subset ∅ ∈ A is called impossible event,

• singleton subsets {ω} ⊂ � are called elementary events,

Pospisil definuje samotne prvky jako

el.jevy.Jinde se to definuje i jeste ji-

nak
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we have for k ≥ 3 that:

P(k,2) = P(k−3,2) + P(k−2,2) + P(k−1,2) + P(k,1) + P(k,0),

P(k,1) = P(k−3,1) + P(k−2,1) + P(k−1,1) + P(k,0),

P(k,0) = P(k−3,0) + P(k−2,0) + P(k−1,0),

which along with the initial condition gives P(0,0) = 1, P(1,0) = 1,
P(2,0) = 2, P(3,0) = 4, P(1,1) = 2, P(2,1) = P(1,1) + P(0,1) + P(2,0) = 5,
P(2,2) = P(0,2) + P(1,2) + P(2,1) + P(2,0) = 14, gives

P(12,9) = 497178513.

□
Remark. We see that the recurrence relation in this problem has a

more complex form in comparison to the form we have dealt with in

our theory and thus we cannot evaluate arbitrary number P(k,l) explic-

itly, we can evaluate it only by a subsequent computing from previous

elements. Such an equation is called partial di�erence equations, since

the elements of the equation are indexed by two independent variables

(k, l).

We will talk more about recurrent formulas (di�erence equations)

of higher orders with constant coe�cients in chapter 3.

D. Probability

Let us state a few simple exercises for classical probability, where

we are dealing with some experiment with only a �nite number of out-

comes ("all cases") and we are interested whether the outcome of the

experiment belongs to a subset of possible outcomes ("favourable out-

comes"). The probability we are trying to determine then equals to the

number of favourable outcomes divided by the total number of all out-

comes. Classical probability can be used when we assume (know) that

each of the possible outcome has the same probability of happening

(for instance, fair dice throwing).

1.37. What is the probability that the roll of a dice results to a number

greater than 4?

Solution. There are six possible outcomes (the set {1, 2, 3, 4, 5, 6}) of
which two are favourable ({5, 6}). Thus the probability is 2/6 = 1/3.

□

1.38. We randomly choose a group of �ve people from a group of

eight men and four women. What is the probability that there are at

least three women in the chosen group?

Solution. We compute the probability as a quotient of the number of

favourable outcomes to the total number of outcomes. We divide the
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translators note: im really unsure

about the english terminology regarding

some of these terms...

• intersection of events Ai , i ∈ I , corresponds to the event

∩i∈IAi , union of events Ai , i ∈ I , corresponds to the event

∪i∈IAi ,
• A,B ∈ A are mutually exclusive, if A ∩ B = ∅,
• the event A has as a corollary the event B, if A ⊂ B,

Give an example of all listed terms for the sample space of dice

rolling or analogously for coin throwing!

1.15. De�nition. Probability space is a triple (�,A, P ), where
A is a set of events of (�nite) sample space�, where

there is a scalar function P : A → R with the fol-

lowing properties:

• P is non-negative, that is, P(A) ≥ 0 for all events A,

• P is additive, that is, P(A ∪ B) = P(A) + P(B), whenever

A,B ∈ A and A ∩ B = ∅,
• the probability of the sure event is 1, that is P(�) = 1.

The function P is called probabilistic on the set of events A.

Clearly an immediate corollary of our de�nitions is a list of

simple yet useful propositions. For instance, for all events it holds

that

P(Ac) = 1 − P(A).

Further, we can using mathematical induction extend the additivity

to additivity for any number of mutually exclusive events Ai ⊂ �,

i ∈ I , that is,
P(∪i∈IAi) =

∑
i∈I

P(Ai),

whenever Ai ∩ Aj = ∅, for all i ̸= j , i, j ∈ I .
1.16. De�nition. Let � be a �nite simple space and let the set

of events A be the set of all subsets of �. Classi-

cal probability is probabilistic space (�,A, P ) with
probabilistic function

P : A → R, P (A) = |A|
|�| ,

where |A| stands for the number of elements of the set A ∈ A.

Clearly such given function is probabilistic, check by yourself

that all the given axioms hold.

1.17. Summing probabilities. For mutually incompatible events

is probability summing for the occurrence of at least one of

them already incorporated into the de�nition of the prob-

abilistic function. However, in general summing of prob-

abilities for event occurrences is di�cult. The problem is

that whenever the events are mutually compatible, some of the el-

ementary events are counted multiple times.

The simplest case to imagine is the onewith twomutually com-

patible events A and B. Let us �rst consider classical probability,

where it basically reduces just to counting elements in subsets. The

probability of the occurrence of at least one of the events, that is,

the probability of their union, is given by the formula

(1.11) P(A ∪ B) = P(A)+ P(B)− P(A ∩ B)
since the elements that belong to both sets A and B were �rst

counted twice and thus we have to subtract them once.
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favourable cases according to the number of men in the chose group:

there can be either two or one. There are eight groups with �ve people

of which one is a man (all women have to be present in such groups,

thus it depends only on which man we choose). There are c(8, 2) ·
c(4, 3) = (8

2

) · (4
3

)
of groups with two men (we choose two men from

eight and then independently three men from four, these two choices

can be independently combined and thus using the rule of product we

obtain the number of such groups). Thus the total number of groups

with �ve people and at least three women is c(12, 5) = (12
5

)
. The

probability is then

8 + (4
3

)(8
2

)(12
5

) = 5
33
.

□
Let us give an example for which the use of classical probability

is not suitable:

1.39. What is the probability that the reader of this exercise wins at

least C25 million euro in EuroLotto during the next week?

Solution. Such a formulation is incomplete, it does not give us enough

information. We present a "wrong" solution. The sample space

of possible outcomes is two-element: either the reader wins or not.

Favourable event is one (win), thus the probability is 1/2 (a clearly

wrong answer). □
Remark. In the previous exercise the basic condition of the usage of

classical probability was violated � every elementary event must have

the same probability. In fact, the elementary event has not been de-

�ned. EuroLotto has a daily draw with jackpot of C25, 000, 000 for

choosing 5 correct numbers 1 − 50. There is no other way to win

C25, 000, 000 than to win a jackpot on some of the day during the

week. The elementary event would be that a single lotto card with

5 numbers wins a jackpot. Assuming that the reader submits k lotto

cards every day of the week, the probability of winning at least one

jackpot during the week equals 7k(50
5
) .= 7k

2118760 .

1.40. There are 2n seats in a row in cinema. We randomly seat nmen

and n women in the row. What is the probability that no two persons

of the same sex sit next to each other?

Solution. In total there are (2n!) of possible seatings, the number of
seating satisfying the given condition is 2(n!)2: we have two ways

for choosing the positions for men (thus also for women) � either all

men sit on odd-numbered places (thus women sit on even-numbered

places), or vice versa. Among these places, both men and women are
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The same result is obtained for general probabilistic function

P on a set of events. SinceA∩B andA\B are independent events,

P(A) = P(A \ B)+ P(A ∩ B),
similarly for B, and we also have

P(A ∪ B) = P(A \ B)+ P(B \ A)+ P(A ∩ B).
If we express the probabilities of P(A \B) and P(B \A) in terms
of P(A), P(B) and P(A ∩ B), we obtain the formula (1.11), now
for the general case.

The following theorem is a direct re�ection of the so-called

combinatorial inclusion-exclusion principle into our

�nite probability and it says, how shall we deal with

multiple elementary event counting in general case.

It is probably a good example of mathematical

theorem, where the hardest part is �nding a good formulation. Af-

ter that is done, we can say that the claim is (intuitively) obvious.

On the picture is the situation for three sets A, B, C for classi-

cal probability. If we just sum the probabilities ofA, B andC, then

the hatched areas represent elements that are present twice, and the

double-hatched area represents those present thrice. Thus we sub-

tract the hatched areas once, which leads to triple subtraction of

the elements of double-hatched area, which we must therefore add

once more.

In general, thanks to the additivity of the probability, we can

imagine that we decompose every event as a union of elementary

events (although the elementary events do not have to belong to

the set of events in consideration). Then the probability of every

event is given by the sum of probabilities of its elementary events.

For expressing the probability that at least one of the events occurs

we can sum the probabilities of Ai , then subtract those elementary

events that are present twice (that is, in intersection of two Ai's).

However, we might have subtracted some event too many times,

notably in the case that an element was present in (at least) three

Ai's. Thus we again add, and so on.

Theorem. Let A1, . . . , Ak ∈ A be arbitrary events over the sam-

ple space � with a set of events A. Then

P(∪ki=1Ai) =
k∑
i=1

P(Ai)−
k−1∑
i=1

k∑
j=i+1

P(Ai ∩ Aj )

+
k−2∑
i=1

k−1∑
j=i+1

k∑
ℓ=j+1

P(Ai ∩ Aj ∩ Aℓ)

− · · ·
+ (−1)k−1P(A1 ∩ A2 ∩ · · · ∩ Ak).
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seated arbitrarily. The resulting probability is thus

p(n) = 2(n!)2

(2n)!
, p(2) .= 0, 33, p(5) .= 0, 0079, p(8) .= 0, 00016.

□

1.41. Five persons entered an elevator in a building with eight �oors.

Each of them leaves the elevator at any �oor with the same probability.

What is then the probability, that

i) all of them leave at sixth �oor,

ii) all of them leave at the same �oor,

iii) each of them leaves at a di�erent �oor.

Solution. The sample space of possible events is the space of all pos-

sible ways of leaving the elevator by 5 people. There are 85 of them.

In the �rst case there is only one favourable outcome, thus the prob-

ability is 1
85 , in the second case we have eight favourable outcomes,

thus the probability is 1
84 and �nally in the third case the number of

favourable outcomes is given by a �ve-element variation of eight ele-

ments (we choose �ve �oors among eight where some person leaves

the elevator and then we choose the order in which they leave at the

chosen �oors), the probability is then (see 1.6 and 1.8)

v(5, 8)
V (5, 8)

= 8 · 7 · · · 4
85

.= 0, 2050781250.

□

1.42. Randomly choose a positive integer smaller than 105. What is

the probability that it will consist only of digits 0, 1, 5 and it will be

divisible by 5?

Solution. There are 2·34−1 numbers satisfying the conditions (except
for the last digit, at every position we have three choices, if there are

some 0 at the beginning of the number we ignore them but let them

remain). There are 105 − 1 positive integers smaller than 105, thus

according to the classical probability we obtain that the probability is
2·34−1
105−1

.= 0.0016. □

1.43. >From a sack with �ve white and �ve red balls we randomly

draw three (we do not return the balls back to the sack). What is the

probability that two of them are white and one is red?

Solution. Let us divide the event into a union of three disjoint events,

according to in what turn we draw the red ball. Probability, that the

red ball is drawn as third, second, or �rst, respectively, are : 1
2 · 4

9 · 5
8 ,

1
2 · 5

9 · 1
2 ,

1
2 · 5

9 · 1
2 . In total

5
12 .

Another solution. Consider the number of all possible triples of

drawn balls (the balls of the same colour are indistinguishable), thus(10
3

)
. There are

(5
2

) · (5
1

)
of triples with exactly two white balls (two
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Proof. In order tomake the aforementioned ideas into a proof,

we need to ensure that all the operations of adding sub-

tracting are with coe�cient one. Instead of doing that,

we can give a more formal proof by mathematical in-

duction over the number of events k, whose probabil-

ities we are summing. Try to compare both approaches as they

presented, it should help to clarify what it means to "prove" and

what it means to "understand".

For k = 1 the claim is obvious, the case k = 2 is the same as

the equality (1.11) which we have already proved (in general case).

Let us assume that the theorem holds for any number of events

up to a de�nite k ≥ 1. Now we can work in the induction step with

the formula for k+ 1 events, where the union of the �rst k of them

are considered to be theA in the equation (1.11) and the remaining

event is considered to be the B :

P(∪k+1
i=1Ai) = P(

(
∪ki=1Ai

)
∪ Ak+1)

=
k∑
j=1

(
(−1)j+1

∑
1≤i1<···<ij ≤k

P(Ai1 ∩ · · · ∩ Aij )
)

+ P(Ak+1)− P((A1 ∪ · · · ∪ Ak) ∩ Ak+1).

This already resembles the formula for k + 1 summed events, but

still in the big sum there are missing the expressions containing

Ak+1 and the value for probability that all the events happen. On

the other hand, the last expression should not be there. We can

replace it by the expression

−P ((A1 ∩ Ak+1) ∪ · · · ∪ (Ak ∩ Ak+1)
)

and for this we can again use the induction, that is the formula in

the statement of the theorem. With a little patience (and a paper

long enough to write down all the expressions) we can check that

this adds all the missing pieces. □

1.18. Inclusion-exclusion principle. A special case of the previ-

ous theorem is one of classical probability, where all �nite

subsets of the sample space are events and all elementary

events have the same probability. In the formula from the

previous theorem all the probabilities give the sizes of the

subsets involved, up to a common factor 1
n
, where n is the number

of elements of the sample space.

In this way we can extract from the theorem 1.17 the follow-

ing claim for the size of a general �nite set M and its subsets

A1, . . . , Ak . As usual we let |M| denote the number of elements
of the setM.

Of course that for every �nite setM and its subspaces it holds

that

|M \ (∪ki=1Ai)| = |M| − | ∪ki=1 Ai |.
Now we can use the previous theorem and express the size of the

union on the right side, and we obtain the theorem that is usually

called the principle of inclusion-exclusion.

|M \ (∪ki=1Ai)| =

= |M| +
k∑
j=1

(
(−1)j

∑
1≤i1<···<ij ≤k

|Ai1 ∩ · · · ∩ Aij |
)
.

Again it is easy to depict the theorem for two or three sets, see the

picture before the theorem 1.17.

19

white balls can be drawn in
(5

2

)
ways, and one red ball can join them

in �ve ways). The required probability is then
(5

2
)·(5

1
)(10

3
) .= 5

12 . □

1.44. From a hat where there are �ve white, �ve red and six black

balls we randomly draw balls (and do not return the drawn balls back).

What is the probability that the �fth drawn ball is black?

Solution. Wewill solve a general problem, the probability that the i-th

drawn ball is black. This probability is the same for all i, 1 ≤ i ≤ 16
� we can imagine that we draw all balls one by one, and every such

sequence (from the �rst drawn ball to the last one) consisting of �ve

white, �ve red and six black has the same probability of being drawn.

Thus we can use the classical probability. There are P(5, 5, 6) =
16!

5!·5!·5! of such sequences. The number of sequences where there is

a black ball on the i-th place, the rest arbitrary, equals to the number

of arbitrary sequences of �ve white, �ve red and �ve black balls, that

equals P(5, 5, 5) = 15!
5!5!5! . Thus the probability is

P(5, 5, 5)
P (5, 5, 6)

=
15!

5!5!5!
16!

6!5!5!

= 3
8
.

□
Let us return to the dice throwing and try to describe the events

of the sample space � that arise when we are throwing until a six is

rolled, but no more than hundred times.

For a single roll the sample space consist of six numbers from one

to six, this is classical probability. For whole series of rolls the sample

space is much bigger � it consist of �nite sequences of numbers from

one to six, which have at most 100 elements and all numbers but the

last one are from one to �ve, and either the last number is six or it has

length exactly 100 and there is no number six in it. An eventA can be

for instance the subset "there were at most two rolls". All favourable

elementary events are then

[1, 6], [2, 6], [3, 6], [4, 6], [5, 6].

Using the classical probability for single dice rolls we derive the prob-

ability of the events in �. But it is not classical probability � if we

were to derive the probability of the event A, it means that �rst roll is

not six and the second is. Classical probability says

P(A) = 5
6

· 1
6

= 5
36
,

since the �rst roll is di�erent from six with probability 1 − 1
6 , and the

second roll is completely independent of the �rst one. Clearly, this

does not amount to the quotient of all favourable cases to the size of

the sample space.
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1.19. Independent events. Let us return for a while to the simple

model of a fair dice. We are interested in possible dependencies

among events.

For instance the probability that the events "an odd number

is rolled" and "the result is at least three" occur simultaneously is
1
3 . That is the same as 1

2 · 2
3 , the product of the probabilities of

the events. This corresponds to the idea that the probability of si-

multaneous occurrence is given by the product of the particular

probabilities. On the other hand, if we consider the mutually in-

compatible elements, for instance "even number occurs" and "odd

number occurs", the probability of both of them occurring simul-

taneously zero, while the product of particular probabilities is non-

zero. This corresponds to the idea that these two events must be the

dependent, since the occurrence of the �rst one forbids the occur-

rence of the other one. Clearly, a weaker dependence can occur, for

instance the event "odd number occurs" is a corollary of the event

"number 3 occurs" and thus the probability of mutual occurrence

is not given by the product.

For the probabilistic function P on an arbitrary set of events

we say that the events A and B are stochastically independent if

the following holds

P(A ∩ B) = P(A) · P(B).
Let us try the same approach with a dice and more events, for

instance the eventsA "odd number occurs",B "the result is at least"

and C "the result is at most 3". The probabilities are P(A) = 1
2 ,

P(B) = 2
3 , P(C) = 1

2 , P(A∩B ∩C) = 1
6 = 1

2 · 2
3 · 1

2 , but taking

tuples we have for instance P(A ∩ C) = 2
3 ̸= 1

2 · 1
2 .

In general, mutually independent sets are de�ned in this way:

De�nition. Consider an arbitrary probability space (�,A, P ) and
k events A1, . . . , Ak in that space. We say that these

events are stochastically independent (with respect to

the probabilistic function P ), if for any chosen events

Ai1 , . . . , Aiℓ , 1 ≤ ℓ ≤ k we have

P(Ai1 ∩ · · · ∩ Aiℓ) = P(Ai1) · . . . · P(Aiℓ).
Clearly, every subset of a set of stochastically independent

events is also stochastically independent. Further, for any two

stochastically independent events we compute

P(A ∩ Bc ) = P(A \ B) = P(A)− P(A ∩ B) =
= P(A)(1 − P(B)) = P(A)P (Bc ).

>From there we can easily derive that by exchanging one or more

event is a set of stochastically independent events we again obtain

a set of stochastically independent sets.

Very often we need to compute the probability that at least one

of the stochastically independent set of events occurs, that is, we

want to compute P(A1 ∪ · · · ∪ Ak). In such situation we can use
elementary properties of set operations, the so-called De Morgan

laws,

(∪i∈IAi)c = ∩i∈IAci
(∩i∈IAi)c = ∪i∈IAci

and we obtain

(1.12) P(A1 ∪ · · · ∪ Ak) = 1 − P(Ac1 ∩ · · · ∩ Ack) =
= 1 − (1 − P(A1)) . . . (1 − P(Ak)).
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In general, we can say that after exactly 1 < k < 100 rolls the

experiment ends with probability ( 5
6)
k−1 · 1

6 . Among all possibilities,

it is most likely that it ends after the �rst roll.

Another example how to obtain events with di�erent probability

by dice throwing is to roll more dice and observe the sums. Let us

think as follows: when rolling one dice every outcome has the same

probability � 1
6 . When rolling two dice, every tuple (a, b) (a tuple of

two integers from one to six in a given order) has the same probability
1
36 . If we ask for two �ves, the probability is half of the probability for

two di�erent values without a prescribed order. When considering the

sum of two dice throwing there is no contradiction with the classical

probability concept as an event with a prescribed sum is a union of

elementary outcomes that all have same probabilities 1
36 . For possible

results of a sum of the two dice (in the upper row) we list the number

of ways (in the lower row):

Sum 2 3 4 5 6 7 8 9 10 11 12

Number of ways 1 2 3 4 5 6 5 4 3 2 1

Similarly the probability for rolling three dice is 1
216 (when assuming

that order makes a di�erence). If we ask for the probability of some

given sum to appear, we just need to determine in howmany ways such

a sum can appear and then sum the probabilities.

1.45. Inclusion-exclusion principle. Secretary has to send

six letters to six di�erent people. She puts the letters in

the envelopes randomly. What is the probability that at

least one person receives the letter that was meant for him?
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1.20. Conditional probability. We can reformulate the measure

of dependency between two sets with the idea that we

are investigating one of them under the condition that

the other has occurred. For independent events, this

does not have any impact. For instance, "what is the

probability that in roll of two dice the result is twice 5, assuming

that the sum of the results is 10?" We can formalise such approach

as follows.

Conditional probability

De�nition. LetH be an event with non-zero probability in a set of

events A in probability space (�,A, P ). Conditional probability
P(A|H) of the event A ∈ A assuming thatH (the hypothesis) has

occurred is de�ned by the formula

P(A|H) = P(A ∩H)
P (H)

.

As it is obvious from the de�nition, the hypothesis H and the

event A are independent if and only if P(A) = P(A|H). The

de�nition also directly implies the "theorem for product of proba-

bilities" � if we have two eventsA1,A2 satisfying P(A1 ∩A2) > 0,
then

P(A1 ∩ A2) = P(A2)P (A1|A2) = P(A1)P (A2|A1).

All these numbers express (in a di�erent manner) the probability

that both events A1 and A2 occur. For instance, in the last case we

�rst look whether the �rst event occurred. Then, assuming that the

�rst has occurred, we look whether the second also occurs. Simi-

larly, for three events A1, A2, A3 satisfying P(A1 ∩A2 ∩A3) > 0
we obtain

P(A1 ∩ A2 ∩ A3) = P(A1)P (A2|A1)P (A3|A1 ∩ A2).

Inwords, this can be described as follows: the probability that three

events occur at once can be computed by �rst computing the prob-

ability that the �rst occurs, then computing the probability that the

second occurs under the assumption that the �rst has occurred, and

then computing the probability that the third occurs under the as-

sumption that both the �rst and the second have occurred.

If we have in general k events A1, . . . , Ak satisfying P(A1 ∩
· · · ∩ Ak) > 0, then the theorem says the following

P(A1 ∩ · · · ∩Ak) = P(A1)P (A2|A1)· · ·P(Ak|A1 ∩ · · · ∩Ak−1).

Really, thanks to the assumption all the probabilities of the inter-

sections, which are taken as the hypotheses, are non-zero. By sim-

plifying the expression we obtain both on the left and on the right

side of the equation the probability of the event corresponding to

the intersection of A1, . . . , Ak .

1.21. Geometric probability.

In practical problems we often encounter much

more complicated models, where the sample space is

not a �nite set. At this moment, we do not have even

basic tools for generalising probability to in�nite sets

at our disposal, but we can give at least a simple illustration.
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Solution.

Let us compute the probability of the opposite event � no person

receives the correct letter. The sample space corresponds to all possi-

ble orderings of six elements (envelopes). If we denote both the letters

and the envelopes by numbers from one to six, then all the favourable

events (no letter is assigned to the corresponding envelope) correspond

to such orderings of six elements, where the i-th element is not at

the i-th place (i = 1, . . . , 6) � so-called orderings without a �xed

point. We compute the number of such orderings using the inclusion-

exclusion principle. If we denote byMi the set of permutations such

that i is a �xed point (note that permutations inMi can also have other

�xed points), then the resulting number d of permutations without a

�xed point is

d = 6! − |M1 ∪ · · · ∪M6|
The number of elements in the intersection is |Mi1 ∩ · · · ∩ Mik |,
k = 1, . . . , 6, is (6 − k)! (the order of the elements i1, . . . , ik is �xed,
the remaining 6 − k can be ordered arbitrarily). Using the inclusion-

exclusion principle we have

|M1 ∪ · · · ∪M6| =
6∑
k=1

(−1)k+1
(

6
k

)
(6 − k)!

and thus for the number d we obtain the relation

d = 6! −
6∑
k=1

(−1)k+1
(

6
k

)
(n− k)!

=
6∑
k=0

(−1)k
(

6
k

)
(6 − k)! = 6!

6∑
k=0

(−1)k

k!

The probability that no person receives "his" letter is then

6∑
k=0

(−1)k

k!

and the probability we were asked for is

1 −
6∑
k=0

(−1)k

k!
= 53

144
.

□
Remark. Note that the answer does not change much with growing

number of letters. For n letters is the probability that the secretary

does not assign any of them in correct order

1 −
n∑
k=0

(−1)k

k!
.= 1 − 1

e
,

as we see later, the sum converges to (approaches) the value 1/e.
In a similar way the exercise ∥1.153∥ can be solved.



CHAPTER 1. INITIAL WARMUP

Consider the plane R2 of tuples of real numbers and its subset

� with known volume vol�. For example we can take the unit

square. Events are represented by subsetsA ⊂ � and for the event

set A we consider some suitable system of subsets for which we

can determine the volume. An event A then occurs if a randomly

chosen point from � belongs to the subarea determined by A, oth-

erwise the event does not occur.

Let us take for instance the problem where we randomly

choose two values a < b in the interval [0, 1] ⊂ R. All values

a and b are chosen with the same probability and the question is

"what is the probability that the interval (a, b) has size at least one

half?" The choice of points (a, b) is actually a choice of a point

[a, b] inside of the triangle�with border points [0, 0], [0, 1], [1, 1]
(see the picture).

We can imagine this as a description of a problemwhere a very

tired guest at a party tries to divide a sausage with two cuts into

three pieces for him and his two friends. What is the probability

that somebody gets at least a half of the sausage?

Thus we need to determine the area of the subset which corre-

sponds to points with b ≥ a + 1
2 , that is, the inside of the triangle

A bounded by the points [0, 1
2 ], [0, 1], [ 1

2 , 1]. Clearly we get that
P(A) = 1

4 .

Try to answer on your own the question "what is the minimal

prescribed length l such that the probability of choosing an interval

of length at least l is one half?"

1.22. Monte Carlo methods. One of e�cient computation meth-

ods for approximate values is the simulation of the prob-

ability by relative occurrence of a chosen event. For in-

stance the well-known formula for the volume of a circle

with given radius says that the volume of a unit circle is

exactly the constant

π = 3, 1415 . . . ,

which expresses the ratio of the volume of the circle and the square

of its radius. (Let us note that there is a fact we have not proven

� why should the volume of a circle equal to a constant multiple

of the square of its radius? We will be able to prove this mathe-

matically after we learn how to do the so-called integration. Ex-

perimentally, we can verify this by the approach given bellow with

squares of di�erent size).
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The following exercise is a simple model, which estimates the

probability of death of a person in a tra�c accident.

1.46. Approximately 1200 persons die per year at the roads of Czech

Republic. Determine the probability that some person of a chose group

of 500 people dies in the following ten years in a tra�c accident. For

simplicity, assume that every person has the same "chance" of dying

in tra�c accident and that is 1200/107.

Solution. Let us �rst count the probability that one randomly chosen

person does not die in ten years in a tra�c accident. The probability

that he does not die in a year is (1 − 12
105 ). The probability that he does

not die in ten years is then (1− 12
105 )

10. The probability that in ten years

none of the given 500 people does not die is again using the product

rule (the events are independent) (1 − 12
105 )

5000. The probability of the

opposite event, that is, some of the chosen people dies, is then

1 −
(

1 − 12
105

)5000
.= 0.4512.

□
Remark. Model we have used in the previous exercise to describe the

given situation is just approximate. The complication is in the condi-

tion that every person in the sample has the same probability of dying,

which we have derived based on the total number of deaths per year.

But the number of deaths changes yearly and even if it did not, the

population changes. Let us show one of the possible inaccuracies on a

di�erent approach to the solution: if 1200 persons per year dies, then

in ten years 12000 persons die. The probability that a certain person

dies in ten years can thus be estimated by 12000/107. The probabil-

ity that a speci�c person does not die in ten years is then (1 − 12
104 )

(�rst two members of binomial expansion of (1 − 12
105 )

10). In total we

analogously obtain the estimate of the probability

1 −
(

1 − 12
104

)500
.= 0.4514.

We see that both estimates are very close to each other.

The e�ort to use mathematical knowledge for winning in various

gambling games is very old. Let us have a look on a very simple ex-

ample.

1.47. Alex has a C2500 left over from organising a summer camp.

Alex s is no fool � he added C50 from his savings and decided to

go playing roulette. Alex s bets only on colour. The probability of

winning when betting on colour is 18/37. He begins to bet C10, and
if he loses, in the next bet he bets twice the amount he betted in the

previous (only if he has enough money, if not he ends the game even
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If we choose � to be unit square and A to be the intersection

of � with a unit square (centred at the origin), then volA = 1
4π .

Thus if we have a reliable generator of random numbers between

zero and one and we compute relative frequencies how often the

distance of the point [a, b] (given by the generator) from the origin

is smaller than one, that is, a2+b2 < 1, then the result (after a large
number of attempts) approximates the number 1

4π pretty well.

Numerical approaches based on this principle are called

Monte Carlo methods.

5. Plane geometry

So far we have been using elementary notions from geometry

of the real plane in an intuitive way. Now we will

investigate in more detail how to deal with the need

to describe "position in the plane" and to �nd some

relation between positions of distinct points in the plane.

Our tools will be again mappings, but this time we will con-

sider only very special rules which to tuples of values (x, y) assign

tuples (w, z) = F(x, y). This part will also serve as a gentle intro-

duction to the area of mathematics called Linear algebra, which

we will deal with in subsequent three chapters.

1.23. Vector space R2. Let us view the "plane" as a set of tuples

of real numbers (x, y) ∈ R2. We will call these tuples vectors

in R2. For such vectors we can de�ne addition "coordinate-wise",

that is for vectors u = (x, y) and v = (x′ , y′ ) we set

u+ v = (x + x′ , y + y′ ).

Since all the properties of commutative groups hold for individual

coordinates, the hold for our new vector addition too. In particular

there exists so called zero vector 0 = (0, 0), whose addition to

any vector v results again into the vector v. We are using the same

symbol 0 for the vector and for its scalar coordinates on purpose�
from the context it will be always clear which "zero" it should be.

Next we de�ne multiplication of vectors and scalars in such a

way that for a ∈ R and v = (x, y) ∈ R2 we set

a · v = (ax, ay).

Usually we will omit the symbol · and just the juxtaposition of

symbols a v shall denote the scalar multiple of a vector. We can

directly check other properties for scalar multiplication by a, b and

addition of vectors u, v, for instance

a (u+ v) = a u+ a v, (a + b)u = a u+ b u, a(b u) = (ab)u,

where we are again using the same symbol plus for both vector

addition and scalar addition.

These operation are easy to imagine if we consider the vectors

v to be arrows going from the origin 0 = [0, 0] and
ending at the position [x, y] in the plane.

Such arrows can we compose � one right after

another, and that corresponds to the vector addition.

Multiplication by a scalar a corresponds to stretching the arrow to

its a-multiple.
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if he has some money left). If he wins, in the next round he bets again

C10. What is the probability that using this strategy he wins another

C2550? (As soon as he has already won such amount, he ends the

game).

Solution. Let us �rst count how many times in a row can Alex s loose.

If he begins with a bet of C10 , then for n bets he needs

10+20+· · ·+10·2n−1 = 10·
(
n−1∑
i=0

2i
)

= 10·
(

2n − 1
2 − 1

)
= 10·(2n−1).

As we can easily see, the number 2550 is of the form 10(2n − 1) for
n = 8. Alex s can thus bet eight times in a row no matter what the

result is, for nine bets he would need 10(29 − 1) = C5110 and during

the game he will never have such amount (as soon as he has C5100, he
ends). Thus in order for him to fail, he must lose eight times in a row.

The probability of losing on one bet is 19/37, probability of losing

eight times in a row is (19/37)8 (as the bets are independent). The

probability that in these eight games he wins C10 (using his strategy)

is thus 1 − (19/37)8. In order to win C2500 , he needs to win 255

times C10. Again using the product rule the probability of winning is(
1 −

(
19
37

)8
)255

.= 0.29.

Thus the probability of winning is lower than betting everything at

once on colour. □

1.48. Individually you can try to solve the previous exercise assum-

ing that Alex has the same strategy as before, but ends only when he

has no money (if he cannot a�ord to double the bet when he lost the

previous but still has some money, he begins again with C10).
Let us now exercise the so-called "conditional" probability (see

(1.20)).

1.49. What is the probability that when rolling two dice the sum is

7, if we know that neither of the rolls resulted in 2?

Solution. Let B be the event that neither of the rolls results into 2, and

letA be the event "sum is 7". The set of all possible outcomes is again
denoted by �. Then

P(A|B) = P(A ∩ B)
P (B)

=
|A∩B|

|�|
|B|
|�|

= |A ∩ B|
|B| .

The number 7 can appear as a sum in four ways if there is no 2, that is,

|A ∩ B| = 4, |B| = 5 · 5 = 25, thus

P(A|B) = 4
25
.

Note that P(A) = 1
6 , that is, A and B are independent. □
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Now we are able to do a very important step: if we remember

two important vectors e1 = (1, 0) and e2 = (0, 1), then
every vector can be obtained as

u = (x, y) = x e1 + y e2.

The expression on the right is called linear combinations of vectors

e1 and e2. The tuple of vectors e = (e1, e2) is called a basis of the

vector space R2.

However, if we choose other two vectors u, v such that neither

of them is a multiple of the other, that is a di�erent basis ofR2, we

can do the same. Linear combination w = x u + y v gives us for

all distinct tuples (x, y) exactly all vectors w in the plane.

Finally, we can consider the vectors to be the arrows in the

abstract position, that is if we forget the identi�cation

of the points in the plane with the tuples of numbers.

The only fact that remains is that all the arrows are

"�xed" in the point 0 which is also the zero vector.

Operations of addition and scalar multiplication remain, and only

through the choice of the base e1, e2 we identify our plane of arrows

with R2.

1.24. A�ne plane. If we �x some vector u ∈ R2, we can add it

(that is, compose it with other vectors as an arrow) to any point

P = [x, y]. Therefore with any �xed vector u we have de�ned

shift, which maps every point of the plane to P + u.
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1.50. Michael has two mailboxes, one at gmail.com and the other at

hotmail.com. His username is the same at both servers, but passwords

are di�erent (he does not remember which passwords corresponds to

which server). When typing in the password for accessing his mail-

box, he makes a typo with probability 5% (that is, if he wants to type

in speci�c password, with probability 95% he types what he intended).

Michael typed in at the server hotmail.com a username and a password,

but the server told him that something is wrong. What is the probabil-

ity that he chose the correct password but just "mistyped" when typing

in? (We assume that the username is always typed correctly)

Solution. Let A be the event that Michal typed in at hotmail.com a

wrong password. This event is an union of two disjoint events:

A1 : he wanted to type in the correct password and mistyped,

A2 : he wanted to type in the wrong password (the one from

gmail.com) and either mistyped or not.

Thus we are looking for a conditional probability P(A1|A) which is

according to the formula for conditional probability:

P(A1|A) = P(A1 ∩ A)
P (A)

= P(A1)

P (A1 ∪ A2)
= P(A1)

P (A1)+ P(A2)
,

thus we just need to determine the probabilities P(A1) and P(A2).

The eventA1 is a conjunction (intersection) of two independent events:

Michael wanted to type in a correct password and Michael mistyped.

According to the problem statement, the probability of the �rst event is

1/2 and the probability of the second event is 1/20, in total P(A1) =
1
2 · 1

20 = 1
40 (we multiply the probabilities, since the events are in-

dependent). Further we have (directly from the problem statement)

P(A2) = 1
2 . In total P(A) = P(A1)+P(A2) = 1

40 + 1
2 = 21

40 , and we

can evaluate

P(A1|A) = P(A1)

P (A)
=

1
40
21
40

= 1
21
.

□
The method of geometric probability can be used in the case that

the given sample space consists of in�nitely many elementary events,

which altogether �ll some area of a line, space (where we can deter-

mine length, volume, . . . ). We assume that the probability, that ele-

mentary event of a given sub-area happens, is equal to the ratio of the

volume of the subarea to the volume of the sample space.

1.51. >From Edinburgh Waverly station trains depart every hour (in

direction to Aberdeen) and from Aberdeen to Edinburgh they also

comeevery hour. Assume that the trains move between these two sta-

tions with an uniform speed 72 km/h and are 100 meters long. The trip

takes 2 hrs in either direction. The trains meet each other somewhere
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Let us now completely forget the coordinates and see the

whole plane as a set where are shifts take place. Such

a set A = R2 can be imagined from the point of view

of an observer, who observes from some �xed position

(we can call that position for instance O = [x0, y0] ∈
R2). Suppose that the observer sees the plane as an in�nite plate

without any measurements and labels, and only knows what means

shifting by any multiple of some vector u ∈ R2. Such a plane will

be called "A�ne plane".

In order to be able to see the "tuples of real numbers" around

him, the observer must choose some �xed point E1 which he

will call the "point [1, 0]" and some other point E2 which he

will call the "point [0, 1]". In other words, he chooses a basis

e1 = (1, 0), e2 = (0, 1) among the shifting vectors. To reach any
point he will then just jump "a-times in the direction e1" and then

"b-times in the direction e2" and the resulting point will be called

the "point [a, b]". If he does it the usual way, it will not matter on
the order of the operations, that is he can �rst jump b-times in the

direction e2 and after that in the direction e1.

The thing we have described now is called the choice of

(a�ne) coordinate system in the plane, the point O is its origin,

and in general every point P of the plane is identi�ed with the tu-

ple of numbers [a, b], which we will also denote as shift P −O.

>From now on we will work in �xed coordinates, that is with

tuples of real number, but for better orientation we will denote vec-

tors in parentheses instead of brackets (which we use for coordi-

nates of points in the a�ne plane).

1.25. Lines in the plane. If our observer can shift by anymultiple

of a �xed vector, he also knows what is a line.

It is a subset p ⊂ A in the plane, such that there exists

point O and a non-zero vector v such that

p = {P ∈ A; P −O = t · v, t ∈ R}.
Let us now describe P = P(t) ∈ p in the chosen coordinates

with the choice v = (α, β):

x(t) = x0 + α · t, y(t) = y0 + β · t.
Since the vector v = (α, β) is non-zero, at least one of the numbers

α, β has to be non-zero. Let us assume that for instance α ̸= 0,
then we can eliminate t from the parametric equation for x and y

and through a simple computation we obtain

−βx + αy = −βx0 + αy0.

That is the general equation of the line

(1.13) ax + by = c,
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along the trail. After visiting an Edinburgh pub John, who lives in Ab-

erdeen, takes train home and falls asleep at the departure. During the

trip from Edinburgh to Aberdeen he randomly sticks his head out of

the train for �ve seconds, in the space where the trains ride in the other

direction. What is the probability that he loses his head? (We assume

that there are no other trains here.)

Solution. The mutual speed of the oncoming trains is 40m/s, the on-
coming train passes John's window for two and a half seconds. The

sample space of all outcomes is thus the interval ⟨0, 7200 s⟩. During
John's trip two trains pass by John's window in the opposite direction

and any overlap of the their 2.5 s passing time interval with the 5 s in-
terval when John's head might be sticking out is fatal. Thus, for each

train, the space of "favourable" outcomes is an interval of length 7.5 s
somewhere in the sample space. For two trains, it's double this amount.

Thus the probability of losing the head is 15/7200 .= 0.002. □

1.52. In one of the countries in the world, once a day between eight

a.m. and eight p.m. a bus randomly departs from town A to town B.

Once a day in the same time interval another bus departs in the other

direction. The trip in either direction takes �ve hours. What is the

probability that the buses meet, if they use the same trail?

Solution. The sample space is a square 12 × 12. If we denote

the time of the departure of the buses as x and y respectively,

then they meet on the trail if and only if |x − y| ≤ 5. This in-

equality determines in the square the are of "favourable events".

The are of the remaining part is easier to compute, since it is

an union of two right-angled isosceles triangles with legs of

length 7. Thus in total it is 49, the area of the "favourable

part" is 144 − 49 = 95 and the probability is p = 95
144

.= 0, 66.

□

1.53. A rod of length twometers is randomly divided into three parts.

Determine the probability that at least one part is at most 20 cm long.

Solution. Random division of a rod into three parts is given by two

points of the cut, x and y (we �rst cut the rod in the distance x from



CHAPTER 1. INITIAL WARMUP

with the following relation between the tuple of numbers (a, b) =
(−β, α) and the direction vector of the line v = (α, β)

(1.14) aα + bβ = 0.

The expression on the right in the equation of the line (1.13)

can we view as a scalar function F which depends

on the points in the plane and with values in R, the
equation itself as a condition on its value. We shall

see later that the vector (a, b) is in this case exactly

the direction, in which F grows the fastest. For this reason will the

direction perpendicular to (a, b) exactly the direction, in which

our function F remains constant. The constant c then determines,

which among all the parallel lines with that direction this equation

corresponds to.

Let us now have two lines p and q, and ask about their in-

tersection p ∩ q. That is described as a point which satis�es the

equations of both lines simultaneously. Let us write them like this

(1.15)
ax + by = r

cx + dy = s.

Again we can view the left side as a mapping, which to every tuple

of coordinates [x, y] of point P in the plane assigns vector of val-

ues of two scalar functions F1 and F2 given by the left sides of the

particular equations (1.15). Thus we can write our equations as a

single relation F(v) = w, where F is a mapping which maps the

vector v describing the position of any point in the plane (in our

coordinates) to the vector given by the left side of the equations,

and we demand that this mapping maps it to the speci�ed value

w = (r, s).

1.26. Linear mappings and matrices. Mappings F with which

we have worked with when describing the intersec-

tion of lines have one very important property in

common: they preserve the operations of addition

and multiplication with vectors and scalars, that is they preserve

linear combinations:

F(a · v + b · w) = a · F(v)+ b · F(w)
for all a, b ∈ R, v,w ∈ R2. We say that F is a linear mapping

fromR2 toR2, and writeF : R2 → R2. This can be also described
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the origin, we do not move it and again cut it in the distance y from

the origin). The sample space is thus a square C with side 2 m. If we

place the square C so that its two sides lie on axes in the plane, then

the condition that at least one part is at most 20 cm determines in the

square a subarea O:

O = {(x, y) ∈ C| (x ≤ 20) ∨ (x ≥ 180) ∨ (y ≤ 20) ∨ (y ≥ 180)

∨ (|x − y|) ≤ 20}.
As we can clearly observe, this subarea has volume 51

100 times the vol-

ume of the whole square.

□

E. Plane geometry

Let us return for a while back to the complex numbers. The com-

plex plane is basically "normal" plane, where we have something extra:

1.54. Interpret multiplication by the imaginary unit i and taking the

complex conjugate as a geometrical transformations in the plane.

Solution. Imaginary unit i corresponds to the point (0, 1). Let us note
that multiplying any number z = a + i b by the imaginary unit gives

result

i · (a + i b) = −b + i a

which is under the interpretation in the plane just a rotation of the point

z through the right angle in the positive sense, that is counterclockwise.

Taking the complex conjugate is a re�ection through the axis of

real numbers:

z = (a + i b) 7→ (a − i b) = z̄.

□
Now one well-known but nevertheless useful exercise.

1.55. Determine the sum of angles, which are between the vectors

(1, 1), (2, 1) and (3, 1) in the plane R2 (picture).

Solution. If we view the plane R2 as the Gauss plane (of complex

numbers), then the given vectors correspond to complex numbers 1+i,
2 + i and 3 + i, and we are to �nd the sum of their arguments, which
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with words � linear combination of vectors maps to the same lin-

ear combination of their images, that is linear mapping are those

mappings which preserve linear combinations.

We have already encountered the same behaviour in the equa-

tion (1.13) for the line, where the linear mapping in question was

F : R2 → R and its prescribed value c. That is also the reasonwhy

the values of the mapping z = F(x, y) are on the image depicted

as a plane in R3.

We will write such mapping with the so called matrices and

their multiplication. By matrix we mean a rectangular scheme of

scalars, for instance

A =
(
a b

c d

)
nebo v =

(
x

y

)
,

we speak of (square) matrix A and (column) vector v. The multi-

plication is de�ned as follows:

A · v =
(
a b

c d

)
·
(
x

y

)
=
(
ax + by

cx + dy

)
.

Similarly, we can instead of vector multiply from the right by an-

othermatrixB of the same dimension asA. We just apply the given

formulas on individual columns of the matrix B and as a result we

again obtain a square matrix.

We cannot multiply vector v from the right with matrix A be-

cause the number of scalars on the rows of v and the

number of scalars in the columns of A di�er. But we

can write the vector w as a row of scalars (so called

transposed vector) wT = (a b) and that we can multi-

ply from the right with our matrix A or vector v already.

We can easily check the so-called associativity of multiplica-

tion (do it for general matrices A, B and a vector v in detail):

(A · B) · v = A · (B · v).
Of course that we can instead of vector v write any matrix C of

correct dimension. In a similarly easy way can we see that dis-

tributivity also holds:

A · (B + C) = A · B + A · C,
but the commutativity does not hold and there also exist "divisible

zeros". For instance(
0 1
0 0

)
·
(

0 0
0 1

)
=
(

0 1
0 0

)
,

(
0 0
0 1

)
·
(

0 1
0 0

)
=
(

0 0
0 0

)
.

We observe in particular that vector multiplication with a �xed

matrix gives a linear mapping, and, in the other direction, using

the values of a linear mapping F on two �xed vector of basis we

obtain the whole corresponding linear mapping. Thus the points

in the plane are in general images of the linear mapping F from a

plane to a plane, lines are in general preimages of values of linear

mappings from the plane to the real line R. With matrices and

vectors can we write the equations for lines and points as

wT · v = (
a b

) ·
(
x

y

)
= c

A · v =
(
a b

c d

)
·
(
x

y

)
=
(
r

s

)
= u.

Of course, in particular situations it does not have to be like

this. For instance the intersection of two identical lines is the line it-

self (and the preimage of a speci�c value for such a linear mapping

will be a whole line), the preimage of zero under the zero mapping
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is according to the de Moivre's formula the argument of their product.

Their product is (1 + i)(2 + i)(3 + i) = (1 + 3i)(3 + i) = 10i, which
is a purely imaginary number with argument π/2 � thus the sum we

looked for is exactly π/2. □

1.56. Write the characteristic equation of the line p : x = 2 − t,

y = 1 + 3t, t ∈ R.

Solution. The vector (−1, 3) gives the direction of the line p. There-
fore the vector (3, 1) is a normal to p and the characteristic equation

of p is

3x + y + c = 0

for some c ∈ R. We can determine this c by setting x = 2, y = 1 (the

line p passes through point [2, 1] with t = 0). Thus we obtain c = −7
and consequently the result 3x + y − 7 = 0. □

1.57. We are given a line

p : [2, 0] + t (3, 2), t ∈ R.

Determine the characteristic equation of this line and the intersection

with the line

q : [−1, 2] + s(1, 3), s ∈ R.

Solution. The coordinates of the points on this line are given by the

parametric equations as x = 2 + 3t and y = 0 + 2t. By eliminating t
from the equations we obtain the characteristic equation:

2x − 3y − 4 = 0.

We obtain the intersection of p with the line q by putting the points of

q in parametric expression into the characteristic equation of p:

2(−1 + s)− 3(2 + 3s)− 4 = 0,

where we get that s = −12/7 and from the parametric equation of q

we obtain the coordinates of the intersection P :

P = [−19
7
,−22

7
].

□

1.58. Determine the intersection of the lines

p : x + y − 4 = 0, q : x = −1 + 2t, y = 2 + t, t ∈ R.

Solution. Let us �rst note that the direction of p is given by the vector

up = (1,−1) (any nonzero vector perpendicular to the vector (1, 1)
from the characteristic equation of p) and the direction of q is given

by the vector uq = (2, 1). As the vector up is not a multiple of the

vector vq , we see that the lines have a nonempty intersection (they

are not parallel). The point [x, y] is the intersection if and only if its
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is the whole plane. The �rst case happens when on the left side of

equations (1.15) there are the same expressions up to a scalar mul-

tiple (said in another way, the rows of the matrixA are the same up

to a scalar multiple). In such a case either the intersection of the

lines is empty (the lines are parallel but distinct) or it contains all

points of the line (identical lines). This condition can be expressed

by saying that the ratios a/c and b/d must be the same, that is

(1.16) ad − bc = 0.

Note that this expression already takes care of the cases, where

either c or d is zero.

1.27. Determinant ofmatrix. The expression on the left in (1.16)

is called determinant of the matrix A and we write for it

detA =
∣∣∣∣a b

c d

∣∣∣∣ = ad − bc.

Our discussion can be now expressed as follows:

Proposition. Determinant is a scalar function detA de�ned for

all matrices A and equation A ·v = u has a unique solution if and

only if detA ̸= 0.

It was necessary that we are working with the �eld of scalars

� try to think it through. For instance it does not hold

with integers in general. If we just compute the solu-

tion of the equations with integer coe�cients (that is

thematrixA has only integer inputs) the solution does

not have to be integral in general.

1.28. A�nemappings. Let us now investigate how thematrix no-

tation allows us to work with simple mappings in the

a�ne plane. We have seen that matrix multiplication

gives a linear mapping. Shifting in the a�ne plane

R2 by a �xed vector t = (r, s) ∈ R2 can we also easily write in the

matrix notation:

P =
(
x

y

)
7→ P + t =

(
x

y

)
+
(
r

s

)
=
(
x + r

y + s

)
.

If we allow ourselves to add �xed vector to the result of a linear

mapping then our expression will have the form

v =
(
x

y

)
7→ A · v + t =

(
ax + by + r

cx + dy + s

)
.

In this way we have described exactly all so-called a�ne mappings

of the plane to itself.

Such mappings allow us recomputing of coordinates which

arose by di�erent choices of origins and bases of di-

rections for shifting. What happens, if our observer

from the paragraph 1.23 will observe the plane from

a di�erent point, or chooses di�erent points E1, E2?

Try to think through that when speaking about coordinates the dif-

ference will be exactly realised by a�ne mapping. Later we will

see general reasons why that holds in any dimension.
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coordinates satisfy the equation of p and there exist a real number t

such that

x = −1 + 2t, y = 2 + t.

If we put this into the equation of p, we obtain

(−1 + 2t)+ (2 + t)− 4 = 0.

This equation is satis�ed by t = 1, which gives the intersection with
coordinates x = 1, y = 3. □

1.59. Find the characteristic equation of the line p, which goes

through the point [2, 3] and is parallel with the line x − 3y + 2 = 0,
and the parametric equation of the line q which goes through the points

[1, 3] and [−2, 1].

Solution. Every line parallel to the line x − 3y + 2 = 0 is given by

the equation

x − 3y + c = 0

for some c ∈ R. The line q goes through the point [2, 3]. Therefore it
must hold that

2 − 3 · 3 + c = 0, tj. c = 7.

We can immediately give the parametric equation of the line q

q : [1, 3] + t (1 − (−2), 3 − 1) = [1, 3] + t (3, 2) , t ∈ R.

□

1.60. Determine whether some of lines

p1 : 2x+ 3y− 4 = 0, p2 : x− y+ 3 = 0, p3 : −2x+ 2y = −6,

p4 : −x − 3
2 y + 2 = 0, p5 : x = 2 + t, y = −2 − t, t ∈ R

are parallel.

Solution. It is clear that

−2 · (−x − 3
2 y + 2

) = 2x + 3y − 4.

The characteristic equations thus describe the same line. The vector

(2, 3) is normal to the line p1, for the line p2 a vector is (1,−1), for
the line p3 such a vector is (−2, 2) and for the line p5 such vector is

(1, 1) (perpendicular to the vector (1,−1)). The lines p2 and p3 are

parallel (as the vectors perpendicular to them are multiples of each

other). There are no more pairs of parallel lines, since the equations

x − y + 3 = 0, −2x + 2y + 6 = 0

has clearly no solutions, the lines p1 and p4 form the only pair of iden-

tical lines. □
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1.29. Euclidean plane. Let us now give our observer the ability

to see and measure distance. For instance we can trust the common

equation for the length of the vector v = (a, b)

∥v∥ =
√
a2 + b2

in a�ne coordinates chosen by the observer. Immediately we can

de�ne notions as angle and rotation in the plane.

We can easily imagine it like this: our observer decides about

some points E1 and E2 that they are at distance 1,

and also decides that they are perpendicular. Dis-

tance in the direction of the coordinate axes are then

given by the corresponding ratio, in general Euclid (Pythagorean)

theorem is used. This leads to the equation given above.

Of course that our observer can work in a di�erent manner.

He can use some speci�c standard for real measurements of the

distance of points P and Q in the plane and then say that exactly

that is the length of the vector Q − P , which is necessary to shift

from the P to Q. Then he picks some of the vectors which have

size 1 and for instance using the triangle with sides of size 3, 4 and

5 constructs a perpendicular vector of size 1 and then continues as

before.

Euclidean plane is an a�ne plane with a notion of distance as

given above.

1.30. Angle between vectors. So-called trigonometric function

( cos)φ�which we have already used in the discus-

sion about complex numbers as points in the plane�

is given by the value of the �rst coordinate of the unit

vector whose angle with the vector (1, 0) is φ.
The second coordinate of such vector is then clearly given by

the real value 0 ≤ sinφ ≤ 1 satisfying

(cosφ)2 + (sinφ)2 = 1.

The angle between two vectors v and w can be in general de-

scribed using coordinates v = (vx, vy), w = (wx, wy) like this:

cosφ = vxwx + vywy

∥v∥ · ∥w∥ .
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1.61. Determine the line p which is perpendicular to the line q :
6x − 7y + 13 = 0 and which goes through the point [−6, 7].

Solution. Since the vector normal to q is the direction of p, we can

directly write the result

p : x = −6 + 6t, y = 7 − 7t, t ∈ R.

□

1.62. Give an example of numbers a, b ∈ R, such that the vector u
is a normal to AB where A = [1, 2], B = [2b, b], u = (a − b, 3).

Solution. The direction ofAB is (2b−1, b−2) (this vector is always
nonzero), and therefore the vector (2 − b, 2b − 1) is normal to AB.
Setting

2 − b = a − b, 2b − 1 = 3,

we obtain a = b = 2. □

1.63. Determine the relative position of the lines p, q in the plane

for p : 2x − y − 5 = 0, q : x + 2y − 5 = 0. If they are not parallel,
determine the coordinates of the intersection.

Solution. From the characteristic equations of p, q we obtain the vec-

tors (2,−1), (1, 2) which are normal to them. The lines are parallel if
and only if these vectors are multiples of each other, which is not the

case. The intersection is found by solving the equations

2x − y − 5 = 0, x + 2y − 5 = 0.

Expressing y from the �rst equation as y = 2x − 5 and putting it to

the second equation we obtain

x + 2(2x − 5)− 5 = 0, tj. x = 3.

Then easily y = 2 · 3 − 5 = 1. The intersection thus is [3, 1]. □

1.64. Consider the plane R2 with the standard coordinate system. A

laser ray is sent from the origin [0, 0] in the direction (3, 1). It hits the
mirror line p given by the equation

p : [4, 3] + t (−2, 1)

and then is re�ected (the angle of rebound is the same as the angle of

entry). At which point meets the ray the line q, given by

q : [7,−10] + t (−1, 6)?

Solution. The angle between the line p and the direction of the ray

is 45◦, the rebounded ray is thus perpendicular to the entering ray and
its direction is (1,−3) (Be careful with the orientation! The vector of
the direction can also be obtained via re�ection (axial symmetry) of
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This relation can be easily check, as long as we believe that

rotating the plane around the origin preserves angles.

In such a case can we �rst multiply arbitrarily chosen

vectors with suitable scalars such that we get vectors

of length 1 (our equation clearly gives the same result

after scalar multiplication). Then we can rotate the plane such that

the �rst of our vectors coincides with the �rst basis vector (1, 0).
Our equation gives then

cosφ = wx

∥w∥ ,

which is just the de�nition of the function cosφ.

1.31. Rotation around a point in the plane. Matrix of any given

mapping F : R2 → R2 is easy to guess: if the result of applying

the mapping is the matrix with columns (a, c) and (b, d), then the

�rst column (a, c) is obtained by multiplying this matrix with the

basis vector (1, 0) and the second is the evaluation at the second

basis vector (0, 1).

We can see from the picture that rotating counter-clockwise

through the angle ψ there are in the matrix the following columns:(
a b

c d

)(
1
0

)
=
(

cosψ
sinψ

) (
a b

c d

)(
0
1

)
=
(− sinψ

cosψ

)
The counter-clockwise direction is called the positive direction, the

other direction is the negative direction. Therefore we obtain the

claim:
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the vector perpendicular to the line p). The ray meets the mirror at the

point [6, 2], thus the rebounded ray has the equation

[6, 2] + t (1,−3), t ≥ 0.

The intersection of the liven given by the rebounded ray with the line q

is the point [4, 8], which lies out of the half-line given by the rebound
ray (t = −2). Thus the rebound ray does not meet the line q. □
Remark. The re�ection of a ray in three-dimensional space is studied

in the exercise ∥3.53∥.

1.65. Line segment of length 1 started moving at noon with a con-

stant speed 1 mathrmms−1 in the direction (3, 2) from the point

[−2, 0]. Another line segment of length of 1 has started moving from

the point [5,−2] also at noon, but with double speed. Will they col-

lide?

Solution. Lines along which the segments are moving can be de-

scribed parametrically:

p : [−2, 0] + r(3, 2),

q : [5,−2] + s(−1, 1).

Characteristic equation of the line p is

2x − 3y + 4 = 0.

Plugging the parametric equation of the line q yields the intersection

point P = [1, 2].
Now let us try to choose a single parameter t for both lines so

that the corresponding point describes the position at p and q of the

�rst and second line segment respectively at the time t (more precisely,

the position of the initial point of the line segment). At time 0 is the

�rst line segment at the position [−2, 0], the second at the position

[5,−2]. During time t (measured in seconds) the �rst segments travels
t units of length in the direction (3, 2), the second segments travels

2t units of length in the direction (−1, 1). Thus the corresponding

parametrisations are:

p : [−2, 0] + t√
13
(3, 2),

q : [5,−2] + t
√

2(−1, 1).

The initial point of the �rst segment enters the point [1, 2] at time t1 =√
13 s, the initial point of the second segment at time t2 = √

2 s �

more than a half second sooner. At the time t2 + 1
2 = √

2 + 1
2 < t1 the

ending point of the second segment moves away from P . Thus when

the initial point of the �rst segment enters the pointP , the ending point
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Rotation matrix

Rotating through a given angle ψ in the positive direction

about the origin is given by the matrix Rψ :

v =
(
x

y

)
7→ Rψ · v =

(
cosψ − sinψ
sinψ cosψ

)
·
(
x

y

)
.

Now, since we know how thematrix of the rotation in the plane

looks like, we can check that rotation preserves

distances and angles (de�ned by the previously

given equation). Let us denote the image of a

vector v as

v′ =
(
v′
x

v′
y

)
= Rψ · v =

(
vx cosψ − vy sinψ
vx sinψ + vy cosψ

)
,

and similarlyw′ = Rψ ·w. We can easily check that it really holds

that

∥v′∥ = ∥v∥
v′
xw

′
x + v′

yw
′
y = vxwx + vywy .

The previous expression can be written using vectors and ma-

trices as follows:

(Rψ · w)T (Rψ · v) = wT v.

The transposed vector (Rψ · w)T equals wT · RTψ , where RTψ is

the so-called transpose of the matrix Rψ . That is a matrix, whose

rows consist of the columns of the original matrix and similarly the

columns consist of the rows of the original matrix. Therefore we

see that the rotation matrices satisfy the relation RTψ ·Rψ = I , the

matrix I (sometimes we denote this matrix just as 1 and mean by

this the unit in the ring of matrices) is the so-called unit matrix

I =
(

1 0
0 1

)
.

This led us to a derivation of a remarkable claim � the matrix F

with the property that F · Rψ = I (we will call such a matrix the

inverse matrix to the rotation matrix Rψ ) is the transpose of the

original matrix. That makes sense, since the inverse mapping to

the rotation through the angle ψ is again a rotation, but through

the angle −ψ, that is the inverse matrix of RTψ equals the matrix

R−ψ =
(

cos(−ψ) − sin(−ψ)
sin(−ψ) cos(−ψ)

)
=
(

cosψ sinψ
− sinψ cosψ

)
.

It is easy to write the rotation around a point P = O + w,

P = [wx, wy] again using matrix, the equation can be expressed

with a shift:

31

of the second segment is already away and the segments do not collide.

□

1.66. Planar soccer player shoots a ball from the point F = [1, 0] in
the direction (3, 4) hoping to hit the goal which is a line segment from
the point A = [23, 36] to B = [26, 40]. Does the ball �y towards the
goal?

Solution. Due to the fact that the situation takes places in the �rst

quadrant, it is su�cient to consider only the slopes of the vectors F⃗A,

(3, 4), F⃗B. If they form either increasing or decreasing sequence (in

the order we have written them), the ball �ies towards the goal. The

sequence is 36/22, 4/3, 30/25 which is a decreasing sequence, thus

the ball �ies towards the goal. □

1.67. Simplify (A− B)T · 2C · u, while
A =

(
0 5

−2 2

)
, B =

(
2 0

−1 1

)
, C =

(
2 −2
4 5

)
, u =

(
3
2

)
.

Solution. By plugging in

A−B =
(−2 5

−1 1

)
, (A−B)T =

(−2 −1
5 1

)
, 2C =

(
4 −4
8 10

)
and by matrix multiplication we obtain

(A− B)T · 2C · u =
(−2 −1

5 1

)
·
(

4 −4
8 10

)
·
(

3
2

)
=
(−52

64

)
.

□

1.68. Give an example of matrices A and B for which

(a) (A+ B) · (A− B) ̸= A · A− B · B;
(b) (A+ B) · (A+ B) ̸= A · A+ 2A · B + B · B.

Solution. Let us remind that we are considering two-dimensional

(square) matrices A and B. For any two matrices A and B we have

(A+ B) · (A− B) = A · A− A · B + B · A− B · B.
The identity

(A+ B) · (A− B) = A · A− B · B
is thus obtained if and only if−A·B+B ·A is zero matrix, that is if and

only if the matrices A and B commute. An example of such matrices

are thus such pairs of matrices, which do not commute (the matrix

of multiplication is changed when we change the order of multiplied

matrices). We can choose for instance

A =
(

1 2
3 4

)
, B =

(
4 3
2 1

)
,

since with this choice is

A · B =
(

8 5
20 13

)
, B · A =

(
13 20
5 8

)
.

Analogously is for any pair of matrices A, B
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One just has to realise that instead of rotating around the given

point P we can �rst shift P into the origin, then do the rotation and

after that do the inverse shift, which takes the whole plane back

where it should have been all the time. Let us calculate then:

v =
(
x

y

)
7→ v − w 7→ Rψ · (v − w)

7→ Rψ · (v − w)+ w

=
(

cosψ(x − wx)− sinψ(y − wy)+ wx
sinψ(x − wx)+ cosψ(y − wy))+ wy

)
.

1.32. Re�ection. Another well-known example of mappings

which preserve length is the so-called re�ection

through a line. Again it su�ces to describe re�ec-

tions through lines that go through the origin O,

all other re�ections can be derived using shifts and

rotations.

Let us look for a matrix Zψ of re�ection with respect to the

line with the direction given by the unit vector v such that the angle

between v and the vector (1, 0) has valueψ. Let us �rst realise that

Z0 =
(

1 0
0 −1

)
.

In general, we can rotate any line so that it has the direction (1, 0)
and thus we can write general re�ection matrix as

Zψ = Rψ · Z0 · R−ψ ,

where we �rst rotate via the matrixR−ψ so that the line is in "zero"

position, re�ect with the matrix ZO and return back with the rota-

tion Rψ .
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(A+ B) · (A+ B) = A · A+ A · B + B · A+ B · B.
That means that

(A+ B) · (A+ B) = A · A+ A · B + A · B + B · B
is satis�ed if and only ifA·B = B ·A. In the second case is the answer
exactly the same as in the �rst case. □

1.69. Decide, whether the mapping F,G : R2 → R2 given by

F :
(
x

y

)
7→

(
7x − 3y

−2x + 5y

)
, x, y ∈ R,

G :
(
x

y

)
7→

(
2x + 2y − 4
4x − 9y + 3

)
, x, y ∈ R

are linear.

Solution. For any vector (x, y)T ∈ R2 we can express

F

((
x

y

))
=
(

7 −3
−2 5

)
·
(
x

y

)
, G

((
x

y

))
=(

2 2
4 −9

)
·
(
x

y

)
+
(−4

3

)
.

This implies that both mappings are a�ne. Let us remind that a�ne

mapping is a linear one if and only if the zero vector maps to zero.

Since

F

((
0
0

))
=
(

0
0

)
, G

((
0
0

))
=
(−4

3

)
,

the mapping F is linear, the mapping G is not. □

1.70. Let us consider a regular hexagonABCDEF (the vertices are

labelled in the positive direction) with centre at the point S = [1, 0]
and the vertex A = [0, 2]. Determine the coordinates of the vertex C.

Solution. The coordinates of the vertex C can be obtained by rotating

the pointA around the centre S of the hexagon through the angle 120◦

in the positive direction:

C =
(

cos(120◦) − sin(120◦)
sin(120◦) cos(120◦)

)
(A− S)+ S

=
(

− 1
2 −

√
3

2√
3

2 − 1
2

)(−1
2

)
+ [1, 0] = [

3
2

− √
3,−1 −

√
3

2
].

□

1.71. Determine the angle between two vectors

(a) u = (−3,−2), v = (−2, 3);
(b) u = (2, 6), v = (−3,−9).

Solution. The angle φ we are looking for can be computed from the

formula (1.36). Note that the vector (−3,−2) can be obtained by

changing the coordinates of the vector (−2, 3) and multiplying one

of them by the number −1. But these operations are used when we

want to obtain the vector normal to a vector of direction of a given line
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Therefore we can calculate (thanks to the associativity of ma-

trix multiplication):

Zψ =
(

cosψ − sinψ
sinψ cosψ

)
·
(

1 0
0 −1

)
·
(

cosψ sinψ
− sinψ cosψ

)
=
(

cosψ sinψ
sinψ − cosψ

)
·
(

cosψ sinψ
− sinψ cosψ

)
=
(

cos2 ψ − sin2 ψ 2 sinψ cosψ
2 sinψ cosψ −(cos2 ψ − sin2 ψ)

)
=
(

cos 2ψ sin 2ψ
sin 2ψ − cos 2ψ

)
.

We have used the usual addition formulas for trigonometric func-

tions. Let us also note that Zψ · Z0 is given:(
cos 2ψ sin 2ψ
sin 2ψ − cos 2ψ

)
·
(

1 0
0 −1

)
=
(

cos 2ψ − sin 2ψ
sin 2ψ cos 2ψ

)
.

This observation can be depicted and formulated as follows

Proposition. Rotation through the angleψ is obtained by two sub-

sequent re�ections in the directions that have the angle 1
2ψ be-

tween them.

If we can prove the previous proposition purely via geometri-

cal argumentation (try to be a "synthetic geometer"),

we have just proved standard formulas for trigonomet-

ric functions of double angle.

The following recapitulation of previous ideas is

somehow deeper (we can almost think that we can already prove

some interesting mathematical result):

Mappings that preserve length

1.33. Theorem. Linear mapping of the euclidean plane is com-

posed of one or more re�ections if and only if it is

given by a matrix R which satis�es

R =
(
a b

c d

)
, ab + cd = 0, a2 + c2 = b2 + d2 = 1.

This happen if and only if this mapping preserves length.
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(or vice versa). Vectors in the case (a) are thus perpendicular, that is

φ = π/2. In the case (b), since −3 · (2, 6) = 2 · (−3,−9), the vector
u is a multiple of the vector v. If one vector is a positive multiple of

another, the angle between these two is clearly zero. In our case we

have to multiply by a negative number, which gives φ = π . □

1.72. Determine the angle (the deviation) φ between two diagonals

A3A7 and A5A10 of a regular dodecagon (polygon with twelve sides)

A0A1A2 . . . A11.

Solution. The angle does not depended on the size of the given do-

decagon. Let us choose the dodecagon inscribed in a circle with di-

ameter 1. As in the previous exercise, we choose the coordinates

of its vertices and then using a formula �nish the computation that

cos(φ) = 1
2
√

2+√
3
, that is φ = 75◦.

Alternative solution. This problem can be solved via method of

synthetic geometry only: let us denote the centre of the regular do-

decagon by S and the intersection of the diagonals A3A7 and A5A10

by T . Now | ̸ A7A5A10| = 45◦ (this the inscribed angle which cor-

responds to the central angle A7SA10, which is a right angle), further-

more | ̸ A5A7A3| = 30◦ (again the inscribed angle corresponding to
the central angleA5SA3, which is 60◦). Thus the angleA5TA7 is then

equal to a complement of the aforementioned angles to 180◦, that is
105◦. The deviation we are looking for is then 180◦ − 105◦ = 75◦. □

1.73. Compute the lengths of the sides of the triangle with vertices

A = [2, 2], B = [3, 0], C = [4, 3].

Solution. Using the well-known formula for the size of a vector

||u|| =
√
u2

1 + u2
2, u = (u1, u2) ∈ R2

we obtain the results

|AB| = ||A− B|| =
√
(2 − 3)2 + (2 − 0)2 = √

5,

|BC| = ||B − C|| =
√
(3 − 4)2 + (0 − 3)2 = √

10,

|AC| = ||A− C|| =
√
(2 − 4)2 + (2 − 3)2 = √

5.

□

1.74. Let an equilateral triangle with vertices [1, 0] and [0, 1] which
lies completely in the �rst quadrant be given. Determine the coordi-

nates of its third vertex.

Solution. The third coordinate is [ 1
2 +

√
3

2 ,
1
2 +

√
3

2 ] (we are rotating
the point [1, 0] through 60◦ around [0, 1] in the positive direction). □
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Rotation is such mapping if and only if the determinant of the

matrix R equals one, which corresponds to an even number of re-

�ections. When there is an odd number of re�ections, the determi-

nant equals −1.

Proof. Let us �rst calculate, how a general matrixAmay look

like, if the corresponding mapping preserves

length. That is we have a mapping(
x

y

)
7→

(
a b

c d

)
·
(
x

y

)
=
(
ax + by

cx + dy

)
.

Preserving length thus means that for every x and y we it holds

that

x2 + y2 = (ax + by)2 + (cx + dy)2 =
= (a2 + c2)x2 + (b2 + d2 )y2 + 2(ab + cd)xy.

Since this equation is to hold for every x and y, the coe�cients

of the individual powers x2 , y2 and xy on the left and right side

of the equation must be equal. Thus we have calculated that the

conditions put on the matrix R in the �rst part of the theorem we

are proving are equivalent to the property than the given mapping

preserves length.

Thanks to the relation a2 + c2 = 1 we can assume that

a = cosφ and c = sinφ for a suitable angle φ. As soon as we

choose the �rst column of the matrix R, the relation ab + cd = 0
determines the second column up to a multiple. But we also know

that the size of the vector in the second column is one, and thus we

have only two possible cases for the matrix R:(
cosφ − sinφ
sinφ cosφ

)
,

(
cosφ sinφ
sinφ − cosφ

)
.

In the �rst case it is the rotation through the angle φ, in the second

case it is the rotation composed with the re�ection through the �rst

coordinate axis. As we have seen in the previous proposition 1.31,

every rotation corresponds to two re�ections and the determinant

of the matrix R is in these two cases really either one or minus one

and distinguishes between these two cases. □

1.34. Area of a triangle. In the end of our little trip to the areas of

geometry we will focus on the area of planar objects.

For us, triangles will be su�cient. Every triangle is

determined by a tuple of vectors v and w, which, if

shifted so that they start from one vertex P of the

triangle, determine the remaining two vertices. We would like to

�nd a formula (scalar function vol), which to two vectors assigns

the number equal to the area vol1(v,w) of the triangle 1(v,w)
de�ned in the aforementioned way, where we for de�niteness pick

for P the origin (shift does not change the volume anyway).

We can see from the statement that the desired value is half

of the area of the parallelogram spanned by the vectors v and w

and is easy to calculate (using the well-known formula: base times

corresponding height), or simply observe from the picture that the

following holds

vol1(v + v′, w) = vol1(v,w)+ vol1(v′, w)
vol1(av,w) = a vol1(v,w).
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1.75. Determine the coordinates of the vertices of a triangle, which

arises by rotating an equilateral triangle, whose two vertices are A =
[1, 1] and B = [2, 3] and the third is in the half-plane given by the line
AB and the point S = [0, 0], by 60◦ in the positive direction around

the point S.

Solution. The third vector of the triangle can be obtained for

instance by rotating through 60◦ of one vertex around the

other (in the correct direction). The points we are looking for

then have coordinates [− 3
2

√
3,

√
3 − 1

2 ], [ 1
2 − 1

2

√
3, 1

2

√
3 + 1

2 ],
[1 − 3

2

√
3,

√
3 + 3

2 ]. □

1.76. Find two matrices A such that

A2 =
(

1
2 −

√
3

2√
3

2
1
2

)
.

Hint: which geometric transformation in the plane is given by the ma-

trix A2?

Solution. A2 is the matrix of rotation through 60◦ in the positive di-

rection, thus the matrix we are looking for are

A = ±
(√

3
2 − 1

2
1
2

√
3

2

)
,

that is they are matrices of rotation through 30◦ or through 210◦. □

1.77. Determine A · A for

A =
(

cosφ − sinφ
sinφ cosφ

)
, where φ ∈ R.

Solution. We know that the mapping(
x

y

)
7→

(
cosφ − sinφ
sinφ cosφ

)
·
(
x

y

)
, x, y ∈ R

is the rotation of the planeR2 around the origin through the angle φ in

the positive direction. Since matrix multiplication is associative, we

obtain that the mapping(
x

y

)
7→

(
cosφ − sinφ
sinφ cosφ

)
·
(

cosφ − sinφ
sinφ cosφ

)
·
(
x

y

)
, x, y ∈ R

is a rotation through the angle 2φ. That means that

A · A =
(

cos 2φ − sin 2φ
sin 2φ cos 2φ

)
.

Let us note that we could have directly multiplied A · A (and apply

the formulas for sine and cosine of double angle). But repeating the

aforementioned method (or using the mathematical induction) yields

An =
(

cos nφ − sin nφ
sin nφ cos nφ

)
, n = 2, 3, . . . ,

easier (we set A2 = A · A, A3 = A · A · A etc.) □



CHAPTER 1. INITIAL WARMUP

Finally we add to our problem formulation a condition

vol1(v,w) = − vol1(w, v),

which corresponds to the idea that we give a sign to the area, ac-

cording to the order in which we are taking the vectors (that is, if

we see the area from the top or from the bottom).

If we write the vectors v and w into the columns of a matrix

A, then

A = (v,w) 7→ detA

satis�es all the three conditions we wanted. How many such map-

pings could there possibly be? Every vector can be expressed using

two basis vectors e1 = (1, 0) and e2 = (0, 1) and by linearity is

then every possibility for vol1 uniquely determined by the value

for these vectors. Since for area � in the same way as for deter-

minant � is clearly vol1(e1, e1) = vol1(e2, e2) = 0 (due to the

required antisymmetry), every such scalar function is necessarily

determined by the value on the single tuple of arguments (e1, e2).

Therefore all possibilities are equal up to a scalar multiple, which

can be determined by the condition

vol1(e1, e2) = 1
2
,

that is we are choosing orientation and scale through the choice

of basis vectors and we want that the unit square has area equal to

one.

Thus we see that the determinant gives the area of a parallel-

ogram determined by the columns of the matrix A and the area of

the triangle is thus one half of that.

1.35. Visibility in the plane. The previous description of the

value for oriented area gives us elegant tool for determining

the position of a point relative to oriented line segments.

By an oriented line segment we mean two points in the

plane R2 with �xed order. We can imagine it as an arrow

from one point to the other. Such an oriented line segment divides

the plane into two half-planes, let us call them "left" and "right".

We want to be able to tell whether a given point is in the left or

right half-plane.

Such tasks are often met in computer graphics when dealing

with visibility of objects. For simplicity we can imagine that a line

segment can be "seen" from the points to the right of it and can-

not be seen from the points to left of it (this corresponds to the

notion that object with bounded by line segments oriented counter-

clockwise has to the left of the line segments its interior, through

which the segment cannot be seen).
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1.78. Re�ection. Find the matrix of re�ection in the plane through

the line y = √
3x (that is the matrix of the axial symmetry).

Solution. Draw a picture. In the basis given by the vectors

(1,
√

3), (−√
3, 1) is the matrix of the re�ection clearly

(
1 0
0 −1

)
.

Thus in the standard basis it is(
1 −√

3√
3 1

)(
1 0
0 −1

)(
1 −√

3√
3 1

)−1

The inverse matrix is in this case easy to �nd since the vectors in the

columns are perpendicular, thus the matrix is (almost) orthogonal. We

have (
1 −√

3√
3 1

)−1

= 1
4

(
1

√
3

−√
3 1

)
By multiplying of the corresponding matrices we obtain the result

1
2

(−1
√

3√
3 1

)
. This result can be directly guessed from the picture

(Redraw the pcture!). □

1.79. Determine, which linear mappings from R2 to R2 are given by

the following matrices (that is, describe the geometrical meaning of

the matrices)

A1 =
(

1 0
0 0

)
, A2 =

(−1 0
0 1

)
, A3 =

(√
2

2 −
√

2
2√

2
2

√
2

2

)
,

Solution. Let (x, y)T stand for an arbitrary real vector. For the matrix

A1 we have (
x

y

)
7→

(
1 0
0 0

)
·
(
x

y

)
=
(
x

0

)
,

which means that the linear mapping given by this matrix is the projec-

tion on the x axis. Similarly we can see that the matrix A2 determines

the re�ection with the respect to the y axis, since(
x

y

)
7→

(−1 0
0 1

)
·
(
x

y

)
=
(−x
y

)
.

The matrix A3 can be expressed in the form(
cosφ − sinφ
sinφ cosφ

)
for φ = π/4, thus it gives the rotation of the plane around the ori-

gin through the angle π/4 (in the positive direction, that is counter-

clockwise). □

1.80. Parallelogram identity. Let us prove the so-called "parallelo-

gram identity" for an illustration of our tools: If u, v ∈ R2, then:

2(∥u∥2 + ∥v∥2) = ∥u+ v∥2 + ∥u− v∥2.

That means, the sum of the squares of the diagonals of a parallelogram

equals the sum of the squares of the lengths of the four sides of the

parallelogram.
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We have the line segmentAB and are given some pointC. Let

us now calculate the oriented area of the corresponding triangle

determined by the vectors A − C and B − C. If the point C is to

the left of the line segment, then with the usual positive orientation

(counter-clockwise) is the vector A − C encountered sooner than

the other vector B−C and thus the resulting area (that is the value

of the determinant of the matrix with these two vectors as columns)

greater than zero. On the other hand, if the vectors are encountered

in the other order, the resulting determinant value will be negative

and thus we can say that the point is to the right of the segment.

The mentioned approach is really often used for testing the

relative position in standard tasks in 2D graphics.

6. Relations and mappings

In the �nal part of the introductory chapter we will return to

the formal description of mathematical structures, but

we will try to illustrate them on examples we already

know. Also, we can consider this part to be an exercise

in formal approach to objects and concepts of mathe-

matics.

1.36. Relations between sets. First we need to de�ne cartesian

product A × B of two sets A and B. It is the set of all ordered

tuples (a, b) such that a ∈ A and b ∈ B. Binary relation between
two sets A and B is then a subset R of cartesian product A× B.

Often we write a ≃R b for expressing the fact that (a, b) ∈ R,
that is that the points a ∈ A and b ∈ B are in relation R. Domain

of a relation is the subset

D ⊆ A, D = {a ∈ A; ∃b ∈ B, (a, b) ∈ R}.
In words, it is the set of elements a from the set A such that there

exists an element b in B such that (a, b) belongs to the relation R.

Shortly, the domain consists of such elements of A that have an

image in B. Similarly codomain of a relation is the subset

I ⊆ B, I = {b ∈ B; ∃a ∈ A, (a, b) ∈ R},
that is the elements of B that have a preimage in A.

Special case of a relation between sets is mapping from a set

A to the set B. It is just for the case when every ele-

ment of the domain of the relation is in relation with

exactly one element of the codomain. Examples of

mappings known to us are all scalar functions, where the domain

of the mapping is a set of scalars, for instance the set of integers or

reals. For mappings we usually use notation we have already been

using when dealing with scalar functions. We write

f : D ⊆ A → I ⊆ B, f (a) = b
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Solution. Using both sides of the equation into the coordinates u =
(u1, u2), v = (v1, v2) yields:

2(∥u∥2 + ∥v∥2)

= 2(u2
1 + u2

2 + v2
1 + v2

2)

= u2
1 + 2u1v1 + v2

1 + u2
2 + 2u2v2 + v2

2+
+ u2

1 − 2u1v1 + v2
1 + u2

2 − 2u2v2 + v2
2

= (u1 + v1)
2 + (u2 + v2)

2 + (u1 − v1)
2 + (u2 − v2)

2

= ∥u+ v∥2 + ∥u− v∥2.

□

1.81. Show that by composing an odd number of point re�ections in

the plane yields again a point symmetry.

Solution. Point re�ection in the plane across the point S is represented

with the formulaX 7→ S− (X−S), that isX 7→ 2S−X. (The image
of the point X in this re�ection is obtained by summing the vector

opposite to the vectorX−S and the vector S.) By repeated application
of three point re�ections across the points S, T andU respectively thus

yieldsX 7→ 2S−X 7→ 2T − (2S−X) 7→ 2U − (2T − (2S−X)) =
2(U − T + S) − X, that is X 7→ 2(U − T + S) − X, which is a

point re�ection across the point S − T +U . Thus composition of any

odd number of point re�ection can be thus reduced to a composition

of three point re�ections, thus it is a point re�ection (in principle, this

is a proof by mathematical induction, try to formulate it by yourself).

□

1.82. Construct (2n+ 1)-gon, if the middle points of all its sides are
given.

Solution. We use the fact that the composition of an odd number of

point re�ections is again a point re�ection (see the previous exercise).

Denote the vertices of the (2n + 1)-gon we are looking for by A1,

A2, . . . , A2n+1 and the middle points of the sides (starting from the

middle point of A1A2) by S1, S2, . . . S2n+1. If we carry out the point

re�ections across the middle points, then clearly the pointA1 is a �xed

point of the resulting point re�ection, thus it is its centre point. In

order to �nd it, it is enough to carry out the given point re�ection with

any point X of the plane. The point A1 then lies in the middle of the

line segment XX′ where X′ is the image of X in that point re�ection.

The rest of the verticesA2, . . . , A2n+1 can be obtained by mapping the

point A1 in the point re�ections across the points S1, . . . , S2n+1. □

1.83. Determine the area of the triangle ABC, if A = [−8, 1], B =
[−2, 0], C = [5, 9].
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to express the fact that (a, b) belongs to a relation, and we say that

b is the value of f at a. Furthermore we say that

• mapping f maps the set A to the set B if D = A,

• mapping f of the set A to the set B is surjective (or onto), if

D = A and I = B,

• mapping f of the setA to the setB is injective (or one-to-one),

ifD = A and for every b ∈ I there exist exactly one preimage
a ∈ A, f (a) = b.

Expressing a mapping f : A → B as a relation

f ⊆ A× B, f = {(a, f (a)); a ∈ A}
is also known as the graph of a function f .

1.37. Composition of relations and functions. For mappings,

the conception of composition is clear. We have two mappings

f : A → B and g : B → C, then their composition g◦f : A → C

is de�ned as

(g ◦ f )(a) = g(f (a)).

It can be also expressed under the notation used for relation as

f ⊆ A× B, f = {(a, f (a)); a ∈ A}
g ⊆ B × C, g = {(b, g(b)); b ∈ B}

g ◦ f ⊆ A× C, g ◦ f = {(a, g(f (a))); a ∈ A}.
The composition of relation is de�ned in a very similar way,

we just add existential quanti�ers to the statements,

since we have to consider all possible "preimages"

and all possible "images". LetR ⊆ A×B, S ⊆ B×C
be relations. Then S ◦ R ⊆ A× C,

S ◦ R = {(a, c); ∃b ∈ B, (a, b) ∈ R, (b, c) ∈ S}.
A special case of relation is the identity relation

idA = {(a, a) ∈ A× A; a ∈ A}
on the set A. It is a neutral element with respect to composition

with any relation that has A as its codomain.
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Solution. We know that the area equals to the half of the determinant

of the matrix, whose �rst column is given by the vector B − A and

the second column by the vector C −A, that is the determinant of the

matrix (−2 − (−8) 5 − (−8)
0 − 1 9 − 1

)
.

A simple calculation yields the result
1
2 ((−2 − (−8)) · (9 − 1)− (5 − (−8)) · (0 − 1)) = 61

2 .

Let us add that the change of the order of the vectors leads to change in

the sign of the determinant (but the absolute value is unchanged) and

that the value of the determinant would not change at all if we wrote

the vertices in the rows (preserving the order). □

1.84. Compute the area S of the quadrilateral given by its vertices

[1, 1], [6, 1], [11, 4], [2, 4].

Solution. Let us �rst denote the vertices (in the counter-clockwise

direction)

A = [1, 1], B = [6, 1], C = [11, 4], D = [2, 4].

If we divide the quadrilateral ABCD into the triangles ABC and

ACD, we can obtain its area as the sum of the areas of these two tri-

angles, by evaluating the determinants

d1 =
∣∣∣∣6 − 1 11 − 1
1 − 1 4 − 1

∣∣∣∣ =
∣∣∣∣5 10
0 3

∣∣∣∣ ,
d2 =

∣∣∣∣11 − 1 2 − 1
4 − 1 4 − 1

∣∣∣∣ =
∣∣∣∣10 1

3 3

∣∣∣∣ ,
where in the columns are these vectors B − A, C − A (for d1) and

C − A, D − A (for d2). Then

S = d1
2 + d2

2 = 5·3−10·0
2 + 10·3−1·3

2 = 15+27
2 = 21.

(thanks to the order of the vectors are all determinants greater than

zero). Correctness of the result is easy to con�rm, since the quadrilat-

eralABCD is a trapezoid with bases of lengths 5, 9 and their distance

v = 3. □

1.85. Give the area of a meadow, which is determined on the area

map by the points at quotas [−7, 1], [−1, 0], [29, 0], [25, 1], [24, 2]
and [17, 5]. (Ignore the measurement units. They are determined by

the ratio of the area map to the reality.)

Solution. The given hexagon can be divided for instance into for tri-

angle with vertices at

[−7, 1], [−1, 0], [17, 5]; [−1, 0], [24, 2], [17, 5];
[−1, 0], [25, 1], [24, 2]; [−1, 0], [29, 0], [25, 1].

The areas are 24, 89/2, 27/2 and 15, which gives the result

24 + 44 1
2 + 13 1

2 + 15 = 97.
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For every relation R ⊆ A× B we de�ne the inverse relation

R−1 = {(b, a); (a, b) ∈ R} ⊂ B × A.

Beware, the same term is used with mappings in a more speci�c

situation. Of course, for every mapping there is its inverse relation,

but this relation is in general not a mapping. Therefore we speak

about the existence of an inverse mapping if every element b ∈ B
is an image of exactly one element in A. In such case the inverse

mapping is exactly the inverse relation.

Note that the composition of a mapping and its inverse map-

ping (if it exists) always leads to the identity mapping, but when

dealing with relations it does not have to be so in general.

1.38. Relation on a set. In the case when A = B we speak about

a relation on the set A. We say that the relation R is:

• re�exive, if idA ⊆ R, that is (a, a) ∈ R for every a ∈ A,
• symmetric, ifR−1 = R, that is if (a, b) ∈ R, then also (b, a) ∈
R,

• antisymmetric, if R−1 ∩ R ⊆ idA, that is if (a, b) ∈ R and

also(b, a) ∈ R, then a = b,

• transitive, if R ◦ R ⊆ R, that is if (a, b) ∈ R and (b, c) ∈ R
implies (a, c) ∈ R.
Relation is called equivalence if it is re�exive, symmetric and

transitive.

Relation is called ordering if it is re�exive, transi-

tive and antisymmetric. Orderings are usually denoted

by the symbol ≤, that is the fact that element a is in

relation with element b is written as a ≤ b.

Now it is good to realise that the relation <, that is "to be

strictly smaller than", on real (rational, integer, natural) numbers

is not an ordering, since it is not re�exive.

A good example of ordering is inclusion. Consider the set

2A of all subsets of a �nite set A (notation is a special example

of the common notation BA for the set of all mappings from A to
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□

1.86. Determine the area of a triangleA2A3A11, whereA0A1 . . . A11

are vertices of a regular dodecagon inscribed in a circle of radius 1.

Solution. The vertices of the dodecagon can be identi�ed with twelfth

roots of 1 in the complex plane. If we additionally chooseA0 = 1, we
can then writeAk = cos(2kπ/12)+ i sin(2kπ/12). For the vertices of
the investigated triangle it holds that A2 = cos(π/3) + i sin(π/3) =
1/2 + i

√
3/2, A3 = cos(π/2)+ i sin(π/2) = i, A11 = cos(−π/6)+

i sin(−π/6) = √
3/2 − i/2, that means the that the coordinates of

these points in the complex plane are A2 = [1/2,
√

3/2], A3 = [0, 1],
A11 = [

√
3/2,− 1

2 ]. According to the formula for the area of a triangle
is the area S equal to

S = 1
2

∣∣∣∣A2 − A11
A3 − A11

∣∣∣∣ = 1
2

∣∣∣∣∣ 1
2 −

√
3

2
1
2 +

√
3

2

−
√

3
2

3
2

∣∣∣∣∣ = 3 − √
3

4
.

Since the determinant is non-negative, we could have omitted the ab-

solute value for aestethical reasons. □

1.87. Which sides of the quadrilateral given by the vertices [−2,−2],
[1, 4], [3, 3] and [2, 1] are visible from the position of the point [3, π−
2]?

Solution. It is a classical problem of the visibility of the sides of a

convex polygon in the plane. In the �rst step we order the vertices

such that their order corresponds the counter-clockwise direction. If

we choose as the �rst vertex for instance the vertex A = [−2,−2],
the order of the remaining vertices is then B = [2, 1], C = [3, 3],
D = [1, 4]. Let us �rst consider the side AB. It along with the point
X = [3, π − 2] determines the matrix( −2 − 3 2 − 3

−2 − (π − 2) 1 − (π − 2)

)
such that its �rst column is the di�erenceA−X and the second column

is B − X. Whether it can be seen from the point [3, π − 2], is then
determined by the sign of the determinant∣∣∣∣ −2 − 3 2 − 3

−2 − (π − 2) 1 − (π − 2)

∣∣∣∣ =
∣∣∣∣−5 −1
−π 3 − π

∣∣∣∣ =
−5 · (3 − π)− (−1)(−π) < 0.

Negative value signi�es that the side is visible. Let us note that it does

not matter if we are considering the di�erences A−X and B −X, or

X − A and X − B. But if we change the order of the columns, the

corresponding side would be visible if and only if the determinant is

positive.

For the side BC we analogically obtain
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B; the elements of the set 2A are thus mappings from A to {0, 1}
which "say" whether given element is in a given subset). We have

a relation ⊆ on the set 2A given by the property "being a subset".

Thus it is X ⊆ Z if X is a subset of Z. Clearly all three conditions

from the de�nition of ordering are satis�ed: if X ⊆ Y and Y ⊆ X

then necessarily X and Y must be identical. If X ⊆ Y ⊆ Z then

also X ⊆ Z, and re�exivity is clear from the de�nition.

We say that an ordering ≤ on a set A is complete, if for ev-

ery two elements a, b ∈ A it holds that they are comparable, that

means that either a ≤ b or b ≤ a. Let us note that not all tuples

(X, Y ) of subsets of A are comparable in this sense. More pre-

cisely, if A contains more than element, there exist subsets X and

Y where neither X ⊆ Y nor Y ⊆ X.

Let us recall the recurrent de�nition of natural numbers N =
{0, 1, 2, 3, . . . }, where

0 = ∅, n+ 1 = {0, 1, 2, . . . , n}.
On this set N we de�ne a relation ≤ as follows: m ≤ n, if either

m ∈ n or m = n. Clearly this is a complete ordering. For instance

2 ≤ 4, since

2 = {∅, {∅}} ∈ {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}} = 4.

In other words, the recurrent de�nition itself gives the relation n ≤
n+ 1 and transitively then n ≤ k for all k obtained in this manner

later.

1.39. Partitions of an equivalence. Every equivalenceR on a set

A gives also a partition of the set A, consisting of

subsets of mutually equivalent sets, so called equiv-

alence classes. For any a ∈ A we consider the class

(set) of elements, which are equivalent with a, that

is

Ra = {b ∈ A; (a, b) ∈ R}.
Oftenwewill write forRa simply [a]a, if it is clear from the context

which equivalence we have in mind.

Clearly Ra = Rb if (a, b) ∈ R, and every such equiva-

lence class is therefore represented by any of its elements, so-

called representant. Furthermore Ra ∩ Rb ̸= ∅ if and only if

Ra = Rb, that is the equivalence classes are pairwise disjoint.

Finally, A = ∪a∈ARa , that is the whole set A is partitioned to

equivalence classes.

Another way of looking at things is that [a] is seen as the ele-
ment a "up to equivalence".

1.40. Construction of the integers and rational numbers. With

natural numbers we can do addition and we know that

adding zero to a number does not change it. We can also

de�ne subtraction, but the result does not always belong to

the set N.
The basic idea of construction of the integers from the natural

numbers is to add to N these missing results. This can be done as

follows: instead of result of subtraction, we will work with ordered

tuples of numbers, which will represent the result. It remains just

to de�newhich such tuples are equivalent (with respect to the result

of subtraction). The necessary relation is then:

(a, b) ∼ (a′, b′) ⇐⇒ a − b = a′ − b′ ⇐⇒ a + b′ = a′ + b.
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∣∣∣∣ 2 − 3 3 − 3
1 − (π − 2) 3 − (π − 2)

∣∣∣∣ =
∣∣∣∣ −1 0
3 − π 5 − π

∣∣∣∣ =
−1 · (5 − π)− 0 < 0.

Thus this side is also visible. Only the sides CD andDA remain. For

them we obtain∣∣∣∣ 3 − 3 1 − 3
3 − (π − 2) 4 − (π − 2)

∣∣∣∣ =
∣∣∣∣ 0 −2
5 − π 6 − π

∣∣∣∣ =
0 − (−2) · (5 − π) > 0,∣∣∣∣ 1 − 3 −2 − 3

4 − (π − 2) −2 − (π − 2)

∣∣∣∣ =
∣∣∣∣ −2 −5
6 − π −π

∣∣∣∣ =
−2 · (−π)− (−5) · (6 − π) > 0.

Thus from the point X are visible exactly the sides determined by the

pairs of vertices [−2,−2], [2, 1] and [2, 1], [3, 3]. □

1.88. Give the sides of the pentagon with vertices at points [−2,−2],
[−2, 2], [1, 4], [3, 1] and [2,−11/6], which are visible from the point

[300, 1].

Solution. For simplifying the notation let us �traditionally� set

A = [−2,−2], B = [2,−11/6], C = [3, 1], D =
[1, 4], E = [−2, 2].

The sides BC and CD are clearly from the position of the point

[300, 1] visible, on the other hand DE and EA cannot be seen. For

the side AB let us determine∣∣∣∣−2 − 300 2 − 300
−2 − 1 − 11

6 − 1

∣∣∣∣ = −302 · (− 17
6

)− (−298) · (−3) < 0.

This implies that the side can be seen from the point [300, 1]. □

1.89. Visibility of the sides of a triangle. Let the triangle with the

vertices A = [5, 6], B = [7, 8], C = [5, 8] be given. Determine,

which of its sides are visible from the point P = [0, 1].

Solution. Let us order the vertices in the positive direction, that is

counter-clockwise: [5, 6], [7, 8], [5, 8]. Using the corresponding de-

terminants we can can determine whether the point [0, 1] lies to the

"left" or to the "right" of the sides of the triangle when we view them

as oriented line segments,∣∣∣∣ B − P

C − P

∣∣∣∣ =
∣∣∣∣ 7 7

5 7

∣∣∣∣ > 0,
∣∣∣∣ C − P

A− P

∣∣∣∣ =
∣∣∣∣ 5 7

5 5

∣∣∣∣ < 0,∣∣∣∣ A− P

B − P

∣∣∣∣ =
∣∣∣∣ 5 5

7 7

∣∣∣∣ = 0.

Since the last determinant is zero, we see that the points [0, 1], [5, 6]
and [7, 8] lie on a line, the side AB is thus not visible. The side BC

is also not visible, unlike the side AC for which the determinant is

negative. □
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Let us note that the expression in the middle equations cannot be

realised in natural numbers, but the expression on the right can.

We can easily check that it really is an equivalence, and we denote

its classes as the integers Z. We de�ne addition and subtraction on

Z using representants. For instance

[(a, b)] + [(c, d)] = [(a + c, b + d)],

which is clearly independent of the choice of representants.

It is always possible to choose representants (a, 0) for natural
numbers and representants (0, a) for negative numbers � this is

probably the simplest and clearest choice.

This simple example shows how important it is to be able to

see the equivalence classes as a whole object and to concentrate

on the properties of these objects, not on the formal description of

their construction. However, the description is important in order

to be able to check that such objects exist.

On integers we have all the properties of scalars (KG1)�(KG4)

and (O1)�(O4), see the paragraphs 1.1 and 1.3. For multiplication

the neutral element is one, but for all numbers a other than zero

and one we are not able to �nd a number a−1 with the property

a · a−1 = 1, that means that for multiplication we are missing

inverse elements.

Let us also note that the properties of the integral domain (ID),

see 1.3. This means that if the product of two numbers equals zero,

at least one of them has to be zero.

Thanks to the last stated property we can construct the ratio-

nal numbers Q by adding all missing multiplicative inverses by a

method analogous to the construction of Z from N. On the set of
all ordered tuples (p, q), q ̸= 0, of integers we de�ne a relation ∼
so that it models our expectation of the fractions p/q:

(p, q) ∼ (p′, q′ ) ⇐⇒ p/q = p′/q′ ⇐⇒ p · q′ = p′ · q.
Again, we are not able to formulate the expected behaviour in the

middle equation when we work in Z, but for the equation on the

right this is indeed possible. Clearly this relation is a well-de�ned

equivalence (think it through!) and rational numbers are then the

equivalence classes. If we formally write p/q instead of tuples

(p, q), we can de�ne the operations of multiplication and addition

by the well-known formulas.

1.41. Remainder classes. Another nice and simple example are

the so-called remainder classes of integers. For a

�xed natural number k we de�ne an equivalence ∼k

so that two numbers a, b ∈ Z are equivalent if they

have the same remainder when divided by k. The re-

sulting set of equivalence classes is denoted as Zk . This procedure
is simplest for k = 2. This yields Z2 = {0, 1}, where zero stands
for even numbers and one for odd numbers. Again it is easy to

see that using representants we can correctly de�ne addition and

multiplication for each Zk .

Theorem. The remainder class Zk is a commutative �eld of

scalars (that is, the property (P) from the paragraph 1.3 is also

satis�ed) if and only if k is a prime.

If k is not prime, then Zk contains a divisor of zero, thus it is

not an integral domain.

Proof. The second part is easy to see� if x·y = k for natural

numbers x, y, then clearly the result of multiplying the correspond-

ing classes [x] · [y] is zero.
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1.90. Determine which sides of the quadrilateral with vertices A =
[95, 99], B = [130, 106], C = [40, 60], D = [130, 120], are visible
from the point [2, 0].

Solution. First we need to determine the sides of the quadrilateral (the

"correct" vertex order): ABCD. After computing the corresponding

determinants as in previous exercises we see that only the side CB is

visible. □

F. Mappings and relations

1.91. Determine whether the following relations over the setM are

equivalence relations:

i) M = {f : R → R}, where (f ∼ g) if f (0) = g(0).
ii) M = {f : R → R}, where (f ∼ g) if f (0) = g(1).
iii) M is the set of lines in the plane, where two lines are in rela-

tion if they do not intersect.

iv) M is the set of lines in the plane, where two lines are in rela-

tion if they are parallel.

v) M = N, where (m ∼ n) if S(m) + S(n) = 20, while S(n)
stands for the sum of the digits of the number n.

vi) M = N, where (m ∼ n) if C(m) = C(n), where C(n) =
S(n) if the sum of the digits S(n) is less than 10, otherwise
we de�neC(n) = C(S(n)) (thus it always holds thatC(n) <

10).

Solution.

i) Yes. Let us check the three properties of equivalence:

i) Re�exivity: for any real function f it holds that f (0) =
f (0).

ii) Symmetry: if f (0) = g(0), then also g(0) = f (0).
iii) Transitivity: if f (0) = g(0) and g(0) = h(0), then also

f (0) = h(0).
ii) No. The relation is not re�exive, since for instance for the

function sin we have sin 0 ̸= sin 1 and is not even transitive.

iii) No. The relation is not re�exive (every line intersects itself)

and not transitive.

iv) Yes. The equivalence classes then correspond to unoriented

directions in the plane.

v) No. The relation is not re�exive. S(1)+ S(1) = 2.
vi) Yes.

□

1.92. We have a set {3, 4, 5, 6, 7}. Write explicitly the relations
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On the other hand, if x and k are relatively prime, then accord-

ing to the so-called Bezout equality which we derive later (see ??)

natural numbers a and b satisfying

a x + b k = 1,

which for corresponding equivalence classes gives

[a] · [x] + [0] = [a] · [x] = [1]

and thus [a] is the inverse element to [x]. □
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i) a divides b

ii) a divides b or b divides a

iii) a and b have a common divisor greater than one

⃝

1.93. Let the relation R be de�ned over R2 such that

((a, b), (c, d)) ∈ R for arbitrary a, b, c, d ∈ R if and only if

b = d. Determine whether it is an equivalence relation. If it indeed

is, describe geometrically the partitioning it determines.

Solution. From ((a, b), (a, b)) ∈ R for all a, b ∈ R it is implied

that the relation is re�exive. Equally easy to see is that the relation is

symmetric, since in the equality of the second coordinates we can inter-

change left and right side. If ((a, b), (c, d)) ∈ R a ((c, d), (e, f )) ∈ R,
that is it holds that b = d and d = f , we easily get that the transitivity

condition ((a, b), (e, f )) ∈ R, that is b = f , holds. The relation R is

an equivalence relation, where the points in the plane are in relation if

and only if they have the same second coordinate (the line they deter-

mine is perpendicular to the y axis). The corresponding partition then

divides the plane into the lines parallel with the x axis. □

1.94. Determine how many distinct binary relations can be de�ned

between the setX and the set of all subsets ofX, if the setX has exactly

3 elements.

Solution. Let us �rst realize that the set of all subsets ofX has exactly

23 = 8 elements, and thus the cartesian product withX has 8 · 3 = 24
elements. Possible binary relations the correspond to subsets of this

cartesian product, and of those there are exactly 224. □

1.95. Give the domain D and the codomain I of the relations

R = {(a, v), (b, x), (c, x), (c, u), (d, v), (f, y)}
between the sets A = {a, b, c, d, e, f } and B = {x, y, u, v,w}. Is the
relation R a mapping?

Solution. Directly from the de�nition of the domain and the codomain

of a relation we obtain

D = {a, b, c, d, f } ⊂ A, I = {x, y, u, v} ⊂ B.

It is not a mapping since (c, x), (c, u) ∈ R, that is c ∈ D has two

images. □
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1.96. Determine about each of the following relations over the set

{a, b, c, d} whether it is an ordering and whether it is complete:
Ra = {(a, a), (b, b), (c, c), (d, d), (b, a), (b, c), (b, d)},
Rb = {(a, a), (b, b), (c, c), (d, d), (d, a), (a, d)},
Rc = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, c), (b, d)},
Rd = {(a, a), (b, b), (c, c), (a, b), (a, c), (a, d), (b, c), (b, d), (c, d)},
Re = {(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (a, d), (b, c), (b, d),

(c, d)}.

Solution. Ra is an ordering, which is not complete (for instance nei-

ther (a, c) /∈ Ra nor (c, a) /∈ Ra). The relation Rb is not anti-

symmetrical (it is both (a, d) ∈ Rb and (d, a) ∈ Rb), therefore it

is not an ordering (it is an equivalence). The relations Rc and Rd
are also not an ordering, since they are not transitive (for instance

(a, b), (b, c) ∈ Rc, Rd , (a, c) /∈ Rc, Rd) and also not re�exive

((d, d) /∈ Rc, (d, d) /∈ Rd). Relation Re is a complete ordering (if

we interpret (a, b) ∈ R as a ≤ b, then a ≤ b ≤ c ≤ d). □

1.97. Determine whether the mapping f is injective (one-to-one) or

surjective (onto), if

(a) f : Z × Z → Z, f ((x, y)) = x + y − 10x2 ;

(b) f : N → N × N, f (x) = (
2x, x2 + 10

)
.

Solution. In the case (a) is given a mapping which is surjective (it is

enough to set x = 0) but not injective (it is enough to set (x, y) =
(0,−9) and (x, y) = (1, 0)). In the case (b) in is an injective mapping
(both its coordinates, that is functions y = 2x and y = x2 + 10 are

clearly increasing overN) which is not surjective (for instance the tuple
(1, 1) has no preimage). □

1.98. Determine the number of mappings from the set {1, 2} to the

set {a, b, c}. How many of them are surjective and how many injec-

tive?

Solution. To the element 1 we can assign arbitrarily one of the ele-

ments a, b, c. Similarly for the element 2 we have two possibilities.

Thus according tho the (combinatorial) rule of product there are ex-

actly 32 mappings of the set {1, 2} to the set {a, b, c}. None of them
can be surjective, since the set {a, b, c} has more elements than the set
{1, 2}. For the arbitrary mapping of the element 1 (three possibilities)

we have injective mapping if and only if the element 2 gets mapped to

a di�erent element (two possibilities). Thus we see that the number of

injective mappings of the set {1, 2} to the set {a, b, c} is 6. □
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1.99. Determine the number of injective mappings of the set {1, 2, 3}
to the set {1, 2, 3, 4}.
Solution. Any injective mapping among the given sets is given by

choosing an (ordered) triple from the set {1, 2, 3, 4} (the elements in
the chosen triple will correspond in order to images of the numbers

1, 2, 3) and vice versa every injective mapping gives us such a triple.
Thus the number of injective mappings equals the number of ordered

triples among four elements, that is v(3, 4) = 4 · 3 · 2 = 24. □

1.100. Determine the number of surjective mapping of the set

{1, 2, 3, 4} to the set {1, 2, 3}.
Solution. We can determine the number by subtracting the number of

non-surjective mappings from the number of all mappings. The num-

ber of all mappings isV (3, 4) = 34, the number of non-surjectivemap-

pings (that is the number of mappings with one-element codomain) is

three. Thus the number of mappings with two-element codomain is(3
2

)
(24 − 2) (there are

(3
2

)
ways to choose the codomain and for a �xed

two-element codomain there are 24−2ways how to map four elements

onto them). Thus the number of surjective mappings is

(1.3) 34 −
(

3
2

)
(24 − 2)− 3 = 36.

□

1.101. The Hasse diagram of ordering. The Hasse diagram of a

give ordering ≺ over an n-element setM is a diagram with n vertices

(every vertex corresponds to exactly one element of the set), and two

vertices (elements) a, b are joined (with a more or less vertical) line

(such that a is "lower" and b is "higher") if and only if b covers a, that

is a ≺ b and there is no c ∈ M such that a ≺ c and c ≺ b.

1.102. Determine the number of ordering relations of a four-element

set.

Solution. We will consider all possible Hasse diagrams of orderings

over a four-element set M, and we will count how many di�erent or-

derings (recall that an ordering is a subset of a setM ×M) the given

Hasse diagram has. See the picture:

In total, there are 219 orderings over a four-element set. □



CHAPTER 1. INITIAL WARMUP

44

1.103. Determine the number of ordering relations of the set

{1, 2, 3, 4, 5} such that exactly two pairs of element are incomparable.
⃝

1.104. Write all relations over a two-element set {1, 2}, which are

symmetric but are neither re�exive nor transitive.

Solution. Re�exive relations are exactly those, which contain both

tuples (1, 1), (2, 2). By this we have excluded the relations

{(1, 1), (2, 2)}, {(1, 1), (2, 2), (1, 2)}, {(1, 1), (2, 2), (2, 1)},
{(1, 1), (2, 2), (1, 2), (2, 1)}.

The remaining relations, which are symmetric but not transitive, must

contain (1, 2), (2, 1). If such a relation contains one of these two (or-
dered) tuples, it must due to the symmetry condition contain also the

other. If it contains none of these tuples, then it is clearly transitive.

>From the total number of 16 relations over a two-element set have we

thus chosen

{(1, 2), (2, 1)}, {(1, 2), (2, 1), (1, 1)}, {(1, 2), (2, 1), (2, 2)}.
It is clear that each of these 3 relations is symmetric but neither re�ex-

ive nor transitive. □

1.105. Determine the number of equivalence relations over a set

{1, 2, 3, 4}.
Solution. Equivalences can be enumerated by the sizes of their equiv-

alence classes. For the sizes of equivalence classes over a four-element

set we have these possibilities:
The sizes of equivalence classes number of equivalences of this type

1,1,1,1 1

2,1,1
(4

2

)
2,2 1

2

(4
2

)
3,1

(4
1

)
4 1

In total we have 15 di�erent equivalences. □

Remark. In general, the number of partitions of a given n-element set

is given by the Bell number Bn+k, for which a recurrence formula can
be derived

Bn+1 =
n∑
k=0

(
n

k

)
Bk.

1.106. How many relations are there over an n-element set?

Solution. Relation is an arbitrary subset of the cartesian product of

the set with itself. This cartesian product has n2 elements, thus the

number of all relations over an n-element set is 2n
2
. □
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1.107. Howmany re�exive relations are there over an n-element set?

Solution. Relation over the setM is re�exive if and only if it has the

diagonal relation 1M = {(a, a), kde a ∈ M} as a subset. As for the
rest of the n2−n ordered tuples in the cartesian productM×M we have

independent choice, whether the tuple belongs to the relation or not. In

total we have 2n
2−n di�erent re�exive relations over an n-element set.

□

1.108. How many symmetric relations are there over an n-element

set?

Solution. Relation R over the set M is symmetric if and only if the

intersection of R with each {(a, b), (b, a), where a ̸= b, a, b ∈ M}
is either the whole two-element set or is empty. There are

(
n

2

)
two-

element subsets of the set M, and if we also declare what the inter-

section of R and the diagonal relation 1M = {(a, a), where a ∈ M}
should be, then R is completely determined. In total we are to do(
n

2

)+ n independent choices between two alternatives: each set of the

type {(a, b), (b, a)|where a, b ∈ M,a ̸= b} is either the subset of R
or it is disjoint with R, and every tuple (a, a), a ∈ M either is in R or

not. In total we have 2
(n

2
)+n symmetric relation over an n-element set.

□

1.109. Howmany anti-symmetric relations over an n-element set are

there?

Solution. Relation R over the set M is anti-symmetric if and only if

the intersection of R with each set {(a, b), (b, a)} a ̸= b, a, b ∈ M is

either empty or one-element (which means that it is either {(a, b)} or
{(b, a)}). The intersection of R with the diagonal relation is arbitrary.

By declaring what these intersections are the relation R is completely

determined. In total we thus have 3
(n

2
)
2n anti-symmetric relations over

an n-element set. □
In [?] we have de�ned remainder classes (also called residue

classes) and we have shown that Zp is a �eld for any prime p. On

the other hand, events we are not used to when dealing with real or

complex numbers occur in Zp.

1.110. Non-zero polynomial with zero values. Find a non-zero poly-

nomial of one indeterminate with coe�cients in Z7, that is an expres-

sion of the form anx
n + · · · + a1x + a0, ai ∈ Z7, an ̸= 0 such that it

attains only zero values over the set Z7 (that is, if we set x to be equal

to any of the elements of Z7 and evaluate, we always obtain zero).

Solution. For the construction of such polynomial we use the Fermat's

little theorem which says that for any prime number p and number a,
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which is not divisible by p, we have:

ap−1 ≡ 1(modp).

Thus we can take for instance the polynomial x7 − x (the polynomial

x6 − x is not zero for x = 0). □



47

CHAPTER 1. INITIAL WARMUP

G. Additional exercise for the whole chapter

1.111. Let t andm be positive integers. Show that the number m
√
t is either integer or is not rational.

Solution. Show that if the number is not integer, then it cannot be rational. If m
√
t is not integer, then

there exists a prime r and integer s such that rs divides t, rs+1 does not divide t (this we write as

ordr t = s) and m does not divide s . Assume that m
√
t = p

q
, p, q ∈ Z, in other words t · pm = qm .

Consider ordr L and ordr R and their divisibility by the number m. (L denotes the left-hand side of

the equation, . . . ). □

1.112. Determine ∣∣∣∣ (2+3i)
(

1+i√3
)

1−i√3

∣∣∣∣ .
Solution. Since the absolute value of the product (ratio) of any two complex numbers is the product

(ratio) of their absolute values and every complex number has the same absolute value as its complex

conjugate, we have that∣∣∣ (2+3i)(1+i√3)
1−i√3

∣∣∣ = |2 + 3i| · |1+i√3|
|1−i√3| = |2 + 3i| = √

22 + 32 = √
13.

□

1.113. Simplify the expression
(

5
√

3 + 5i
)12

.

Solution. Taking powers one by one or doing an expansion using binomial theorem are in this case

too much time-consuming. Let us rather write

5
√

3 + 5i = 10
(√

3
2 + i

2

)
= 10

(
cos π6 + i sin π

6

)
and using the Moivre theorem we easily obtain(

5
√

3 + 5i
)12 = 1012

(
cos 12π

6 + i sin 12π
6

) = 1012.

□

1.114. Calculate z1 + z2, z1 · z2, z̄1, |z2|, z1
z2
, for

a) z1 = 1 − 2i, z2 = 4i − 3
b) z1 = 2, z2 = i

⃝

1.115. Determine the distance d of the numbers z, z̄ in the complex plane for

z̄ =
√

3
√

3
2 − i 3

2 .

Solution. It is not di�cult to realize that complex conjugates are in the complex plane symmetrical

with respect to the x-axis and the distance of a complex number from the x-axis equals its imaginary

part. That gives d = 3. □
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1.116. In the meeting there were six men. If all of them shook hands with each other, how many

handshakes have happened?

Solution. The number of handshakes equals the number of ways of choosing an unordered tuple

among 6 elements, thus the result is c (6, 2) = (6
2

) = 15. □

1.117. Determine in how many ways a 4-member committee can be chosen among 15 deputies, if

it is not allowed for two certain deputies to work together.

Solution. The result is (15
4

)− (13
2

) = 1 287.

It can be obtained by �rst calculating the number of all 4-member committees and then subtracting

the number of those committees where the given two deputies are chosen together (in that case, we

only choose two more members among the remaining 13 deputies). □

1.118. In how many ways can we divide 8 women and 4 men in two six-member groups (which are

considered unordered) in such a way that there is at least one man in each group?

Solution. If we forget the last condition, division of 12 people in two six-member groups can be done

by just choosing 6 people and put them to the �rst group, which can be done in
(12

6

)
ways. The groups

are not distinguishable (we do not know which one is the �rst one), thus the total number is rather
1
2 · (12

6

)
. In

(8
2

)
cases all men are in one group (we choose two women among eight to complete the

group). The correct answer is thus

1
2 · (12

6

)− (8
2

) = 434.

□

1.119. What is the number of 4-digit numbers composed of digits 1, 3, 5, 6, 7 and 9, where no digit
occurs more than once?

Solution. We have 6 distinct letters at our disposal. We ask: how many distinct ordered 4-tuples can

be chosen from them? The result is v (6, 4) = 6 · 5 · 4 · 3 = 360. □

1.120. The Greek alphabet consists of 24 letters. How many words of exactly �ve letters can be

composed in it? (Disregarding whether the words have some actual meaning or not.)

Solution. For each of the �ve positions in the word we have 24 possibilities, since the letters can

repeat. The result is then V (24, 5) = 245. □

1.121. In a long-distance race, where the racers start one after another in given time intervals, there

were k racers, among them 3 friends. Determine the number of starting schedules in which no two of

the 3 friends start next to each other. For simplicity assume k ≥ 5.

Solution. Remaining k − 3 racers can be ordered in (k − 3)! ways. For the three friends there are
then k− 2 places (the start, the end and the k− 4 spaces) where we can put them in v (k − 2, 3) ways.
Using the rule of (combinatorial) product, we obtain

(k − 3)! · (k − 2) · (k − 3) · (k − 4) = (k − 2)! · (k − 3) · (k − 4).

□
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1.122. There are 32 participants of a tournament. The organisers have stated that the participants

must divide arbitrarily into four groups, such that the �rst one has size 10, the second and the third 8,
and the fourth 6. In how many ways can this be done?

Solution. We can imagine that from 32 participants we create a row, where �rst 10 are the �rst

group, next 8 are the second group and so on. There are 32! orderings of all participants. Note that
the division into groups is not in�uenced if we change the order of the people in the same group.

Therefore the number of distinct divisions equals

P (10, 8, 8, 6) = 32!
10!·8!·8!·6! .

□

1.123. We need to accommodate 9 people in one four-bed room, one three-bed room and one two-

bed room. In how many ways can this be done?

Solution. If we assign to the people in the four-bed room the number 1, in the three-bed room number

2 and in the two-bed room number 3, then we create permutations with repetitions from the elements

1, 2, 3, where 1 occurs four times, 2 three times and 3 two times. Number of such permutations is

P (4, 3, 2) = 9!
4!·3!·2! = 1 260.

□

1.124. Determine the number of ways how to divide among three people A, B and C 33 distinct

coins such that A and B together have twice as many coins as C.

Solution. From the problem statement it is clear that C must receive 11 coins. That can be done in(33
11

)
ways. Each of the remaining 22 coins can be given either to A or to B, which gives 222 ways.

Using the rule of product we obtain the result
(33

11

) · 222. □

1.125. In how many ways can we divide 40 identical balls among 4 boys?

Solution. Let us add three matches to the 40 balls. If we order the balls and matches in a row, the

matches divide the balls in 4 sections. We order the boys at random, give the �rst boy all the balls

from the �rst section, give the second boy all the balls from the second section and so on. It is now

evident that the result is
(43

3

) = 12 341. □

1.126. According to quality, we divide food products into groups I, II, III, IV . Determine the

number of all possible divisions of 9 food products into these groups, such that the numbers of prod-

ucts in groups are all distinct.

Solution. If we directly write the considered groups from the elements of I , II , III , IV , we create

combinations of repetitions of the ninth-order from four elements. The number of such combinations

is
(12

9

) = 220. □

1.127. In how many ways could the table of the �rst soccer league ended, if we know only that at

least one of the teams Ostrava, Olomouc is in the table after the team of Brno (there are 16 teams in

the league).

Solution. Let us �rst determine the three places where the teams of Brno, Oloumouc and Ostrava

ended. Those can be chosen in c(3, 16) = (16
3

)
ways. From 6 possible orderings of these three teams



50

CHAPTER 1. INITIAL WARMUP

on the given three places only four satisfy the given condition. After that, we can independently

choose the order of the remaining 13 teams at the remaining places of the table. Using the rule of

product, we have the solution(
16
3

)
· 4 · 13! = 13948526592000.

□

1.128. How many distinct orderings (in a row) at a picture of a volleyball team (6 players), if

i) Gouald a Bamba want to stand next to each other

ii) Gouald a Bamba want to stand next to each other and in the middle

iii) Gouald a Kamil do not want to stand next to each other

Solution.

i) In this case Gouald a Bamba can be considered a single person, we just multiply then by

two to determine their relative order. Thus we have 2.5! = 240 orderings.

ii) Here it is similar except that the position of Gouald and Bamba is �xed. We have 2.4! = 48
orderings.

iii) Probably the simplest approach is to subtract the cases where Kamil and Gouald stand next

to each other (see (i)). We get 6! − 2.5! = 720 − 240 = 480.

□

1.129. Coin �ipping. We �ip a coin six times.

i) How many distinct sequences of heads and tails are there?

ii) How many sequences with exactly four heads are there?

iii) How many sequences with at least two heads are there?

⃝

1.130. How many anagrams of the word BAZILIKA are there, such that there are no two vowels

next to each other and no two consonants next to each other?

Solution. Since there are four vowels and four consonants in the word, each such anagram is either

of the type BABABABA or ABABABAB. On the given four places we can permute vowels in

Po(2, 2) = 4!
2!2! ways and independently of that also the consonants (4! ways). Using the rule of

product, the result is then 2 · 4! · 4!
2!2! = 288. □

1.131. In how many ways can we divide 9 girls and 6 boys into two group such that each group

contains at least two boys?

Solution. We divide the boys and the girls independently: 29(25 − 7) = 12800. □

1.132. Material is composed of �ve layers, each of them has �bres in one of the possible six direc-

tions. How many of such materials are there? How many of them have no two neighbouring layers

which have �bres in the same direction?

Solution. 65 a 6 · 55. □
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1.133. For any �xed n ∈ N determine the number of all solutions to the equation

x1 + x2 + · · · + xk = n

in the set of positive integers.

Solution. If we look for a solution in the domain of positive integers, then we note that the natural

numbers x1, . . . xk are a solution to the equation if and only if the non-negative integers yi = xi − 1,
i = 1, . . . , k are a solution to the equation

y1 + y2 + · · · + yk = n− k.

Using ∥1.30∥, there are (n−1
k−1

)
of them. □

1.134. There are n forts on a circle (n ≥ 3), numbered in a row with numbers 1,. . . , n. In one

moment of time each of the shoots at one of its neighbours (fort 1 neighbours with the fort n).

Denote by P(n) the number of all possible results of the shooting (a result of the shooting is

a set of numbers of those forts that were hit, regardless of the number of hits taken). Prove

that P(n) and P(n+ 1) are relatively prime.

Solution. If we denote the forts that were hit by a black dot and the unhit by a white dot, the task is

equivalent to the task to determine the number of all possible colourings of n dots on a circle with

black and white colour, such that no two white dots have "distance" one. For odd n this number

is equal to K(n) � the number of colourings with black and white, such that no two white dots are

adjacent (we reorder the dots such that we start with the dot one and proceed increasingly with odd

numbers, and then increasingly with even). For even n this number equalsK(n/2)2, the square of the
colouring of n/2 dots on a circle such that no two white are adjacent (we colour independently the

dots on even positions and on odd positions).

ForK(n)we easily derive a recurrent formulaK(n) = K(n−1)+K(n−2). Furthermore, we can
easily compute that K(2) = 3, K(3) = 4, K(4) = 7, that is, K(2) = F(4)− F(0), K(3) = F(5)−
F(1),K(4) = F(6)−F(2), and using induction we can easily prove thatK(n) = F(n+2)−F(n−2),
whereF(n) denotes the n-thmember of the Fibonacci sequence (F(0) = 0,F(1) = F(2) = 1). Since
(K(2),K(3)) = 1, we have for n ≥ 3 similarly as in the Fibonacci sequence

(K(n),K(n− 1)) = (K(n)−K(n− 1),K(n− 1)) =
= (K(n− 2),K(n− 1)) = · · · = 1.

Let us now show that for every even n = 2a is P(n) = K(a)2 relatively prime with both P(n+
1) = K(2a + 1) and P(n− 1) = K(2a − 1). For this the following is enough: for a ≥ 2 we have

(K(a),K(2a + 1)) = (K(a), F (2)K(2a)+ F(1)K(2a − 1)) =
= (K(a), F (3)K(2a − 1)+ F(2)K(2a − 2) = . . .

= (K(a), F (a + 1)K(a + 1)+ F(a)K(a)) =
= (K(a), F (a + 1)) = (F (a + 2)− F(a − 2), F (a + 1)) =
= (F (a + 2)− F(a + 1)− F(a − 2), F (a + 1)) =
= (F (a)− F(a − 2), F (a + 1)) =
= (F (a − 1), F (a + 1)) = (F (a − 1), F (a)) = 1

(K(a),K(2a − 1)) = (K(a), F (2)K(2a − 2)+ F(1)K(2a − 3)) =
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= (K(a), F (3)K(2a − 3)+ F(2)K(2a − 4)) =
= · · · = (K(a), F (a)K(a)+ F(a − 1)K(a − 1)) =
= (K(a), F (a − 1)) = (F (a + 2)− F(a − 2), F (a − 1)) =
= (F (a + 2)− F(a), F (a − 1)) =
= (F (a + 2)− F(a + 1), F (a − 1)) = (F (a), F (a − 1)) = 1.

This proves the claim. □

1.135. How much money do I save in a building savings in �ve years, if I invest in it 3000 K£

monthly (at the �rst day of the month), the yearly interest rate is 3% and once a year I obtain a state

donation of 1500 K£ (this donation comes at �rst of May)?

Solution. Let xn be the amount of money at the account after n years. Then (for n > 2) we obtain
the following recurrent formula (assuming that every month is exactly one twelfth of a year)

xn+1 = 1, 03(xn)+ 36000 + 1500+
0, 03 · 3000

(
1 + 11

12
+ · · · + 1

12

)
︸ ︷︷ ︸
interests from deposits this year

+

+ 0, 03 · 2
3

· 1500︸ ︷︷ ︸
interest from the state donation credited at this year

=

= 1, 03(xn)+ 38115.

Therefore

xn = 38115
n−2∑
i=0

(1, 03)i + (1, 03)n−1x1 + 1500,

while x1 = 36000 + 0, 03 · 3000
(
1 + 11

12 + · · · + 1
12

) = 36585, in total

x5 = 38115
(
(1, 03)4 − 1

0, 03

)
+ (1, 03)4 · 36585 + 1500 .= 202136.

□

1.136. Remark. In reality, interests are computed according to the number of days the money is on

the account. You should obtain a real bank statement of a building savings, determine its interest

rates and try to compute the credited interests in a year. Compare the result with the sum that was

credited in reality. Compute until the numbers disagree . . .

1.137. What is the maximum number of areas the plane can be divided into by n circles?

Solution. For the maximum number pn of areas we derive a recurrent formula

pn+1 = pn + 2n.

Note that the (n + 1)-th circle intersects n previous circles in at most 2n points (and this can really
occur)
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Clearly p1 = 2. Thus for pn we obtain

pn = pn−1 + 2(n− 1) = pn−2 + 2(n− 2)+ 2(n− 1) = . . .

= p1 +
n−1∑
i=1

2i = n2 − n+ 2.

□

1.138. What is the maximum number of areas a 3-dimensional space can be divided into by n

planes?

Solution. Let the number be rn. We see that r0 = 1. Similarly to the exercise (∥1.34∥) we consider
n planes in the space, we add another plane ad we ask what is the maximum number of new areas.

Again it is exactly the number of areas the new plane intersects. How many can that be? The number

of areas intersected by the (n + 1)-th plane equals to the number of areas the new (n + 1)-th plane
is divided into by the lines of intersection with the n planes that were already situated in the space.

However, there are at most 1/2 · (n2 + n + 2) of those (according to the exercise in plane), thus we
obtain the recurrent formula

rn+1 = rn + n2 + n+ 2
2

.

This equation can be again solved directly:

rn = rn−1 + (n− 1)2 + (n− 1)+ 2
2

= rn−1 + n2 − n+ 2
2

=

= rn−2 + (n− 1)2 − (n− 1)+ 2
2

+ n2 − n+ 2
2

=

= rn−2 + n2

2
+ (n− 1)2

2
− n

2
− (n− 1)

2
+ 1 + 1 =

= rn−3 + n2

2
+ (n− 1)2

2
+ (n− 3)2

2
− n

2
− (n− 1)

2
− (n− 2)

2
+

+1 + 1 + 1 =
= · · · = r0 + 1

2

n∑
i=1

i2 − 1
2

n∑
i=1

i +
n∑
i=1

1 =
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= 1 + n(n+ 1)(2n+ 1)
12

− n(n+ 1)
4

+ n =

= n3 + 6n+ 5
6

,

where we have used the known relation
n∑
i=1

i2 = n(n+ 1)(2n+ 1)
6

,

which can be easily proved by mathematical induction.

□

1.139. What is the maximum number of areas a 3-dimensional space can be divided into by n balls?

⃝

1.140. What is the number of areas a 3-dimensional space is divided into by n mutually distinct

planes which all intersect a given point?

Solution. For the number xn of areas we derive a recurrent formula

xn = xn−1 + 2(n− 1),

furthermore x1 = 2, that is,

xn = n(n− 1)+ 2.

□

1.141. From a deck of 52 cards we randomly draw 16 cards. Express the probability that we choose
exactly 10 red and 6 black cards.

Solution. We �rst realize that we don't have to care about the order of the cards. (In the resulting

fraction we would obtain ordered choices by multiplying by 16! both nominator and denominator.)

The number of all possible (unordered) choices of 16 cards from 52 is
(52

16

)
. Similarly, the number of

all choices of 10 cards from 26 is equal to
(26

10

)
and of 6 cards from 26 is

(26
6

)
. Since we are choosing

independently 10 cards from 26 red and 6 cards from 26 black, using the (combinatorial) rule of

product we obtain the result (26
10

)·(26
6
)(52

16
) .= 0, 118.

□

1.142. In a box there are 7 white, 6 yellow and 5 blue balls. We draw (without returning) 3 balls

randomly. Determine the probability that exactly 2 of them are white.

Solution. In total there are
(7+6+5

3

)
ways, how to choose 3 balls. Choosing exactly two white allows(7

2

)
choices of two white balls and simultaneously

(11
1

)
choices for the third ball. Using the rule of

product is the number of ways how to choose exactly two white equal to
(7

2

) · (11
1

)
. Thus the result is(7

2
)·11(18
3
) .= 0, 283.

□



55

CHAPTER 1. INITIAL WARMUP

1.143. From a deck with 108 cards (2 × 52 + 4 jolly jokers) we draw without returning 4 cards

randomly. What is the probability that at least one of them is an ace or a joker?

Solution. We can easily determine the probability of the complementary event, that is, in the 4 drawn

cards there is none of the 12 cards (8 aces and 4 jokers). This probability is given by the ratio of the

number of choices of 4 cards from 96 and the number of choices of 4 cards from 108, that is,
(96

4

)
/
(108

4

)
.

The complementary event thus has the probability

1 −
(96

4
)(108

4
) .= 0, 380.

□

1.144. When throwing a dice, eleventh times in a row the result was 4. Determine the probability

that the twelfth roll results in 4.

Solution. The previous results (according to our assumptions) do not in�uence the result of further

rolls. Thus the probability is 1/6. □

1.145. From a deck of 32 cards we randomly draw 6 cards. What is the probability that all of them

have the same colour?

Solution. In order to obtain the result
4·(8

6
)(32

6
) .= 1, 234 · 10−4,

we just �rst choose one of the 4 colours and realize that there are
(8

6

)
ways how to choose 6 cards from

8 cards of this colour. □

1.146. Three players are given 10 cards each and two remain (from a deck of 32 cards, where 4 of

them are aces). Is it more likely, that somebody receives seven, eight and nine of spades; or that two

aces remain?

Solution. Since the probability that some of the players receives the three mentioned cards equals

3
(29

7
)(32

10
) ,

while the probability that two aces remain equals(4
2
)(32

2
) ,

it is more likely that some of the players receives the three mentioned cards. Let us note that proving

the inequality
3·(29

7
)(32

10
) > (4

2
)(32

2
)

is possible by transforming both sides, where by repetitive crossing-out (after expanding the binomial

coe�cients according to their de�nition) we easily obtain 6 > 1. □

1.147. We throw n dice. What is the probability that among the numbers that appeared the values

1, 3 and 6 are not present?

Solution. We can reformulate the exercise that we throw the dice n times. The probability that the

�rst roll does not result into 1, 3 or 6 is 1/2. The probability that neither the �rst nor the second roll
is clearly 1/4 (the result of the �rst roll does not in�uence the result of the second roll). Since the

event determined by the result of a given roll and event determined by the result of another roll are

always (stochastically) independent, the probability is 1/2n. □
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1.148. Two friends are shooting independently of each other at one target � one shoots, then the

second shoots, then the �rst, and so on. The probability that the �rst hits 0, 4, the second friend has
the probability of hitting 0, 3. Determine the probability P of the event that after shooting there will

be exactly one hit of the target.

Solution. We determine the result by summing the probabilities of two mutually exclusive events �

�rst friend hit the target and the second has not; and second friend hit the target and �rst has not. Since

the events of hitting are independent (note that independence is preserved when taking complements)

is the probability given by the product of the probabilities of given elementary elements. That is,

P = 0, 4 · (1 − 0, 3)+ (1 − 0, 4) · 0, 3 = 0, 46.

□

1.149. We �ip three coins twelve times. What is the probability that at least one �ipping results in

three tails?

Solution. If we realize that when repeating the �ipping, the individual results are independent, and

denote for i ∈ {1, . . . , 12} byAi the event �the i-th �ipping results in three tails�, we are determining
P

(
12∪
i=1
Ai

)
= 1 − (1 − P(A1)) · (1 − P(A2)) · · · (1 − P(A12)).

For every i ∈ {1, . . . , 12} is P(Ai) = 1/8, since at every coin of the three the tail is with the

probability 1/2 independently of the results of the other coins. Now we can write the �nal probability

1 − ( 7
8

)12
.

□

1.150. In a particular state there is a parliament with 200 members. Two major political parties in

this state �ip a coin during an "election" for every seat in the parliament. Each of the parties has

associated one side of the coin. What is the probability that each of the parties gains 100 seats? (The

coin is "fair".)

Solution. There are 2200 of possible results of the elections (considered to be sequences of 200

results of �ips). If each party is to obtain 100 seats, then there are exactly 100 tails and 100 heads in

the sequence. There are
(200

100

)
such sequences (since the sequence is uniquely determined by choosing

100 members of 200 possible, which will result in, say, tails). The resulting probability is

kf rac

(
200
100

)
2200 =

200!
100!·100!

2200
.= 0, 056.

□

1.151. Seven Czechs and �ve English are randomly divided into two (nonempty) groups. What is

the probability that one group consists of Czechs only?

Solution. There are 212 − 1 of possible divisions. If one group consists of Czechs only, it means that

all English are in one group (either in the �rst or in the second). It remains to divide the Czechs into

two nonempty groups, that can be done in 27 − 1 ways. In the end we must add 1 for the division

which puts all English in one group and all Czechs in another,

2 · (27 − 1)+ 1
212 − 1
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□

1.152. From ten cards, where exactly one is an ace, we randomly draw a card and put it back. How

many times must we do this, so that the probability that the ace is drawn at least once, is greater than

0, 9?

Solution. Let Ai be the event �at i-th drawing the ace was drawn�. Since the individual events Ai
are (stochastically) independent, we know that

P

(
n∪
i=1
Ai

)
= 1 − (1 − P(A1)) · (1 − P(A2)) · · · (1 − P(An))

for every n ∈ N. We are looking for an n ∈ N such that it holds that

P

(
n∪
i=1
Ai

)
= 1 − (1 − P(A1)) · (1 − P(A2)) · · · (1 − P(An)) > 0, 9.

Clearly is P(Ai) = 1/10 for any i ∈ N. Thus it is enough to solve the equation

1 − ( 9
10

)n
> 0, 9,

from which we can express

n >
loga 0,1
loga 0,9 , kde a > 1.

Evaluating, we obtain that we must do the drawing at least twenty two times. □

1.153. Texas hold'em. Let us now solve a couple of simple exercises concerning the popular card

game Texas hold'em, whose rules we will not state (if the reader does not know them, she can look

them up on the Internet). What is the probability that

i) the starting combination is a tuple of the same symbols?

ii) in my starting tuple of cards there is an ace?

iii) in the end I have one of the six best combinations of cards?

iv) I win, if I hold in my hand ace and a triple of twos (of any colour), on the �op there is ace and

two twos and on the turn there is a third three and all these four cards have distinct colour?

(The last card river is not yet turned)

Solution.

i) The number of distinct symbols is 13 and there are always four of them (one of each colour).

Thus the number of tuples with the same symbols is 13
(4

2

) = 78. The number of all possible
tuples is

(13.4
2

) = 1326. The probability of having same symbols is then 1
17
.= 0, 06.

ii) One card is the ace, that is four choices, and the second is arbitrary, that is 51 choices. But

we have counted twice the tuples with two aces, of which there are
(4

2

) = 6. Thus we obtain
4.51 − 6 = 198 tuples and the probability is 198

1326
.= 0, 15.

iii) Let us compute the probabilities of the individual best combinations:

ROYAL FLUSH: There are exactly only four such combinations � one of each colours. The

number of combinations of �ve cards are
(52

5

) = 2598960. The probability is thus equal to
1, 5.10−6. Very small :)

STRAIGHT FLUSH: Sequence which ends with the highest card in the range 6 to K, that

is eight choices for every colours. We obtain 32
2598960

.= 1, 2.10−5.

POKER: Four identical symbols � 13 choices (for every symbol one). The �fth card can be

arbitrary, that is 48 choices. That makes 624
2598960

.= 2, 4.10−4.
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FULL HOUSE: Three identical symbols make 13
(4

3

) = 52 choices and two identical sym-

bols make 12
(4

2

) = 72 choices. The probability is 3744
2598960

.= 1, 4.10−3.

FLUSH: All �ve cards of the same colour means 4
(13

5

) = 5148 choices and the probability

is then 5148
2598960

.= 2.10−3.

STRAIGHT: The highest card of the sequence is in the range from 6 to Ace, that is 9 choices.

The colour of every card is arbitrary, that makes 9.45 = 9216 choices. But we have counted

both straight �ush and royal �ush which we must subtract.

For determining the probability of one of the six best combinations we don't have to do

that, we just do not count the �rst two combinations. Therefore we obtain the probability

approximately 3, 5.10−3 + 2.10−3 + 1, 4.10−3 + 2, 4.10−4 = 7, 14.10−3.

iv) The situation is clearly pretty good and therefore it will be better to count bad situation, that

is, when the opponent has even better combination. I have at this moment full house of

two aces and three two's. The only combination that could beat me at this moment is either

full house of three aces and two twos or a poker of twos. That means that the enemy must

have either the ace or the last two. If he has the two and any other card, then he clearly

wins no matter what card is river. How many ways are there for this other card in his hand?

3 + 4 + · · · + 4 + 2 = 45 (one triple and two aces cannot be in his hand since I have them).

There are
(46

2

) = 1035 remaining combination and the probability of such loss is then 0,043.
If he has an ace in his hand, then the following can happen. If he holds two aces, then he

again wins if two is not on the river � then I would have split poker. The probability of my

(conditional) loss is then 1
1035 .

43
44
.= 10−3. If the enemy has in his hand ace and some other

card than 2 and A, then it is a draw no matter what is on the river. The total probability of

the win is thus almost 96 %.

□

1.154. A volleyball team (with libero, that is, 7 people) sits after a match in a pub and drinks beer.

But there is not enough mugs, and thus the publican keeps using the same seven. What is the proba-

bility that

i) exactly one person does not receive the mug he had last round,

ii) nobody receives the mug he had last round,

iii) exactly three receive the mug they had last round.

Solution.

i) If six people receive the mug they had last round, then clearly the seventh person also re-

ceives the mug he had last round, the probability is thus zero.

ii) LetM is the set of all orderings and event Ai occurs when the i-th person receives his mug

from last round. We want to calculate |M − ∪iAi |. We obtain 7!
∑7

k=0
(−1)k

k! = 1854. And
the probability is 1854

5040 = 103
280

.= 0, 37.
iii) We choose which three receive the mug they had last round �

(7
3

) = 35 choices. The re-

maining four must receive mugs from somebody else. That is again the formula from the

previous section, speci�cally it is 4!
∑4

k=0
(−1)k

k! = 9 choices. In total we have 9 · 35 = 315
choices and the probability is 315

5040 = 1
16 .
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□

1.155. In how many ways can we place n identical rooks on a chessboard n × n such that every

non-occupied position is threatened by some of the rooks?

Solution. Such placements are a union of two sets: the set of placements where in at least one row

there is one rook (therefore in every row there is exactly one; this set has nn elements � in every row

we choose independently one position for the rook), and the set of placements where in every column

there is at least one (that is exactly one) rook (as before, this set has nn elements). The intersection

of these sets has n! elements (the places for the rooks are chosen sequentially starting in the �rst row
� there we have n choices, in the second only n− 1 � one column is already occupied. . . ). Using the

inclusion-exclusion principle, we obtain

2nn − n!.

□

1.156. Determine the probability that when throwing two dice at least one resulted in four, if the

sum is 7.

Solution. We solve this exercise using the classical probability, where the condition is interpreted as

restriction of the probability space. The space has due to the condition 6 elements, and exactly 2 of

those are favourable to the given event. The answer is thus 2/6 = 1/3. □

1.157. We throw two dice. Determine the conditional probability, that the �rst die resulted in �ve

under the condition that the sum is 9. Based on this result, decide whether the events "�rst dice results

in �ve" and "the sum is 9" are independent.

Solution. If we denote the event "�rst dice resulted in �ve" by A and the event "the sum is 9" by H ,

then it holds

P(A|H) = P(A∩H)
P (H)

= 1
36
4
36

= 1
4 .

Note that the sum 9 occurs when the �rst die is 3 and the second 6, the �rst is 4 and the second 6,

the �rst is 5 and the second is 4, or the �rst is 6 and the second is 3. Of those four results (that have

the same probability) only one is favourable to the event A. Since the probability of A is clearly

1/6 ̸= 1/4, the events are not mutually independent. □

1.158. Let us have a deck of 32 cards. If we draw twice one card, what is the probability that the

second drawn card is an ace, if we return the �rst card; and when we don't return the �rst card (then

there are 31 cards in the deck).

Solution. If we return the card in the deck, we are just repeating the experiment, which has 32 possible

results (which have the same probability), and exactly four of them are favourable. Thus we see that

the probability is 1/8. In the second case when we do not return the card, is probability also the same.
It is enough to consider that when drawing all the cards one by one is the probability of the ace as the

�rst card identical to the probability that the ace is the second card. We could also use conditional

probability, that results into

4
32 · 3

31 + 28
32 · 4

31 = 1
8 .
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□

1.159. Consider families with two children and for simplicity assume that all choices in the set

� = {bb, bg, gb, gg}, where b stands for �boy� and h stands for �girl� considering the age of the

children have the same probability. Choose random events

H1 � familiy has a boy, A1 � family has two boys.

Compute P (A1|H1).

Similarly consider families with three children, where

� = {bbb, bbg, bgb, gbb, bgg, gbg, ggb, ggg}.
If

H2 � the family has both boy and girl, A2 � the family has at most one girl,

decide whether the events A2 and H2 are independent.

Solution. Considering which of the four elements of the set� are (not) favourable to the eventA1 or

H1, we easily obtain

P (A1|H1) = P (A1∩H1)
P (H1)

= P(A1)
P (H1)

= 1
4
3
4

= 1
3 .

Further we have to determine whether the following holds:

P (A2 ∩H2) = P (A2) · P (H2) .

Again we just have to realize that exactly the elements kkk, kkh, khk, hkk of the set�, are favourable

to the event A2; to the eventH2 the elements kkh, khk, hkk, khh, hkh, hhk are favourable and to the

event A2 ∩H2 the elements kkh, khk, hkk. Therefore

P (A2 ∩H2) = 3
8 = 4

8 · 6
8 = P (A2) · P (H2) ,

which means that the events A2 and H2 are independent. □

1.160. We �ip a coin �ve times. For every head, we put a white ball in a hat, for every tail we put in

the same hat a black ball. Express the probability that in the hat there is more black balls than white

balls, if there is at least one black ball in the hat.

Solution. Let us have the following two events

A � there are more black balls than white balls in the hat,

H � there is at least one black ball in the hat.

We want to expressP(A|H). Note that the probability P (HC
)
of the complementary event to the

event H is 2−5 and that the probability of the event is the same as the probability P
(
AC
)
of the

complementary event (there are more white balls in the hat). Necessarily, P(H) = 1 − 2−5, P(A) =
1/2. Furthermore P(A ∩H) = P(A), since the event H contains the event A (the event A has H as

a consequence). Thus we have obtained

P(A|H) = P(A∩H)
P (H)

= 1
2

1−
(

1
2

)5 = 16
31 .

□
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1.161. In a box there are 9 red and 7 white balls. Sequentially we draw three balls (without return-

ing). Determine the probability that the �rst two are red and the third is white.

Solution. We solve this exercise using the theorem about multiplication of probabilities. First we

require a red ball, that happens with the probability 9/16. If a red ball was drawn, then in the second
round we draw a red ball with the probability 8/15 (there are 15 balls in the box, 8 of them are red).

Finally, if two red balls were drawn, the probability that a white ball is drawn is 7/14 (there are 7

white balls and 7 red balls in the box). Thus we obtain

9
16 · 8

15 · 7
14 = 0, 15.

□

1.162. In the box there are 10 balls, 5 of them are black and 5 are white. We will sequentially draw

the balls, and we do not return them back. Determine the probability that �rst we draw a white ball,

then a black, then a white and in the last, fourth turn again a white.

Solution. We use the theorem about multiplication of probabilities. In the �rst round we draw a

white ball with the probability 5/10, then a black ball with probability 5/9, then a white ball with

probability 4/8 and in the end a white ball with probability 3/7. That gives

5
10 · 5

9 · 4
8 · 3

7 = 5
84 .

□

1.163. From a deck of 32 cards we randomly draw six cards. Compute the probability that the �rst

king will be chosen as the sixth card (that is, the previous �ve cards do not contain any king).

Solution. Using the theorem about multiplication of probabilities we have

28
32 · 27

31 · 26
30 · 25

29 · 24
28 · 4

27
.= 0, 0723.

□

1.164. What is the probability that a sum of two randomly chosen positive numbers smaller than 1
is smaller than 3/7?

Solution. It is clear that it is a simple exercise on geometrical probability where the basic space

� is a square with vertices at [0, 0], [1, 0], [1, 1], [0, 1] (we are choosing two numbers in [0, 1]).
We are interested in the probability of the event that a randomly chosen point [x, y] in this square

satis�es x + y < 3/7, that is, the probability that the point lies in the triangle A with vertices at

[0, 0], [3/7, 0], [0, 3/7]. Now we can easily compute

P(A) = vol A
vol �

=
(

3
7

)2
/2

1 = 9
98 .

□
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1.165. Let a pole be randomly broken into three parts. Determine the probability that the length of

the second (middle) part is greater than two thirds of the length of the pole before the breaking.

Solution. Let d stand for the length of the pole. The breaking of the pole at two points is given by the

choice of the points where we split the pole. Let x be the point which is the �rst (closer to left end of

the pole), and x + y be the point where the second splitting occurs. That says that the basic space is

the set {[x, y]; x ∈ (0, d), y ∈ (0, d−x)}, that is, a triangle with vertices at [0, 0], [d, 0], [0, d]. The
length of the middle part is given by the value of y. The condition from the exercise statement can be

now restated as y > 2d/3, which corresponds to the triangle with vertices at [0, 2d/3], [d/3, 2d/3],
[0, d]. Areas of the considered triangles are d2/2 a (d/3)2/2, therefore the probability is

d2

32 ·2
d2
2

= 1
9 .

□

1.166. A pole of length 2 m is randomly divided into three parts. Determine the probability of the

event that the third part is shorter than 1, 5 m.

Solution. This exercise is for using the geometrical probability, where we are looking for the probabil-

ity that the sum of the lengths of the �rst two parts is greater than one fourth of the length of the pole.

We determine the probability of the complementary event, that is, the probability that if we randomly

choose two points on the pole, both of them are in the �rst quarter of the pole. The probability of

this event is 1/42, since the probability of picking a point in the �rst quarter of the pole is clearly 1/4
and this choice is independently repeated (once). Thus the probability of the complementary event is

15/16. □

1.167. Mirek and Marek have a lunch at the school canteen. The canteens opens from 11 to 14.

Each of them eats the lunch for 30 minutes, and the arrival time is random. What is the probability

that they meet at a given day, if they always sit at the same table?

Solution. The space of all possible events is a square 3 × 3. Denote by x the arrival time of Mirek

and by y the arrival time of Marek, these two meet if and only if |x − y| ≤ 1/2. This inequality

determines in the square of possible events the area whose volume is 11/36 of the volume of the

whole square. Thus that is also the probability of the event. □

1.168. >From Brno Honza rides a car to Prague randomly between 12 and 16, and in the same time

interval Martin rides a car to Brno from Prague. Both stop in a motorest in the middle of the trip

for thirty minutes. What is the probability that they meet there, if Honza's speed is 150 km/h and

Martin's is 100 km/h? (The distance Praha-Brno is 200 km).

Solution. If we denote the departure time of Martin by x and the departure time of Honza by y, and

in order to have fewer fractions in the following calculations choose a time unit to be ten minutes, then

the base space is a square 24 × 24. The arrival time of Martin to the motorest is x+ 6, arrival time of
Honza is y+4. As in the previous exercise, the event that they meet in the motorest is equivalent to the
event that their arrival times do not di�er by more than thirty minutes, that is, |(x+6)− (y+4)| ≤ 3.
This condition determines an area with volume 242 − 1

2(232 +192) (see the �gure) and the probability
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p = 242 − 1
2(232 + 192)

242
= 131

576
.= 0,227.

□

1.169. Mirek departs randomly between 10 and 20 o'clock from Brno to Prague. Marek departs

randomly in the same interval from Prague to Brno. The trip takes 2 hours. What is the probability

that they meet on the road (they use the same road)?

Solution. We are solving analogously to the previous exercise. The space of all events is a square

10×10, Mirek, departing at the time x, meets Marek, departing at the time y if and only if |x−y| ≤ 2.
The probability is p = 36

100 = 9
25 = 0,36.

□

1.170. Two meter-long pole is randomly divided into three pieces. Determine the probability that a

triangle can be built of the pieces.

Solution. Division of the pole is given as in the previous exercises by the points of cutting x and y and

the probability space is again a square 2 × 2. In order to be able to build a triangle of the pieces, the
lengths of the parts must satisfy the triangle inequalities, that is, sum of lengths of any two parts must

be greater than the length of the third part. Since the sum of the lengths is 2 meters, this condition is

equivalent to the condition that each part must be smaller than 1 meter. Using the cut-points x and y,

we can express this that it cannot simultaneously hold x ≤ 1 and y ≤ 1 or simultaneously x ≥ 1 and

y ≥ 1 (this corresponds to the conditions that the border parts of the pole are smaller than 1), and

also |x − y| ≤ 1 (the middle part is smaller than one). These conditions are satis�ed by the shaded

area in the picture, whose volume is 1/4.
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□

1.171. Does the equation

(a)
4x1 − √

3x2 = 3,
x1 − 2

√
7x2 = −2;

(b)
4x1 − √

3x2 = 16,
x1 − 2

√
7x2 = −7;

(c)
4x1 + 2x2 = 7,

−2x1 − x2 = −3
have a unique solution (that is, exactly one)?

Solution. The set of equation is uniquely solvable if and only if the determinant of the matrix given

by the left-hand side coe�cients is nonzero. Therefore, the coe�cients on the right-hand side do not

in�uence the uniqueness of the solution. Thus we have to have the same answer in (a) and (b). Since∣∣∣∣4 −√
3

1 −2
√

7

∣∣∣∣ = 4 ·
(
−2

√
7
)

−
(
−√

3 · 1
)

̸= 0,∣∣∣∣ 4 2
−2 −1

∣∣∣∣ = 4 · (−1)− (2 · (−2)) = 0,

for (a) and (b) there is a unique solution and in (c) there is not. If we multiply the second equation in

(c) by −2, we see that it has no solution at all. □

1.172. Compute the area S of a quadrilateral given by the vertices

[0,−2], [−1, 1], [1, 5], [1,−1].

Solution. In the usual notation

A = [0,−2], B = [1,−1], C = [1, 5], D = [−1, 1]

and the usual division of the quadrilateral into triangles ABC and ACD with areas S1 and S2 we

obtain

S = S1 + S2 = 1
2

∣∣∣∣ 1 − 0 1 − 0
−1 + 2 5 + 2

∣∣∣∣+ 1
2

∣∣∣∣1 − 0 −1 − 0
5 + 2 1 + 2

∣∣∣∣ = 1
2 (7 − 1)+ 1

2 (3 + 7) = 8.

□

1.173. Determine the area of the quadrilateral ABCD with vertices A = [1, 0], B = [11, 13],
C = [2, 5] a D = [−2,−5].
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Solution. We divide the quadrilateral into two trianglesABC and ACD. We compute their areas by

computing the determinants, see 1.34,

S =
∣∣∣∣12
∣∣∣∣ 1 5
10 13

∣∣∣∣∣∣∣∣+ ∣∣∣∣12
∣∣∣∣ 1 5
−3 −5

∣∣∣∣∣∣∣∣ = 47
2
.

□

1.174. Compute the area of parallelogram with vertices at [5, 5], [6, 8] at [6, 9].

Solution. Although such parallelogram is not uniquely determined (the fourth vertex is not given),

the triangle with vertices at [5, 5], [6, 8] and [6, 9] must be necessarily a half of every parallelogram
with these three vertices (one of the sides of the triangle becomes the diagonal of the parallelogram).

Therefore the area equals the determinant∣∣∣∣6 − 5 6 − 5
8 − 5 9 − 5

∣∣∣∣ =
∣∣∣∣1 1
3 4

∣∣∣∣ = 1 · 4 − 1 · 3 = 1.

□
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1.175. Determine the number of relations over the set {1, 2, 3, 4}, which are both symmetric and

transitive.

Solution.Relations of the given properties is an equivalence over some subset of the set {1, 2, 3, 4}.
In total, 1 + 4 · 1 + (4

2

) · 2 + (4
3

) · 5 + 15 = 52. □

1.176. Determine the number of ordering relations over a three-element set. ⃝
1.177. Determine the numer of ordering relations over the set {1, 2, 3, 4} such that the elements 1 and
2 are not comparable (that is, neither 1 ≺ 2 nor 2 ≺ 1, where ≺ stands for the ordering relation). ⃝
1.178. Determine the number of surjective mappings f from the set {1, 2, 3, 4, 5} to the set {1, 2, 3}
such that f (1) = f (2).

Solution. Every such mappings is uniquely given by the images of the elements {1, 3, 4, 5}, there are
exactly that many mappings as there are surjective mappings of the set {1, 3, 4, 5} to the set {1, 2, 3},
that is, 36, as we know from the previous exercise. □

1.179. Give all the elements in S ◦ R, if
R = {(2, 4), (4, 4), (4, 5)} ⊂ N × N,

S = {(3, 1), (3, 2), (3, 5), (4, 1), (4, 4)} ⊂ N × N.

Solution. Considering all choices of two ordered tuple

(2, 4), (4, 1); (2, 4), (4, 4); (4, 4), (4, 1); (4, 4), (4, 4)

satisfying that the second element of the �rst ordered tuple�which is a member of R�equals the

�rst element of the second ordered tuple�which is a member of S�we obtain

S ◦ R = {(2, 1), (2, 4), (4, 1), (4, 4)}.

□

1.180. Let a binary relation be given

R = {(0, 4), (−3, 0), (5, π), (5, 2), (0, 2)}
between sets A = Z a B = R. Express R−1 and R ◦ R−1.

Solution. We can immediately see that

R−1 = {(4, 0), (0,−3), (π, 5), (2, 5), (2, 0)}.
Furthermore,

R ◦ R−1 = {(4, 4), (0, 0), (π, π), (2, 2), (4, 2), (π, 2), (2, π), (2, 4)}.

□

1.181. Decide whether the relation R determined by the condition:

(a) (a, b) ∈ R ⇐⇒ |a| < |b|;
(b) (a, b) ∈ R ⇐⇒ |a| = |2b|

over the set of integers Z is transitive.

Solution. In the �rst case R is transitive, because

| a | < | b |, | b | < | c | H⇒ | a | < | c |.
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In the second case R is not transitive. For instance, consider

(4, 2), (2, 1) ∈ R, (4, 1) /∈ R.

□

1.182. Find all relations overM = {1, 2}, which are not antisymmetric. Which of them are transi-

tive?

Solution. There are four relations that are not antisymmetric. They are exactly subsets of the set

{1, 2} × {1, 2}, which contain the elements (1, 2), (2, 1) (otherwise the condition of antisymmetry is
satis�ed). Of these four only the relation

{(1, 1), (1, 2), (2, 1), (2, 2)} = M ×M,

is transitive, because not containing tuples (1, 1) and (2, 2) in a transitive relation means that the

relation cannot contain both (1, 2) and (2, 1). □

1.183. Is there an equivalence relation, which is also an ordering, over the set of all lines in the

plane?

Solution. An equivalence relation (or ordering relation) must be re�exive, therefore every line must

be in relation with itself. Furthermore we require that the relation is both symmetric (equivalence)

and antisymmetric (ordering). That means that a line can be in relation only with itself. If we de�ne

the relation such that two lines are in relation if and only if they are identical, we obtain "very natural"

relation which is both equivalence relation and ordering. We just need to check that it is transitive,

which it trivially is. Thus the only relation satisfying the problem statement is the identity over the

set of all lines in the plane. □

1.184. Determine, whether the relation

R = {(k, l) ∈ Z × Z; | k | ≥ | l |}
over the set Z is an equivalence and/or an ordering.

Solution. The relation R is not an equivalence: it is not symmetric (take (6, 2) ∈ R, (2, 6) /∈ R); it
is not an ordering: it is not antisymmetric (take (2,−2) ∈ R, (−2, 2) ∈ R). □

1.185. Show that the intersection of any equivalence relation over a set X is again an equivalence

relation, and that the union of two ordering relations over a set X does not have to be an ordering.

Solution. We see that the intersection of equivalence relations is re�exive, symmetrical and transitive:

all the equivalence relations must contain the tuple (x, x) for every x ∈ X, therefore the intersection
contains that tuple too. If the element (x, y) is in the intersection, then the element (y, x) is also in

the intersection (just use the fact that every equivalence is symmetric). If tuples (x, y) and (y, z) are

in the intersection, then both are in the equivalences also. Since the equivalences are transitive, they

all contain the element (x, z) and thus that element is also in the intersection.

If we chose X = {1, 2} and the ordering relation
R1 = {(1, 1), (2, 2), (1, 2)}, R2 = {(1, 1), (2, 2), (2, 1)}

over X, we obtain the relation

R1 ∪ R2 = {(1, 1), (2, 2), (1, 2), (2, 1)},
which is not antisymmetric, thus not an ordering. □
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1.186. Over the setM = {1, 2, . . . , 19, 20} there is an equivalence relation ∼ such that a ∼ b for

any a, b ∈ M if and only if the �rst digits of the numbers a, b are the same. Construct the partition

given by this equivalence.

Solution. Two numbers from the set M are in the same equivalence class if and only if they are in

the relation (�rst digit is the same). Therefore the partition consists of the sets

{1, 10, 11, . . . , 18, 19}, {2, 20}, {3}, {4}, {5}, {6}, {7}, {8}, {9}.

□

1.187. We are given partition of two classes {b, c}, {a, d, e} of the set X = {a, b, c, d, e}. Write

down the equivalence relation R over the set X which gives this partition.

Solution. Equivalence R is determined by the fact that the two elements are in relation if and only

if they are in the same partition class (note also that R must be symmetric), and every element is in

relation with itself (R must be re�exive). Therefore R contains exactly

(a, a), (b, b), (c, c), (d, d), (e, e),

(b, c), (c, b), (a, d), (a, e), (d, a), (d, e), (e, a), (e, d).

□

1.188. In the following three �gures, icons are connected with lines such that people in di�erent

parts of the world could have assigned them. Determine whether it is a mapping, and whether it is

injective, surjective or bijective.

Solution. In the �rst case it is a mapping which is surjective but not injective, because both the snake

and the spider are labelled as poisonous. The second case is not a mapping but only a relation, since

the dog is labelled both as a pet and as a meal. The third case is again a mapping. This time it is

neither injective nor surjective. □
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1.189. Let {a, b, c, d} be a set with a relation
{(a, a), (b, b), (a, b), (b, c), (c, b)}.

What is the minimal number of elements we have to add to the relation in order to make it an equiva-

lence?

Solution. Let us successively ensure the three properties that de�ne an equivalence. First it is the

re�exivity. We must add the tuples {(c, c), (d, d)}. Second is the symmetry � we must add (b, a) and
for the third step we must do the so-called transitive closure. Since a is in relation with b and b is in

relation with c, we must add (a, c) and (c, a). □

1.190. Consider the set of numbers that have �ve digits in the binary notation and a relation such

that two numbers are in the relation whenever their digit sum has the same parity. Write down the

corresponding equivalence classes.

Solution. We have two equivalence classes (of eight members):

[10000] = {10000, 10011, 10101, 10110, 11001, 11010, 11100, 11111}
which corresponds to the set {16, 19, 21, 22, 25, 26, 28, 31} and
[10001] = {10001, 10010, 10100, 11000, 10111, 11011, 11101, 11110}
which corresponds to the set {17, 18, 20, 24, 23, 27, 29, 30}. □

1.191. Consider the set of numbers that have three digits in the ternary notation and a relation such

that two numbers are in the relation whenever they

i) begin with the same two digits in this notation,

ii) end with the same two digits in this notation.

Write down the corresponding equivalence classes.

Solution.

i) We obtain six three-element classes

[100] = {100, 101, 102} corresponds {9, 10, 11}
[110] = {110, 111, 112} corresponds {12, 13, 14}
[120] = {120, 121, 122} corresponds {15, 16, 17}
[200] = {200, 201, 202} corresponds {18, 19, 20}
[210] = {210, 211, 212} corresponds {21, 22, 23}
[220] = {220, 221, 222} corresponds {24, 25, 26}

ii) In this case we have nine two-element classes

[100] = {100, 200} corresponds {9, 18}
[101] = {101, 201} corresponds {10, 19}
[102] = {102, 202} corresponds {11, 20}
[110] = {110, 210} corresponds {12, 21}
[111] = {111, 211} corresponds {13, 22}
[112] = {112, 212} corresponds {14, 23}
[120] = {120, 220} corresponds {15, 24}
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[121] = {121, 221} corresponds {16, 25}
[122] = {122, 222} corresponds {17, 26}

□

1.192. What is the maximal domain D and codomain H such that the following mappings are bi-

jective, and what is then the inverse function?

i) x 7→ x4

ii) x 7→ x3

iii) x 7→ 1
x+1

Solution.

i) D = [0,∞) and H = [0,∞) or alsoD = (−∞, 0] a H = [0,∞). The inverse function is

then x 7→ 4
√
x.

ii) D = H = R and the inverse function is x 7→ 3
√
x.

iii) D = R∖ {−1} and H = R∖ {0}. The inverse function is x 7→ 1
x

− 1.

□

1.193. Consider a relation R × R. A point is in the relation whenever it holds that

(x − 1)2 + (y + 1)2 = 1.

Can we describe the points using the function y = f (x)? Depict the points in the relation.

Solution. We cannot, because for instance y = −1 has two preimages: x = 0 and x = 2. The points
lie on a circle with the centre at the point (1,−1) and radius 1. □

1.194. Let for any two integers k, l hold that (k, l) ∈ R whenever the number 4k− 4l is an integral
multiple of 7. Is such a relation over R an equivalence? Is it an ordering?

Solution. Note that two integers are in the relationR if and only if they have the same remainder under

the division by 7. Therefore it is an example of the so-called remainder class of integers. Therefore we

know that the relation R is an equivalence relation. Its symmetry (for instance, (3, 10), (10, 3) ∈ R,
3 ̸= 10) implies that it is not an ordering. □

1.195. Let a relation R be de�ned over the set N = {3, 4, 5, . . . , n, n + 1, . . . }, such that two

numbers are in the relation whenever they are relatively prime (that is, the prime decompositions

of the numbers do not contain any common number). Determine whether this relation is re�exive,

symmetric, antisymmetric, transitive.

Solution. For a tuple of the same numbers in holds that (n, n) /∈ R. Therefore the relation is not

re�exive. It is clear that when two numbers are relatively prime or not, it does not matter how they

are ordered � it is a property of unordered tuples. Therefore, R is symmetric. From the symmetry

we have that it is not antisymmetric (for instance, (3, 5) ∈ R, 3 ̸= 5). Since R is symmetric and

(n, n) /∈ R for any number n ∈ N , a choice of two distinct numbers which are in the relation gives

that R is not transitive. □
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Solution to the exercises

1.33. yn = 2( 3
2 )
n − 2.

1.92.

i) (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (3, 6), check that it is an ordering relation.
ii) again (i, i) for i = 1, . . . , 7 and additionally (3, 6), (6, 3), check that it is an equivalence relation.
iii) (i, i) for i = 1, . . . , 7 and also (3, 6), (6, 3), (4, 6), (6, 4). Check that it is not an equivalence, since

transitivity does not hold.

1.103. Three di�erent Hasse diagrams which satisfy the given condition. In total 5! + 5! + 5!/4 = 270.
1.114.

a) 1 − 3 − 2i + 4i = −2 + 2i, 1 · (−3) − 8i2 + 6i + 4i = 5 + 10i, 1 + 2i,
√

42 + (−3)2 = 5,
z1
z2

= z1z̄2
|z2|2 = 1 · (−3)+ 8i2 + 6i − 4i25 = − 11

25 + 2
25 i.

b) 2 + i, 2i 2, 1, 2
i

= −2i.

1.129.

i) 26 = 64
ii)

(6
4

) = 15
iii) No head is one possibility

(6
0

) = 1, one head is
(6

1

) = 6. Thus there are 7 sequences with at most

one head and the result is 64 − 7 = 57.

1.139. The maximum number yn of areas a plane can be divided into by n circles is yn = yn−1 + 2(n − 1),
y1 = 2, that is, yn = n2 − n+ 2.

For the maximum numberpn of areas a space can be divided into by n balls we obtain the recurrent formula

pn+1 = pn + yn, p1 = 2, that is, pn = n
3 (n

2 − 3n+ 8).

1.176. 19.
1.177. 87.



In the previous chapter we havewarmed upwith relatively sim-

ple problems which did not require any sophisticated tools. It was

enough to use addition and multiplication of scalars. In this and

subsequent chapters we will be dealing with particular topics in

more detail.

Three chapters will be about tools for workingwith that, where

the operations consist of simple operations with scalars, but work

with more scalars simultaneously. We speak about "linear objects"

and "linear algebra". Although it might seem a very specialised

tool, we shall see later that even more complicated objects are stud-

ied mostly using their "linear approximations".

In this chapter we will work directly with �nite sequences of

scalars. Such sequences arise in real-world problems

whenever we have our objects described with more

parameters. You should not trouble yourselves with

trying to imagine the space with more than three "co-

ordinates". You have to live with the fact that we are able to depict

one, two or three dimensions, but we will deal with arbitrary num-

ber of dimensions. And when we will observe any parameter in,

say, 500 students (for instance, their study results), our data will

have 500 elements and we would like to work with them. Our goal

is to devise tools which will work well even if the number of ele-

ments is large.

Also, do not be afraid of terms like �eld or ring of scalars

K. Simply, imagine any speci�c domain of numbers.
Rings of scalars contain for instance integers Z and

all residue classes, among �elds we have only R, Q,
C and residue classes Zk for k prime. Speci�c among them is Z2,

where from the equation x = −x we cannot infer that x = 0, where
in every other �eld we indeed can.

1. Vectors and matrices

Mostly, we speak about vectors in connection with a �eld of

scalars, since the general theory is way more complicated in case

there are some non-invertible non-zero scalars. Only in the �rst

two parts of this chapter we will work with vectors and matrices in

the context of �nite sequences of scalars, and in that case it will be

interesting to note how the situation would behave if we had, say,

integers instead of a �eld. It will be hopefully easy to see, how

strong results can be derived with precise formal reasoning.

2.1. Vectors over scalars. For now, vector is for us an ordered

n-tuple of scalars from K, where the �xed n ∈ N is

called dimension.

CHAPTER 2

Elementary linear algebra

are you able to calculate with scalars?

� if not, let us go straight to the matrices...
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We can add and multiply scalars. We will be

able to add vectors, but multiplying a vector will be

possible only by scalar. This corresponds to the idea we already

saw in the plane R2, where addition realised vector composition

(as of composition of arrows emanating from the origin) and the

multiplication by scalar realised stretching of vectors.

Multiple of a vector u = (a1, . . . , an) by a scalar c is de�ned

by multiplying by c every element of the n-tuple u, and also addi-

tion is de�ned coordinate-wise. That means,

Basic vector operations

u+ v = (a1, . . . , an)+ (b1, . . . , bn)

= (a1 + b1, . . . , an + bn)

c · u = c · (a1, . . . , an) = (c · a1, . . . , c · an).

For vector addition and multiplication by scalars we shall use

the same symbols as for scalars, that is plus and either dot or jux-

taposition.

The vector notation convention. We shall not, unlike many other

textbooks, use any special notations for vectors and

leave it to the reader to pay attention to the context. For

scalars, we shall mostly use letters from the beginning

of the alphabet, for the vector from the end (the middle

part of the alphabet remains for indices of variables or components

and also for summation indices).

Wewill often require that scalars are from some speci�c �elds,

see 1.1, but in this chapter will mostly work with operations that

do not require this assumption. In the more advanced literature,

this is usually called modules over rings instead of vector spaces.

In the general theory in the next chapter, we will work exclusively

with �elds of scalars.

For vector addition inKn the properties (KG1)�(KG4) clearly
hold with the zero element being

0 = (0, . . . , 0) ∈ Kn.

We are purposely using the same symbol for both the zero vector

element and the zero scalar element.

Vector properties

For all vectors v, w ∈ Kn and scalars a, b ∈ K we have

a · (v + w) = a · v + a · w(V1)

(a + b) · v = a · v + b · v(V2)

a · (b · v) = (a · b) · v(V3)

1 · v = v(V4)

The properties (V1)�(V4) of our vectors, that is, n-tuples of

scalars in Kn, are easy to check for any speci�c ring of scalars K,
since when checking the properties we are using for the individual

coordinates of vectors only the properties of scalars listed in 1.1

and 1.3.

In this way we shall work with, for instance, Rn, Qn, Cn, but
also with Zn, (Zk)n, n = 1, 2, 3, . . ..

2.2. Matrices over scalars. A slightly more complicated object

we will use when working with vectors are matrices.

73

A. Systems of linear equations

We attack vector spaces from an unexpected direction. We begin

with something we know, that is, systems of linear equations. Because

even behind them we can actually �nd vector spaces.

2.1. A colourful example. A company of painters ordered 810 litres

of colour, which should contain the same amount of red, green and

blue colour (that is, 810 litres of black). The provider can satisfy this

order by mixing the colours he usually sells (he has got enough of that

in his warehouse), that is

• reddish colour � it contains 50 % of red, 25 % of green and

25 % of blue colour;

• greenish colour � it contains 12,5 % of red, 75 % of green

and 12,5 % of blue colour;

• bluish colour � it contains 20 % of red, 20 % of green and

60 % of blue colour.

How many litres of each of the colours at the warehouse has to be

mixed in order to satisfy the order?

Solution. Denote by

• x � the amount (in litres) of reddish colour to be used;
• y � the amount (in litres) of bluish colour to be used;
• z � the amount (in litres) of greenish colour to be used;

By mixing of the colours we want a colour that contains 270 litres of

red. Note that reddish contains 50 % red, greenish contains 12,5 % red

and bluish 20 % red. Thus the following has to be satis�ed:

0, 5x + 0, 125y + 0, 2z = 270.

Analogically, we require (for blue and green colours respectively) that

0, 25x + 0, 75y + 0, 2z = 270,
0, 25x + 0, 125y + 0, 6z = 270.

Now we can carry on in two ways. Either we can express individual

variables using other variables � from the �rst equation we have x =
540−0, 25y−0, 4z, we plug it for x into the second and third equations
and obtain two linear equations of two variables 2, 75y+ 0, 4z = 540
and 0, 25y + 2z = 540. From the second equation we express z =
270 − 0, 125y and plugging into the �rst one we obtain 2, 7y = 432,
that is, y = 160, therefore z = 270 − 0, 125 · 160 = 250 and x =
540 − 0, 25 · 160 + 0, 4 · 250 = 400.

Second approach is to use matrix notation. The �rst row of the ma-

trix consists of coe�cients of the variables in the �rst equation, second

of the coe�cients in the second equation and third of the coe�cients
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Matrices of type m/n

A matrix of the type m/n over scalars K is a rectangular

schema A with m rows and n columns

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...

am1 am2 . . . amn


where aij ∈ K for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. For a matrix A with

elements aij we also use the notation A = (aij ).

Vectors (ai1, ai2, . . . , ain) ∈ Kn are called (i-th) rows of the

matrix A, i = 1, . . . , m, vectors (a1j , a2j , . . . , amj ) ∈ Km are

called (j -th) columns of the matrix A, j = 1, . . . , n.

Matrix can be also understood as a mapping

A : {1, . . . , m} × {1, . . . , n} → K,

where A(i, j) = aij . Matrices of the type 1/n or n/1 are actually

just vectors in Kn.
Ever general matrices can be understood as vectors in Km·n,

we just concatenate all the columns. In partic-

ular, matrix addition and matrix multiplication

by scalars is de�ned:

A+ B = (aij + bij ), a · A = (a · aij )
where A = (aij ), B = (bij ), a ∈ K.

The matrix −A = (−aij ) is called the addition inverse to the
matrix A and the matrix

0 =
0 . . . 0
...

...

0 . . . 0


is called the zero matrix. Seeing matrices as m · n-dimensional
vectors, we obtain the following claim

Proposition. The formulas for A+ B, a ·A, −A, 0 give for the

set of all matrices of the type m/n the operations of addition and

multiplication by scalars, which satisfy axioms (V1)�(V4).

2.3. Matrices and equations. An often-used tool for description

of mathematical models are systems of linear equations. Matrices

are useful for the description of such systems. We use for this the

notion of scalar product of two vectors, which assigns to the vec-

tors (a1, . . . , an) and (x1, . . . , xn) assigns their product

(a1, . . . , an) · (x1, . . . , xn) = a1x1 + · · · + anxn

that is, we subsequently multiply the coordinates of the vectors and

sum the results.

Every system of m linear equations in n variables

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

am1x1 + am2x2 + · · · + amnxn = bm

can be seen as a constraint on values of m scalar products with

an unknown vector (x1, . . . , xn) with vectors of coordinates

(ai1, . . . , ain).
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in the third. Therefore the matrix of the system is 0, 5 0, 125 0, 2
0, 25 0, 75 0, 2
0, 25 0, 125 0, 6

 ,
extended matrix of the system is obtained from the matrix of the sys-

tem by adding the column of the right-hand sides of the individual

equations in the system: 0, 5 0, 125 0, 2 270
0, 25 0, 75 0, 2 270
0, 25 0, 125 0, 6 270


By sequentially doing the so-called elementary row transforma-

tions (they correspond to equivalent operations with the equations, see

2.7) we obtain: 0, 5 0, 125 0, 2 270
0, 25 0, 75 0, 2 270
0, 25 0, 125 0, 6 270

 ∼
 1 0, 25 0, 4 540

1 3 0, 8 1 080
1 0, 5 2, 4 1 080

 ∼

 1 0, 25 0, 4 540
0 2, 75 0, 4 540
0 0, 25 2 540

 ∼
 1 0, 25 0, 4 540

0 11 1, 6 2 160
0 1 8 2 160

 ∼
 1 0, 25 0, 4 540

0 1 8 2 160
0 11 1, 6 2 160

 ∼
 1 0, 25 0, 4 540

0 1 8 2 160
0 0 −86, 4 −21 600

 .
And again by plugging the values back we compute

z = −21 600
−86, 4

= 250,

y = 2 160 − 8 · 250 = 160,

x = 540 − 0, 4 · 250 − 0, 25 · 160 = 400.

Thus it is necessary to mix 400 l of reddish, 160 l of bluish and 250 l

of greenish colour. □

2.2. Solve a system of simultaneous linear equations

x1 + 2x2 + 3x3 = 2,
2x1 − 3x2 − x3 = −3,

−3x1 + x2 + 2x3 = −3.

Solution. We write the system of equations in the form of extended

matrix of the system 1 2 3 2
2 −3 −1 −3

−3 1 2 −3

 ,
which we using the elementary row transformations transform into the

row echelon form 1 2 3 2
2 −3 −1 −3

−3 1 2 −3

 ∼
 1 2 3 2

0 −7 −7 −7
0 7 11 3

 ∼
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The vector of variables can be also seen as a column in a

matrix of the type n/1, and similarly the values

b1, . . . , bn can be seen as a vector u, and that is again

a single column of the matrix of the type n/1. Our
system of equations can be then formally written as A · x = u as

follows: a11 . . . a1n
...

...

am1 . . . amn

 .
x1
...

xn

 =
b1
...

bm


where the left-hand side is interpreted as m scalar products of the

individual rows of the matrix (giving rise to a column vector),

whose values are determined by the equations. That means that

the identity of the i-th coordinates corresponds to the original i-th

equation

ai1x1 + · · · + ainxn = bi

and the notation A · x = u gives the original system of equations.

2.4. Matrix product. In the plane, that is, for vectors of dimen-

sion two, we have developed amatrix calculus andwe

saw that it is e�ective to work with (see 1.26). Now

we will work more generally and develop all tools we

already know from the plane case for all dimensions

n.

Matrix multiplication is possible to de�ne only when the di-

mensions of rows and columns allow it, that is, when the scalar

product is de�ned for them as before:

Matrix product

For any matrix A = (aij ) of the type m/n and any matrix

B = (bjk ) of the type n/q over the ring of scalars K we de�ne

their product C = A · B = (cik) as a matrix of the type m/q with

the elements

cik =
n∑
j=1

aijbjk , for arbitrary 1 ≤ i ≤ m, 1 ≤ k ≤ q.

That is, the element ac[ik] of the product is exactly the scalar prod-
uct of the i-th row of the matrix on the left and of the k-th column

of the matrix on the right. For instance we have(
2 1
1 −1

)
·
(

2 1 1
−1 0 1

)
=
(

3 2 3
3 1 0

)
.

2.5. Square matrices. If there is the same number of rows and

columns in the matrix, we speak of square matrix. The number of

rows and columns is then called the dimension of the matrix. The

matrix

E = (δij ) =
1 . . . 0
...

. . .
...

0 . . . 1


is called the unit matrix. Numbers de�ned in such way δij are also

called Kronecker delta. Over the set of square matrices over K of

dimension n the matrix product is de�ned for any two matrices,

that is, there is the multiplication operation is de�ned there, and

its properties are similar to that of scalars:
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∼
 1 2 3 2

0 1 1 1
0 0 4 −4

 ∼
 1 2 3 2

0 1 1 1
0 0 1 −1

 .
First we have subtracted from the second row twice the �rst row and to

the third row we have added thrice the �rst row. Then we have added

the second row to the third row andmultiplied the second row by−1/4.
Let us now go back to the system of equations

x1 + 2x2 + 3x3 = 2,
x2 + x3 = 1,

x3 = −1.

We immediately see that x3 = −1. If we plug in x3 = −1 into the

equation x2 + x3 = 1, we obtain x2 = 2. And again by plugging

x3 = −1, x2 = 2 into the �rst equation we obtain x1 = 1. □
Systems of linear equations can be written in the matrix notation.

But is it an advantage, when we can solve the systems even without

speaking of the matrices? Yes it is, we can speak about the solution

with more concept, we can say in the language of matrices how many

solutions a system has and it is more natural and elegant for computer

applications. Try to get more familiar with particular operations which

can be done with matrices. As we have seen in previous examples,

equivalent operations with linear equations correspond to elementary

row (column) transformations. Further we have seen that transform-

ing a matrix into a row echelon form (this process is called Gaussian

elimination, see 2.7), solving the system is then very easy. We show

it on some more examples, where we will see that a system can have

in�nitely many solutions.

2.3. Solve a system of linear equations

2x1 − x2 + 3x3 = 0,
3x1 + 16x2 + 7x3 = 0,
3x1 − 5x2 + 4x3 = 0,

−7x1 + 7x2 + −10x3 = 0.

Solution. Because the right-hand side of all equations is zero (such

a case is called a homogeneous system) we shall work with the ma-

trix of the system only. We �nd the solution by transforming the ma-

trix into the row echelon form using elementary row transformations,

which correspond to changing the order of equations, multiplying an

equation by a non-zero number and addition of multiples of equations.

Furthermore, we can always go back and forth between the matrix no-

tation and the original system notation with variables xi . We obtain:
2 −1 3
3 16 7
3 −5 4

−7 7 −10

 ∼


2 −1 3
0 35/2 5/2
0 −7/2 −1/2
0 7/2 1/2

 .
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Proposition. Over the set of all square matrices of the dimension

n over arbitrary ring of scalars K is de�ned the mul-

tiplication operation with the following properties of

rings (see 1.3):

(1) The associativity holds (O1).

(2) The unit matrix E = (δij ) is a unit element for multiplication

(O3).

(3) The distributivity of multiplication and addition holds (O4).

In general, neither the properties (O2) nor (OI) hold. Therefore,

the square matrices for n > 1 do not form an integral domain,

therefore they are not even a (non-commutative) �eld.

Proof. Associativity of multiplication � (O1): Since scalars are

associative, distributive and commutative, we can for the three

matrices A = (aij ) of type m/n, B = (bjk ) of type n/p and

C = (ckl) of type p/q calculate

A · B =
(∑

j

aij .bjk

)
, B · C =

(∑
k

bjk .ckl

)
,

(A · B) · C =
(∑

k

(∑
j

aij .bjk
)
.ckl

)
=
(∑
j,k

aij .bjk .ckl

)
,

A · (B · C) =
(∑

j

aij .
(∑
k

bjk .ckl
)) =

(∑
j,k

aij .bjk .ckl

)
.

Note that while computing, we did rely on the fact that it does not

matter in which order are we doing given sums and products, that

is, we were heavily using the properties of scalars.

We can easily see that multiplication by unit matrix has the

property of a unit element:

A · E =
a11 · · · a1m

...

am1 · · · amm

 ·


1 0 · · · 0
0 1 · · · 0
...

...

0 0 · · · 1

 = A

similarly for multiplication by E from the left.

It remains to show the distributivity of multiplication and ad-

dition. Again using the distributivity of scalars we can easily cal-

culate for matrices A = (aij ) of the type m/n, B = (bjk ) of the

type n/p, C = (cjk ) of the type n/p, D = (dkl) of the type p/q

A · (B + C) =
(∑

j

aij (bjk + cjk )

)

=
((∑

j

aijbjk
)+ (∑

j

aij cjk
)) = A · B + A · C

(B + C) ·D =
(∑

k

(bjk + cjk )dkl

)
=
((∑

k

bjk dkl
)+ (∑

k

cjk dkl
)) = B ·D + C ·D.

As we have seen in 1.26, two matrices of dimension two do

not necessarily commute:(
1 0
0 0

)
.

(
0 1
0 0

)
=
(

0 1
0 0

)
(

0 1
0 0

)
.

(
1 0
0 0

)
=
(

0 0
0 0

)
.
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>From there we can see that the second, third and fourth equations are

multiples of the equation 7x2 + x3 = 0. But we still carry on with the
transformations, in order to see what will happen:

2 −1 3
0 35/2 5/2
0 −7/2 −1/2
0 7/2 1/2

 ∼


2 −1 3
0 35/2 5/2
0 0 0
0 0 0

 ∼


2 −1 3
0 7 1
0 0 0
0 0 0

 ,
Although we were given four equations for three variables, the whole

system has in�nitely many solutions, because for any x3 ∈ R the re-

maining equations have

2x1 − x2 + 3x3 = 0,
7x2 + x3 = 0

solution. Thus we substitute for the variable x3 a parameter t ∈ R and

express

x2 = −1
7
x3 = −1

7
t a x1 = 1

2
(x2 − 3x3) = −11

7
t.

If we now substitute t = −7s, we obtain the result in a simple form

(x1, x2, x3) = (11s, s, −7s) , s ∈ R.

□

2.4. Find all solutions of the system of linear equations

3x1 + 3x3 − 5x4 = −8,
x1 − x2 + x3 − x4 = −2,

−2x1 − x2 + 4x3 − 2x4 = 0,
2x1 + x2 − x3 − x4 = −3.

Solution. The corresponding extended matrix of the system is
3 0 3 −5 −8
1 −1 1 −1 −2

−2 −1 4 −2 0
2 1 −1 −1 −3

 .
By changing the order of rows (equations) we obtain

1 −1 1 −1 −2
2 1 −1 −1 −3

−2 −1 4 −2 0
3 0 3 −5 −8

 ,
which we transform into the row echelon form:

1 −1 1 −1 −2
2 1 −1 −1 −3

−2 −1 4 −2 0
3 0 3 −5 −8

 ∼


1 −1 1 −1 −2
0 3 −3 1 1
0 −3 6 −4 −4
0 3 0 −2 −2

 ∼


1 −1 1 −1 −2
0 3 −3 1 1
0 0 3 −3 −3
0 0 3 −3 −3

 ∼


1 −1 1 −1 −2
0 3 −3 1 1
0 0 3 −3 −3
0 0 0 0 0

 .
The system has thus in�nitely many solutions, because we have three

equations for four variables, which have exactly one solution for any
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This gives us immediately a counterexample to validity of (O2) and

(OI). For matrices of type 1/1 both axiom clearly holds, because

the scalars itself have them. For matrices of greater dimension the

counterexamples can be obtained similarly � they have the coun-

terexamples for dimension 2 in their left upper corner, the rest is

zero. (Verify it on your own!) □

In the proof we have actually worked with matrices of more

general type, thus we have proved the properties in greater gener-

ality:

Associativity and distributivity of matrix multiplication

Corollary. Matrix multiplication is associative and distributive,

that is,

A · (B · C) = (A · B) · C
A · (B + C) = A · B + A · C,

whenever are all the given operations de�ned. Unit matrix is a unit

element for multiplication (both from the right and from the left).

2.6. Inverse matrices. With scalars we can do the following:

from the equation a · x = b we can express x =
a−1 · b, whenever the inverse of a exists. We would

like to be able to do this for matrices too, but we have

a problem � how can we tell when such matrix exists,

and how to compute it?

We say that B is inverse of A, when

A · B = B · A = E.

Then we writeB = A−1 and from the de�nition it is clear that both

matrices must be square and of the same dimension n. A matrix

which has an inverse is called invertible matrix or regular square

matrix.

In the subsequent paragraphs we derive (among other things)

that B is inverse of A whenever just one of the required equations

holds (the other equation is then necessarily true also).

IfA−1 andB−1 exist, then there also is the inverse of the prod-

uct A · B
(2.1) (A · B)−1 = B−1 · A−1.

Because the associativity of matrix multiplication proved a while

ago, we have that

(B−1 · A−1) · (A · B) = B−1 · (A−1 · A) · B = E

(A · B) · (B−1 · A−1) = A · (B · B−1 ) · A−1 = E.

Because we can calculate with matrices similarly as with

scalars (they are just a little more complicated), the

existence of inverse matrix can really help us with the

solution of systems of linear equations: if we express

a system of n equations for n unknowns as a matrix

product

A · x =
a11 · · · a1m

...

am1 · · · amm

 ·
x1
...

xm

 =
b1
...

bm

 = u
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choice for the variable x4 ∈ R. Thus for x4 we substitute the parameter

t ∈ R and go back from the matrix notation to the equations

x1 − x2 + x3 − t = −2,
3x2 − 3x3 + t = 1,

3x3 − 3t = −3.

>From the last equation we have x3 = t − 1. Plugging in for x3 into

the second equation gives us

3x2 − 3t + 3 + t = 1, that is, x2 = 1
3
(2t − 2) .

Finally using the �rst equation we have

x1 − 1
3
(2t − 2)+ t − 1 − t = −2, tj. x1 = 1

3
(2t − 5) .

Thus the set of solutions can be written (for t = 3s) in the form{
(x1, x2, x3, x4) =

(
2s − 5

3
, 2s − 2

3
, 3s − 1, 3s

)
, s ∈ R

}
.

Let us now go back to the extended matrix of the system and trans-

form it further by using the row transformations in order to have (still

in the row echelon form) the �rst non-zero number of every row (the

so-called pivot) equal to one and that all the other numbers in the col-

umn of the pivot are zero. We have
1 −1 1 −1 −2
0 3 −3 1 1
0 0 3 −3 −3
0 0 0 0 0

 ∼


1 −1 1 −1 −2
0 1 −1 1/3 1/3
0 0 1 −1 −1
0 0 0 0 0

 ∼


1 −1 0 0 −1
0 1 0 −2/3 −2/3
0 0 1 −1 −1
0 0 0 0 0

 ∼


1 0 0 −2/3 −5/3
0 1 0 −2/3 −2/3
0 0 1 −1 −1
0 0 0 0 0

 ,
because �rst we have multiplied the second and the third row by 1/3,
then we have added the third row to the second and its (−1)-multiple
to the �rst. Finally we have added the second row to the �rst. From

the last matrix we easily obtain the result
x1
x2
x3
x4

 =


−5/3
−2/3
−1
0

+ t


2/3
2/3
1
1

 , t ∈ R.

Free variables are those whose columns do not contain any pivot (in

our case there is no pivot in the fourth column, that is, the fourth vari-

able is free and we use it as a parameter). □

2.5. Determine the solutions of the system of equations

3x1 + 3x3 − 5x4 = 8,
x1 − x2 + x3 − x4 = −2,

−2x1 − x2 + 4x3 − 2x4 = 0,
2x1 + x2 − x3 − x4 = −3.
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and when there exists inverse of the matrixA, then we can multiply

from the left by A−1 and we obtain

A−1 · u = A−1 · A · x = E · x = x,

that is, A−1 · u is the desired solution.
On the other hand, expanding the condition A · A−1 = E for

unknown scalars in the matrix A−1 gives us n systems of linear

equations for the same matrix on the left and di�erent vectors on

the right.

2.7. Equivalent operations with matrices. Let us gain some

practical insight into the relation between systems of equations and

their matrices. Clearly, searching for the inverse can be more com-

plicated than direct solution to the system of equations. But it is

important that whenever we have to solve more systems of equa-

tions with the same matrix A but with di�erent right sides u, then

yielding A−1 can be really bene�cial for us.

From the point of view of solving systems of equationsA·x =
u it is natural to consider the matricesA and vectors u

equivalent whenever they give a system of equations

with the same solution set. Let us think about possible

operations which would simplify the matrix A such

that obtaining the solution is easier.

Let us begin with simple manipulations of rows of equations

which do not in�uence the solution, and similar modi�cations of

the right-hand side vector. If we are able to change a square matrix

into the unit matrix, then the right-hand side vector is a solution

of the original system. If some of the rows of the system vanish

during the course of manipulations (that is, they become zero), it

will also give us some direct informations about the solution. Our

simple operations are:

Elementary row transformations

• switching of two rows,

• multiplication of a given row by a non-zero scalar,

• adding a row to another row.

These operations are called elementary row transformations. It is

clear that the corresponding operations at the level of the equations

in the system do not change the set of the solutions whenever our

ring is an integral domain.

Analogically, elementary column transformations of matrices

are

• switching of two columns

• multiplication of a given column by a non-zero scalar,

• adding a column to another column.

these do not preserve the solution set, since they interchange the

variables itself.

Systematically we can use elementary row transformations for

subsequent elimination of variables. This gives an al-

gorithmwhich is usually calledGaussian elimination

of variables.

Gaussian elimination of variables

Proposition. Non-zero matrix over arbitrary ring of scalars K
can be transformed using �nitely many elementary row transfor-

mations into the so-called (row) echelon form:

• If aik = 0 for all k = 1, . . . , j , then akj = 0 for all k ≥ i,
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Solution. Note that the system of equations in this exercise di�ers

from the system of equations in the previous exercise only in the value

8 (instead of −8) on the right-hand side. If we do the same row trans-

formations as in the previous exercise, we obtain.
3 0 3 −5 8
1 −1 1 −1 −2

−2 −1 4 −2 0
2 1 −1 −1 −3

 ∼


1 −1 1 −1 −2
2 1 −1 −1 −3

−2 −1 4 −2 0
3 0 3 −5 8

 · · ·

∼


1 −1 1 −1 −2
0 3 −3 1 1
0 0 3 −3 −3
0 0 3 −3 13

 ∼


1 −1 1 −1 −2
0 3 −3 1 1
0 0 3 −3 −3
0 0 0 0 16

 ,
where the last operation was subtracting the third row from the fourth.

From the fourth equation 0 = 16 follows that the system has no solu-

tions. Let us emphasise than whenever we obtain an equation of the

form 0 = a for some a ̸= 0 (that is, zero row on the left side and non-

zero number after the vertical bar) when doing the row transformation,

the system has no solutions. □
You can �nd more exercises for systems of systems of linear equa-

tions on the page 127

B. Manipulations with matrices

In this sub-chapter we shall work with matrices only, in order to

get more familiar with their properties.

2.6. Matrix multiplication. Carry on the matrix multiplications and

check the result. Note that, in order to be able

to multiply two matrices, the necessary and su�-

cient condition is that the �rst matrix has the same

number of columns as the number of rows of the second matrix. The

number of rows of the resulting matrix is then given by the number of

rows of the �rst matrix, the number of columns then equals the number

of columns of the second matrix.

i)

(
1 2

−1 3

)
·
(

1 −1
2 1

)
=
(

5 1
5 4

)
,

ii)

(
1 −1
2 1

)
·
(

1 2
−1 3

)
=
(

2 −1
1 7

)
,

iii)

(
1 2 3
1 −1 1

)
·
1 −1 2 1

1 1 −2 −3
3 2 1 0

 =
(

12 7 1 −5
3 0 5 4

)
,

iv)

 1 3 1
−2 2 −1
3 1 −4

 ·
 1

3
−3

 =
 7

7
18

,
v)
(
1 3 −3

) ·
 1 −2 3

−2 2 −1
3 1 −4

 = (−14 1 12
)
,
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• if a(i−1)j is the �rst non-zero element at the (i − 1)-th row,

then aij = 0.

Proof. Matrix in the row echelon form looks like this

0 . . . 0 a1j . . . . . . . . . a1m
0 . . . 0 0 . . . a2k . . . a2m
...

0 . . . . . . . . . . . . 0 alp . . .
...


and the matrix can (but does not have to) end with some zero rows.

In order to transform arbitrary matrix we can use a simple algo-

rithm, which will bring us, row by row, to the resulting echelon

form:

Gaussian elimination algorithm

(1) By a possible switching of rows we obtain a matrix where the

�rst row has in the �rst non-zero column a non-zero element,

let that column be j -th.

(2) For i = 2, . . ., by multiplying the �rst row by the element aij ,

multiplying i-th row by the element a1j and subtracting we

eliminate the element aij on the i-th row.

(3) By repeated application of the steps (1) and (2), always for

the not-yet-echelon part of rows and columns in the matrix we

reach after a �nite number of steps the �nal form of the matrix.

This proves the proposition. □

The given algorithm is really the usual elimination of variables

used in the systems of linear equations.

In a completely analogical manner we de�ne the column eche-

lon form of matrices and doing column instead of row elementary

transformations, we obtain an algorithm for transforming matrices

into the column echelon form.

Remark. We have formulated the Gaussian elimination for gen-

eral scalars from some ring. It seems natural to multiply

with scalars to obtain a row echelon form where the coef-

�cients at the non-zero "diagonal" are ones � computing

the solution is then easy. However, this is not possible in

general � take for instance the integers Z.
For solving systems of equations the given algorithm does not

make any sense if there are divisors of zero among the scalars.

Think carefully about the di�erences between K = Z, K = R
and possibly Z2 or Z4.

2.8. Matrix of elementary row transformations. In the follow-

ing we will work exclusively with �eld of scalars K, that is, every
non-zero scalar has an inverse.

Note that elementary row (column) transformations corre-

spond to multiplication from the left (right) by the following ma-

trices:
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vi)
(
1 2 −2

) ·
2

1
3

 = (−2
)
.

Remark. The parts i) and ii) in the previous exercise show that multi-

plication of square matrices is not commutative in general, in the part

iii) we see that if we can multiply two rectangular matrices, then it is

possible only in one of the orders. In parts iv) and v) you can note that

(A · B)T = AT · BT .
2.7. Calculate A5 and A−3, if

A =
 2 −1 1

−1 2 −1
0 0 1

 .
⃝

2.8. Let

A =
4 0 −5

2 7 15
2 7 13

 , B =
7 2 0

0 0 3
0 −19

√
13

 .
Can the matrix A be transformed into B using only elementary row

transformations (then we say that such matrices are row equivalent)?

Solution. Both matrices are clearly row equivalent with three-

dimensional identity matrix. It is easy to see that row equivalence on

the set of all matrices of given type is indeed an equivalence relation.

Thus the matrices A and B are row equivalent. □

2.9. Find some matrix B for which the matrix C = B · A is in row

echelon form, where

A =


3 −1 3 2
5 −3 2 3
1 −3 −5 0
7 −5 1 4

 .
Solution. If we multiply the matrix A gradually from the left by ele-

mentarymatrices (consider what elementary row transformations does

it correspond to)

E3 =


1 0 0 0
0 1 0 0

−3 0 1 0
0 0 0 1

 , E4 =


1 0 0 0
0 1 0 0
0 0 1 0

−7 0 0 1

 ,

E5 =


1 0 0 0
0 1/3 0 0
0 0 1 0
0 0 0 1

 , E6 =


1 0 0 0
0 1 0 0
0 −2 1 0
0 0 0 1

 ,

E7 =


1 0 0 0
0 1 0 0
0 0 1 0
0 −4 0 1

 , E8 =


1 0 0 0
0 1/4 0 0
0 0 1 0
0 0 0 1

 ,
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(1) Switching of the i-th and j -th row (column)

1 0 . . .

0
. . .

... 0 . . . 1
...

. . .
...

1 . . . 0
. . .

1


.

(2) Multiplication of the i-th row (column) by the scalar a:

1
. . .

1
a

1
. . .

1


← i

.
(3) Adding the i-th and the j -th row (column):

i →



1 0

0
. . .

. . .

. . .

1
. . .

. . .

1


↑
j

.

This trivial observation is actually very important, since the

product of invertible matrices is invertible (recall

2.1) and all elementary transformations over �eld of

scalars are invertible (the de�nition of the elemen-

tary transformation itself ensures that inverse trans-

formations are of the same type and it is easy to determine corre-

sponding matrix).

For arbitrary matrix A we obtain by multiplying with suitable

invertible matrix P = Pk · · ·P1 from the left (that is, sequential

multiplication with k matrices) its equivalent row echelon form

A′ = P · A.
In general, if we apply the same elimination procedure for the

columns, we can obtain from anymatrixB its column echelon form

B′ by multiplying it from the right by a suitable invertible matrix

Q = Q1 · · ·Qℓ. If we start with the matrixB = A′ in row echelon

form, this procedure eliminates only the still non-zero elements

out of the diagonal of the matrix and in the end we can transform

the remaining elements to be units. Thus we have veri�ed a very

important result we will use many times in the future:

2.9. Theorem. For every matrix A of the type m/n over �eld of

scalarsK there exists square invertible matrices P of dimensionm

andQ of dimension n such that the matrix P ·A is in row echelon
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we obtain

B = E8E7E6E5E4E3E2E1 =


0 0 1 0
0 1/12 −5/12 0
1 −2/3 1/3 0
0 −4/3 −1/3 1

 ,

C =


1 −3 −5 0
0 1 9/4 1/4
0 0 0 0
0 0 0 0

 .
□

2.10. Complex numbers as matrices. Consider the set of matrices

C = {
(
a b

−b a

)
, a, b ∈ R}. Note that C is closed under addition and

matrix multiplication, and further show that the mapping f : C →
C,
(
a b

−b a

)
7→ a + bi satis�es f (M + N) = f (M) + f (N) and

f (M ·N) = f (M) · f (N) (on the left-hand sides of the equations we
have addition and multiplication of matrices, on the right-hand sides

we have addition and multiplication of complex numbers). Thus the

set C along with multiplication and addition can be seen as the �eldC
of complex numbers. The mapping f is then called isomorphism (of

�elds). Thus for instance we have(
3 5

−5 3

)
·
(

8 −9
9 8

)
=
(

69 13
−13 69

)
,

which corresponds to (3 + 5i) · (8 − 9i) = 69 − 13i.

2.11. Solve the equations for matrices(
1 3
3 8

)
·X1 =

(
1 2
3 4

)
, X2 ·

(
1 3
3 8

)
=
(

1 2
3 4

)
.

Solution. Clearly the unknowns X1 and X2 must be matrices of the

type 2 × 2 (in order for the products to be de�ned and that the result

is a matrix of the type 2 × 2). Set

X1 =
(
a1 b1
c1 d1

)
, X2 =

(
a2 b2
c2 d2

)
and multiply out the matrices in the �rst given equation. It has to hold(

a1 + 3c1 b1 + 3d1
3a1 + 8c1 3b1 + 8d1

)
=
(

1 2
3 4

)
,

that is,
a1 + 3c1 = 1,

b1 + 3d1 = 2,
3a1 + 8c1 = 3,

3b1 + 8d1 = 4.

By adding a (−3)-multiple of the �rst equation with the third equa-

tion we obtain c1 = 0 and then a1 = 1. Analogously, by adding a
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form and

P · A ·Q =



1 . . . 0 . . . . . . . . . 0
...

. . .

0 . . . 1 0 . . . . . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 0 0 . . . 0
...


.

2.10. Algorithm for computing inverse matrix. In the previous

paragraphs we have basically obtain the complete al-

gorithm for computing the inverse matrix. Using the

simple approach described in the next paragraph, we

either �nd out that the inverse does not exist, or we

compute it. Keep in mind that we are still working over �eld of

scalars.

Equivalent row transformations of square matrix A of dimen-

sion n lead to the matrix P ′ such that the matrix P ′ · A is in row

echelon form. It could be the case that some of the last rows are

zero. If there exists the inverse of A, then there exists also the in-

verse of P ′ · A. But if the last row of P ′ · A is zero, then the last

row of P ′ ·A ·B is also zero for any B of dimension n. That is, the

existence of zero row in the result of (row) Gaussian elimination

means that there cannot exists the inverse A−1.

Assume now that A−1 exists. Because of the previous, we

obtain the row echelon form which has no non-zero row, that is,

all diagonal elements of P ′ · A are non-zero. But then carrying

the row elimination using the elementary row transformation from

the bottom-right corner backwards and transforming the diagonal

elements to be units we obtain the unit matrix E. That is, we �nd

another invertible matrix P ′′ such that for P = P ′′ · P ′ we have
P · A = E. Doing column instead of row transformation we can

(under the assumption of the existence of A−1) �nd a matrix Q

such that A ·Q = E. From this we have

P = P · E = P · (A ·Q) = (P · A) ·Q = Q.

That is, we have found the inverse matrix

A−1 = P = Q

for the matrixA. Notably, at the point of �nding the matrix P with

the propertyP ·A = E we don't have to do any further computation

since we know that we already have the inverse matrix.

Practically we can work as follows:

Computing the inverse matrix

Next to each other we write the original matrix A and the unit

matrix E, we transform the matrix A using the elementary row

transformation to the row echelon form, then using the so-called

backwards elimination to the diagonal matrix and then by multi-

plying with the inverse elements of K to the unit matrix. Simul-

taneously, we apply all these transformations to the matrix E, and

as a result we obtain the matrix A−1 in place where E has been.

If during the course of the procedure we obtain a zero row in the

original matrix, we conclude that the inverse matrix does not exist.
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(−3)-multiple of the second equation to the fourth equation we obtain
d1 = 2 and then b1 = −4. Thus we have

X1 =
(

1 −4
0 2

)
.

We �nd the values a2, b2, c2, d2 by a di�erent approach. We use

the relation (
a b

c d

)−1

= 1
ad − bc

(
d −b

−c a

)
,

which holds for any numbers a, b, c, d ∈ R (easy to derive; it also

directly follows from 2.2), we calculate(
1 3
3 8

)−1

=
(−8 3

3 −1

)
.

Multiplying the given equations by this matrix from the right gives

X2 =
(

1 2
3 4

)
·
(−8 3

3 −1

)
,

and thus

X2 =
( −2 1

−12 5

)
.

□

2.12. Solve the matrix equation

X ·
(

2 5
1 3

)
=
(

4 −6
2 1

)
.

⃝

2.13. Computing the inverse matrix. Compute the inverse matrix

of the matrices

A =
4 3 2

5 6 3
3 5 2

 , B =
1 0 1

3 3 4
2 2 3

 .
Then determine the matrix

(
AT · B)−1

.

Solution. We �nd the inverse by the following: write next to each

other the matrixA and the unit matrix. Then use elementary row trans-

formations so that the sub-matrixA changes into the unit matrix. This

will change the original unit sub-matrix to A−1. We gradually obtain 4 3 2 1 0 0
5 6 3 0 1 0
3 5 2 0 0 1

 ∼
 1 −2 0 1 0 −1

5 6 3 0 1 0
3 5 2 0 0 1

 ∼

 1 −2 0 1 0 −1
0 16 3 −5 1 5
0 11 2 −3 0 4

 ∼
 1 −2 0 1 0 −1

0 5 1 −2 1 1
0 11 2 −3 0 4

 ∼
 1 −2 0 1 0 −1

0 5 1 −2 1 1
0 1 0 1 −2 2

 ∼
 1 0 0 3 −4 3

0 0 1 −7 11 −9
0 1 0 1 −2 2
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2.11. Linear dependence and rank. In the previous musings

about calculations with matrices we have worked all

the time with row and column addition seeing them

as vector, along with scalar multiplication. Such op-

erations are called linear combinations. We return to such oper-

ations in abstract sense in a while in 2.24, it will be also useful

to understand their core meaning just now. Linear combination of

rows (columns) of a matrix A = (aij ) of type m/n we understand

an expression of the form

c1ui1 + · · · + ckuik ,

where ci are scalars, uj = (aj1 , . . . , ajn ) are rows (or uj =
(a1j , . . . , amj ) are columns ) of the matrix A.

If there exists linear combination of given rows with at least

one non-zero scalar coe�cient which results into zero row, we say

that these rows are linearly dependent. In the other case, that is,

when the only possibility of obtaining zero row is by taking only

zero scalars, the rows are called linearly independent.

Analogously, we de�ne linearly dependent and linearly inde-

pendent columns.

The previous results about the Gaussian elimination can be

now interpreted as follows: the number of non-zero "steps"

in the row (column) echelon form is always equal to the

number of linearly independent rows (columns) of the ma-

trix. LetEh be thematrix from the theorem 2.9 with h ones

on the diagonals and assume that by two di�erent transformation

sequences we obtain two di�erent h′ < h. But then according to

our algorithm there are two invertible matrices P andQ such that

P · Eh′ ·Q = Eh.

In the product Eh′ · Q there will be more zero rows in the bot-

tom part of the matrix than ones in Eh � but we should be able

to reach Eh using only elementary row transformations. Increas-

ing the number of linearly independent rows using only elementary

row transformations is not possible. Therefore the number of ones

in the matrix P · A · Q in the theorem 2.9 is independent of the

choice of our elimination sequence and is always equal to the num-

ber of linearly independent rows in A, and also to the number of

linearly independent columns inA. This number is called the rank

of the matrix and we denote it by h(A). Let us remember the fol-

lowing theorem:

Theorem. Let A be a matrix of type m/n over �eld of scalars K.

The matrix A has the same number h(A) of linearly independent

rows and columns. Notably, the rank is always at most minimum

of the dimensions of the matrix A.

The algorithm for computing the inverse matrix also says that

square matrix A of dimension m has inverse if and only if its rank

equals m.

2.12. Matrices as mappings. Analogous to the way we did it

when working with matrices in the geometry of the plane (see

1.29), we can interpret every square matrix A as a mapping

A : Kn → Kn, x 7→ A · x.
Thanks to the distributivity of matrix multiplication it is clear how

are linear combinations of vectors mapped using such mappings:

A · (a x + b y) = a (A · x)+ b (A · y).
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∼
 1 0 0 3 −4 3

0 1 0 1 −2 2
0 0 1 −7 11 −9

 .
In the �rst step we subtracted from the �rst row the third row, in the

second step we added a (−5)-multiple of the �rst to the second row

and added a −3)-multiple of the �rst row to the third row, in the third

step we subtracted from the second row the third row, in the fourth

step we added a (−2)-multiple of the second row to the third row, in

the �fth step we added a (−5)-multiple of the third row to the second

row and added a 2-multiple of the third row to the �rst row, and in the

last step we changed the second and the third row. Let us emphasise

the result

A−1 =
 3 −4 3

1 −2 2
−7 11 −9

 .
Let us note that when calculating thematrixA−1 we did not have to

cope with fractions thanks to the suitably chosen row transformations.

Although we could carry on similarly when doing the next exercise,

that is, B−1 , we will rather do the more obvious row transformations.

We have 1 0 1 1 0 0
3 3 4 0 1 0
2 2 3 0 0 1

 ∼
 1 0 1 1 0 0

0 3 1 −3 1 0
0 2 1 −2 0 1

 ∼

 1 0 1 1 0 0
0 3 1 −3 1 0
0 0 1/3 0 −2/3 1

 ∼
 1 0 1 1 0 0

0 1 1
3 −1 1

3 0
0 0 1

3 0 − 2
3 1

 ∼

 1 0 0 1 2 −3
0 1 0 −1 1 −1
0 0 1

3 0 − 2
3 1

 ∼
 1 0 0 1 2 −3

0 1 0 −1 1 −1
0 0 1 0 −2 3

 ,
that is,

B−1 =
 1 2 −3

−1 1 −1
0 −2 3

 .
Using the identity(

AT · B)−1 = B−1 · (AT )−1 = B−1 · (A−1)T
and the knowledge of the inverse matrices computed before, we obtain

(
AT · B)−1 =

 1 2 −3
−1 1 −1
0 −2 3

 ·
 3 1 −7

−4 −2 11
3 2 −9



=
−14 −9 42

−10 −5 27
17 10 −49

 .
□



CHAPTER 2. ELEMENTARY LINEAR ALGEBRA

Right from the de�nition we see (thanks to the associativity of mul-

tiplication) that composition of mappings corresponds to matrix

multiplication in given order. Thus invertible matrices correspond

to bijective mappings.

>From this point of view the theorem 2.9 is very interesting.

We can see it as follows: the rank of the matrix de-

termines how big is the image of the wholeKn under
this mapping. Really, if A = P · Ek · Q with ma-

trix Ek with k ones as in 2.9, then the invertible Q

�rst just bijectively "shu�es" the n-dimensional vectors inKn, the
matrix Ek then "copies" �rst k coordinates and zeroes the n − k

remaining. This "k-dimensional" image then cannot be enlarged

by multiplying with P .

2.13. Solving systems of linear equations. We shall return to the

notions of dimension, linear independence and so on

in the third part of this chapter. But even now we can

notice what the already derived results say about the

solution of the system of linear equations. If we con-

sider the matrix of the system of equations and add to it the column

of the required results, we speak about the extended matrix of the

system. The approach we have presented before corresponds to se-

quential variable elimination in the equations and deletion of the

linearly dependent equations (these are simply a consequence of

other equations).

We have thus derived the complete information about the size

of the set of solutions of the system of linear equations, based on

the rank of the matrix of the system. If we are left with more non-

zero rows in the row echelon form of the extended matrix than in

original matrix of the system, then there cannot be any solution

(simply, we cannot hit the given value with the corresponding lin-

ear mapping). If the rank of both matrices is the same, then we

have in the backwards elimination exactly that many free parame-

ters as the di�erence between the number of variables n and the

rank h(A).

2. Determinants

In the �fth part of the �rst chapter we have seen (see 1.27)

that for square matrices of dimension 2 over the real

numbers there exists scalar function det, which as-

signs to the matrix a non-zero number if and only if

the inverse of the matrix exists. We did not say it in these words,

but you can check by yourself that it means indeed the same (see

the paragraphs starting with 1.26 and the formula (1.16)). Deter-

minant was also useful in another way, see the paragraphs 1.33 and

1.34, where we have derived that the volume of the parallelepiped

should be linearly dependent on every of the two vectors de�ning

it and it is useful to require the change of the sign when changing

the order of these vectors. Because determinant (and only deter-

minant) had these properties, up to a constant scalar multiple, we

stated that it corresponds to the de�nition of the volume. Now we

will see that we can do it similarly for every �nite dimension.

In this part we will work with arbitrary scalarsK and matrices

over these scalars. Our results about determinants will thus hold

for all commutative rings, notably also for integer matrices.

2.14. De�nition of the determinant. Let us remind that the bi-

jective mapping from the set X to itself is called permutation of
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2.14. Compute the inverse matrix of the matrix

A =
1 0 −2

2 −2 1
5 −5 2

 .
⃝

2.15. Compute the inverse matrix of the matrix
8 3 0 0 0
5 2 0 0 0
0 0 −1 0 0
0 0 0 1 2
0 0 0 3 5

 .
⃝

2.16. Determine whether there exists an inverse of the matrix

C =


1 1 1 1
1 1 −1 1
1 −1 1 −1
1 −1 −1 1

 .
If yes, then compute C−1 .

⃝
2.17. Compute A−1, if

(a) A =
(

1 i

−i 3

)
, while i is the imaginary unit

(b) A =
 1 −5 −3

−1 5 4
−1 6 2

.
⃝

2.18. Write the inverse matrix to the n× n matrix (n > 1)

A =



2 − n 1 · · · 1 1

1 2 − n
. . .

. . . 1
...

. . .
. . .

. . .
...

1
. . .

. . . 2 − n 1
1 1 · · · 1 2 − n

 .

⃝

C. Permutations

In order to be able to de�ne the key point of the matrix calculus,

that is, determinant, we must deal with permutations (bijections of a

�nite set) and their parities.

We shall use the two-row notation for permutations (see 2.14). In

the �rst row we list all elements of the given set, and every column
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the set X, see 1.7. If X = {1, 2, . . . , n}, the permutation can be

written putting the resulting ordering into a table:(
1 2 . . . n

σ (1) σ (2) . . . σ (n)

)
.

The element x ∈ X is called a �xed point of the permutation σ if

σ(x) = x. Permutation σ such that there exist exactly two distinct

elements x, y ∈ X such that σ(x) = y while all other elements

z ∈ X are �xed points, is called transposition, we denote it by

(x, y). Of course that for such transformation it holds also that

σ(y) = x, therefore the name.

In the dimension 2 the formula for determinant was simple �

take all possible products of two elements, one from

every column and every row of the matrix, give them

a sign such that switching two columns leads to the

change of the sign of the whole result, and sum all of

them (that is, all two):

A =
(
a b

c d

)
, detA = ad − bc.

In general, consider square matrices A = (aij ) of dimension

n over K. The formula for the determinant of the matrix A is also

composed of all possible products from elements from individual

rows and columns:

Definition of determinant

Determinant of the matrix A is a scalar detA = |A| de�ned
by the relation

|A| =
∑
σ∈6n

sgn(σ )a1σ(1) · a2σ(2) · · · anσ(n)

where 6n is the set of all possible permutations over {1, . . . , n}
and the sign sgn for a permutation σ will be described later. Each

of the expressions

sgn(σ )a1σ(1) · a2σ(2) · · · anσ(n)
is called a member of the determinant |A|.

In the dimensions 2 and 3 we can easily guess correct signs.

The product of the elements on the diagonal should bewith positive

sign and we want anti-symmetry when switching two columns or

rows.

Determinants in the dimension 2 and 3

For n = 2 it is, as we have expected∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21.

Similarly for n = 3∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 − a13a22a31 + a13a21a32

−a11a23a32 + a12a23a31 − a12a21a33.

This formula is called the Saarus rule.
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then corresponds to a tuple (preimage, image) in the given permuta-

tion. Because permutation is a bijection, the second row is indeed a

permutation (ordering) of the �rst row, in accordance with the de�ni-

tion from combinatorics.

2.19. Decompose the permutation

σ =
(

1 2 3 4 5 6 7 8 9
3 1 6 7 8 9 5 4 2

)
into a product of transpositions.

Solution. We �rst decompose the permutation into a product of inde-

pendent cycles: let us start with the �rst element (one) and look on

the second row to see what the image of one is. It is three. Now we

look on the column that starts with three, and �nd out that the image

of three is six, and so on. We carry on in this manner for so long until

we again reach the starting element (in this case it is one). We obtain

the following sequence of elements, which map to each other under

the given permutation:

1 7→ 3 7→ 6 7→ 9 7→ 2 7→ 1.

The mapping which maps elements in such a manner is called cycle

(see 2.16) which we denote (1, 3, 6, 9, 2).
Now we take any element not contained in the obtained cycle, and

start with him the same procedure as with one. We obtain the cycle

(4, 7, 5, 8). From the method is clear that the result does not depend

on the �rst obtained cycle. Each element from the set ({1, 2, . . . , 9})
appears in one of the obtained cycles, we can thus write:

σ = (1, 3, 6, 9, 2) ◦ (4, 7, 5, 8).

For cycles the decomposition into transpositions is simple, we

have

(1, 3, 6, 9, 2) = (1, 3)◦(3, 6)◦(6, 9)◦(9, 2) = (1, 3)(3, 6)(6, 9)(9, 2).

We thus obtain:

σ = (1, 3)(3, 6)(6, 9)(9, 2)(4, 7)(7, 5)(5, 8).

□
Remark. Let us note that the operation ◦ is composition of mappings,
thus it is necessary to carry out the composition "backwards", as we are

used to composition of mappings. Applying the given composition of

transposition for instance on the element two we can gradually write:

[(1, 3)(3, 6)(6, 9)(9, 2)](2) = [(1, 3)(3, 6)(6, 9)]((9, 2)(2)) =
[(1, 3)(3, 6)(6, 9)](9)

= [(1, 3)(3, 6)](6) = (1, 3)(3) = 1,
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2.15. Parity of permutation. How can we �nd a sign of a per-

mutation. We say that a tuple of element a, b ∈
X = {1, . . . , n} forms an inversion in permutationσ ,
if a < b and σ(a) > σ(b). Permutation σ is called

even (odd), if it contains even (odd) number of inver-

sions.

Parity of permutation σ is (−1)number of inversions and we de-

note it by sgn(σ ). This amounts to our de�nition of sign for com-
puting determinant. But we would like to know how to calculate

with parity. >From the following theorem about permutations it

is clear that the Saarus rule really gives the determinant for the

dimension 3.

Theorem. Over the setX = {1, 2, . . . , n} there are exactly n! dis-
tinct permutations. These can be ordered in a sequences such that

every two consequent permutations di�er in exactly one transposi-

tion. For any permutation there is such sequence starting with it.

Every transposition changes parity.

Proof. For one- and two-element X the claim is trivial. Let

us do induction over the number of dimensions.

Assume that the claim holds for all sets with n−1 elements and
consider a permutation σ(1) = a1, . . . , σ (n) = an. According to

the induction assumption all the permutations that end with an can

be obtained in a sequence where every two consequent permuta-

tions di�er in one transposition. There are (n− 1)! such permuta-
tions. On the last of them we use the transposition of σ(n) = an
with some element ai has not yet been at the last position, and once

again form a sequence of all permutations that end with ai . After

doing this procedure n-times, we obtain n(n−1)! = n! distinct per-
mutations � that is, all permutations on n elements. The resulting

sequence satis�es the condition.

Note that the last sentence of the theorem does not seem to be

useful for its application. But it is a very important part for proving

it by induction over the size of X.

It remains to prove the part of the theorem about parities. Con-

sider the ordering

(a1, . . . , ai, ai+1, . . . , an),

containing r inversions. Then clearly in the ordering

(a1, . . . , ai+1, ai, . . . , an)

there are either r − 1 or r + 1 inversions. Every transposition

(ai, aj ) is obtainable by doing (j − i) + (j − i − 1) = 2(j −
i) − 1 transpositions of neighbouring elements. Therefore doing

any transposition changes the parity. Also, we already know that

all permutations can be obtained by applying transpositions. □

We found out that applying a transposition changes the parity

of a permutation and any ordering of numbers {1, 2, . . . , n} can be
obtained through transposing of neighbouring elements. Therefore

we have proven

Corollary. On every �nite set X = {1, . . . , n} with n elements,

n > 1, there are exactly 1
2n! even and 1

2n! odd permutations.

If we compose two permutations, it means �rst doing all trans-

positions forming the �rst permutations and then all the transpo-

sitions forming the second. Therefore for any two permutations

σ, η : X → X we have

sgn(σ ◦ η) = sgn(σ ) · sgn(η)
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thus the mapping indeed maps the element 2 on the element 1 (it is

actually just the cycle (1, 3, 6, 9, 2) written in a di�erent way). When

writing a composition of permutations, we often omit the sign "◦" and
speak of product of permutations.

When writing the cycle we write only the elements on which the

cycle (that is, the mapping) nontrivially acts (that is, the element is

mapped to some other element). Fixed-points of the cycle are not

listed. Thus it is necessary to know on which set do we consider

the given cycle (mostly it will be clear from the context). The cycle

c = (4, 7, 5, 8) from the previous example is thus a mapping (permu-

tation), which, in the two-row notation, looks like this(
1 2 3 4 5 6 7 8 9
1 2 3 7 8 6 5 4 9

)
.

If the original permutation has some �xed-points they do not ap-

pear in the cycle decomposition.

Let us further note that the notation (1, 2, 3) gives the same cy-
cle as for instance (2, 3, 1) or (3, 1, 2). But the notation (1, 3, 2) is a
di�erent cycle.

2.20. Determine the parity of the following permutations:

σ =
(

1 2 3 4 5 6 7 8 9
3 1 6 7 8 9 5 4 2

)
τ =

(
1 2 3 4 5 6
2 4 6 1 5 3

)

Solution. >From the previous exercise we know that

σ = (1, 3)(3, 6)(6, 9)(9, 2)(4, 7)(7, 5)(5, 8). Its parity is given

by the parity of the number of transpositions in its decomposition

(which is, unlike the number of transposition in an arbitrary de-

composition, always the same). There are seven transpositions in

the decomposition, thus the permutation is odd. Even without the

knowledge of a decomposition of σ into transpositions we could

compute the number of tuples (a, b) ⊂ {1, 2, . . . , 9} × {1, 2, . . . , 9}
which are inverse with respect to σ (see 2.15): we go sequentially

through the second row in the two-row notation and for every number

k there we count the number of numbers which are smaller than k

and are located after k in the second row. It is not hard to realise

that the number of inversions in a given permutation is exactly the

number of tuples "bigger before smaller" in the second row. For σ we

compute (stepping through the second row): after three there is one

and two, thus we add 2; after one there is no smaller number and we
add 0; after six there is �ve, four and two, thus we add 4, similarly for
seven, eight and nine, for �ve we add 2, for four we add 1 and for two

nothing. Thus we have 17 inversions in total and the permutation is

indeed odd.



CHAPTER 2. ELEMENTARY LINEAR ALGEBRA

and also

sgn(σ−1) = sgn(σ ).

2.16. Decomposing permutations into cycles. A good tool for

practical work with permutations is the cycle decomposition.

Cycles

Permutation σ over the set X = {1, . . . , n} is called cycle of

length k, if we can �nd elements a1, . . . , ak ∈ X, 2 ≤ k ≤ n

such that σ(ai) = ai+1, i = 1, . . . , k − 1, while σ(ak) = a1 and

other elements inX are �xed-points of σ . Cycles of length two are

exactly transpositions.

Every permutation is a composition of cycles. Cycles of even

length have parity −1, cycles of odd length have parity 1.

The last claim has yet to be proven. If we de�ne for a given

permutation σ relation r such that two elements x,

y ∈ X are in relation if and only if σ r(x) = y for

some iteration of the permutation σ , then clearly it

is an equivalence relation (check it carefully!). Be-

cause X is �nite set, for some ℓ it must hold that σ ℓ(x) = x. If

we pick one equivalence class {x, σ (x), . . . , σ ℓ−1(x)} ⊂ X and

de�ne other elements to be �xed-points, we obtain a cycle. Evi-

dently, the original permutation X is then composition of all these

cycles for individual equivalence classes and it does not matter in

which order we compose the cycles.

For determining the parity we just have to note that cycles of

even length can be written as an odd number of transposition, there-

fore their parity is −1. Analogously, cycle of odd length can be

obtained using an even number of transpositions and therefore it

has parity 1.

2.17. Simple properties of determinant. Knowing the proper-

ties of permutations and their parities from previous

paragraphs allows us to derive quickly some basic

properties of determinant.

For every matrixA = (aij ) of the typem/n over

scalars fromKwe de�ne transpose ofA. It is a matrixAT = (a′
ij )

with elements a′
ij = aji which is of the type n/m.

Square matrix A with the property A = AT is called symmet-

ric. If it holds that A = −AT , then A is called antisymmetric.

Simple properties of determinant

Theorem. For every square matrixA = (aij ) the following claims

hold:

(1) |AT | = |A|
(2) If one of the rows contains only zero elements from K, then

|A| = 0.
(3) If a matrix B was obtained from A by transposing two rows,

then |A| = −|B|.
(4) If a matrix B was obtained from A by multiplying a row by a

scalar a ∈ K, then |B| = a |A|.
(5) If all elements of the k-th row inA are of the form akj = ckj +

bkj and all remaining rows in the matricesA, B = (bij ), C =
(cij ) are identical, then |A| = |B| + |C|.

(6) Determinant |A| does not change if we add to any row of A a

linear combination of other rows.
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Analogously we can decompose τ into either a product of transpo-

sitions (using the cycle decomposition):

τ = (1, 2, 4)(3, 6) = (1, 2)(2, 4)(3, 6),

or we count the number of inversions in τ : 1 + 2 + 3 + 0 + 1 = 7.
Anyway we �nd out that τ is also an odd permutation.

□

D. Determinants

Ensure on the following exercise that you can compute determi-

nants of the type 2 × 2 and 3 × 3 (using the Saarus rule):

2.21. Compute the determinant of the following matrices

(
1 2
2 1

)
,1 2 3

1 −1 2
3 2 2

  1 1 1
1 0 0

−2 0 1

.
2.22. Compute the determinant of the matrix

1 3 5 6
1 2 2 2
1 1 1 2
0 1 2 1

 .
Solution. We start by expanding the �rst column, where there is great-

est number (one) of zeroes. Gradually we get∣∣∣∣∣∣∣∣
1 3 5 6
1 2 2 2
1 1 1 2
0 1 2 1

∣∣∣∣∣∣∣∣ = 1 ·
∣∣∣∣∣∣
2 2 2
1 1 2
1 2 1

∣∣∣∣∣∣− 1 ·
∣∣∣∣∣∣
3 5 6
1 1 2
1 2 1

∣∣∣∣∣∣+ 1 ·
∣∣∣∣∣∣
3 5 6
2 2 2
1 2 1

∣∣∣∣∣∣
using the Saarus rule= −2 − 2 + 6 = 2.

□

2.23. Find all the values of argument a such that∣∣∣∣∣∣∣∣
a 1 1 1
0 a 1 1
0 1 a 1
0 0 0 −a

∣∣∣∣∣∣∣∣ = 1.

For complex a give either its algebraic or polar form.

Solution. We compute the determinant by expanding the �rst row of

the matrix:

D =

∣∣∣∣∣∣∣∣
a 1 1 1
0 a 1 1
0 1 a 1
0 0 0 −a

∣∣∣∣∣∣∣∣ = a ·
∣∣∣∣∣∣
a 1 1
1 a 1
0 0 −a

∣∣∣∣∣∣ ,
further we expand using the last row:

D = a · (−a)
∣∣∣∣a 1
1 a

∣∣∣∣ = −a2(a2 − 1).
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Proof. (1) The members of determinants |A| and |AT are

in bijective correspondence. To a member

sgn(σ )a1σ(1) · a2σ(2) · · · anσ(n) corresponds in
AT member (it does not depend on the order of

scalars)

sgn(σ )aσ(1)1 · aσ(2)2 · · · aσ(n)n =
= sgn(σ )a1σ−1 (1) · a2σ−1 (2) · · · anσ−1 (n),

and we have to ensure that this member has the correct sign. The

parity of σ and σ−1 is the same, therefore it really is a member in

the determinant of |AT | and the �rst claim is proven.

(2) This comes straight from the de�nition of determinant, be-

cause all its members contain from every row exactly one member.

If one of the rows is zero, all members of the determinant are zero.

(3) In all members of |B| the only change in comparison with
|A| is an addition of one transposition, therefore all the signs will
be reversed.

(4) This is straight from the de�nition, because members of

|B| are members of |A| multiplied by the scalar a.
(5) In every member of |A| there is exactly one element from

the k-th row of the matrix A. Thanks to the distributive law for

multiplication and addition in K, the claim follows directly from

the de�nition of determinant.

(6) If there are two identical rows in A, among the members

of determinant there are always two identical up to the sign. There-

fore in this case |A| = 0. Thanks to the claim (5), we can add to the

given row any other row without changing the value of the deter-

minant. Thanks to the claim (5), we can add even a scalar multiple

of any other row. □

2.18. Corollaries for computation. Thanks to the previous theo-

rem, we can using elementary row transforma-

tions bring every square matrixA into row ech-

elon form, without changing the value of its de-

terminant. We just have to be careful and add

to rows only linear combinations of other rows.

Computing determinants using elimination

If the matrix A is in row echelon form, then every member

of |A| at least one element lies below the diagonal, except for the

case that all elements lie on the diagonal. Therefore the diagonal

member is the only non-zero one. Thus we see that the determinant

of such matrix in row echelon form is

|A| = a11 · a22 · · · · ann.
Previous theorem gives us very e�ective method for computing

determinants using Gauss elimination method, see the paragraph

2.7.

Let us note a nice corollary of the �rst claim of the previous

theorem about the equality of the determinant of the

matrix and its transpose. It ensures that whenever we

prove some claim about determinants formulated in

terms of rows of the corresponding matrix, we imme-

diately obtain an analogous claim in terms of the columns. For

instance, we can immediately formulate all the claims (2)�(6) for
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Together we obtain the following condition for a: a4 − a2 + 1 = 0.
Substituting t = a2 we have t2 − t + 1 with roots t1 = 1+i√3

2 =
cos(π/3) + i sin(π/3), t1 = 1−i√3

2 = cos(π/3) − i sin(π/3) =
cos(−π/3) + i sin(−π/3), from where we obtain four possible val-

ues for the parameter a: a1 = cos(π/6) + i sin(π/6) = √
3/2 + i/2,

a2 = cos(7π/6) + i sin(7π/6) = −√
3/2 − i/2, a3 = cos(−π/6) +

i sin(−π/6) = √
3/2 − i/2, a4 = cos(5π/6) + i sin(5π/6) =

−√
3/2 + i/2. □

2.24. Vandermonde determinant. Prove the formula for the

so-called Vandermonde determinant, that is, determinant of the

Vandermonde matrix:

Vn =

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
a1 a2 . . . an
a2

1 a2
2 . . . a2

n
...

...
...

an−1
1 a2 . . . an−1

n

∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤n

(aj − ai),

where a1, . . . , an ∈ R and on the right-hand side of the equation there

is the product of all terms aj − ai where j > i.

Solution.

We show a really beautiful proof by induction, which �lls the heart

of any mathematician with supreme joy. Consider the determi-

nant Vn to be a polynomial P in the variable an. From the

de�nition of the determinant it follows that this polynomial

is of degree n − 1 in this variable and that the numbers a1,. . . ,an−1

are its roots: if we substitute in the Vandermonde matrix Vn into the

last column formed by the powers of an any of the previous columns

formed by the powers of the number ai , the value of this changed de-

terminant is actually the value of the Vandermonde determinant (seen

as the polynomial in the variable an) at the point ai . However, that

determinant is clearly zero, because determinant of matrix with two

identical, that is, linearly dependent columns is zero. That means that

ai is a root of P . Thus we have n− 1 roots of a polynomial of degree

k, thus it must be the list of all its roots and P must be of the form

P = C(an − a1)(an − a2) · · · (an − an−1) where C is some constant

� the leading term of the polynomial P . If we consider computation

of the determinant Vn using the last column expansion, we see that C

is the coe�cient at an−1
n , that is V (n − 1). Since for n = 2, clearly

V (2) = a2 − a1, the laim for Vn holds by induction. □
Alternative solution. (see Hints and solutions to the exercises)
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addition of linear combinations of columns. We can use it for de-

riving the following formula for direct calculation of solutions for

systems of linear equations:

Cramer rule

Consider the system of n linear equations for n variables

with matrix of the system A = (aij ) and the column of values

b = (b1, . . . , bn), that is, in matrix notation we are solving the

equation A · x = b. If there exists the inverse A−1, then individual

components of the unique solution x = (x1, . . . , xn) given by the

relation

xi = |Ai ||A|−1,

where the matrix Ai arises from the matrix of the system A by

exchanging the i-th column for the column b of values.

Really, as we have already seen, inverse of the matrix of the

system exist if and only if the system has unique solution. If we

have such solution x, we can plug instead of the column b into the

matrix Ai the corresponding linear combination of the columns of

the matrix A, that is the values bi = ai1x1 + · · · + ainxn. Then,

by subtracting the xk-multiples of all other columns, in the i-th

column remains just the xi-multiple of the original column of A.

The number xi can thus be brought in front of the determinant to

obtain the equation |Ai ||A|−1 = xi |A||A|−1 = xi , which is the

claim.

Let us further note that the properties (3)�(5) from the previ-

ous theorem say that determinant, as a mapping which assign to

n vectors of dimension n (rows or columns of the matrix) a scalar,

is antisymmetric mapping linear in every argument, exactly as we

required in analogy to the 2-dimensional case.

2.19. Further properties of the determinant. Later we will see

that exactly as in the dimension 2 the determinant

of the matrix equals to the (oriented) volume of the

parallelepiped determined by the columns of the ma-

trix. We shall also see that considering the mapping

x 7→ A · x given by the square matrix A over Rn we can see the

determinant of this matrix as expression of the ratio between the

volume of the parallelepipeds given by the vectors x1, . . . xn and

their images A · x1, . . . , A · xn. Because mapping composition

x 7→ A · x 7→ B · (A · x) corresponds to matrix multiplication, the
so-called Cauchy theorem is easy to understand:

Cauchy theorem

Theorem. Let A = (aij ), B = (bij ) be square matrices of dimen-

sion n over the ring of scalars K. Then |A · B| = |A| · |B|.

Not that from the Cauchy theorem and the representation of

the elementary row transformations by multiplication by suitable

matrices (see 2.8) we immediately have the claim (2), (3) and (6)

from the theorem 2.17.

We know derive this theorem in a purely algebraic way just

because the previous argumentation based on geomet-

rical intuition could hardly work for arbitrary scalars.

The base tool is the so-called determinant expansion

using one or more of the rows or columns. We will

also need a little of technical preparation. Reader who is not fond

of too much abstraction can skip these parts and absorb only the

statement of the Laplace theorem and its corollaries.
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2.25. Find out whether the matrix
3 2 −1 2
4 1 2 −4

−2 2 4 1
2 3 −4 8


is invertible.

Solution. Matrix is invertible (that is, there is an inverse matrix) when-

ever we can transform it by elementary row transformations into the

unit matrix. That is equivalent for instance to the property that it has

non-zero determinant. That we can compute using the Laplace Theo-

rem (2.32) by expanding for instance the �rst row:∣∣∣∣∣∣∣∣
3 2 −1 2
4 1 2 −4

−2 2 4 1
2 3 −4 8

∣∣∣∣∣∣∣∣ =

= 3 ·
∣∣∣∣∣∣
1 2 −4
2 4 1
3 −4 8

∣∣∣∣∣∣− 2 ·
∣∣∣∣∣∣

4 2 −4
−2 4 1
2 −4 8

∣∣∣∣∣∣+ (−1) ·
∣∣∣∣∣∣

4 1 −4
−2 2 1
2 3 8

∣∣∣∣∣∣
−2 ·

∣∣∣∣∣∣
4 1 2

−2 2 4
2 3 −4

∣∣∣∣∣∣
= 3 · 90 − 2 · 180 + (−1) · 110 − 2 · (−100) = 0,

that is, the given matrix is not invertible. □

E. Systems of linear equations for the second time

We have already encountered systems of linear equations at the

beginning of the chapter. Now we will deal with them in more detail.

Let us �rst use the advantage for computing the solution of the system

of linear equations given by the inverse of the matrix.

2.26. Participants of a trip. There were 45 participants of a two-day

bus trip. First day the fee for a watchtower was C30 for an adult, C16
for a child and C24 for a senior. In total, the fee was C1 116. On the
second day, the fee for a bus with a palace and botanical garden tour

was C40 for an adult, C24 c for a child and C34 for a senior. In total,

the fee was C1 542. How many adults, children and seniors were there

among the participants?

Solution. Let us introduce the variables

x giving the �number of adults�;

y giving the �number of children�;

z giving the �number of seniors�;

There were 45 participants, therefore

x + y + z = 45.
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2.20. Minors of the matrix. When investigating matrices and

their properties we often work only with parts

of the matrices. Therefore we need some new

notions.
submatrices and minors

Let A = (aij ) be a matrix of the type m/n and let 1 ≤ i1 <

. . . < ik ≤ m, 1 ≤ j1 < . . . < jl ≤ n be �xed natural numbers.

Then the matrix

M =
ai1j1 ai1j2 . . . ai1jℓ

...
...

aikj1 aikj2 . . . aikjℓ


of the type k/ℓ is called a submatrix of the matrixA determined by

the rows i1, . . . , ik and columns j1, . . . , jℓ. The remaining (m −
k) rows and (n − l) columns determine a matrix M∗ of the type

(m−k)/(n−ℓ), which is called complementary submatrix toM in

A. When k = ℓ we de�ne |M|, which is called subdeterminant or
minor of the order k of the matrix A. If m = n, then when k = ℓ

we have also M∗ square, then |M∗ | is called minor complement

|M|, or complementary minor of the submatrixM in the matrix A.

The scalar

(−1)i1+···+ik+j1+···+jl · |M∗ |
is called algebraic complement of the minor |M|.

Submatrices formed by the �rst k rows and columns are called

leading principal submatrices, and their determinants leading prin-

cipal minors of the matrix A. IF we choose k sequential rows and

columns starting with the i-th row, we speak of principal matrices

and principal minors.

Specially, when k = ℓ = 1, m = n we call the corresponding

complementary minor the algebraic complement Aij of the ele-

ment aij of the matrix A.

2.21. Laplace determinant expansion. If the principal minor

|M| of the matrix A is of the order k, then directly

from the de�nition of the determinant we see that

each of the individual k!(n − k)! members in the

product of |M| with its algebraic complement is a

member of |A|.
In general, consider a submatrix M, that is, a square matrix

given by the rows i1 < i2 < · · · < ik and columns j1 < · · · < jk .

Then using (i1 − 1) + · · · + (ik − k) exchanges of neighbouring

rows and (j1 − 1) + · · · + (jk − k) exchanges of neighbouring

columns in A we can transform this submatrixM into a principal

submatrix and the complementary matrix gets transformed into its

complementary matrix. The whole matrixA gets transformed into

a matrix B for which it holds thanks to 2.17 and the de�nition of

determinant that |B| = (−1)α|A|, where α = ∑k
h=1(ih − jh) −

2(1 + · · · + k). Therefore we have checked:

Proposition. If A is a square matrix of dimension n and |M| is its
minor of the order k < n, then the product of any member of |M|
with any member of its algebraic complement is a member of |A|.

This claim suggests the intuition than using some products of

smaller determinants we could express the determinant of the ma-

trix itself. We see that |A| contains exactly n! distinct members,
exactly one for each permutation. These members are mutually

distinct as polynomials in elements of (a general indeterminate)
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The total fee for the entry into the watchtower and the botanical garden

expressed in our variables gives 30x + 16y + 24z and 40x + 24y +
34z respectively. But we know the actual values (C1 116 and C1 542).
Thus we have

30x + 16y + 24z = 1 116,
40x + 24y + 34z = 1 542.

We write the system of three linear equations in the matrix notation as 1 1 1
30 16 24
40 24 34

 ·
xy
z

 =
 45

1 116
1 542

 .
The solution isxy

z

 = 1
6

 16 5 −4
30 3 −3

−40 −8 7

 ·
 45

1 116
1 542

 = 1
6

132
72
66

 =
22

12
11

 ,
because  1 1 1

30 16 24
40 24 34

−1

= 1
6

 16 5 −4
30 3 −3

−40 −8 7

 .
Expressed in words, there were 22 adults, 12 children and 11 seniors.

□

2.27. Using the inverse matrix, compute the solution of the system

x1 + x2 + x3 + x4 = 2,

x1 + x2 − x3 − x4 = 3,

x1 − x2 + x3 − x4 = 3,

x1 − x2 − x3 + x4 = 5.

⃝
But what if the matrix of the system is not invertible? Then we

cannot use the inverse matrix for solving the system. Such a system

then always has more than one solution. As the reader may know, a

system of linear equations either has no solution, has one solution or

has in�nitely many solutions (for instance, it cannot have exactly two

solutions). The space of the solutions is either a vector space (in the

case when the right-hand side of the system is zero, we speak of homo-

geneous system of linear equations) or an a�ne space, see 4.1 (in the

case when the right-hand side of at least one of the equations is non-

zero, we speak of non-homogeneous system of linear equations). We

demonstrate possible types of solutions of a system of linear equations

by examples.
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matrixA. If we can show that there are exactly that many mutually

distinct expressions from the previous claim, we obtain the deter-

minant |A| from their sum.

It remains to show that the members of the product |M| · |M∗ |
contain exactly n! distinct members from |A|.

>From the chosen k rows we can choose
(
n
k

)
minors M and

using the previous lemma each of the k!(n − k)! members in the

products of |M| with their algebraic complements is a member of
|A|. But for distinct choices of M we can never obtain the same

members and the individual members in (−1)i1+···+ik+j1+···+jl ·
|M| · |M∗ | are also mutually distinct. Therefore we have exactly

the required number k!(n− k)!
(
n
k

) = n! of members.
Thus we have proven:

Laplace theorem

Theorem. Let A = (aij ) be a square matrix of dimension n over

arbitrary ring of scalars with k rows �xed. Then |A| is a sum of

all
(
n
k

)
products (−1)i1+···+ik+j1+···+jl · |M| · |M∗ | of minors of the

order k chosen among the �xed rows with their algebraic comple-

ments.

Laplace theorem transforms the computation of |A| into the

computation of determinants of lower dimension. This method

of computation is called Laplace expansion by the chose rows (or

columns). For instance, the expansion of the i-th row or j -th col-

umn is:

|A| =
n∑
j=1

aijAij

where Aij denotes the algebraic complement of the element aij
(that is, minor of order one).

In practical computation it is often e�cient to combine the

Laplace expansion with a direct method of linear combination ad-

dition.

2.22. Proof of Cauchy theorem. The theorem is based on a

clever but elementary application of the Laplace the-

orem. We just use the Laplace expansion twice on

particular positions in the matrix.

Let us �rst consider the following matrix H of

the dimension 2n (we are using the so-called block symbolics, that
is, we write the matrix as if composed of the (sub)matrices A, B,

and so on).

H =
(
A 0

−E B

)
=



a11 . . . a1n
...

...

an1 . . . ann

0 . . . 0
...

...

0 . . . 0
−1 0

. . .

0 −1

b11 . . . b1n
...

...

bn1 . . . bnn


Laplace expansion of the �rst n rows gives us |H | = |A| · |B|.

Nowwe add sequentially to the last n rows linear combinations

of the �rst n columns in order to obtain a matrix with zeros in the
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2.28. For what values of parameters a, b ∈ R has the system of linear

equations

x1 − ax2 − 2x3 = b,

x1 + (1 − a)x2 = b − 3,
x1 + (1 − a)x2 + ax3 = 2b − 1

(a) exactly one solution;

(b) no solution;

(c) at least 2 solutions?

Solution. We rewrite it, as usual, in the extended matrix, and trans-

form: 1 −a −2 b

1 1 − a 0 b − 3
1 1 − a a 2b − 1

 ∼
 1 −a −2 b

0 1 2 −3
0 1 a + 2 b − 1


∼
 1 −a −2 b

0 1 2 −3
0 0 a b + 2

 .
At the �rst step we subtract the �rst row from the second and the third;

and at the second step we subtract the second from the third. We see

that the system has a unique solution (determined by backward elim-

ination) if and only if a ̸= 0. For a = 0, the third column is a zero

column. If a = 2 and b = −2, we have a zero row, and choosing

x3 ∈ R as a parameter gives in�nitely many distinct solutions. For

a = 0 and b ̸= −2 the last equation a = b+ 2 cannot be satis�ed and

the system has no solution.

Let us note that for a = 0, b = −2 the solutions are

(x1, x2, x3) = (−2 + 2t, −3 − 2t, t) , t ∈ R

and for a ̸= 0 the unique solution is the triple(−3a2 − ab − 4a + 2b + 4
a

, −2b + 3a + 4
a

,
b + 2
a

)
.

□

2.29. Determine the number of solutions for the systems

(a)

12x1 + √
5x2 + 11x3 = −9,

x1 − 5x3 = −9,
x1 + 2x3 = −7;

(b)
4x1 + 2x2 − 12x3 = 0,
5x1 + 2x2 − x3 = 0,

−2x1 − x2 + 6x3 = 4;
(c)

4x1 + 2x2 − 12x3 = 0,
5x1 + 2x2 − x3 = 1,

−2x1 − x2 + 6x3 = 0.
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bottom right corner. We obtain

K =



a11 . . . a1n
...

...

an1 . . . ann

c11 . . . c1n
...

...

cn1 . . . cnn
−1 0

. . .

0 −1

0 . . . 0
...

...

0 . . . 0


.

The elements of the submatrix on the top right part must satisfy

cij = ai1b1j + ai2b2j + · · · + ainbnj ,

that is, they are exactly the members of the productA·B and |K| =
|H |. The expansion of the last n columns gives us
|K| = (−1)n+1+···+2n|A · B| = (−1)2n·(n+1) · |A · B| = |A · B|.
This proves the Cauchy theorem.

2.23. Determinant and the inverse matrix. Assume �rst that

there is an inverse matrix of the matrix A, that is,

A · A−1 = E. Since the unit matrix always satis-

�es |E| = 1, for every invertible matrix we have that
|A| is an invertible scalar and thanks to the Cauchy

theorem we have |A−1| = |A|−1.

But we can say more, combining the Laplace and Cauchy the-

orem.

Inverse matrix determinant formula

For any square matrix A = (aij ) of dimension n we de�ne a

matrix A∗ = (a∗
ij ), where a

∗
ij = Aji are algebraic complements

of the elements aji in A. The matrix A∗ is called algebraically

adjoint matrix of the matrix A.

Theorem. For every square matrix A over a ring of scalars K we

have that

(2.2) AA∗ = A∗A = |A| · E.
Notably,

(1) A−1 exists as a matrix over a ring of scalars K if and only if

|A|−1 exists in K.

(2) If A−1 exists, then A−1 = |A|−1 · A∗.

Proof. As we have already mentioned, Cauchy theorem

shows that the existence of A−1 implies the invertibility of

|A| ∈ K.
For arbitrary square matrix A we can directly compute A ·

A∗ = (cij ), where

cij =
n∑
k=1

aika
∗
kj =

n∑
k=1

aikAjk .

If i = j it is exactly the Laplace expansion of |A| of i-th row. If

i ̸= j it is expansion of determinant of the matrix where the i-th

and j -th row is the same, therefore cij = 0. This implies that

A · A∗ = |A| · E and we have proven the equality (2.2).

Let us further assume that |A| is an invertible scalar. If we

repeat the previous computation forA∗·A, we obtain |A|−1A∗·A =
E. Therefore our computation really gives the inverse matrix ofA,

as claimed in the theorem. □
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Solution. Vectors (1, 0,−5), (1, 0, 2) are clearly linearly independent
(they are not multiples of each other) and the vector (12,

√
5, 11) can-

not be their linear combination (its second coordinate is non-zero),

therefore the matrix whose rows are these three linearly independent

vectors is invertible. Thus the system for the case (a) has exactly one

solution.

For the cases (b) and (c) it is enough to note that

(4, 2,−12) = −2(−2,−1, 6).

In the case (b) adding the �rst equation to the third multiplied by two

gives 0 = 8, no solution for the system; in the case (c) the third equa-
tion is a multiple of the �rst � the system has clearly in�nitely many

distinct solutions. □

2.30. Find (any) linear system, whose set of solutions is exactly

{(t + 1, 2t, 3t, 4t); t ∈ R}.

Solution. Such a system is for instance

2x1 − x2 = 2, 2x2 − x4 = 0, 4x3 − 3x4 = 0.

These solutions are satis�ed exactly for every t ∈ R and vectors

(2,−1, 0, 0), (0, 2, 0,−1), (0, 0, 4,−3)

giving the left-hand sides of the equations are clearly linearly indepen-

dent (the set of solutions contains a single parameter). □

2.31. Determine the rank of the matrix

A =


1 −3 0 1
1 −2 2 −4
1 −1 0 1

−2 −1 1 −2

 .
Then determine the number of solutions of the system of linear equa-

tions
x1 + x2 + x3 − 2x4 = 4,

−3x1 − 2x2 − x3 − x4 = 5,
+ 2x2 + x4 = 1,

x1 − 4x2 + x3 − 2x4 = 3
and all solutions of the system

x1 + x2 + x3 − 2x4 = 0,
−3x1 − 2x2 − x3 − x4 = 0,

+ 2x2 + x4 = 0,
x1 − 4x2 + x3 − 2x4 = 0

and of the system

x1 − 3x2 = 1,
x1 − 2x2 + 2x3 = −4,
x1 − x2 = 1,

−2x1 − x2 + x3 = −2.
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As a direct corollary of this theorem we can once again prove

the Cramer rule for solving the systems of linear equations, see

2.18. Really, for the solution of the system A · x = b we just need

to read in the equation

x = A−1 · b = |A|−1A∗ · b
the last expression as the Laplace expansion of the determinant of

the matrixAi which arose through the exchange of the i-th column

of A for the column b.

3. Vector spaces and linear mappings

2.24. Abstract vector spaces. Let us go back for a while to the

systems of m linear equations of n variables from 2.3

and let us further assume that the system is homoge-

neous A · x = 0, that is,a11 . . . a1n
...

...

am1 . . . amn

 .
x1
...

xn

 =
0
...

0

 .
Thanks to the distributivity of the matrix multiplication it is

clear that the sum of two solutions x = (x1, . . . , xn) and y =
(y1, . . . , yn) satis�es

A · (x + y) = A · x + A · y = 0

and is thus also a solution. Similarly, a scalar multiple a · x is also
a solution. The set of all solutions of a �xed system of equations is

therefore closed on vector addition and scalar multiplication. That

are the basic properties of vectors of dimension n in Kn, see 2.1.
Now we have the vectors in the solution space with n coordinates

and the "dimension" of this space is given by the di�erence of the

number of variables and the rank of the matrix A. Thus we can

easily have with the solution of 1000 coordinates only one or two

free parameters. Thus the whole solution space will behave as a

plane or a line, as we have already seen in 1.25 at the page 25.

Already in the paragraph 1.9 we have encountered a more in-

teresting example of a space of all solutions of a homogeneous

linear di�erence equation of �rst order. All solutions have been ob-

tained from a single one by scalarmultiplication and are also closed

under addition and scalar multiples. These "vectors" of solutions

are in�nite sequences of numbers, although we intuitively expect

that the "dimension" of the whole space of solutions should be one.

Therefore we need a more general de�nition of vector space and its

dimension:

Vector space definition

Vector space V over �eld of scalarsK is a set where we de�ne

the operations

• addition, which satis�es the axioms (KG1)�(KG4) from the

paragraph 1.1 on the page 4,

• scalar multiplication, for which the axioms axioms (V1)�(V4)

from the paragraph 2.1 on the page 72 hold.

Let us remind our simple notational convention: scalars are

usually denoted by letters from the beginning of the alphabet, that

is, a, b, c, . . . , while for vectors we shall use letters from the end,

that is, u, v, w, x, y, z. Usually, x, y, z will denote n-tuples of
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Solution. Because detA = −10, that is, non-zero, the columns of A
are linearly independent, and thus the rank equals to the dimension.

The �rst of the three given system is given by the extended matrix
1 1 1 −2 4

−3 −2 −1 −1 5
0 2 0 1 1
1 −4 1 −2 3

 .
But the left-hand side is exactlyAT with determinant |AT | = |A| ̸= 0.
Therefore there exists a matrix

(
AT
)−1

and the system has a unique

solution

(x1, x2, x3, x4)
T = (

AT
)−1 · (4, 5, 1, 3)T .

The second of the systems has the same left-hand side (given by

the matrixAT ) as the �rst. Because the numbers on the right-hand side

of the equations in the system do not in�uence the number of solutions

and because every homogeneous system has a zero solution, the only

solution of the second system is given by

(x1, x2, x3, x4) = (0, 0, 0, 0) .

The third system is given by the extended matrix
1 −3 0 1
1 −2 2 −4
1 −1 0 1

−2 −1 1 −2

 ,
which is the matrix A (only the last column is given after the vertical

bar). If we try to simplify the matrix into the row echelon form, we

must obtain a row(
0 0 0 a

)
, kde a ̸= 0.

We know, that the column on the right-hand side is not a linear combi-

nation of the columns on the left-hand side (the rank of the matrix is

4). This system thus has no solution. □

2.32. Let

A =
4 5 1

3 4 0
1 1 1

 , x =
x1
x2
x3

 , b =
b1
b2
b3


be given. Find real numbers b1, b2, b3 such that the system of linear

equations A · x = b has:

(a) in�nitely many solutions;

(b) unique solution;

(c) no solution;

(d) exactly four solutions.

Solution.

For the readers it is de�nitely no problem to �nd correct values in

the cases a) and c) (it is enough to choose b1 = b2 + b3 in the case
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scalars. For completeness, the letters from the middle of the al-

phabet, for instance i, j, k, ℓ, will mostly denote indices in expres-

sions.

In order to gain some practice in formal approach, we check

simple properties of vectors, which are trivial

for n-tuples for scalars, but not so evident for

general vectors.

2.25. Proposition. Let V be a vector space over a �eld of scalars

K, further take a, b, ai ∈ K, and vectors u, v, uj ∈ V . Then
(1) a · u = 0 if and only if a = 0 or u = 0,
(2) (−1) · u = −u,
(3) a · (u− v) = a · u− a · v,
(4) (a − b) · u = a · u− b · u,
(5)

(∑n
i=1 ai

) · (∑m
j=1 uj

) = ∑n
i=1

∑m
j=1 ai · uj .

Proof. We can expand

(a + 0) · u (V 2)= a · u+ 0 · u = a · u
which according to the axiom (KG4) ensures 0 · u = 0. Now

u+ (−1) · u (V 2)= (1 + (−1)) · u = 0 · u = 0

and thus −u = (−1) · u. Further,
a · (u+ (−1) · v) (V 2,V 3)= a · u+ (−a) · v = a · u− a · v,

Which proves (3). It holds that

(a − b) · u (V 2,V 3)= a · u+ (−b) · u = a · u− b · u
which proves (4). The property (5) follows using induction with

(V2) and (V1).

It remains to prove (1): a · 0 = a · (u− u) = a · u− a · u = 0,
which along with the �rst derived proposition in this proof proves

one implication. For the other implication we �rst need the axiom

of the �eld for scalars and the axiom (V4) for vector spaces: if

p · u = 0 and p ̸= 0, then u = 1 · u = (p−1 · p) · u = p−1 · 0 =
0. □

2.26. Linear (in)dependence. In the paragraph 2.11 we have

worked with the so-called linear combinations of rows of a matrix.

With general vectors we will work analogously:

Linear combinations and independence

Expression of the form a1 · v1 + · · · + ak · vk is called linear
combination of vectors v1, . . . , vk ∈ V .

Finite sequence of vectors v1, . . . , vk is called linearly inde-

pendent, if the only zero linear combination is the one with all

coe�cients zero, that is, for scalars a1, . . . , ak ∈ K holds that

a1 · v1 + · · · + ak · vk = 0 H⇒ a1 = a2 = · · · = ak = 0.

It is clear that in independent sequence of vectors all vectors are

mutually distinct and nonzero.

The set of vectorsM ⊂ V in vector space V over K is called

linearly independent, if every �nite k-tuple of vectors v1, . . . , vk ∈
M is linearly independent.

The set of vectorsM is linearly dependent, if it is not linearly

independent.
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a) and b1 ̸= b2 + b3 in the case c)). Let us further note that |A| = 0,
thus the system either has in�nitely many or no solution. In general,

the set of solutions of a homogeneous system of linear equations is a

vector space, thus the variant d) is a priori excluded. The variant b) is

possible only for a system with a regular matrix (the only solution is

then a zero vector).

□

2.33. Solve the system of homogeneous linear equations given by the

matrix 
0

√
2

√
3

√
6 0

2 2
√

3 −2 −√
5

0 2
√

5 2
√

3 −√
3

3 3
√

3 −3 0

 .
⃝

2.34. Determine all solutions of the system

x2 + x4 = 1,
3x1 − 2x2 − 3x3 + 4x4 = −2,
x1 + x2 − x3 + x4 = 2,
x1 − x3 = 1.

⃝
2.35. Solve

3x − 5y + 2u + 4z = 2,
5x + 7y − 4u − 6z = 3,
7x − 4y + + 3z =

⃝
2.36. Decide whether the system of linear equations

3x1 + 3x2 + x3 = 1,
2x1 + 3x2 − x3 = 8,
2x1 − 3x2 + x3 = 4,
3x1 − 2x2 + x3 = 6

of three variables x1, x2, x3 is solvable. ⃝
2.37. Determine the number of solutions of 2 systems of 5 linear equa-

tions

AT · x = (1, 2, 3, 4, 5)T , AT · x = (1, 1, 1, 1, 1)T

where

x = (x1, x2, x3)
T a A =

3 1 7 5 0
0 0 0 0 1
2 1 4 3 0

 .
⃝

2.38. Determine the solution of the system of linear equations

ax1 + 4x2 +2 x3 = 0,
2x1 + 3x2 − x3 = 0,
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Directly from the de�nition we have that a nonempty subsetM

of vectors from a vector space over a �eld of scalars

K is dependent if and only if one of its vectors can be

expressed as a �nite linear combination using other

vectors in M. Really, at least one of the coe�cients

in the corresponding zero linear combination must be nonzero, and

since we are over a �eld of scalars, we can multiply whole combi-

nation by the inverse of this nonzero coe�cient and thus express

its corresponding vector using others.

Every subset of a linearly independent setM is clearly also lin-

early independent (we require the same conditions on a smaller set

of vectors). Similarly, we can see thatM ⊂ V is linearly indepen-

dent if and only if every �nite subset ofM is linearly independent.

2.27. Generators and subspaces. SubsetM ⊂ V is called vector

subspace if it along with restricted operations of ad-

dition and scalar multiplication forms a vector space.

That is, we require

∀a, b ∈ K, ∀v,w ∈ M, a · v + b · w ∈ M.
Let us investigate a couple of cases: The space ofm-tuples of

scalars Rm with coordinate-wise addition and multiplication is a

vector space over R, but also a vector space over Q. For instance
form = 2, the vectors (1, 0), (0, 1) ∈ R2 are linearly independent,

because from

a · (1, 0)+ b · (0, 1) = (0, 0)

follows a = b = 0. Further, the vectors (1, 0), (
√

2, 0) ∈ R2

are linearly dependent over R, because
√

2 · (1, 0) = (
√

2, 0), but
over Q they are linearly independent! Over R these two vectors

"generate" one-dimensional subspace, while over Q the subspace

is "bigger".

Polynomials of degree at most m form a vector space Rm[x].
We can see the polynomials asmappings f : R → R and de�ne the

addition and scalar multiplication like this: (f + g)(x) = f (x)+
g(x), (a · f )(x) = a · f (x). Polynomials of any degree also form
a vector space R∞[x] and Rm[x] ⊂ Rn[x] is a vector subspace
for any m ≤ n ≤ ∞. Subspaces are also for instance all even

polynomials or odd polynomials, that is, polynomials satisfying

f (−x) = ±f (x).
In a complete analogy as with polynomials we can de�ne a

structure of vector space on a set of all mappings R → R or of

all mappings M → V of an arbitrary �xed set M into the vector

space V .

Because the condition in the de�nition of subspace consists

only of universal quanti�ers, the intersection of subspaces

is still a subspace. We can clearly see it also directly: Let

Wi , i ∈ I , be vector subspaces in V , a, b ∈ K, u, v ∈
∩i∈IWi . Then for all i ∈ I , a · u + b · v ∈ Wi , but that

means that a · u+ b · v ∈ ∩i∈IWi .

Notably, the intersections ⟨M⟩ of all subspaces W ⊂ V that

contain some given set of vectorsM ⊂ V is a subspace.

We say that a set M generates the subspace ⟨M⟩, or that the
elements ofM are generators of the subspace ⟨M⟩.

Let us again formulate a few simple claims about subspace

generation:

Proposition. For every nonempty setM ⊂ V we have that
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depending on the parameter a ∈ R. ⃝
2.39. Depending on the parameter a ∈ R determine the number of

solutions of the system
4 1 4 a

2 3 6 8
3 2 5 4
6 −1 2 −8



x1
x2
x3
x4

 =


2
5
3

−3

 .
⃝

2.40. Decide whether there is a system of homogeneous linear equa-

tions of three variables whose set of solutions is exactly

(a) {(0, 0, 0)};
(b) {(0, 1, 0), (0, 0, 0), (1, 1, 0)};
(c) {(x, 1, 0); x ∈ R};
(d) {(x, y, 2y); x, y ∈ R}.

⃝
2.41. Solve the system of linear equations, depending on the real pa-

rameters a, b.

x + 2y + bz = a

x − y + 2z = 1

3x − y = 1.

⃝
2.42. Find the algebraically adjoint matrix and the inverse of the ma-

trix

A =


1 0 2 0
0 3 0 4
5 0 6 0
0 7 0 8

 .
Solution. The adjoint matrix is

A∗ =


A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44


T

,

whereAij is the algebraic complement of the element aij of the matrix

A, that is, the product of the number (−1)i+j and the determinant of
the matrix given by A without the i-th row and j -th column. We have

A11 =
∣∣∣∣∣∣
3 0 4
0 6 0
7 0 8

∣∣∣∣∣∣ = −24, A12 = −
∣∣∣∣∣∣
0 0 4
5 6 0
0 0 8

∣∣∣∣∣∣ = 0, . . .

A43 = −
∣∣∣∣∣∣
1 0 0
0 3 4
5 0 0

∣∣∣∣∣∣ = 0, A44 =
∣∣∣∣∣∣
1 0 2
0 3 0
5 0 6

∣∣∣∣∣∣ = −12.
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(1) ⟨M⟩ = {a1 · u1 + · · · + ak · uk; k ∈ N, ai ∈ K, uj ∈ M, j =
1, . . . , k};

(2) M = ⟨M⟩ if and only ifM is a vector subspace;

(3) if N ⊂ M then ⟨N⟩ ⊂ ⟨M⟩ is a vector subspace
Subspace ⟨∅⟩ generated by the empty subspace is the trivial sub-

space {0} ⊂ V .

Proof. (1) The set of all linear combinations

a1u1 + · · · + akuk

on the right-hand side (1) is clearly a vector subspace and of course

it containsM. On the other hand, each of the linear combinations

must be in ⟨M⟩ and thus the �rst claim is proven.

The claim (2) follows immediately from (1) and from the de�-

nition of vector space and analogously (1) implies the third claim.

Finally, the smallest subspace is {0}, because empty set is

contained in every subspace and each of them contains the vector

0. □

2.28. Sums of subspace. Sincewe now have some intuition about

generators and their respective subspaces, we should

understand the possibilities how some subspaces can

generate whole space V .

Sum of subspaces

Let Vi , i ∈ I be subspaces of V . Then the subspace generated
by their union, that is, ⟨∪i∈IVi⟩, is called sum of subspaces Vi . We

denote it as
∑
i∈I Vi . Notably, for a �nite number of subspaces

V1, . . . , Vk ⊂ V we write

V1 + · · · + Vk = ⟨V1 ∪ V2 ∪ · · · ∪ Vk⟩.

We see that every element in the considered subspace can be

expressed as a linear combination of vectors from the subspaces Vi .

Because vector addition is commutative, we can associate mem-

bers that belong to the same subspace and for a �nite sum of k

subspaces we obtain

V1 + V2 + · · · + Vk = {v1 + · · · + vk; vi ∈ Vi, i = 1, . . . , k}.
Sum W = V1 + · · · + Vk ⊂ V is called direct sum of subspaces

if the intersection of any two is trivial, that is, Vi ∩ Vj = {0} for
all i ̸= j . We show that in such case can every vector w ∈ W be

written in a unique way as a sum

w = v1 + · · · + vk,

where vi ∈ Vi . Really, if for that vector we could simultaneously

write w = v′
1 + · · · + v′

k , then

0 = w − w = (v1 − v′
1)+ · · · + (vk − v′

k).

If vi − v′
i is the �rst nonzero term of the right-hand side, then

this vector from Vi can be expressed using vectors from other sub-

spaces. That is a contradiction with the assumption thatVi has zero

intersection with other subspaces. The only possibility is then that

all the vectors on the right-hand side are zero and thus the expres-

sion of w is unique.

For direct sums of subspaces we write

W = V1 ⊕ · · · ⊕ Vk = ⊕k
i=1Vi .

2.29. Basis. Now we have everything prepared for understanding

minimal sets of generators as we understood them in the plane R2.
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By plugging in we obtain

A∗ =


−24 0 20 0

0 −32 0 28
8 0 −4 0
0 16 0 −12


T

=


−24 0 8 0

0 −32 0 16
20 0 −4 0
0 28 0 −12

 .
We compute the inverse matrix A−1 from the relation A−1 =

|A|−1 · A∗. Determinant of the matrix A is (expanding the �rst row)

equal to

|A| =

∣∣∣∣∣∣∣∣
1 0 2 0
0 3 0 4
5 0 6 0
0 7 0 8

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
3 0 4
0 6 0
7 0 8

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
0 3 4
5 0 0
0 7 8

∣∣∣∣∣∣ = 16.

By plugging in we obtain

A−1 =


−3/2 0 1/2 0

0 −2 0 1
5/4 0 −1/4 0
0 7/4 0 −3/4

 .
□

2.43. Find the algebraically adjoint matrix F ∗ for

F =
α β 0
γ δ 0
0 0 1

 , α, β, γ, δ ∈ R.

⃝

2.44. Calculate the algebraically adjoint matrix for the matrices

(a)


3 −2 0 −1
0 2 2 1
1 −2 −3 −2
0 1 2 1

 , (b)

(
1 + i 2i

3 − 2i 6

)
,

where i denotes the imaginary unit.

⃝

F. Vector spaces

The properties of vector space, which we have already observed

for the plane or three dimensional space are possessed by other sets as

well. We illustrate this by examples.

2.45. Vector space � yes or no? Decide for the following sets

whether they form a vector space over the �eld of real numbers:
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Basis of vector space

SubsetM ⊂ V is called basis of vector space V if ⟨M⟩ = V

andM is linearly independent.

Vector space with �nite basis is called �nitely dimensional, the

number of elements of the basis is called the dimension of V . If V

does not have a �nite basis, we say that V is in�nitely dimensional.

We write dimV = k, k ∈ N or k = ∞.

In order to be satis�ed with such de�nition of dimension, we

must know that di�erent bases of the same space will

always have the same number of elements. This we

will show in a while. But we note immediately, that

the trivial subspace is generated by empty set, which

is an "empty" basis. It thus has zero dimension.

Basis of a k-dimensional space will usually be denoted as a

k-tuple v = (v1 . . . , vk) of basis vectors. It is mostly about hav-

ing a convention: with �nitely dimensional vector spaces we shall

always consider the base along with a given order of the elements

even if we have not de�ned it that way, strictly said.

Clearly, if (v1, . . . , vn) is a basis of V , the whole space V is a

direct sum of the one-dimensional subspaces

V = ⟨v1⟩ ⊕ · · · ⊕ ⟨vn⟩.
An immediate corollary of the derived uniqueness of decom-

position of any vector w in V into the components in the direct

sum gives unique decomposition

w = x1v1 + · · · + xnvn

and allows us after choosing a basis to see vectors again as n-tuples

of scalars. To this idea we will return in the paragraph 2.33, when

we �nish the discussion of existence of bases and sums of sub-

spaces in general case.

2.30. Theorem. >From any �nite set of generators of a vector

space V we can choose a basis. Every base of a �nitely dimen-

sional space V has the same number of elements.

Proof. First claim can be easily proved using induction on the

number of generators k.

Only the zero subspace does not need any generator

and thus we are able to choose an empty basis. On the

other hand, we are not allowed to choose the zero vector

(generators would be linearly dependent) and there is nothing else

in the subspace.

In order to have our inductive step more natural, we deal with

the case k = 1 �rst. We have V = ⟨{v}⟩ and v ̸= 0, because {v} is
linearly independent set of vectors. Then {v} is also a basis of the
vector space V .

Assume that the claim holds for k = n and consider V =
⟨v1, . . . , vn+1⟩. If v1, . . . , vn+1 are linearly independent, then they

form a basis. In the other case there exists i such that

vi = a1v1 + · · · + ai−1vi−1 + ai+1vi+1 + · · · + an+1vn+1.

Then V = ⟨v1, . . . , vi−1, vi+1, . . . , vn+1⟩ and we can choose a

basis, using inductive assumption.

In remains to ensure that bases always have the same number

of elements. Consider basis (v1, . . . , vn) of the space V and for

arbitrary nonzero vector consider

u = a1v1 + · · · + anvn ∈ V
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i) The set of solutions of the system

x1 + x2 + · · · + x98 + x99 + x100 =100x1,

x1 + x2 + · · · + x98 + x99 =99x1,

x1 + x2 + · · · + x98 =98x1,

...

x1 + x2 =2x1.

ii) The set of solutions of the equation

x1 + x2 + · · · + x100 = 0

iii) The set of solution of the equation

x1 + 2x2 + 3x3 + · · · + 100x100 = 1.

iv) The set of all real (or complex) sequences. (Real or complex

sequence is a mapping f : N → R or f : N → C. The im-
age of number n is then called n-th member of the sequence,

we usually denote it by lower index, say an.)

v) The set of solutions of homogeneous di�erence equation.

vi) The set of solutions of non-homogeneous di�erence equa-

tion.

vii) {f : R → R|f (1) = f (2) = c, c ∈ R}
Solution.

i) Yes. They all are real multiples of the vector (1, 1, 1 . . . , 1)︸ ︷︷ ︸
100 ones

,

that is, vector space of dimension 1 (see also (2.29)).

ii) Yes. It is a space of dimension 99 (corresponds to the number

of free parameters of the solution). In general the set of all

solutions of any system homogeneous linear equations forms

a vector space.

iii) No. For instance, taking twice the solution x1 = 1, xi = 0,
i = 2, . . . 100 we do not obtain a solution. But the set of

solutions forms a so-called a�ne space (see (4.1)).

iv) Yes. The set of all real or complex sequences clearly forms

a real (complex) vector space. Adding the sequences and

scalar multiplication is de�ned term-wise, where it is clearly

the vector space of all real (complex) numbers.

v) Yes. In order to show that the set of sequences which sat-

isfy given di�erence homogeneous equation it is enough to

show that it is closed under addition and real number multi-

plication (as the set of all real sequences is a vector space, as

we know). Let us have two sequences (xj )∞j=0 and (yj )∞j=0
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with ai ̸= 0 for some i. Then

vi = 1
ai

(
u− (a1v1 + · · · + ai−1vi−1 + ai+1vi+1 + · · · + anvn)

)
and therefore also ⟨u, v1, . . . , vi−1, vi+1, . . . , vn⟩ = V .

We ensure that this is again a basis: if adding u to linearly

independent vectors v1, . . . , vi−1, vi+1, . . . , vn would lead to a set

of linearly dependent vectors, then u is their linear combination.

That would mean

V = ⟨v1, . . . , vi−1, vi+1, . . . , vn⟩,
which is not possible.

Thus we have proved that for any nonzero vector u ∈ V there

exists i, 1 ≤ i ≤ n, such that (u, v1, . . . , vi−1, vi+1, . . . , vn) is

again a basis of V .

Further, we shall instead of one vector u consider a linearly in-

dependent set u1, . . . , uk and we will sequentially add u1, u2, . . . ,

always exchanging for some vi using our previous approach. We

have to ensure that there always is such vi (that is, that the vec-

tor u will not exchange for each other). Assume thus that we have

already placed u1, . . . , uℓ. Then the vector uℓ+1 can clearly be ex-

pressed as a linear combination of such vector and the remaining

vj . If only the coe�cients at u1, . . . , uℓ were nonzero, that would

mean that the vectors u1, . . . , uℓ+1 are linearly dependent, which

is a contradiction.

For every k ≤ n we can after k steps obtain a basis in which

from the original basis k vectors were exchanged for new ones. If

k > n, then in the n-th step we obtain a basis consisting only of

new vectors ui , which means that the original set could not be lin-

early independent. Notably it is not possible that two bases have a

di�erent number of elements. □

In reality, we have proved a stronger claim, the so-called

Steinitz exchange theorem, which says that for every �nite basis

v and every system of linearly independent vectors in V we can

�nd a subset of the basis vectors vi which can be exchanged with

the new vectors to obtain a basis.

2.31. Corollaries of the Steinitz exchange theorem. Thanks to

the possibility of freely choosing and exchanging ba-

sis vectors we can immediately derive nice (and in-

tuitively expectable) properties of bases of vector

space:

Proposition. (1) Every two bases of a �nitely dimensional vector

space have the same number of elements, that is, our de�nition

of dimension is basis-independent.

(2) If V has a �nite basis, then every linearly independent set can

be extended to a basis.

(3) Basis of a �nitely dimensional vector space is maximal lin-

early independent set.

(4) Bases of a vector space are exactly minimal sets of generators.

A little bit more complicated, but now easy to deal with, is the

situation of dimensions of subspaces and their sums:

Corollary. Let W,W1,W2 ⊂ V be subspaces of a space V of

�nite dimension. Then we have that

(1) dimW ≤ dimV ,

(2) V = W if and only if dimV = dimW ,

(3) dimW1 + dimW2 = dim(W1 +W2)+ dim(W1 ∩W2).
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satisfying the given equation, that is,

anxn+k + an−1xn+k−1 + · · · + a0xk = 0

anyn+k + an−1yn+k−1 + · · · + a0yk = 0.

By adding these equations, we obtain

an(xn+k + yn+k)+ an−1(xn+k−1 + yn+k−1)+ · · · + a0(xk + yk) = 0,

therefore also the sequence (xj + yj )
∞
j=0 satis�es the given

equation. Analogously, if the sequence (xj )∞j=0 satis�es the

given equation, then also (uxj )∞j=0 , where u ∈ R.
vi) No. The sum of two solutions of a non-homogeneous equa-

tion

anxn+k + an−1xn+k−1 + · · · + a0xk = c

anyn+k + an−1yn+k−1 + · · · + a0yk = c, c ∈ R − {0}

satis�es the equation

an(xn+k + yn+k)+ an−1(xn+k−1 + yn+k−1)+ · · · + a0(xk + yk) = 2c,

that is, it does not satisfy the original non-homogeneous

equation. But the set of solutions forms an a�ne space, see

4.1.

vii) It is a vector space if and only if c = 0. If we take two

functions f and g from the given set, then (f + g)(1) =
(f + g)(2) = f (1) + g(1) = 2c. Thus if f + g is to be

a member of the given set, it must be that (f + g)(1) = c,

therefore 2c = c, therefore c = 0.

□

2.46. Find out, whether the set

U1 = {(x1, x2, x3) ∈ R3; | x1 | = | x2 | = | x3 |}
is a subspace of a vector space R3 and the set

U2 = {ax2 + c; a, c ∈ R}
a subspace of the space of polynomials of degree at most 2.

Solution.The set U1 is not a vector (sub)space. We can see that, for

instance,

(1, 1, 1)+ (−1, 1, 1) = (0, 2, 2) /∈ U1.

The set U2 is a subspace (there is a clear identi�cation with R2), be-

cause (
a1x

2 + c1
)+ (

a2x
2 + c2

) = (a1 + a2) x
2 + (c1 + c2),
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Proof. It remains to prove only the last claim. That is clear

when the dimension of one of the spaces is zero. As-

sume then that dimW1 = r ≥ 1, dimW2 = s ≥ 1 and
let (w1 . . . , wt ) be a basis of W1 ∩W2 (or empty set,

if the intersection is trivial).

According to the Steinitz exchange theorem this basis of the

intersection can be extended to a basis (w1, . . . , wt , ut+1 . . . , ur)

forW1 and to a basis (w1 . . . , wt , vt+1 , . . . , vs) forW2. Vectors

w1, . . . , wt , ut+1 , . . . , ur , vt+1 . . . , vs

clearly generateW1 +W2. We show that they are linearly indepen-

dent. Let

a1w1 + · · · + atwt + bt+1ut+1 + . . .

· · · + brur + ct+1 vt+1 + · · · + csvs = 0.

Then necessarily

− (ct+1 · vt+1 + · · · + cs · vs) =
= a1 · w1 + · · · + at · wt + bt+1 · ut+1 + · · · + br · ur

must belong toW2 ∩W1. That implies that

bt+1 = · · · = br = 0,

since in that way we have de�ned our bases. Then also

a1 · w1 + · · · + at · wt + ct+1 · vt+1 + · · · + cs · vs = 0

and because the corresponding vectors form a basis W2, all the

coe�cients are zero.

The claim (3) now follows by directly calculating of genera-

tors. □

2.32. Examples. (1) Kn has (as a vector space overK) dimension
n. Basis is for example an n-tuple of vectors

((1, 0, . . . , 0), (0, 1, . . . , 0) . . . , (0, . . . , 0, 1)).

This basis is called the standard basis of Kn. Note that in the case
of �nite �eld of scalars, say Zk , the whole space Kn has only a

�nite number (kn) of elements.

(2) C as a vector space over R has dimension 2, basis is for

instance the numbers 1 and i.

(3) Km[x], that is, the space of all polynomials of degree at
most m, has dimension m + 1, basis is for instance the sequence
1, x, x2 , . . . , xm .

Vector space of all polynomials K[x] has dimension ∞, but

we can still �nd a basis (although in�nite in size): 1, x, x2 , . . . .

(4) Vector spaceR overQ has dimension∞ and does not have

a countable basis.

(5) Vector space of all mappings f : R → R has also dimen-

sion ∞ and does not have any �nite basis.

2.33. Vector coordinates. If we �x a basis (v1, . . . , vn) of a

�nitely dimensional space V , then every vector w ∈
V can be expressed as a linear combination v =
a1v1 + · · · + anvn. Assume that we can do it in two

ways:

w = a1v1 + · · · + anvn = b1v1 + · · · + bnvn.

But then

0 = (a1 − b1) · v1 + · · · + (an − bn) · vn
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k · (ax2 + c
) = (ka) x2 + kc

for all numbers a1, c1, a2, c2, a, c, k ∈ R. □

2.47. Is the set V = {(1, x); x ∈ R} with operations
⊕ : V × V → V, (1, y)⊕ (1, z) = (1, z + y) for all z, y ∈ R

⊙ : R × V → V, z ⊙ (1, y) = (1, y · z) for allz, y ∈ R

a vector space? ⃝

G. Linear dependence and independence, bases

2.48. By calculating the determinant of a suitable matrix decide

whether the vectors (1, 2, 3, 1), (1, 0,−1, 1), (2, 1,−1, 3) and

(0, 0, 3, 2) are linearly dependent or not.

Solution.Because ∣∣∣∣∣∣∣∣
1 2 3 1
1 0 −1 1
2 1 −1 3
0 0 3 2

∣∣∣∣∣∣∣∣ = 10 ̸= 0,

the given vectors are linearly independent. □

2.49. Given arbitrary linearly independent vectors u, v, w, z in a

vector space V , decide whether in V the vectors

u− 2v, 3u+ w − z, u− 4v + w + 2z, 4v + 8w + 4z

are linearly independent or not.

Solution. The considered vectors are linearly independent if and only

if the vectors (1,−2, 0, 0), (3, 0, 1,−1), (1,−4, 1, 2), (0, 4, 8, 4) are
linearly independent in R4. We have∣∣∣∣∣∣∣∣

1 −2 0 0
3 0 1 −1
1 −4 1 2
0 4 8 4

∣∣∣∣∣∣∣∣ = −36 ̸= 0,

thus the vectors are linearly independent. □

2.50. Determine all constants a ∈ R such that the polynomials ax2 +
x + 2, −2x2 + ax + 3 and x2 + 2x + a are linearly dependent (in the

vector space P3[x] of polynomials of one variable of degree at most
three over real numbers).

Solution. In the basis 1, x, x2 the coe�cients of the given vectors

(polynomials) are (a, 1, 2), (−2, a, 3), (1, 2, a). Polynomials are lin-
early independent if and only if the matrix whose columns are given

by the coordinates of the vectors has rank lower than the number of the

vectors, which in this case means that rank must be two or lower. In



CHAPTER 2. ELEMENTARY LINEAR ALGEBRA

and thus ai = bi for all i = 1, . . . , n. We have reached the follow-

ing conclusion:

In a �nitely dimensional space every vector can be given in a

uniqueway as a linear combination of basis vectors. Coe�cients of

this unique linear combination expressing the given vector w ∈ V
in the chosen basis v = (v1, . . . , vn) are called coordinates of the

vector w in this basis.

Whenever we speak about coordinates (a1, . . . , an) of vector

w, which we express as a sequence, we must have a �xed ordering

of basis vectors v = (v1, . . . , vn). Although we have de�ned the

basis as a minimal set of generators, in reality we work with them

as with sequences (that is, with ordered sets).

Assigning coordinates to vectors

Mapping, which to the vector u = a1v1+· · ·+anvn assigns its
coordinates in the basis v shall be denoted with the same symbol

v : V → Kn. It has the following properties:
(1) v(u+ w) = v(u)+ v(w); ∀u,w ∈ V ,
(2) v(a · u) = a · v(u); ∀a ∈ K, ∀u ∈ V .

Note that the operations over left and right side of these equa-

tions are not identical, quite the opposite, they are

operations over di�erent vector spaces! At this op-

portunity, we can think about the general case of

the basis M of (possibly in�nite) vector space V . The basis then

does not have to be countable, but still we can de�ne the mapping

M : V → KM (that is, the coordinates of the vectors are the map-

ping fromM to K).
The given properties of assignments of coordinates were al-

ready seen at the mappings in geometry we have called linear (they

preserved our linear structure in the plane). Before we deal more

thoroughly with the dependency of the coordinates on the choice

of the basis, we look inmore generality at the notion of the linearity

of the mapping.

2.34. Linear mapping. For any vector space (of �nite or in�nite

dimension) we de�ne "linearity" of a mapping be-

tween spaces similarly to the planar case (R2):

Linear mapping, definition

LetV andW be vector spaces over the same �eld

of scalars K. The mapping f : V → W is called linear mapping

(homomorphism) if the following holds:

(1) f (u+ v) = f (u)+ f (v), ∀u, v ∈ V
(2) f (a · u) = a · f (u), ∀a ∈ K, ∀u ∈ V .

Clearly, such mapping have already been seen in the case of

matrix multiplication:

f : Kn → Km, x 7→ A · x
with matrix of type m/n over K.

Image Im f := f (V ) ⊂ W is always vector subspace, since

linear combination of images f (ui) is an image of a linear combi-

nation of the vectors ui with the same coe�cients.

Analogously, the set of all vectors Ker f := f−1({0}) ⊂ V is

a subspace, since the linear combination of zero images will always

be a zero vector. The subspace Ker f is called kernel of linear

mapping f .

Linear mapping which is a bijection is called isomorphism.
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the case of square matrix, rank lower than the number of rows means

that the determinant is zero. The condition for a thus reads∣∣∣∣∣∣
a −2 1
1 a 2
2 3 a

∣∣∣∣∣∣ = 0,

that is, a is a root of the polynomial a3 −6a−5 = (a+1)(a2 −a−5),
thus there are 3 such constants a1 = −1, a2,3 = 1±√

21
2 . □

2.51. Vectors

(1, 2, 1), (−1, 1, 0), (0, 1, 1)

are linearly independent, and therefore together form a basis of R3

(for basis it is important to give an order of the vectors). Every

three-dimensional vector is therefore some linear combination of them.

What linear combination corresponds to the vector (1, 1, 1), or equiv-
alently, what are the coordinates of the vector (1, 1, 1) in the basis

formed by the given vectors? ⃝
Solution. We seek a, b, c ∈ R such that a(1, 2, 1) + b(−1, 1, 0) +
c(0, 1, 1) = (1, 1, 1). The equation must hold in every coordinate, so
we have a system of three linear equations in three variables:

a − b = 1

2a + b + c = 1

a + c = 1,

whose solution gives us a = 1
2 , b = − 1

2 , c = 1
2 , thus we have

(1, 1, 1) = 1
2

· (1, 2, 1)− 1
2

· (−1, 1, 0)+ 1
2

· (0, 1, 1),

that is, the coordinates of the vector (1, 1, 1) in the basis

((1, 2, 1), (−1, 1, 0), (0, 1, 1)) are ( 1
2 ,− 1

2 ,
1
2). □

2.52. Express the vector (5, 1, 11) as a linear combination of the vec-
tors (3, 2, 2), (2, 3, 1), (1, 1, 3), that is, �nd numbers p, q, r ∈ R, for
which

(5, 1, 11) = p (3, 2, 2)+ q (2, 3, 1)+ r (1, 1, 3) .

⃝

2.53. Consider the complex numbers C as a real vector space. De-

termine the coordinates of the number 2 + i in the basis given by the

roots of the polynomial x2 + x + 1.

Solution. Because roots of the given polynomial are − 1
2 + i

√
3

2 and

− 1
2 − i

√
3

2 , we have to determine the coordinates (a, b) of the vector
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Analogously to the abstract de�nition of vector spaces, it is

again necessary to prove seemingly trivial claims that follow from

the axioms:

Proposition. Let f : V → W be a linear mapping between two

vector spaces over the same �eld of scalars K. For all vectors

u, u1, . . . , uk ∈ V and scalars a1, . . . , ak ∈ K it holds that

(1) f (0) = 0,
(2) f (−u) = −f (u),
(3) f (a1 · u1 + · · · + ak · uk) = a1 · f (u1)+ · · · + ak · f (uk),
(4) for every vector subspace V1 ⊂ V is its image f (V1) a vector

subspace inW ,

(5) for every vector subspaceW1 ⊂ W is the set f−1(W1) = {v ∈
V ; f (v) ∈ W1} a vector subspace in V .
Proof. We rely on the axioms, de�nitions and already proved

results (in case you are not sure what has been used, look it up!):

f (0) = f (u− u) = f ((1 − 1) · u) = 0 · f (u) = 0,
f (−u) = f ((−1) · u) = (−1) · f (u) = −f (u).

The property (3) is again easy from the de�nition for two sum-

mands using induction on the number of summands. >From the

property (3) we have that ⟨f (V1)⟩ = f (V1), thus it is vector sub-

space.

On the other hand, if f (u) ∈ W1 and f (v) ∈ W1 then for any

scalars it will be that f (a ·u+b·v) = a ·f (u)+b·f (v) ∈ W1. □

2.35. Simple corollaries.

(1) Composition g◦f : V → Z of two linear mappings f : V →
W and g : W → Z is again a linear mapping.

(2) Linear mapping f : V → W is an isomorphism if and only

if Im f = W and Ker f = {0} ⊂ V . Inverse mapping of an

isomorphism is again an isomorphism.

(3) For any two subspaces V1, V2 ⊂ V and linear mapping f :
V → W it holds that

f (V1 + V2) = f (V1)+ f (V2),

f (V1 ∩ V2) ⊂ f (V1) ∩ f (V2).

(4) The mapping "coordinate assignment" u : V → Kn given by
arbitrarily chosen basis u = (u1, . . . , un) of a vector space V

is an isomorphism.

(5) Two �nitely dimensional vector spaces are isomorphic if and

only if they have the same dimension.

(6) Composition of two isomorphisms is an isomorphism.

Proof. Proving the �rst claim is a very easy exercise.

For the proof of the second one we must realise

that if f is a linear bijection, then a vector w is an

image of a linear combination au + bv, that is w =
f−1(au+ bv), if and only if

f (w) = au+ bv = f (a · f−1(u)+ b · f−1(v)).

Thus it also holds that w = af−1(u)+ bf−1(v) and therefore the

inversion of a linear bijection is again a linear bijection.

Further, f is surjective if and only if Im f = W and ifKer f =
{0} then f (u) = f (v) ensures f (u − v) = 0, that is, u = v. In

this case f is injective.

The remaining claims are easy to prove by induction. Try to

make a counterexample � in the inclusion that is to be proved there
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2 + i in the basis (− 1
2 + i

√
3

2 ,− 1
2 − i

√
3

2 ). These real numbers a, b are

uniquely determined by the condition

a · (−1
2

+ i

√
3

2
)+ b · (−1

2
− i

√
3

2
) = 2 + i.

By considering individually the real and the imaginary part of the equa-

tion we obtain a system of two linear equations in two variables:

−1
2
a − 1

2
b = 2

√
3

2
a −

√
3

2
b = 1.

Its solution gives us a = −2 +
√

3
3 , b = −2 −

√
3

3 , therefore the

coordinates are (−2 + 1√
3
,−2 − 1√

3
). □

2.54. Remark. As a perceptive reader has de�nitely spotted, the prob-

lem statement is not unambiguous � we are not given the order of the

roots of the polynomial, thus we do not have the order of the basis vec-

tors. The result is thus given up to the permutation of the coordinates.

Let us also add a remark about the so-called rationalising the de-

nominator, that is, removing the square roots from the denominator.

The authors do not have a distinctive attitude whether this should al-

ways be done or not (Does
√

3
3 look better than 1√

3
?). In some cases the

rationalising is undesirable: from the fraction 6√
35
we can immediately

spot that its value is a little greater than 1 (because
√

35 is just a little

smaller than 6), while for the rationalised fraction 6
√

35
35 we cannot spot

anything.

2.55. Consider complex numbers C as a real vector space. Determine

the coordinates of the number 2 + i in the basis given by the roots of

the polynomial x2 − x + 1.

2.56.For what values of the parameters a, b, c ∈ R are the vectors

(1, 1, a, 1), (1, b, 1, 1), (c, 1, 1, 1) linearly dependent?

2.57. Let a vector space V be given along with some basis formed by

the vectors u, v, w, z. Determine whether the vectors

u− 3v + z, v − 5w − z, 3w − 7z, u− w + z

are linearly (in)dependent.

2.58. Complete the vectors 1 − x2 + x3 , 1 + x2 + x3 , 1 − x − x3 into

a basis of the space of polynomials of degree at most 3.

2.59. Do the matrices(
1 0
1 −2

)
,

(
1 4
0 −1

)
,

(−5 0
3 0

)
,

(
1 −2
0 3

)
form a basis of the vector space of square two-dimensional matrix?
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does not always have to hold an equality (that is, �nd an example

where the inclusion is strict). □

2.36. Coordinates again. Consider any two vector spaces V and

W overKwith dimV = n, dimW = m and consider some

linear mapping f : V → W . For every choice of basis

u = (u1, . . . , un) on V , v = (v1, . . . , vn) on W we have

at our disposal the corresponding coordinate assignments

and the whole situation is captured in the following diagram:

V
f //

≃u

��

W

v≃
��

Kn
fu,v // Km

The bottom arrow fu,v is de�ned by the remaining three, that is, as

a mapping it is a composition

fu,v = v ◦ f ◦ u−1.

Matrix of a linear mapping

Every linear mapping is uniquely determined by its values on

an arbitrary set of generators, notably on the vectors of a basis u.

Denote by

f (u1) = a11 · v1 + a21 · v2 + · · · + am1vm

f (u2) = a12 · v1 + a22 · v2 + · · · + am2vm

...

f (un) = a1n · v1 + a2n · v2 + · · · + amnvm,

that is, scalars aij form a matrix A, where the columns are coor-

dinates of the values f (uj ) of the mapping f on the basis vectors

expressed in the basis v on the target spaceW .

Matrix A = (aij ) is called matrix of the mapping f in bases

u, v.

For a general vector u = x1u1 + · · · + xnun ∈ V we calculate

(recall that vector addition is commutative and distributive with

respect to scalar multiplication)

f (u) = x1f (u1)+ · · · + xnf (un)

= x1(a11v1+· · ·+am1vm)+ · · · + xn(a1nv1+· · ·+amnvm)
= (x1a11+· · ·+xna1n)v1 + · · · + (x1am1+· · ·+xnamn)vm.

Using matrix multiplication we can now very easily and clearly

write down the values of the mapping fu,v(w) de�ned uniquely by

the previous diagram. Recall that vector in Kr are understood as

columns, that is, matrices of the type r/1

fu,v(u(w)) = v(f (w)) = A · u(w).
On the other hand, if we have �xed bases on V and W , then

every choice of a matrix A of the type m/n gives a unique linear

mapping Kn → Km and thus also a mapping f : V → W . If we

have chosen bases of spaces V andW , every choice of a matrix of

the type m/n correspond to a unique linear mapping V → W and

we have shown a bijection between matrices of the corresponding

dimension and linear mappings V → W .

101

Solution. The four given matrices are as vectors in the space of 2 × 2
matrices linearly independent. It follows from the fact that the matrix

1 1 −5 1
0 4 0 −2
1 0 3 0

−2 −1 0 3


is regular (which is by the way equivalent to any of the following

claims: its rank equals its dimension; it can be transformed into the

unit matrix by elementary row transformations; it has the inverse ma-

trix; it has non-zero determinant (equal to 116); it stands for a system

of homogeneous linear equations with only zero solution; every non-

homogeneous linear system with left-hand side given by this matrix

has a unique solution; the range of a linear mapping given by this ma-

trix is a vector space of dimension 4 � this mapping is injective).

□

2.60. Let there be in R3 two vector spaces U and V generated by the

vectors

(1, 1,−3) , (1, 2, 2) a (1, 1,−1) , (1, 2, 1) , (1, 3, 3) ,

respectively. Determine the intersection of these two subspaces.

Solution. The subspace V has dimension only 2 (it is not the whole

space R3), because∣∣∣∣∣∣
1 1 1
1 2 3

−1 1 3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 1 −1
1 2 1
1 3 3

∣∣∣∣∣∣ = 0

and any two of the considered three vectors is clearly linearly indepen-

dent. Similarly we can see that U has dimension 2. Also we have∣∣∣∣∣∣
1 1 1
1 2 1

−3 2 −1

∣∣∣∣∣∣ = 2 ̸= 0,

and therefore the vector (1, 1,−1) does not lie in the subspaceU . The
intersection of two planes (two-dimensional spaces) passing through

the origin in a three-dimensional space must be at least a line. In our

case it is exactly a line (subspaces are not identical). Thus we have

determined the dimension of the intersection � it is one-dimensional.

If we note that

1 · (1, 1,−3)+ 2 · (1, 2, 2) = (3, 5, 1) = 1 · (1, 1,−1)+ 2 · (1, 2, 1) ,

we obtain expression of the intersection in the form of a set of all scalar

multiples of the vector (3, 5, 1) (thus it is a line passing through the

origin with this vector as a direction). □
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2.37. Matrix for changing the coordinates. If we choose V and

W to be the same space, but with di�erent bases, and

for f pick the identity mapping, the approach from the

previous paragraph expresses the vectors of the basis

u in coordinates with respect to the basis v. Let the

resulting matrix be T . If we then have the vector u as

u = x1u1 + · · · + xnun,

that is, in coordinates with respect to u and plug for ui their expres-

sion using the vectors from v, we obtain the coordinate expression

x̄ = (x̄1, . . . , x̄n) of the same vector in the basis v. It is enough

just to reorder the summands and express the individual scalars at

the vectors of the basis.

In reality, we are doing exactly the same thing as in the pre-

vious paragraph for the special case of the identity mapping idV
on the vector space V . Matrix of this identity mapping is T and

therefore the direct calculation must give x̄ = T · x. The situation
is depicted in the diagram

V
idV //

≃u

��

V

v≃
��

Kn
T=(idV )u,v // Kn

The resulting matrix T is called matrix for changing the basis

from u of the vector space V to the basis v of the same space.

Directly from the de�nition we have:

Calculating the matrix for changing the basis

Proposition. Matrix T for changing from the basis u to the basis

v is obtained by taking coordinates of the vectors of the basis u

expressed in the basis v are written as the columns of the matrix

T .

The role of the matrix for changing the basis is that if we know

the coordinates x of the vector in the basis u, then its coordinates

in the basis v are obtained by multiplying the column x with the

matrix for changing the basis (from the left). Because the inverse

mapping for the identity mapping is again an identity mapping, the

matrix for changing the basis is always invertible and its inverse is

the matrix for changing the basis in the opposite direction, that is,

from the basis v to the basis u.

2.38. More coordinates. Now we show how to compose possi-

ble coordinate expressions of linear mapping. Let

us consider another vector space Z overK of dimen-

sion k with basisw, linear mapping g : W → Z and

denote the corresponding matrix by gv,w.

V
f //

≃u

��

W
g //

v≃
��

Z

w≃
��

Kn
fu,v // Km

gv,w // Kk

Composition g◦f on the upper row corresponds to the matrix

of the mapping Kn → Kk on the bottom and we directly calculate

(we writeA for the matrix f andB for the matrix of g in the chosen
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2.61. Determine the vector subspace (of the space R4) generated

by the vectors u1 = (−1, 3,−2, 1), u2 = (2,−1,−1, 2), u3 =
(−4, 7,−3, 0), u4 = (1, 5,−5, 4), by choosing some maximal set

of linearly independent vectors ui (that is, by choosing a basis).

Solution. We write the vectors ui into the columns of a matrix and

transform it using elementary row transformations. This way we ob-

tain 
−1 2 −4 1
3 −1 7 5

−2 −1 −3 −5
1 2 0 4

 ∼


1 2 0 4

−1 2 −4 1
3 −1 7 5

−2 −1 −3 −5

 ∼


1 2 0 4
0 4 −4 5
0 −7 7 −7
0 3 −3 3



∼


1 2 0 4
0 1 −1 5/4
0 1 −1 1
0 0 0 0

 ∼


1 2 0 4
0 1 −1 5/4
0 0 0 −1/4
0 0 0 0

 ∼


1 0 2 0
0 1 −1 0
0 0 0 1
0 0 0 0


>From that it follows that linearly independent are exactly the

vectors u1, u2, u4, that is, exactly the vectors corresponding to the

columns which contain �rst non-zero number of some row. Further-

more we have (see the third column)

2 · (−1, 3,−2, 1)− (2,−1,−1, 2) = (−4, 7,−3, 0).

□

2.62. In the vector space R4 we are given three-dimensional sub-

spaces

U = ⟨u1, u2, u3⟩, V = ⟨v1, v2, v3⟩,
while

u1 =


1
1
1
0

 , u2 =


1
1
0
1

 , u3 =


1
0
1
1

 , v1 =


1
1

−1
−1

 , v2 =


1

−1
1

−1

 ,
v3 = (1,−1,−1, 1)T . Determine the dimension and give a basis of

the subspace U ∩ V .
Solution. The subspace U ∩ V contains exactly the vectors that

can be obtained as a linear combinations of vectors ui and also as

a linear combination of vectors vi . We thus search for numbers

x1, x2, x3, y1, y2, y3 ∈ R such that the following holds:

x1


1
1
1
0

+ x2


1
1
0
1

+ x3


1
0
1
1

 = y1


1
1

−1
−1

+ y2


1

−1
1

−1

+ y3


1

−1
−1
1

 ,
that is, we are looking for a solution of a system

x1 + x2 + x3 = y1 + y2 + y3,

x1 + x2 = y1 − y2 − y3,

x1 + x3 = −y1 + y2 − y3,

x2 + x3 = −y1 − y2 + y3.
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bases):

gv,w ◦ fu,v(x) = w ◦ g ◦ v−1 ◦ v ◦ f ◦ u−1

= B · (A · x) = (B · A) · x = (g ◦ f )u,w(x)
for every x ∈ Kn. Composition of mappings thus corresponds to
multiplication of the corresponding matrices. Note that the isomor-

phisms correspond exactly to invertible matrices.

The same approach gives us an answer to the question how

does the matrix of the mapping change whenever we change the

basis (both in the domain and in the codomain):

V
idV //

≃u′
��

V
f //

≃u

��

W
idW //

v≃
��

W

v′≃
��

Kn T // Kn
fu,v // Km S−1

// Km

where T is the matrix for changing the basis from u′ to u and S is

the matrix for changing the basis from v′ to v. If A is the original

matrix of the mapping, then thematrix of the newmapping is given

by A′ = S−1AT .

In the special case of linear mapping f : V → V , that is,

mapping that has the same space V as its domain and codomain,

we express f usually with a single basis u of the space V . Then

the changing of the basis to the new one u′ with the matrix T for

changing from u′ to u the new matrix will be A′ = T −1AT .

2.39. Linear forms. A specially simple but important case of lin-

ear mappings are so-called linear forms. They are

linear mappings from the vector space V over �eld

of scalars K into the scalars K. If we are given the

coordinates on V , the assignments of a single i-th

coordinate to the vectors is an example of a linear form. More pre-

cisely, for every choice of basis v = (v1, . . . , vn) we have at our

disposal the linear forms v∗
i : V → K such that v∗

i (vj ) = δij , that

is, zero for distinct indices i and j and one for the same indices.

Vector space of all linear forms on V is denoted by V ∗ and

called dual space of the vector space V . Let us now assume that

the vector space V has �nite dimension n. The basis V ∗ composed
of assignments of individual coordinates as before is called dual

basis. Really it is a basis of the space V ∗, because these forms

are clearly linearly independent (prove it!) and if α is an arbitrary

form, then it holds for every vector u = x1v1 + · · · + xnvn

α(u) = x1α(v1)+ · · · + xnα(vn)

= α(v1)v
∗
1(u)+ · · · + α(vn)v

∗
n(u)

and thus the linear form α is a linear combination of the forms v∗
i .

For a �xed basis {1} on one-dimensional space of scalars K
are for every choice of the basis v on V the linear forms α iden-

ti�ed with matrices of the type 1/n, that is, with rows y. Exactly
the components of these rows are coordinates of the general lin-

ear forms in the dual basis v∗. Expressing such form on vector is

then given by multiplying the corresponding row vector y with the

column of the coordinates x of the vector u ∈ V in the basis v:

α(u) = y · x = y1x1 + · · · + ynxn.

Thus we can see that for every �nitely dimensional space V is V ∗
isomorphic to the space V . Realisation of such isomorphism is

given for instance by our choice of the dual basis for the chosen

basis on the space V .
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Using matrix notation of this homogeneous system (and preserving

the order of the variables) we have
1 1 1 −1 −1 −1
1 1 0 −1 1 1
1 0 1 1 −1 1
0 1 1 1 1 −1

 ∼


1 1 1 −1 −1 −1
0 0 −1 0 2 2
0 −1 0 2 0 2
0 1 1 1 1 −1



∼


1 1 1 −1 −1 −1
0 1 1 1 1 −1
0 0 −1 0 2 2
0 0 1 3 1 1

 ∼


1 1 1 −1 −1 −1
0 1 1 1 1 −1
0 0 1 0 −2 −2
0 0 0 1 1 1



∼


1 1 1 0 0 0
0 1 1 0 0 −2
0 0 1 0 −2 −2
0 0 0 1 1 1

 ∼


1 0 0 0 0 2
0 1 0 0 2 0
0 0 1 0 −2 −2
0 0 0 1 1 1

 .
We obtain a solution

x1 = −2t, x2 = −2s, x3 = 2s + 2t, y1 = −s − t, y2 = s, y3 = t,

t, s ∈ R.We obtain a general vector of the intersection by substituting
x1 + x2 + x3
x1 + x2
x1 + x3
x2 + x3

 =


0

−2t − 2s
2s
2t

 .
We see that

dim U ∩ V = 2, U ∩ V =
⟨

0
−1
1
0

 ,


0
−1
0
1


⟩
.

□

2.63. Give some basis of the subspace

U =
⟨1 2

3 4
5 6

 ,
0 1

2 3
4 5

 ,
−1 0

1 2
3 4

 ,
−2 −1

0 1
2 3

⟩
of the vector space of real matrices 3 × 2. Extend this basis to a basis
of the whole space.

Solution. Let us remind that a basis of a subspace is a set of linearly

independent vectors which generate the given subspace. Because

−1 ·
1 2

3 4
5 6

+ 2 ·
0 1

2 3
4 5

 =
−1 0

1 2
3 4

 ,
−2 ·

1 2
3 4
5 6

+ 3 ·
0 1

2 3
4 5

 =
−2 −1

0 1
2 3

 ,
the whole subspaceU is generated just by the �rst twomatrices. These

are furthermore linearly independent (none is a multiple of another)

and thus give a basis. If we want to extend it to a basis of the whole

space of real matrices 3 × 2, we must �nd four more matrices (the
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In this context we again meet the scalar product of a row of

n scalars with a column of n scalars, as we have worked with it

already in the paragraph 2.3 on the page 74.

When considering an in�nitely dimensional space, things be-

have di�erently. For instance the simplest example of

the space of all polynomials K[x] in one variable is

a vector space with a countable basis with elements

vi = xi and as before we can de�ne linearly inde-

pendent forms v∗
i . Every formal in�nite sum

∑∞
i=0 aiv

∗
i is now

well-de�ned linear form on K[x], because it will be evaluated

only on a �nite linear combination of the basis polynomials xi ,

i = 0, 1, 2, . . . .
The countable set of all v∗

i is thus not a basis. In reality, one

can show that this dual space cannot have a countable basis.

2.40. The size of vectors and scalar product. When dealing

with the geometry of the plane R2 in the �rst chap-

ter in the paragraph 1.29 we have already worked not

with just bases and linear mappings but also with the

size of vectors and their angles. For de�ning these terms we have

used the scalar product of two vectors v = (x, y) and v′ = (x′ , y′ )
in the form u · v = xx′ + yy′ . Really, the actual expression for the
size of v = (x, y) is given by

∥v∥ =
√
x2 + y2 = √

v · v,
while the (oriented) angle φ of two vectors v = (x, y) and v′ =
(x′ , y′ ) is in planar geometry given by the relation

cosφ = xx′ + yy′

∥v∥∥v′∥ .

Note that this scalar product is linear in every of its arguments,

we denote it by u · v or by ⟨v, v′⟩. Scalar product de�ned in such
way is symmetric in its arguments and of course that it holds that

∥v∥ = 0 if and only if v = 0. >From our considerations it can

be seen that in the Euclidean plane two vectors are perpendicular

whenever their scalar product is zero.

In the case of real vector space of any dimension we shall try a

similar approach, because the concept of the angle of two vectors is

clearly always two-dimensional (we want the angle to be the same

in the two-dimensional space containing u and v). In the follow-

ing paragraphs, we shall consider only �nitely dimensional vector

spaces over real scalars R.
Scalar product and perpendicularity

Scalar product on a vector space V over real numbers is a

mapping ⟨ , ⟩ : V × V → R which is symmetric in its arguments,

linear in each of its arguments, and such that ⟨v, v⟩ ≥ 0 and ∥v∥2 =
⟨v, v⟩ = 0 if and only if v = 0.

The number ∥v∥ = √⟨v, v⟩ is called the size of the vector v.
Vectors v and w ∈ V are called orthogonal or perpendicular

whenever ⟨v,w⟩ = 0. We also write v ⊥ w. The vector v is called

normalised whenever ∥v∥ = 1.
The basis of the space V composed of orthogonal vectors

only is called orthogonal basis. If the vectors are additionally nor-

malised, it is then orthonormalised basis.
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dimension of the whole space is clearly 6) such that the resulting six-
tuple is linearly independent. We can use for instance the canonical

basis1 0
0 0
0 0

 ,
0 1

0 0
0 0

 ,
0 0

1 0
0 0

 ,
0 0

0 1
0 0

 ,
0 0

0 0
1 0

 ,
0 0

0 0
0 1


of the space of real matrices 3 × 2, which can be identi�ed directly

with R6. If we write down the two vectors of the basis of U and then

the canonical basis of the whole space, by choosing �rst 6 linearly inde-

pendent vectors we obtain a desired basis. If we consider for instance∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0
2 1 0 0 0 0
3 2 1 0 0 0
4 3 0 1 0 0
5 4 0 0 1 0
6 5 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 1,

we can immediately add to the basis vectors1 2
3 4
5 6

 ,
0 1

2 3
4 5


of the subspace U the matrices (vectors of the space of the matrices)0 0

1 0
0 0

 ,
0 0

0 1
0 0

 ,
0 0

0 0
1 0

 ,
0 0

0 0
0 1


to a basis. Let us note that the determinant given above is easy to com-

pute � it equals the product of all elements on the diagonal, because

the matrix is in lower triangular form (everything above the diagonal

is zero). □

H. Linear mappings

How to analytically describe similar mappings (for instance

rotation, axial symmetry, mirror symmetry, projection of a three-

dimensional space on a two-dimensional one) in the plane or in the

space? How can we describe scaling of a picture? What do they have

in common? They all are linear mappings. That means that they

preserve certain structure of the space or a subspace. What structure?

Structure of a vector space. Every point in the plane is described by

two coordinates, every point in the (3-dimensional) space is described

by three coordinates. If we �x the origin, then it makes sense to say

that some point is in some direction twice that far from the origin as

some other point. We also know where do we get if we shift by some

value in a given direction and then by some other value in another

direction. These properties can be formalised � we speak of vectors in

the plane or in the space and about their multiplication and addition.

Linear mapping has the property that the image of a sum of vectors is
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Scalar product is very often denoted by the common dot, that

is, ⟨u, v⟩ = u·v. From the context it is then necessary to recognise

whether it is a product of two vectors (result is a scalar then) or

something di�erent (we have denoted the product the matrices and

the product of scalars in the same way sometimes).

Because scalar product is linear in each of its arguments, it

is completely determined by its values on tuples of

basis vectors. Really, let us choose a basis u =
(u1, . . . , un) of the space V and denote

sij = ⟨ui, uj ⟩.
Then from the symmetry of scalar product we have sij = sji and

from the linearity of the product in each of its arguments we get⟨∑
i

xiui,
∑
j

yjuj

⟩
=
∑
i,j

xiyj ⟨ui, uj ⟩ =
∑
i,j

sijxiyj .

If the basis is orthonormal, the matrix S is the unit matrix. This

proves the following useful claim:

scalar product and orthonormal basis

Proposition. Scalar product is in every orthonormal basis given

in coordinates by the expression

⟨x, y⟩ = xT · y.
For every general basis of the space V there is symmetric matrix

S such that the coordinate expression of the scalar product is

⟨x, y⟩ = xT · S · y.

2.41. Orthogonal complements and projections. For every

�xed subspace W ⊂ V in a space with scalar

product we de�ne its orthogonal complement as

follows

W⊥ = {u ∈ V ; u ⊥ v for all v ∈ W }.
Directly from the de�nition it is clear thatW⊥ is vector subspace.

If W ⊂ V has basis (u1, . . . , uk) the condition for W⊥ is given

as k homogeneous equations for n variables. Thus W⊥ will have

dimension at least n − k. Also u ∈ W ∩ W⊥ means ⟨u, u⟩ = 0
and thus also u = 0 due to the de�nition of scalar product. Clearly

then the whole space V is the direct sum

V = W ⊕W⊥.
Linear mapping f : V → V on any vector space is called

projection, if we have

f ◦ f = f.

In such case for every vector v ∈ V
v = f (v)+ (v − f (v)) ∈ Im(f )+ Ker(f ) = V

and if v ∈ Im(f ) and f (v) = 0 then also v = 0. The previous
sum of subspaces is then direct. We say that f is a projection on

the subspace W = Im(f ) along the subspace U = Ker(f ). In

words, the projection can be described naturally as follows: we

decompose the given vector into component in W and in U and

forget the second one.

If V has a scalar product, we say that the projection is perpen-

dicular if the kernel is perpendicular to the image.
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a sum of the images of the vectors and the image of a multiple of a

vector is the multiple of the image of the vector. These properties are

shared among the mappings stated at the start of this paragraph. Such

a mapping is then uniquely determined by its behaviour on vectors of

a basis (in the plane by the image of two vectors not on the same line,

in the space by the image of three vectors not in the same plane).

And how to write down some linear mapping f on a vector space

V ? Let us start for simplicity with the planeR2: assume that the image

of the point (vector) (1, 0) is (a, b) and the image of the point (vec-

tor) (0, 1) is (c, d). This uniquely determines the image of arbitrary

point with coordinates (u, v): f ((u, v)) = f (u(1, 0) + v(0, 1)) =
uf (1, 0) + vf (1, 0) = (ua, ub) + (vc, vd) = (au + cv, bu + dv),

which can be e�ciently written down as follows:(
a c

b d

)(
u

v

)
=
(
au+ cv

bu+ dv

)
Linear mapping is thus a mapping uniquely determined by a ma-

trix. Furthermore, when we have another linear mapping g given by

the matrix

(
e f

g h

)
, then we can easily compute (an interested reader

can �ll in the details by himself) that their composition g ◦ f is given

by the matrix

(
ae + f c be + df

ag + ch bg + dh

)
.

This leads us to the de�nition of matrix multiplication in exactly

this way, that is, we want that an application of a mapping on a vector

is given by the matrix multiplication of the matrix of the mapping with

the given vector, and that mapping composition is given by the product

of the corresponding matrices. It works analogously in the spaces of

higher dimension. Further, this again shows what has already been

proven in (2.5), that is, that matrix multiplication is associative but

not commutative, because it is so with mapping composition. That is

another of the motivation why one should investigate vector spaces.

Let us now recall that already in the �rst chapter we have worked

with matrices of some linear mappings in the plane R2, notably with

the rotation around a point and with axial symmetry (see 1.31 and

1.32).

Let us now try to write down matrices of linear mappings from

R3 to R3. How does the matrix of a rotation in three dimensions look

like? Let us begin with special (easier for description) rotations about

coordinate axes:

2.64. Matrix of rotation about coordinate axes in R3. We write

down matrices of the rotations by the angle φ, gradually about the

(oriented) axes x, y and z in R3.
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Every subspaceW ̸= V thus de�nes an perpendicular projec-

tion onW . It is a projection onW alongW⊥, given by the unique
decomposition of every vector u into components uW ∈ W and

uW⊥ ∈ W⊥, that is, linear mapping which maps uW + uW⊥ on

uW .

2.42. Existence of orthonormal basis. Note that on every �nitely

dimensional real vector space there de�nitely exist

scalar products. Just pick any basis, call it orthonor-

mal and we immediately have a scalar product. In this

basis the scalar products are computed as in the for-

mula in the Theorem 2.40.

But we can do it in other way too. If we are given scalar prod-

uct on a vector space V , we can easily use some suitable perpendic-

ular projections and transform any basis into orthonormal one. It

is called Gramm-Schmidt orthogonalisation process. The point of

this procedure is to transform a given sequence of nonzero genera-

tors v1, . . . , vk of a �nitely dimensional spaceV into an orthogonal

set of nonzero generators for V .

Gramm-Schmidt orthogonalisation

Proposition. Let (u1, . . . , uk) be a linearly independent k-tuple of

vectors of a space V with scalar product. Then there exists an or-

thogonal system of vectors (v1, . . . , vk) such that vi ∈ ⟨u1, . . . , ui⟩,
i = 1, . . . , k. We obtain it by the following procedure:

• The independence of the vectors ui ensures that u1 ̸= 0; we
choose v1 = u1.

• If we have already constructed the vectors v1, . . . , vℓ of re-

quired properties, we choose vℓ+1 = uℓ+1 +a1v1 +· · · +aℓvℓ,
where ai = − ⟨uℓ+1,vi ⟩

∥vi∥2 .

Proof. Let us begin with the �rst (nonzero) vector v1 and cal-

culate the perpendicular projection v2 on do

⟨v1⟩⊥ ⊂ ⟨{v1, v2}⟩.
The result is nonzero if and only if v2 is independent on v1. In all

further steps we work similarly.

In the ℓ-th we want that for vℓ+1 = uℓ+1 + a1v1 + · · · + aℓvℓ
holds ⟨vℓ+1, vi⟩ = 0 for all i = 1, . . . , ℓ. That implies

0 = ⟨uℓ+1 + a1v1 + · · · + aℓvℓ, vi⟩ = ⟨uℓ+1, vi⟩ + ai⟨vi, vi⟩
and we can see that the vectors with desired properties are deter-

mined uniquely up to a scalar multiple. □

Whenever we have an orthogonal basis of a vector spaceV , we

just have to normalise the vectors in order to obtain an orthonormal

basis. Thus we have proven:

Corollary. On every �nitely dimensional real vector space with

scalar product there exist an orthonormal basis.

In orthonormal basis the coordinates and perpendicular pro-

jections are very easy to calculate. Really, let us have an or-

thonormal basis (e1, . . . , en) of a space V . Then every vector

v = x1e1 + · · · + xnen satis�es

⟨ei, v⟩ = ⟨ei, x1e1 + · · · + xnen⟩ = xi

and it always holds that

(2.3) v = ⟨e1, v⟩e1 + · · · + ⟨en, v⟩en.
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Solution. When rotating any particular point about the given axis (say

x), the corresponding coordinate (x) does not change and the remain-

ing two coordinates are then given by the rotation in the plane which

we already know (a matrix of the type 2/times2).
Thus we gradually obtain the following matrices � rotation about

the axis z: cosφ − sinφ 0
sinφ cosφ 0

0 0 1


rotation about the axis y: cosφ 0 sinφ

0 1 0
− sinφ 0 cosφ


rotation about the axis x:1 0 0

0 cosφ − sinφ
0 sinφ cosφ

 .
The sign at φ in the matrix for rotation about y is di�erent. We want,

as with any other rotation, the rotation about the y axis to be in the

positive sense � that is, when we look in the opposite direction of the

direction of the y axis, the world turns anti-clockwise. The signs in the

matrices depend on the orientation of our coordinate system. Usually,

in the 3-dimensional space the so-called "dextrorotary coordinate sys-

tem" is chosen: if we place our hand on the x axis such that the �ngers

point in the direction of the axis and such that we can rotate the x axis

in the xy plane so that x coincides with the y axis and they point in the

same direction, then the thumb should point in the direction of the z

axis. In such system this is a rotation in the negative sense in the plane

xz (that is, the axis z turns in the direction towards x). Think about

the positive and negative sense of rotations through all three axes. □
The knowledge ofmatrices allows us towrite thematrix of rotation

about any (oriented) axis. Let us start with a speci�c example:

2.65. Find the matrix of the rotation in the positive sense through the

angle π/3 about the line passing through the origin with the oriented

directional vector (1, 1, 0) under the standard basis R3.

Solution. The given rotation can be easily obtained by composing

these three mappings:

• rotation through the angle π/4 in the negative sense about

the axis z (the axis of the rotation goes over on the x axis);

• rotation through the angle π/3 in the positive sense about the
x axis;

• rotation through the angle π/4 in the positive sense about the
z axis (the x axis goes over on the axis of the rotation).
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If we are given a subspace W ⊂ V and its orthonormal basis

(e1, . . . , ek), we can surely extended it to an orthonormal basis

(e1, . . . , en) of the whole V . Perpendicular projection of a general

vector v ∈ V onW is then given by the relation

v 7→ ⟨e1, v⟩e1 + · · · + ⟨en, v⟩ek.
For perpendicular projection it is enough to know just the orthonor-

mal basis of the subspaceW , on which we are projecting.

Let us also note than in general projections f on a subspace

W along U and projections g on U alongW tied with the relation

g = idV −f . When dealing with perpendicular projections on

a given subspace W , it is always more e�cient to calculate the

orthonormal basis of the space which has smaller dimension (that

is, for eitherW orW⊥).
Let us also note that the existence of an orthonormal basis en-

sures that for every real spaceV of dimension nwith scalar product

there exists a linear mapping which is an isomorphism between V

and the space Rn with standard scalar product. Similarly it has

been shown already in the Theorem 2.40, where we have shown

that the desired isomorphism is exactly the coordinate assignment.

In words � in orthonormal basis the scalar product with coordinates

is computed by the same formula as the standard scalar product in

Rn.
We shall return to the questions of the size of a vector and to

projections in the following chapter in more general context.

2.43. Angle of two vectors. As we have already noted, the angle

of two linearly independent vectors in the space must be the same

as when we consider them in the two-dimensional subspace they

generate. Basically, this is the reason why the notion of angle is in-

dependent of the dimension of the original space and if we choose

orthogonal basis such that its �rst two vectors generate the same

subspace as the two given vectors u and v (whose angle we are

measuring), we can simply take the de�nition from the planar ge-

ometry. Even without choosing the basis it must hold that:

Angle of two vectors

Angle φ of two vectors v and w in a vector space with scalar

product is given by the relation

cosφ = ⟨v,w⟩
∥v∥∥w∥ .

Angle de�ned in this way does not depend on the order of the vec-

tors v, w and is in the interval 0 ≤ φ ≤ π .

We shall return to the scalar products and angles between vec-

tors in further chapters.

2.44. Multilinear forms. Scalar product was given as a mapping

from the product of two copies of a vector space V

into the space of scalars, which was linear in each

of its arguments. Similarly, we will work with map-

pings from the product of k copies of a vector space

V into the scalars, which are linear in each of its k arguments. We

speak of k-linear forms.

Most often we will meet bilinear forms, that is, the case α :
V × V → K, where for any four vectors u, v, w, z and scalars a,
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Thematrix of the resulting rotation is the product of the matrices corre-

sponding to the given three mappings, while the order of the matrices

is given by the order of application of the mappings � the �rst mapping

applied is in the product the rightmost one. Thus we obtain the desired

matrix
√

2
2 −

√
2

2 0√
2

2

√
2

2 0
0 0 1

 ·
1 0 0

0 1
2 −

√
3

2

0
√

3
2

1
2

 ·


√
2

2

√
2

2 0
−

√
2

2

√
2

2 0
0 0 1

 =

=
 3

4
1
4

√
6

4
1
4

3
4 −

√
6

4

−
√

6
4

√
6

4
1
2


Note that the resulting rotation could be also obtained for instance

by taking the composition of the three following mappings:

• rotation through the angle π/4 in the positive sense about the
axis z (the axis of rotation goes over on the axis y);

• rotation through the angle π/3 in the positive sense about the
axis y;

• rotation through the angle π/4 in the negative sense about

the axis z (the axis y goes over to the axis of rotation).

Analogously we obtain
√

2
2

√
2

2 0
−

√
2

2

√
2

2 0
0 0 1

 ·
 1

2 0
√

3
2

0 1 0
−

√
3

2 0 1
2

 ·


√
2

2 −
√

2
2 0√

2
2

√
2

2 0
0 0 1

 =

=
 3

4
1
4

√
6

4
1
4

3
4 −

√
6

4

−
√

6
4

√
6

4
1
2


□

2.66. Matrix of general rotation in R3. Derive the matrix of a gen-

eral rotation in R3.

Solution. We can do the same things as in the previous example with

general values. Consider arbitrary unit vector (x, y, z). Rotation in

the positive sense through the angle φ about this vector can be written

down as a composition of the following rotations whose matrices we

already know:

i) rotation R1 in the negative sense about the z axis through

the angle with cosine equal to x/
√
x2 + y2 = x/

√
1 − z2,

that is, with sine y/
√

1 − z2, under which the line with the

directional vector (x, y, z) goes over on the line with the di-

rectional vector (0, y, z). Matrix of this rotation is

R1 =
 x/

√
1 − z2 y/

√
1 − z2 0

−y/√1 − z2 x/
√

1 − z2 0
0 0 1

 ,
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b, c and d it holds, as with the ordinary scalar product, that

α(au+ bv, cw + dz) = ac α(u,w)+ ad α(u, z)

+ bc α(v,w)+ bd α(v, z).

If we additionally have

α(u,w) = α(w, u),

we speak of symmetric bilinear form. If exchange of the arguments

leads to opposite sign of the result, we speak of antisymmetric bi-

linear form.

Already in the planar geometry we have de�ned determinant

as a bilinear antisymmetric form α, that is, α(u,w) = −α(w, u).
In general we know thanks to the theorem 2.17 that determinant in

the dimension n can be seen as n-linear antisymmetric form.

As with linear mappings it is clear that every k-linear form is

completely determined by its values on all k-tuples of basis ele-

ments in a �xed basis. In analogy to linear mappings we can see

these values as k-dimensional analogues to matrices. We show this

on an example with k = 2, where it will really correspond to ma-
trices (as we have de�ned them).

Matrix of bilinear form

If we choose basis u on V and de�ne for a given bilinear form

α scalars aij = α(ui, uj ) then we obviously obtain for vectors v,

w with coordinates x and y (as columns of coordinates)

α(v,w) =
n∑

i,j=1

aijxiyj = yT · A · x,

where A is a matrix A = (aij ).

Directly from the de�nition of the matrix of bilinear form we

see that the form is symmetric or antisymmetric if and only if the

corresponding matrix has this property.

Every bilinear form α on vector space V de�nes a mapping

V → V ∗, v 7→ α( , v), that is, plugging a �xed vector in the

second argument we obtain a linear form which is the image of

this vector. If we choose a �xed basis on a �nitely dimensional

space V and a dual basis V ∗, then we have a mapping

y 7→ (x 7→ yT · A · x).

4. Properties of linear mappings

More detailed analysis of properties of types of linear map-

pings will now lead us to a better understanding of tools which

vector spaces give us for modelling of linear processes and sys-

tems.

2.45. Let us begin with four examples in the lowest interesting di-

mension. In the standard basis of the plane R2

with the standard scalar product we consider

the following matrices of mapping f : R2 →
R2:

A =
(

1 0
0 0

)
, B =

(
0 1
0 0

)
, C =

(
a 0
0 b

)
,D =

(
0 −1
1 0

)
.

The matrix A gives a perpendicular projection along the subspace

W ⊂ {(0, a); a ∈ R} ⊂ R2
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ii) rotation R2 in the positive sense about the y axis through

the angle with cosine
√

1 − z2, that is, with sine z, under

which the line with the directional vector (0, y, z) goes over
on the line with the directional vector (1, 0, 0). Matrix of

this rotation is

R2 =
√

1 − z2 0 z

0 1 0
−z 0

√
1 − z2

 ,
iii) rotationR3 in the positive sense about the x axis through the

angle φ with the matrix1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

 ,
iv) rotationR−1

2 with the matrix R−1
2 ,

v) rotationR−1
1 with the matrix R−1

1 .

Matrix of the composition of these mappings, that is, the matrix we

are looking for, is given by the product of the rotations in the reverse

order:

R−1
1 · R−1

2 · R3 · R2 · R1 = cosφ + (1 − cosφ)x2 (1 − cosφ)xy − z sinφ (1 − cosφ)xz+ y sinφ
yx(1 − cosφ)+ z sinφ cosφ + (1 − cosφ)y2 (1 − cosφ)yz− x sinφ
zx(1 − cosφ)− y sinφ (1 − cosφ)zy + x sinφ cosφ + (1 − cosφ)z2



□

2.67. We are given a linear mapping R3 → R3 in the standard basis

as the following matrix: 1 −1 0
0 1 1
2 0 0

 .
Write down the matrix of this mapping under the basis

(f1, f2, f3) = ((1, 1, 0), (−1, 1, 1), (2, 0, 1)).

Solution. The transitionmatrix T for changing the basis from the basis

f = (f1, f2, f3) to the standard basis, that is, to the basis given by the

vectors (1, 0, 0), (0, 1, 0), (0, 0, 1), can be obtained, according to the
Claim 2.25, by writing down the coordinates of the vectors f1, f2, f3

in the standard basis as the columns of the matrix T . Thus we have

T =
1 −1 2

1 1 0
0 1 1

 .
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on the subspace

V ⊂ {(a, 0); a ∈ R} ⊂ R2,

that is, the projection on the x-axis along the y-axis Evidently for

this mapping f : R2 → R2 it holds that f ◦ f = f and thus the

restriction f |V of the given mapping on its codomain is identity

mapping. The kernel of f is exactly the subspaceW .

The matrix B has the property B2 = 0, therefore the same
holds for the corresponding mapping f . We can envision it as a

mapping of di�erentiation of polynomialsR1[x] of degree at most
one in the basis (1, x) (with di�erentiation we shall deal in the

chapter �ve, see ??).

The matrix C gives a mapping f , which enlarges the �rst vec-

tor of the basis a-times, the second b-times. Therefore the whole

plane divides into two subspaces, which are preserved under the

mapping and where it is only a homothety, that is, scaling by a

scalar multiple (�rst case was a special case with a = 1, b = 0).
For instance the choice a = 1, b = −1 corresponds to axial sym-

metry (mirror symmetry) under the x-axis, which is the same as

complex conjugation x+ iy 7→ x− iy on the two-dimensional real
space R2 ≃ C in basis (1, i). This is a linear mapping of the two-
dimensional real vector space C, but not of the one-dimensional
complex space C.

The matrixD is a matrix of rotation through the right angle in

the standard basis and on the �rst sight we can see that none of the

one-dimensional subspaces is not preserved under this mapping.

Such rotation is a bijection of the plane to itself, therefore we

can surely �nd distinct bases in the domain and codomain, where

its matrix will be the unit matrix E (we simply take any basis of

the domain and its image in the codomain). But we are not able to

do this with the same basis on both the domain and the codomain.

Let us see the matrixD as a matrix of the mapping g : C2 →
C2 in the standard basis of the complex vector space

C2. Then we can �nd vectors u = (i, 1), v = (−i, 1),
for which we have

g(u) =
(

0 −1
1 0

)
·
(
i

1

)
=
(−1
i

)
= i · u,

g(v) =
(

0 −1
1 0

)
·
(

1
i

)
=
(−1

−i
)

= −i · v.

That means that in the basis (u, v) on C2 the mapping g has the

matrix

K =
(
i 0
0 −i

)
and note that the this complex analogy to the case of matrix C has

on the diagonal the elements a = cos( 1
2π) + i sin( 1

2π) and its

complex conjugate ā. In other words, the argument of this number

in polar form gives the angle of the rotation.

This is easy to understand, if we denote the real and imaginary

part of the vector u as follows

u = xu + iyu = Re u+ i Im u =
(

0
1

)
+ i ·

(
1
0

)
.

The vector v is complex conjugate of u. We are interested in the

restriction of the mapping g on the real vector space V = R2 ∩
⟨u, v⟩ ⊂ C2. Evidently is

V = ⟨u+ ū, i(u− ū)⟩ = ⟨xu,−yu⟩
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Transition matrix for changing the basis from the standard basis

to the basis f is then given by

T −1 =
 1

4
3
4 − 1

2− 1
4

1
4

1
2

1
4 − 1

4
1
2

 .
Matrix of the mapping in the basis f is then given by

T −1AT =
 1

4 2 − 3
4

5
4 0 7

4
3
4 −2 9

4

 .
□

2.68. Consider the vector space of polynomials of one variable of

degree at most 2 with real coe�cients. In this space, consider the

basis 1, x, x2 . Write down the matrix of the derivative mapping in this

basis and also in the basis 1 + x2 , x, x + x2 .

Solution.

0 1 0
0 0 2
0 0 0

,
0 1 1

2 1 3
0 −1 −1

. □

2.69. In the standard basis inR3 determine the matrix of the rotation

through the angle 90◦ in the positive sense about the line (t, t, t), t ∈ R,
oriented in the direction of the vector (1, 1, 1). Further, give the matrix
of this rotation in the basis

g = ((1, 1, 0), (1, 0,−1), (0, 1, 1)).

Solution. We can easily determine the matrix of the given rotation

in a suitable basis, that is, in a basis given by the directional vector

of the line and by two mutually perpendicular vectors in the plane

x + y + z = 0, that is, in the plane of vectors perpendicular to the

vector (1, 1, 1). We shall note that the matrix of the rotation in the pos-

itive sense through 90◦ in some orthonormal basis in R2 is

(
0 −1
1 0

)
.

In orthogonal basis with sizes of the vectors k, l it is

(
0 −k/l
l/k 0

)
.

If we choose perpendicular vectors (1,−1, 0) and (1, 1,−2) in the

plane x + y + z = 0 with sizes
√

2 and
√

6, then in the basis

f = ((1, 1, 1), (1,−1, 0), (1, 1,−2)) the rotation we are looking for

has matrix

1 0 0
0 0 −√

3
0 1/

√
3 0

. In order to obtain the matrix of the
rotation in the standard basis, it is enough to change the basis. The

transition matrix T for changing the basis from the basis f to the stan-

dard basis is obtained by writing the coordinates (under the standard

basis) of the vectors of the basis f as the columns of the matrix T :

T =
1 1 1

1 −1 1
1 0 −2

. Finally, for the desired matrix R we have
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the whole planeR2. The restriction of g on this plane is exactly the

original mapping given by the matrix A and from the de�nition of

multiplication by the complex unit it is a rotation through the angle
1
2π in the positive sense with respect to the chosen basis xu,−yu
(work it by yourself with a direct calculation, and realise also why

exchanging the order of the vectors u and v leads to the same result,

although in a di�erent real basis!).

2.46. Eigenvalues and eigenvectors of mappings. Key to the de-

scription of mappings in the previous examples were

answers to the question "what are the vectors satis-

fying the equation f (u) = a · u for some suitable

scalars a?".

Let us �x a linear mapping f : V → V on a vector space of

dimension n over scalars K. If we imagine such equality written

in coordinates, that is, using the matrix of the mapping A in some

bases, it is an expression

A · x − a · x = (A− a · E) · x = 0.

>From the previous we know that such a system of equations has

the only solution x = 0 if the matrixA−aE is invertible. Thus we

want to �nd such values a ∈ K for which A− aE is not invertible,

and for that the necessary and su�cient condition (see Theorem

2.23)

(2.4) det(A− a · E) = 0.

If we consider λ = a a variable in the previous scalar equation, we

are actually looking for roots of polynomial of n-th degree. As we

have seen in the case of the matrix D, the roots may exist, but do

not have to depending to the �eld of scalars K we are having.

Eigenvalues and eigenvectors

Scalars λ satisfying the equation f (u) = λ · u for a nonzero

vector u ∈ V are called eigenvalues of mapping f , the correspond-

ing nonzero vectors u then eigenvectors of mapping f .

If u, v are eigenvectors associated with the same eigenvalue λ,

then for every linear combination of u and v it holds

f (au+ bv) = af (u)+ bf (v) = λ(au+ bv).

Therefore the eigenvectors associated with the same eigenvalue λ

form along with a zero vector a nontrivial vector subspace Vλ, that

is, eigenspace associated with λ. For instance, if λ = 0 is an eigen-

value, the kernel Ker f is a eigenspace V0.

>From the de�nition of the eigenvalues it is clear that their

computation cannot depend on the choice of the basis and the ma-

trix of the mapping f . Indeed, as a direct corollary of the transfor-

mation properties from the paragraph 2.38 and Cauchy theorem

2.19 for calculation of the determinant of product we obtain by

choosing di�erent coordinates a matrix A′ = P−1AP with invert-

ible matrix P and

|P−1AP − λE| = |P−1AP − P−1λEP |
= |P−1(A− λE)P | = |P−1||(A− λE||P |
= |A− λE|,

because scalar multiplication is commutative and |P−1| = |P |−1.

>From these reason we use for matrices and mappings the

same terminology:
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R = T ·
1 0 0

0 0 −√
3

0 1/
√

3 0

 · T −1

=
 1/3 1/3 − √

3/3 1/3 + √
3/3

1/3 + √
3/3 1/3 1/3 − √

3/3
1/3 − √

3/3 1/3 + √
3/3 1/3


This result can be checked by plugging into the matrix of general

rotation (∥2.66∥). By normalising the vector (1, 1, 1) we obtain the

vector (x, y, z) = (1/
√

3, 1/
√

3, 1/
√

3), cos(φ) = 0, sin(φ) = 1. □

2.70. In R3 determine the matrix of rotation through the angle 120◦ in
the positive sense about the vector (1, 0, 1) (it is enough to give in the
form of matrix product). ⃝

2.71. Matrix of general rotation revisited. Let us try to derive

the matrix of (general) rotation from (∥2.66∥) through the angle

φ in the positive sense about the unit vector (x, y, z) in a di�er-

ent way, analogically to the previous exercise. In the basis f =
((x, y, z), (−y, x, 0), (zx, zy, z2 −1)), that is, in the orthogonal basis
composed of the directional vector of the axis of rotation and of two

mutually perpendicular vectors with sizes
√

1 − z2 lying in a plane per-

pendicular to the axis of rotation, the matrix corresponding to the rota-

tion is A =
 1 0 0

0 cos(φ) − sin(φ)
cos(φ) sin(φ) 0

. The matrix for changing
the basis from f to the standard basis is then T =

x −y zx

y x zy

z 0 z2 − 1


with the inverse matrix

T −1 =
 x y z

− y

1−z2
x

1−z2 0
zx

1−z2
zy

1−z2 −1

 .
Finally, for the matrix R of the rotation we obtain

R =T · R · T −1 = cos φ + (1 − cos φ)x2 (1 − cos φ)xy − z sin φ (1 − cos φ)xz + y sin φ

yx(1 − cos φ) + z sin φ cos φ + (1 − cos φ)y2 (1 − cos φ)yz − x sin φ

zx(1 − cos φ) − y sin φ (1 − cos φ)zy + x sin φ cos φ + (1 − cos φ)z2


When doing multiplication and simpli�cation we must repeatedly

use the assumption x2 + y2 + z2 = 1.
Through a more detailed analysis of properties of various types of

linear mapping we now obtain a deeper understanding of tools we are

given by vector spaces for linear modelling of processes and systems.
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Characteristic polynomial of matrix and mapping

For a matrix A of dimension n over K we call the polynomial

|A− λE| ∈ Kn[λ] characteristic polynomial of the matrix A.
Roots of this polynomial are the eigenvalues of the matrix A.

If A is the matrix of the mapping f : V → V in a certain basis,

then |A − λE| is also called the characteristic polynomial of the

mapping f .

Because the characteristic polynomial of a linear mapping

f : V → V is independent of the choice of the basis of V , its

coe�cients at individual powers of the variable λ are scalars ex-

pressing the properties of f , that is, they cannot depend on the

choice of the basis. Notably as a simple exercise for calculating

determinants we express the coe�cients at the highest and lowest

powers (we assume dimV = n and the matrix of the mapping

A = (aij ) to be in a certain basis):

|A− λ · E| = (−1)nλn + (−1)n−1(a11 + · · · + ann) · λn−1

+ · · · + |A| · λ0.

Coe�cient at the highest power says only whether the dimen-

sion of the space V is even or odd. We have already noted that the

determinant of the matrix of a mapping expresses how the given

linear mapping scales the volume.

Interesting is that the sum of the diagonal elements of the ma-

trix of a mapping does not depend on the choice of basis. We call

it the trace of matrix and denote it by TrA. Trace of mapping is

de�ned as a trace of the matrix in an arbitrary basis. In reality this

is not so surprising, because in the eight chapter we show an ex-

ample to illustrate a method of di�erential calculus, which shows

that the trace is actually a linear approximation of the determinant

in the neighbourhood of the unit matrix, see ??.

In the following we show a few important properties of

eigenspaces.

2.47. Theorem. Eigenvectors of linear mappings f : V → V

associated to di�erent eigenvectors are linearly independent.

Proof. Let a1, . . . , ak be distinct eigenvalues of the mapping

f and u1, . . . , uk eigenvectors with these eigenvalues. We

do the proof by induction on the number of linearly in-

dependent vectors among the chosen ones. Assume that

u1, . . . , uℓ are linearly independent and ul+1 = ∑
i ciui is

their linear combinations. At least ℓ = 1 can be chosen, because

the eigenvectors are nonzero. But then f (uℓ+1) = al+1 · ul+1 =∑l
i=1 al+1 · ci · ui , that is,

f (ul+1) =
l∑
i=1

al+1 · ci · ui =
l∑
i=1

ci · f (ui) =
l∑
i=1

ci · ai · ui .

By subtracting the second and the fourth expression in the equali-

ties we obtain 0 = ∑l
i=1(al+1 − ai) · ci · ui . All the di�erences

between eigenvalues are nonzero and at least one coe�cient ci is

nonzero. That is a contradiction with the assumed linear indepen-

dence u1, . . . , uℓ, therefore also the vector ul+1 must be linearly

independent of the others. □
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2.72. Consider complex numbers as a real vector space and choose 1
and i for its basis. Determine in this basis the matrix of the following

linear mappings:

a) conjugation,

b) multiplication by the number (2 + i).

Determine the matrix of these mappings in the basis f = ((1 −
i), (1 + i)).

Solution. In order to determine the matrix of a linear mapping in some

basis, it is enough to determine the images of the basis vectors.

a) For conjugation we have 1 7→ 1, i 7→ −i, written in the co-

ordinates (1, 0) 7→ (1, 0) and (0, 1) 7→ (0,−1). By writing the

images into the columns we obtain the matrix

(
1 0
0 −1

)
, In the ba-

sis f the conjugation swaps basis vectors, that is, (1, 0) 7→ (0, 1)
and (0, 1) 7→ (1, 0) and the matrix of conjugation under this basis is(

0 1
1 0

)
.

b) For the basis (1, i) we obtain 1 7→ 2 + i, i 7→ 2i − 1, that is,
(1, 0) 7→ (2, 1), (0, 1) 7→ (2,−1). Thus the matrix of multiplication

by the number 2 + i under the basis (1, i) is:
(

2 −1
1 2

)
.

Now let us determine the matrix in the basis f . Multiplication by

(2+ i) gives us: (1− i) 7→ (1− i)(2+ i) = 3− i, (1+ i) 7→ (1+3i).
Coordinates (a, b)f of the vector 3 − i in the basis f are given, as

we know, by the equation a · (1 − i) + b · (1 + i) = 3 + i, that is,

(3 + i)f = (2, 1). Analogously (1 + 3i)f = (−1, 2). Altogether, we

have obtained the matrix

(
2 −1
1 2

)
.

Think about the following: why is the matrix of multiplication by

2 + i the same in both bases? Would the two matrices in these bases

be the same for multiplication by any complex number? □

2.73. Determine the matrix A, which under the standard basis of the

space R3 gives the orthogonal projection on the vector subspace gen-

erated by the vectors u1 = (−1, 1, 0) and u2 = (−1, 0, 1).

Solution. Let us �rst note that the given subspace is a plane going

through the origin with the normal vector u3 = (1, 1, 1). The ordered
triple (1, 1, 1) is clearly a solution to the system

−x1 + x2 = 0,
−x1 + x3 = 0,

that is, the vector u3 is perpendicular to the vectors u1, u2.

Under the given projection the vectorsu1 and u2 mustmap to them-

selves and the vector u3 on the zero vector. In the basis composed of
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The just proved theorem can be seen as a decomposition of

a linear mapping f into a sum of simple mappings. For dis-

tinct eigenvalues λi of the characteristic polynomial we obtain one-

dimensional eigenspaces Vλi
. Each of them then describes a pro-

jection on this invariant one-dimensional subspace, where the map-

ping is given just as multiplication by the eigenvalue λi . The whole

subspace V is then decomposed into a direct sum of individual

eigenspaces. Furthermore, this decomposition can be easily calcu-

lated:

Basis of eigenvectors

Corollary. If there exists nmutually distinct roots λi of the charac-

teristic polynomial of the mapping f : V → V on n-dimensional

space V , then there exists a decomposition of V into a direct sum

of eigenspaces of dimension 1. That means that there exists a basis

of V composed only of eigenvectors and in this basis f has diag-

onal matrix. This basis is uniquely determined up to the order of

the elements.

The corresponding basis (expressed in the coordinates in an

arbitrary basis of V ) is obtained by solving N systems of homoge-

neous linear equations of n variables with matrices (A − λi · E),
where A is a matrix of f in a chosen basis.

2.48. Invariant subspaces. We have seen that every eigenvector

v of the mapping f : V → V generates a subspace

⟨v⟩ ⊂ V , which is preserved by the mapping f .

In more generality, we say that a vector subspace

W ⊂ V is invariant subspace for a linear mapping

f , if it holds that f (W) ⊂ W .

If V is a �nitely dimensional vector space and we choose some

basis (u1, . . . , uk) of a subspace W , we can always extend it to a

basis (u1, . . . , uk, uk+1, . . . , un) of thewhole spaceV and in every

such basis has our mapping the matrix A of the form

(2.5) A =
(
B C

0 D

)
where B is a square matrix of dimension k,D is a square matrix of

dimension n − k and C is a matrix of the type n/(n − k). On the

other hand, if in some basis (u1, . . . , un) the matrix of the mapping

f is of the form (2.5), W = ⟨u1, . . . , uk⟩ is an invariant subspace
of the mapping f .

Of course that in our matrix of the mapping (2.5) a submatrix

C is zero if and only if the subspace ⟨uk+1, . . . , un⟩ generated by
the added vectors of the basis invariant.

>From this point of view the eigenspaces of the mapping are

extremal case of invariant subspaces and notably in the case of

existence of n = dimV distinct eigenvalues of the mapping f we

obtain a decomposition of V into direct sum of n eigenspaces. In

a suitable basis formed of the eigenvectors the mapping has then

diagonal form with eigenvalues on the diagonal.

2.49. Orthogonal mappings. Let us now have a look on the spe-

cial case of the mapping f : V → W between spaces

with scalar products, which preserve sizes for all vec-

tors u ∈ V .
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u1, u2, u3 (in this order) is thus the matrix of this projection1 0 0
0 1 0
0 0 0

 .
Using the the transition matrix for changing the basis

T =
−1 −1 1

1 0 1
0 1 1

 , T −1 =
− 1

3
2
3 − 1

3− 1
3 − 1

3
2
3

1
3

1
3

1
3


from the basis (u1, u2, u3) to the standard basis, and from the standard

basis to the basis (u1, u2, u3) we obtain

A =
−1 −1 1

1 0 1
0 1 1

 ·
1 0 0

0 1 0
0 0 0

 ·
− 1

3
2
3 − 1

3− 1
3 − 1

3
2
3

1
3

1
3

1
3


=
 2

3 − 1
3 − 1

3− 1
3

2
3 − 1

3− 1
3 − 1

3
2
3

 .
□

2.74. In the vector space R3 determine the matrix of the orthogonal

projection onto the plane x + y − 2z = 0. ⃝
2.75. In the vector space R3 determine the matrix of the orthogonal

projection on the plane 2x − y + 2z = 0. ⃝

I. Bases and inner products

Using the inner product we can solve in a di�erent (better?) way

problems we were able to solve already using changes of coordinates.

2.76. Write down thematrix of themapping of orthogonal projection

on the plane passing through the origin and perpendicular to the vector

(1, 1, 1).

Solution. The image of arbitrary point (vector) x = (x1, x2, x3) ∈ R3

under the considered mapping can be obtained by subtracting from the

given vector its orthogonal projection onto the direction normal to the

considered plane, that is, onto the direction (1, 1, 1). This projection
p is given by (see 2.3) as

(x, (1, 1, 1))
|(1, 1, 1)|2 = (

x1 + x2 + x3

3
,
x1 + x2 + x3

3
,
x1 + x2 + x3

3
).

The resulting mapping is thus

x − p = (
2x1

3
− x2 + x3

3
,

2x2

3
− x1 + x3

3
,

2x3

3
− x1 + x2

3
) =

=
 2

3 − 1
3 − 1

3− 1
3

2
3 − 1

3− 1
3 − 1

3
2
3

x1
x2
x3

 .
We have (correctly) obtained the same matrix as in the exercise ∥2.73∥.

□
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Definition of orthogonal mapping

Linear mapping f : V → W between spaces with scalar

product is called orthogonal mapping, if for all u ∈ V
⟨f (u), f (u)⟩ = ⟨u, u⟩.

>From the linearity of f and from the symmetry of the scalar

product follows that for all tuples of vectors the following equality

holds:

⟨f (u+ v), f (u+ v)⟩ = ⟨f (u), f (u)⟩ + ⟨f (v), f (v)⟩
+ 2⟨f (u), f (v)⟩.

Therefore all orthogonal mappings satisfy also seemingly stronger

condition that for all vectors u, v ∈ V it holds that

⟨f (u), f (v)⟩ = ⟨u, v⟩.
In the initial discussion about the geometry in the plane we

have proved in the Theorem 1.33 that a linear mapping R2 → R2

preserves sizes of the vectors if and only if its matrix in the stan-

dard basis (which is orthonormal with respect to the standard scalar

product) satis�es AT · A = E, that is, A−1 = AT .

In general, orthogonal mapping f : V → W must be al-

ways injective, because the condition ⟨f (u), f (u)⟩ = 0 means

also ⟨u, u⟩ = 0 and thus u = 0. In such case is then the dimen-

sion of the range always at least as big as the dimension of the

domain of f . But then the both dimensions equal and we know

that f : V → Im f is a bijection. If Im f ̸= W , we extend the

orthonormal basis of the image of f to an orthonormal basis of the

target space and the matrix of the mapping then contains a square

regular submatrixA along with zero rows so that it has the required

size. Without loss of generality we can assume thatW = V .

Our condition for the matrix of orthogonal mapping says in

orthonormal basis that for all vectors for all vectors x and y in the

space Kn the following:
(A · x)T · (A · y) = xT · (AT · A) · y = xT · y.

By specially choosing x and y to be the vectors of the standard ba-

sis we directly obtain thatAT ·A = E, that is, the same result as in

the dimension two. Thus we have obtained the following theorem:

Matrix of orthogonal mappings

Theorem. Let V be a real vector space with scalar product and

let f : V → V be a linear mapping. Then f is orthogonal if and

only if in some orthogonal basis (and then consequently in all of

them) it has the matrix A satisfying AT = A−1.

Proof. Indeed, if f preserves sizes, it must have the listed

property in every orthonormal basis. On the other hand, the pre-

vious calculations show that this property for matrix in one basis

ensures size preservation. □
Square matrices which satisfy the equality AT = A−1 are

called orthogonal matrices.

Corollary of the previous theorem is also a description of all

matrices S of basis changing. Each must give a map-

ping Kn → Kn that preserves sizes and thus satis�es
the condition S−1 = ST . When changing from one

orthonormal basis to another the matrix of any linear

mapping changes according to the relation
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2.77. In R3 a standard coordinate system is considered. In the plane

z = 0 there is a mirror and at the point [4, 3, 5] there is a candle. The
observer at the point [1, 2, 3] is not aware of the mirror, but sees in it
the re�ection of the candle. At what point does he think the candle is?

⃝
Solution. [4, 3,−5] □

2.78. Find the matrix of the re�ection with respect to the plane x +
y + z = 0.

Solution. >From the equation of the plane we determine its unit nor-

mal vector. In our case it is n = 1√
3
(1, 1, 1). The re�ection Z of the

vector v can then be expressed by Zv = v − 2(v.n)n = (1 − 2nnT )v
(for the standard scalar product we have v.n = vnT ). The matrix of

the re�ection is then

1 − 2nnT =
1 0 0

0 1 0
0 0 1

− 2 · 1
3

1 1 1
1 1 1
1 1 1

 = 1
3

 1 −2 −2
−2 1 −2
−2 −2 1


□

Using the inner product we can determine the (angular) de�ection

of the vectors:

2.79. Determine the de�ection of the roots of the polynomial x2 − i

considered as vectors in the complex plane.

Solution. The roots of the given polynomial are square roots of i. The

arguments of the square roots of any complex numbers di�er according

to the de Moivre theorem by5. Their de�ection is thus always5. □

2.80.Determine the cosine of the de�ection of the lines p, q in R3

given by the equations

p : −2x + y + z = 1

x + 3y − 4z = 5

q : x − y = −2

z = 6

2.81. Let a line be given:

p : [1, 1] + (4, 1)t, t ∈ R

Determine the parametrical expression of all lines q that pass through

the origin and have de�ection 60◦ with the line p. ⃝
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A′ = STAS.

2.50. Decomposition of an orthogonal mapping. Let us now

have a more detailed look on eigenvectors and eigenval-

ues of orthogonal mappings on a real vector space V with

scalar product.

Consider �xed orthogonal mapping f : V → V with

matrix A in some orthonormal basis and let us try to continue as

with the matrix D of rotation, as in the example 2.45.

But let us �rst have a general look on invariant subspaces of

orthogonal mappings and their orthogonal complements. If for any

subspace W ⊂ V and orthogonal mapping f : V → V it holds

that f (W) ⊂ W , then also for all v ∈ W⊥ it holds that w ∈ W
⟨f (v), w⟩ = ⟨f (v), f ◦ f−1(w)⟩ = ⟨v, f−1(w)⟩ = 0

because also f−1(w) ∈ W . But that means that also f (W⊥) ⊂
W⊥. We have thus proved a simple but important proposition:

Proposition. Orthogonal complement of invariant subspace is

also invariant.

If eigenvalues of orthogonal mapping are real, this claim en-

sures that there always exists a basis V of eigenvectors. Indeed,

restriction of f on the orthogonal complement of an invariant sub-

space is again an orthogonal mapping, therefore we can put into the

basis one eigenvector after another, until we obtain the whole de-

composition of V . However, mostly the eigenvalues of orthogonal

mappings are not real. We again need to make a trip into complex

vector spaces. Let us formulate a result right away:

Orthogonal mapping decomposition

Theorem. Let f : V → V be an orthogonal mapping on a vector

space V with scalar product. Then all the roots of the character-

istic polynomial f have size one and there exists a decomposition

of V into one-dimensional eigenspaces corresponding to the eigen-

values λ = ±1 and two-dimensional subspaces Pλ,λ̄, where f acts

by rotating through the angle equal to the argument of the complex

number λ in the positive sense. All these subspaces are mutually

orthogonal.

Proof. Without loss of generality we can work with the space

V = Rm with the standard scalar product. The map-

ping is thus given by orthogonal matrix A which we

can see as a matrix of a linear mapping on a complex

space Cm (which just happens to have all coe�cients

real). Necessary there exist exactly m (complex) roots of the char-

acteristic polynomial, counting their algebraic multiplicity (see the

Fundamental theorem of algebra, ??). Furthermore, because the

characteristic polynomial of the mapping has only real coe�cients,

the roots are either real or there is a tuple of roots which are com-

plex conjugates λ and λ̄. The associated eigenvectors in Cm for

such tuple of complex conjugates are actually a solutions to two

systems of linear homogeneous equations which are also complex

conjugates of each other � the corresponding matrices of the sys-

tems are all real except for the eigenvalues. Therefore also the so-

lutions of this systems are complex conjugates.

Now we use the fact that for every invariant subspace its

orthogonal complement is also invariant. We �rst �nd the
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2.82. Using the Gram-Schmidt orthogonalisation obtain the orthog-

onal basis of the subspace

U = {
(x1, x2, x3, x4)

T ∈ R4; x1 + x2 + x3 + x4 = 0
}

of the space R4.

Solution. The set of solutions of the given homogeneous linear equa-

tion is clearly a vector space with the basis

u1 =


−1
1
0
0

 , u2 =


−1
0
1
0

 , u3 =


−1
0
0
1

 .
Vectors of the orthogonal basis obtained using the Gram-Schmidt or-

thogonalisation process shall be denoted v1, v2, v3. Let us �rst set

v1 = u1. Further, let

v2 = u2 − uT2 · v1

||v1||2 v1 = u2 − 1
2
v1 =

(
−1

2
,−1

2
, 1, 0

)T
,

that is, let us choose a multiple v2 = (−1,−1, 2, 0)T . Further, let

v3 = u3 − uT3 · v1

||v1||2 v1 − uT3 · v2

||v2||2 v2 = u3 − 1
2
v1 − 1

6
v2 =

=
(

−1
3
,−1

3
,−1

3
, 1
)T
.

Altogether we have

v1 =


−1
1
0
0

 , v2 =


−1
−1
2
0

 , v3 =


−1
−1
−1
3

 .
Let us add that due to the simplicity of the exercise we can immediately

give an orthogonal basis of the vectors

(1,−1, 0, 0)T , (0, 0, 1,−1)T , (1, 1,−1,−1)T

or

(−1, 1, 1,−1)T , (1,−1, 1,−1)T , (−1,−1, 1, 1)T .

□

2.83. Write down some basis of the real vector space of the matrices

3 × 3 over R with zero trace (the sum of the elements on the diagonal)

and write the coordinates of the matrix1 2 0
0 2 0
1 −2 −3


in this basis.

2.84. De�ne some inner product on the vector space of the matrices

from the previous exercise. Compute the norm of the matrix from the

previous exercise, induced by the product you have de�ned. ⃝
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eigenspaces V±1 associated to the real eigenvalues and restrict our

mapping to the orthogonal complement of their sum. Without loss

of generality we can thus assume that our orthogonal mapping has

no real eigenvalues and that dimV = 2n > 0.
Let us now choose some eigenvalue λ and let uλ be the eigen-

vector associated to the eigenvalue λ = α + iβ, β ̸= 0. Analo-

gously to the case of rotation in the plane given in the paragraph

2.45 by the matrix D we are interested in the real part of the sum

of two one-dimensional subspaces ⟨uλ⟩ ⊕ ⟨ūλ⟩, where ūλ is the

eigenvector associated to the eigenvalue λ̄.

It is an intersection of the given sum of the complex subspaces

withR2n, which is generated by the vectors uλ+ūλ and i(uλ−ūλ ),
that is, real vector subspace Pλ ⊂ R2n generated by the basis given

by the real and imaginary part of uλ

xλ = re uλ, −yλ = − im uλ.

Because A · (uλ + ūλ) = λuλ + λ̄ūλ and similarly with the sec-

ond basis vector, it is clearly an invariant subspace with respect to

multiplication by the matrix A and we obtain

A · xλ = αxλ + βyλ, A · yλ = −αyλ + βxλ.

Because our mapping preserves sizes, the size of the eigenvalue

λ must be equal to one. But that means that the restriction of our

mapping on Pλ is rotation through the argument of the eigenvalue

λ. Note that the choice of the eigenvalue λ̄ instead of λ leads to the

same subspace with the same rotation, we just have it expressed in

basis xλ, yλ, that is, we must in the coordinates rotate through the

angle with opposite sign.

The proof of the whole theorem is �nished, because the by

restriction of our mapping to the orthogonal complement and re-

peating the previous we obtain the whole decomposition after n

steps. □

We return to the ideas in this proof once again in the third

chapter, whenwe study complex extensions of the Euclidean vector

spaces, see 3.26.

Remark. Specially in the dimension three at least one eigenvalue

±1 must be real, because three is an odd number. But
then the associated eigenspace is an axis of the rota-

tion of the three-dimensional space through the an-

gle given by argument of the other eigenvalues. Try

to think how to detect in which direction the space is rotated and

also that the eigenvalue−1means additional re�ection through the
plane perpendicular to the axis of the rotation.

We shall return to the discussion of the properties of matrices

and linear mappings. Before we continue with the general theory,

we show �rst in the next chapter a couple of application. We close

this section with a general de�nition:

Spectrum of linear mapping

2.51. De�nition. Spectrum of linear mapping f : V → V (spec-

trum of amatrix) is a sequence of roots of the characteristic polyno-

mial f , along with multiplicities. Algebraic multiplicity of eigen-

value means its multiplicity as of the root of the characteristic poly-

nomial, geometric multiplicity of the eigenvalue is the dimension

of the associated subspace of eigenvectors.

Spectral diameter of of a linear mapping (of a matrix) is the

greatest of the absolute values of the eigenvalues.

115

2.85. Determine some basis of the vector space of all antisymmetric

real square matrices of the type 4 × 4. Consider the standard inner

product in this basis and using this product express the size of the ma-

trix 
0 3 1 0

−3 0 1 2
−1 −1 0 2
0 −2 −2 0


.

2.86. Find the orthogonal complement U⊥ of the subspace

U = {(x1, x2, x3, x4); x1 = x3, x2 = x3 + 6x4} ⊂ R4.

Solution. Orthogonal complement U⊥ consists of exactly those vec-

tors that are perpendicular to every solution of the system

x1 − x3 = 0,
x2 − x3 − 6x4 = 0.

A vector is a solution of this system if and only if it is perpendicular

to both vectors (1, 0,−1, 0), (0, 1,−1,−6). Thus we have

U⊥ = {a · (1, 0,−1, 0)+ b · (0, 1,−1,−6); a, b ∈ R}.
□

2.87. Determine whether the subspaces U = ⟨(2, 1, 2, 2)⟩
a V = ⟨(−1, 0,−1, 2) , (−1, 0, 1, 0) , (0, 0, 1,−1)⟩ of the space R4

are orthogonal. If they are, is R4 = U ⊕ V , that is, is U⊥ = V ?

2.88. Depending on the parameter t ∈ R determine the dimension of

the subspaceU of the vector spaceR3, ifU is generated by the vectors

(a) u1 = (1, 1, 1), u2 = (1, t, 1), u3 = (2, 2, t);
(b) u1 = (t, t, t), u2 = (−4t,−4t, 4t), u3 =

(−2,−2,−2).

2.89. Construct an orthogonal basis of the subspace

⟨ (1, 1, 1, 1), (1, 1, 1,−1), (−1, 1, 1, 1) ⟩
of the space R4.

2.90. In the space R4 �nd some orthogonal basis of the subspace of

all linear combinations of the vectors (1, 0, 1, 0), (0, 1, 0,−7),
(4,−2, 4, 14) and the subspace generated by the vectors (1, 2, 2,−1),
(1, 1,−5, 3), (3, 2, 8,−7).

2.91.For what values of the parameters a, b ∈ R are the vectors

(1, 1, 2, 0, 0), (1,−1, 0, 1, a), (1, b, 2, 3,−2)

in the space R5 pairwise orthogonal?
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In this terminology, our results about orthogonal mappings

can be formulated as follows: the spectrum of orthogonal map-

ping is always a subset of the unit circle in the complex plane.

That means that in the real part of the spectrum there are only val-

ues±1, whose algebraic and geometric multiplicities are the same.
Complex values of the spectrum then correspond to the rotations

in suitable two-dimensional subspaces which are mutually perpen-

dicular.
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2.92. In the space R5 consider the subspace generated by the vectors

(1, 1,−1,−1, 0), (1,−1,−1, 0,−1), (1, 1, 0, 1, 1),
(−1, 0,−1, 1, 1). Find some basis of its orthogonal complement.

2.93. Describe the orthogonal complement of the subspace V of the

space R4, if V is generated by the vectors (−1, 2, 0, 1), (3, 1,−2, 4),
(−4, 1, 2,−4), (2, 3,−2, 5).

2.94. In the space R5 determine the orthogonal complement W⊥ of

the subspaceW , if

(a) W = {(r + s + t,−r + t, r + s,−t, s + t); r, s, t ∈ R};
(b) W is the set of the solutions of the system of equations x1 −

x3 = 0, x1 − x2 + x3 − x4 + x5 = 0.

2.95. Let in the space R4 be given vectors

(1,−2, 2, 1), (1, 3, 2, 1).

Extend these two vectors into an orthogonal basis of the whole R4.

(You can do it in any way you like, for instance using the Gram-

Schmidt orthogonalisation process.)

2.96. Find some orthonormal basis of the subspace V ⊂ R,
where V = {(x1, x2, x3, x4) ∈ R4 | x1 + 2x2 + x3 = 0}.
Solution. We see that the fourth coordinate does not appear in the re-

striction for the subspace, thus it seems reasonable to pick (0, 0, 0, 1)
as one of the vectors of the orthonormal basis and reduce the problem

into the subspace R3. Let us try once again to avoid any computa-

tion � we see that if we set the second coordinate equal to zero, then

in the investigated space there are vectors with reverse �rst and third

coordinate, notably, the unit vector ( 1√
2
, 0,− 1√

2
, 0). This vector is per-

pendicular to any vector which has �rst coordinate equal to the third

coordinate. In order to get into the investigated subspace, we choose

the second coordinate equal to the opposite value of the sum of the

�rst and the third coordinate, we then normalise, that is, we choose

the vector ( 1√
6
,− 2√

6
, 1√

6
, 0) and we are done. □

J. Eigenvalues and eigenvectors

2.97. Eigenvalues and eigenvectors can be used to illustrative de-

scription of linear mappings, notably in R2 and R3.

(1) Consider mapping with a matrix under the standard basis

f : R3 → R3, A =
0 0 1

0 1 0
1 0 0

 .
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We then obtain

|A− λE| =
∣∣∣∣∣∣
−λ 0 1
0 1 − λ 0
1 0 −λ

∣∣∣∣∣∣ = −λ3 + λ2 + λ− 1,

with roots λ1,2 = 1, λ3 = −1. Eigenvectors with eigenvalue λ = 1
can be computed:−1 0 1

0 0 0
1 0 −1

 ∼
1 0 −1

0 0 0
0 0 0

 ;

with the basis of the space of solutions, that is, of all eigenvectors with

this eigenvalue

u1 = (0, 1, 0), u2 = (1, 0, 1).

Similarly for λ = −1 we obtain the third independent eigenvector1 0 1
0 2 0
1 0 1

 ∼
1 0 1

0 2 0
0 0 0

 ⇒ u3 = (−1, 0, 1).

Under the basis u1, u2, u3 (note that u3 must be linearly indepen-

dent of the remaining two thanks to the previous theorem and u1, u2

were obtained as two independent solutions) f has the diagonal matrix

A =
1 0 0

0 1 0
0 0 −1

 .
The whole space R3 is a direct sum of eigenspaces, R3 = V1 ⊕ V2,

dimV1 = 2, dimV2 = 1. This decomposition is uniquely deter-

mined and says a lot about geometric properties of the mapping f .

The eigenspace V1 is furthermore a direct sum of one-dimensional

eigenspaces, which can be chosen in more ways (thus such a decom-

position has no further geometrical meaning).

(2) Consider linear mapping f : R2[x] → R2[x] de�ned by poly-
nomial di�erentiation, that is, f (1) = 0, f (x) = 1, f (x2 ) = 2x.
The mapping f thus has in the usual basis (1, x, x2 ) the matrix

A =
0 1 0

0 0 2
0 0 0

 .
Characteristic polynomial is |A − λ · E| = −λ3, thus it has only one

eigenvalue, λ = 0. We compute the eigenvectors:0 1 0
0 0 2
0 0 0

 ∼
0 1 0

0 0 1
0 0 0

 .
The space of the eigenvectors is thus one-dimensional, generated by

the constant polynomial 1.
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2.98. An exercise with a change of basis. Determine the eigenvalues

and eigenvectors of the matrix

A =
1 1 0

1 2 1
1 2 1

 .
Describe the geometric interpretation of this mapping and write down

its matrix under the basis:

e1 = [1,−1, 1]

e2 = [1, 2, 0]

e3 = [0, 1, 1]

Solution. Characteristic polynomial of the matrix is∣∣∣∣∣∣
1 − λ 1 0

1 2 − λ 1
1 2 1 − λ

∣∣∣∣∣∣ = −λ3 + 4λ2 − 2λ = −λ(λ2 − 4λ+ 2).

Roots of this polynomial, eigenvalues, say when the matrix1 − λ 1 0
1 2 − λ 1
1 2 1 − λ


will not have full rank, that is, the system of equations1 − λ 1 0

1 2 − λ 1
1 2 1 − λ

x1
x2
x3


will have more solutions than just x = (0, 0, 0). Thus eigenvalues are
0, 2 + √

2, 2 − √
2. Let us compute eigenvectors associated with the

particular eigenvalues:

• 0: We solve the system1 1 0
1 2 1
1 2 1

x1
x2
x3

 = 0

Its solutions form one-dimensional vector space of eigenvec-

tors: ⟨(1,−1, 1)⟩.
• 2 + √

2: We solve the system−(1 + √
2) 1 0

1 −√
2 1

1 2 −(1 + √
2)

x1
x2
x3

 = 0.

The solutions form a one-dimensional space ⟨(1, 1+√
2, 1+√

2)⟩.
• 2 − √

2: We solve the system(
√

2 − 1) 1 0
1

√
2 1

1 2 (
√

2 − 1)

x1
x2
x3

 = 0.

Its solutions form a space of eigenvectors ⟨(1, 1 − √
2, 1 −√

2)⟩.
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The given matrix has eigenvalues 0, 2 + √
2 and 2 − √

2, with as-
sociated one-dimensional spaces of eigenvectors ⟨(1,−1, 1)⟩, ⟨(1, 1+√

2, 1 + √
2)⟩ and ⟨(1, 1 − √

2, 1 − √
2)⟩ respectively.

The mapping can thus be interpreted as a projection along the vec-

tor (1,−1, 1) into the plane given by the vectors (1, 1 + √
2, 1 + √

2)
and (1, 1 − √

2, 1 − √
2) composed with the linear mapping given

by "stretching" by the factor corresponding to the eigenvalues in the

directions of the associated eigenvectors.

Now we express it under the given basis. For this we need the

matrix T for changing the basis from the standard basis to the new

basis. This can be obtained by writing the coordinates of the vectors

of the original basis under the new basis into the columns of the matrix

T . But we shall do it in a di�erent way � we obtain �rst the matrix for

changing the basis from the new one to the original one, that is, the

matrix T −1. We just write the coordinates of the vectors of the new

basis into the columns:

T −1 =
 1 1 0

−1 2 1
1 0 1

 .
Then

T = T −1−1 =
 0 0 1

1 0 −1
−2 1 3

 ,
and for the matrix B of a mapping under new basis we have (see 2.38)

B = TAT −1 =
0 5 2

0 −2 −1
0 14 6

 .
□

Let us do somemore exercises for computing with eigenvalues and

eigenvectors.

2.99. Find the eigenvalues and the associated subspaces of eigenvec-

tors of the matrix A= −1 1 0
−1 3 0
2 −2 2

 .
Solution. Let us �rst construct the characteristic polynomial of the

matrix: ∣∣∣∣∣∣
−1 − λ 1 0

−1 3 − λ 0
2 −2 2 − λ

∣∣∣∣∣∣ = λ3 − 4λ3 + 2λ+ 4.

This polynomial has roots 2, 1+√
3, 1−√

3, which are then eigenval-
ues of the matrix. Their algebraic multiplicity is one (they are simple

roots of the polynomial), thus each has associated only one (up to a
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non-zero multiple) eigenvector (that is, the so-called geometric multi-

plicity of the eigenvalue is also one, see 3.32).

Let us determine the eigenvector associated with the eigenvalue

2 (it is a solution of the homogeneous linear system with the matrix

A− 2E):

−3x1 + x2 = 0

−1x1 + x2 = 0

2x1 − 2x2 = 0.

The system has solution x1 = x2 = 0, x3 ∈ R arbitrary, the eigenvector

associated to the value 2 is then for instance the eigenvector (and any

multiple of it).

Analogically we determine the remaining two eigenvectors � as

solutions of the system [A − (1 + √
3)E]x = 0 and of the system

[A− (1 + √
3)E]x = 0. The solution of the system

(−2 − √
3)x1 + x2 = 0

−1x1 + (2 − √
3)x2 = 0

2x1 − 2x2 + (1 − √
3)x3 = 0

is the space {
(
(

√
3

2 − 1)t,− t
2 ,
)
, t ∈ R}. That is the space of eigen-

vectors associated with the eigenvalue 1 + √
3 (except for the zero

vector, which is a solution of the system, but we do not consider it an

eigenvector; we shall not refer to this anymore in the future and we

won't explicitly exclude the zero vector from the set of solutions).

Similarly we obtain that the space of eigenvector associated with

the eigenvalue 1 − √
3 is ⟨(−1 −

√
3

2 ,− 1
2 , 1)⟩. □

2.100. Find the eigenvalues and the associated eigenspaces of eigen-

vectors of the matrix:

A =
 1 1 0

−1 3 0
2 −2 2

 .
Solution. Characteristic polynomial of thematrix is λ3−6λ2+12λ−8,
which is (λ− 2)2 with a root 2 which has multiplicity 3. The number

2 is thus an eigenvalue with algebraic multiplicity three. Its geometric

multiplicity is either one, two or three. Let us determine the vectors

associated to this eigenvalue as the solutions of the system

(A− 2E)x =
−x1 +x2 = 0,
−x1 +x2 = 0,
2x1 −2x2 = 0.

Its solutions form the two-dimensional space ⟨(1,−1, 0), (0, 0, 1)⟩.
The eigenvalue 2 has thus algebraic multiplicity 3 and geometric mul-

tiplicity 2.
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□
Further basic exercises regarding eigenvalues and eigenvectors of

matrices can be found at the page 130

2.101. For any n×nmatrixA its characteristic polynomial |A−λE |
is of degree n, that is, it is of the form

|A− λE | = cn λ
n + cn−1 λ

n−1 + · · · + c1 λ+ c0, cn ̸= 0,

while we have

cn = (−1)n, cn−1 = (−1)n−1 trA, c0 = |A |.
If the matrix A is three-dimensional, we obtain

|A− λE | = −λ3 + (trA) λ2 + c1 λ+ |A |.
By choosing λ = 1 we obtain

|A− E | = −1 + trA+ c1 + |A |.
>From there we obtain

|A−λE | = −λ3 + (trA) λ2 + (|A−E |+ 1 − trA−|A |) λ+|A |.
Use this expression for determining the characteristic polynomial and

the eigenvalues of the matrix

A =
32 −67 47

7 −14 13
−7 15 −6

 .
⃝

2.102. Without any computation write down the spectrum of the linear

mapping f : R3 → R3 given by (x1, x2, x3) 7→ (x1 + x3, x2, x1 + x3).

⃝
2.103. Give the dimension of the eigenspaces of the eigenvalues λi of

the matrix 
4 0 0 0
1 4 0 0
5 2 3 0
0 4 0 3

 .
⃝

2.104.Pauli matrix In physics, state of the particle with spin 1
2 is de-

scribed with Pauli matrices. They are the 2×2 matrices over complex

numbers:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
For square matrices we de�ne their commutator (denoted by square

brackets) as [σ1, σ2] := σ1σ2 − σ2σ1

Show that it holds that [σ1, σ2] = 2iσ3 and similarly [σ1, σ3] =
2iσ2 and [σ2, σ3] = 2iσ1. Furthermore, show that σ 2

1 = σ 2
2 = σ 2

3 = 1
and that eigenvalues of the matrices σ1, σ2, σ3 are ±1.
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Show that for matrices describing the state of the particle with spin

1

1√
2

0 1 0
1 0 1
0 1 0

 , 1√
2

0 −i 0
i 0 −i
0 i 0

 ,
1 0 0

0 0 0
0 0 −1


the same commuting relations hold as in the case of Pauli matrices.

Equivalently it can be shown that under the notation

1 :=
(

1 0
0 1

)
, I := iσ3, J := iσ2,K := iσ1 forms the vectors

space with basis (1, I, J,K) an algebra of quaternions (algebra is a

vector space with binary bilinear operation of multiplication, in this

case the multiplication is given by the matrix multiplication). In order

for the vector space to be an algebra of quaternions it is necessary and

su�cient to show the following properties: I 2 = J 2 = K2 = −1 and

IJ = −J I = K, JK = −KJ = I and KI = −IK = J .

2.105. Can the matrix

B =
(

5 6
6 5

)
be expressed in the form of the product B = P−1 · D · P for some

diagonal matrix D and invertible matrix P ? If it is possible, give an

example of such tuple of matrices D, P , and �nd out how many such

tuples are there. ⃝
As we have already seen in , based on the eigenvalues and eigen-

vectors of the given 3×3 matrix, we can often geometrically interpret

the mapping it gives in R3. Notably, we can do it in these situations:

If the matrix has 0 as eigenvalue and 1 as an eigenvalue with geo-

metric multiplicity 2, it is a projection in the direction of the eigen-

vector associated with the eigenvalue 0 on the plane given by the

eigenspace of the eigenvalue 1. If the eigenvector associated with 0 is

perpendicular to that plane, the mapping is an orthogonal projection.

If thematrix has eigenvalue−1with the eigenvector perpendicular
to the plane of the eigenvectors associated with the eigenvalue 1, it is
a mirror symmetry through the plane of the eigenvectors associated

with 1.
If the matrix has eigenvalue 1 with eigenvector perpendicular to

plane of the eigenvectors associated with the eigenvalue −1, it is an
axial symmetry (in space) through the axis given by the eigenvector

associated with 1.

2.106. Determine what linear mapping R3 → R3 is given by the

matrix − 2
3 − 1

3 − 2
3

4
3 − 7

3 − 8
3− 1 1 1
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Solution. The matrix has a double eigenvalue −1, its associated

eigenspace is ⟨(2, 0, 1), (1, 1, 0)⟩. Further, the matrix has 0 as the

eigenvalue, with eigenvector (1, 4,−3). The mapping given by this

matrix under the standard basis is then an axial symmetry through

the line given by the last vector composed with the projection on the

plane perpendicular to the last vector, that is, given by the equation

x + 4y − 3z = 0. □

2.107. The theorem (2.50) gives us tools how to recognise matrix of

a rotation inR3: it has three distinct eigenvalues with absolute value 1,
one of them is the number 1 (its associated eigenvector is the axis of the
rotation). The argument of the remaining two, which are necessarily

complex conjugates, gives the angle of the rotation in the positive sense

in the plane given by the basis uλ + uλ, i[uλ − uλ].

2.108. Determine what linear mapping is given by the matrix−1
5

3
5

−1
5−8

5
9
5

2
5

8
5

−4
5

3
5

 .
Solution. By the already known method we �nd out that the ma-

trix has the following eigenvalues and corresponding eigenvectors:

1, (1, 2, 0); 3
5 + 4

5 i, 1, (1, 1 + i,−1 − i); 3
5 − 4

5 i, (1, 1 − i,−1 + i). It
is thus a matrix of a rotation (all the eigenvalues have absolute value 1

and one of the eigenvalues is 1), further we know that it is a rotation by

the angle arccos( 3
5)
.= 0, 295π , which is the argument of the complex

number 3
5 + 4

5 i. It remains to determine the direction of the rotation.

First it is good to recall that the meaning of the direction of the ro-

tation changes when we change the orientation of the axis (it has no

meaning to speak of the direction of the rotation if we do not have an

orientation of the axis). Using the ideas from the proof of the theorem

2.50, we see that the given matrix acts by rotating by arccos( 3
5)) in the

positive sense in the plane given by the basis ((0, 1,−1), (1, 1,−1)).
The �rst vector of the basis is the imaginary part of the eigenvector as-

sociated with the eigenvalue 3
5 + 4

5 i, the second is then the (common)

real part of the eigenvectors associated with the complex eigenvalues.

The order of the vectors in the basis is important (by changing their

order the meaning of the direction changes). The axis of rotation is

perpendicular to the plane. If we orient using the right-hand rule (the

perpendicular direction is obtained by taking the product of the vectors

in the basis) then the direction of the rotation agrees with the direction

of rotation in the plane with the given basis. In our case we obtain

by the vector product (0, 1,−1) × (1, 1,−1) = (0,−1,−1). It is

thus a rotation through arccos( 3
5) in the positive sense about the vector
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(0,−1,−1), that is, a rotation through arccos( 3
5) in the negative sense

about the vector (0, 1, 1). □
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K. Additional exercises for the whole chapter

2.109. Solve the equation

x1 + x2 + x3 + x4 − 2x5 = 3,
2x2 + 2x3 + 2x4 − 4x5 = 5,

−x1 − x2 − x3 + x4 + 2x5 = 0,
−2x1 + 3x2 + 3x3 − 6x5 = 2.

Solution. The extended matrix of the system is
1 1 1 1 −2 3
0 2 2 2 −4 5

−1 −1 −1 1 2 0
−2 3 3 0 −6 2

 .
Adding the �rst row to the third, adding its 2-multiple to the fourth, and adding the (−5/2)-multiple
of the second to the fourth we obtain

1 1 1 1 −2 3
0 2 2 2 −4 5
0 0 0 2 0 3
0 5 5 2 −10 8

 ∼


1 1 1 1 −2 3
0 2 2 2 −4 5
0 0 0 2 0 3
0 0 0 −3 0 −9/2

 .
The last row is clearly a multiple of the previous, and thus we can omit it. The pivots are located

in the �rst, second and fourth, thus the free variables are x3 and x5 which we substitute by the real

parameters t and s. We thus consider the system

x1 + x2 + t + x4 − 2s = 3,
2x2 + 2t + 2x4 − 4s = 5,

2x4 = 3.

We see that x4 = 3/2. The second equation gives

2x2 + 2t + 3 − 4s = 5, that is, x2 = 1 − t + 2s.

>From the �rst we have

x1 + 1 − t + 2s + t + 3/2 − 2s = 3, tj. x1 = 1/2.

Altogether,

(2.1)

(x1, x2, x3, x4, x5) = (1/2, 1 − t + 2s, t, 3/2, s), t, s ∈ R.

In this exercise we also consider the extended matrix and we transform it using the row transfor-

mations into the row echelon form, where the �rst non-zero number in every row is 1 and where in a

column in which this 1 is located the remaining numbers are 0. We also note that we omit the fourth

equation, which is a combination of the �rst three. Gradually, multiplying the second and the third

row by the number 1/2, subtracting the third row from the second and from the �rst and by subtracting

the second row from the �rst we obtain 1 1 1 1 −2 3
0 2 2 2 −4 5
0 0 0 2 0 3

 ∼
 1 1 1 1 −2 3

0 1 1 1 −2 5/2
0 0 0 1 0 3/2

 ∼

 1 1 1 0 −2 3/2
0 1 1 0 −2 1
0 0 0 1 0 3/2

 ∼
 1 0 0 0 0 1/2

0 1 1 0 −2 1
0 0 0 1 0 3/2

 .
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If we choose again x3 = t, x5 = s (t, s ∈ R), we obtain the general solution (∥2.1∥) in the same form,
directly. Consider the corresponding equations

x1 = 1/2,
x2 + t − 2s = 1,

x4 = 3/2.

□

2.110. Find the solution of the system of linear equations given by the extended matrix
3 3 2 1 3
2 1 1 0 4
0 5 −4 3 1
5 3 3 −3 5

 .
Solution. We transform the given extended matrix into the row echelon form. We �rst copy the

�rst three rows and into the last row we write the sum of the (2)-multiple of the �rst and of the

(−3)-multiple of the last row. By this we obtain
3 3 2 1 3
2 1 1 0 4
0 5 −4 3 1
5 3 3 −3 5

 ∼


3 3 2 1 3
0 −3 −1 −2 6
0 5 −4 3 1
0 6 1 14 0

 .
Copying the �rst two row s and adding a 5-multiple of the second row to the 3-multiple of the third

and its 2-multiple to the fourth gives
3 3 2 1 3
0 −3 −1 −2 6
0 5 −4 3 1
0 6 1 14 0

 ∼


3 3 2 1 3
0 −3 −1 −2 6
0 0 −17 −1 33
0 0 −1 10 12

 .
We copy the �rst, second and fourth row, and add the fourth to the third, we obtain

3 3 2 1 3
0 −3 −1 −2 6
0 0 −17 −1 33
0 0 −1 10 12

 ∼


3 3 2 1 3
0 −3 −1 −2 6
0 0 −18 9 45
0 0 −1 10 12

 .
Then we have (the remaining row transformations are �usual�)

3 3 2 1 3
0 −3 −1 −2 6
0 0 −18 9 45
0 0 −1 10 12

 ∼


3 3 2 1 3
0 −3 −1 −2 6
0 0 2 −1 −5
0 0 1 −10 −12

 ∼


3 3 2 1 3
0 −3 −1 −2 6
0 0 1 −10 −12
0 0 2 −1 −5

 ∼


3 3 2 1 3
0 −3 −1 −2 6
0 0 1 −10 −12
0 0 0 19 19

 .
We see that the system has exactly 1 solution. We determine it by backwards elimination

3 3 2 1 3
0 −3 −1 −2 6
0 0 1 −10 −12
0 0 0 1 1

 ∼


3 3 2 0 2
0 −3 −1 0 8
0 0 1 0 −2
0 0 0 1 1

 ∼


3 3 0 0 6
0 −3 0 0 6
0 0 1 0 −2
0 0 0 1 1

 ∼


1 1 0 0 2
0 1 0 0 −2
0 0 1 0 −2
0 0 0 1 1

 ∼


1 0 0 0 4
0 1 0 0 −2
0 0 1 0 −2
0 0 0 1 1

 .
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The result is then

x1 = 4, x2 = −2, x3 = −2, x4 = 1.

□

2.111. Give all the solutions of the homogeneous system

x + y = 2z+ v, z+ 4u+ v = 0, −3u = 0, z = −v
of four linear equations with 5 variables x, y, z, u, v.

Solution. We rewrite the system into a matrix such that in the �rst column there are coe�cients at x,

in the second there are coe�cients at y, and so on, while we put all the variables in equations to the

left side. By this we obtain the matrix
1 1 −2 0 −1
0 0 1 4 1
0 0 0 −3 0
0 0 1 0 1

 .
We add (4/3)-multiple of the third row to the second and subtract then the second row from the fourth

to obtain
1 1 −2 0 −1
0 0 1 4 1
0 0 0 −3 0
0 0 1 0 1

 ∼


1 1 −2 0 −1
0 0 1 0 1
0 0 0 −3 0
0 0 0 0 0

 .
We multiply the third row by the number −1/3 and add the 2-multiple of the second row to the �rst,

which gives
1 1 −2 0 −1
0 0 1 0 1
0 0 0 −3 0
0 0 0 0 0

 ∼


1 1 0 0 1
0 0 1 0 1
0 0 0 1 0
0 0 0 0 0

 .
>From the last matrix we can directly obtain all solutions

x

y

z

u

v

 = t


−1
1
0
0
0

+ s


−1
0

−1
0
1

 , t, s ∈ R,

because we have the matrix in the row echelon form, while the �rst non-zero number in every row

is 1 and in a column where there is such 1 there are zeroes at all other positions. The solution given

as a linear combination of two vectors is determined exactly by the columns without �rst non-zero

number on some row, that is, by the second and the �fth column, when we choose 1 as the second

coordinate for the second column and as the �fth coordinate for the �fth column and when we take

the numbers in the corresponding column with the opposite sign and put them at the position given by

the column where there is a �rst 1 in its row. Let us add that the result can be immediately rewritten

in the form

(x, y, z, u, v) = (−t − s, t, −s, 0, s) , t, s ∈ R.

□

2.112.Decompose the following permutations into transposition:
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i)

(
1 2 3 4 5 6 7
7 6 5 4 3 2 1

)
,

ii)

(
1 2 3 4 5 6 7 8
6 4 1 2 5 8 3 7

)
,

iii)

(
1 2 3 4 5 6 7 8 9 10
4 6 1 10 2 5 9 8 3 7

)
.

2.113.Determine the parity of the given permutations:

i)

(
1 2 3 4 5 6 7
7 5 6 4 1 2 3

)
,

ii)

(
1 2 3 4 5 6 7 8
6 7 1 2 3 8 4 5

)
,

iii)

(
1 2 3 4 5 6 7 8 9 10
9 7 1 10 2 5 4 9 3 6

)
.

2.114. Determine the eigenvalues of the matrix
−13 5 4 2

0 −1 0 0
−30 12 9 5
−12 6 4 1

 .
⃝

2.115. Having been told that the numbers 1, −1 are the eigenvalues of the matrix

A =


−11 5 4 1
−3 0 1 0
−21 11 8 2
−9 5 3 1

 ,
give all solutions of the characteristic equation |A − λE | = 0. Hint: if you denote all the roots of
the polynomial |A− λE | as λ1, λ2, λ3, λ4, it is

|A | = λ1 · λ2 · λ3 · λ4, trA = λ1 + λ2 + λ3 + λ4.

⃝
2.116. Give an example of a four-dimensional matrix with eigenvalues λ1 = 6 and λ2 = 7 such that

their multiplicity of λ2 as a root of the characteristic polynomial is three and that

(a) the dimension of the subspace of eigenvectors of λ2 is 3;

(b) the dimension of the subspace of eigenvectors of λ2 is 2;

(c) the dimension of the subspace of eigenvectors of λ2 is 1;

⃝
2.117. Find the eigenvalues and eigenvectors of the matrix:−1 − 5

6
5
3

0 − 2
3 − 2

3
0 1

6 − 4
3

 .
2.118. Determine the characteristic polynomial |A−λE |, eigenvalues and eigenvectors of the matrix4 −1 6

2 1 6
2 −1 8

 .
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⃝
respectively.
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Solutions to the exercises

2.7.

A5 =
 122 −121 121

−121 122 −121
0 0 1

 , A−3 = 1
27

14 13 −13
13 14 13
0 0 27

 .
2.12. There is only one such matrix X, and it is(

18 −32
5 −8

)
.

2.14. A−1 =
1 10 −4

1 12 −5
0 5 −2

 .

2.15.


2 −3 0 0 0

−5 8 0 0 0
0 0 −1 0 0
0 0 0 −5 2
0 0 0 3 −1

 .

2.16. C−1 = 1
2


0 1 1 0
0 1 0 −1
1 −1 0 0
1 −1 −1 1

 .
2.17. In the �rst case we have

A−1 = 1
2

·
(

3 −i
i 1

)
;

in the second

A−1 =
14 8 5

2 1 1
1 1 0

 .
2.18. We have

A−1 = 1
n− 1



0 1 1 · · · 1
1 0 1 · · · 1

1 1 0
. . .

...
...

...
. . .

. . . 1
1 1 · · · 1 0

 .

2.21. -3,17,-1

2.24. By subtracting the �rst row from all other rows and then expanding the �rst column we obtain

Vn(x1, x2, . . . , xn) =

∣∣∣∣∣∣∣∣∣
1 x1 x2

1 . . . xn−1
1

0 x2 − x1 x2
2 − x2

1 . . . xn−1
2 − xn−1

1
...

...
...

. . .
...

0 xn − x1 x2
n − x2

1 . . . xn−1
n − xn−1

1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
x2 − x1 x2

2 − x2
1 . . . xn−1

2 − xn−1
1

...
...

. . .
...

xn − x1 x2
n − x2

1 . . . xn−1
n − xn−1

1

∣∣∣∣∣∣∣ .
If we take out xi+1 − x1 from the i-th row for i ∈ {1, 2, . . . , n− 1}, we obtain

Vn(x1, x2, . . . , xn)

= (x2 − x1) · · · (xn − x1)

∣∣∣∣∣∣∣∣
1 x2 + x1 . . .

∑n−2
j=0 x

n−j−2
2 x

j

1
...

...
. . .

...

1 xn + x1 . . .
∑n−2
j=0 x

n−j−2
n x

j

1

∣∣∣∣∣∣∣∣ .
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By subtracting from every column (startingwith the last and endingwith the second) x1-multiple of the previous

column, we obtain∣∣∣∣∣∣∣∣
1 x2 + x1 . . .

∑n−2
j=0 x

n−j−2
2 x

j

1
...

...
. . .

...

1 xn + x1 . . .
∑n−2
j=0 x

n−j−2
n x

j

1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1 x2 . . . xn−2

2
...

...
. . .

...

1 xn . . . xn−2
n

∣∣∣∣∣∣∣ .
Therefore

Vn(x1, x2, . . . , xn) = (x2 − x1) · · · (xn − x1) Vn−1(x2, . . . , xn).

Because it is clear that

V2(xn−1, xn) = xn − xn−1,

it holds (by induction) that

Vn(x1, x2, . . . , xn) =
∏

1≤i<j≤n
(xj − xi).

Note that the determinant is non-zero whenever the numbers x1, . . . , xn are mutually distinct.

2.27. 
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


−1

1
4


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 .
We can then easily obtain

x1 = 13
4
, x2 = −3

4
, x3 = −3

4
, x4 = 1

4
.

2.33. The solutions are exactly all scalar multiples of a vector(
1 + √

3, −√
3, 0, 1, 0

)
.

2.34. x1 = 1 + t, x2 = 3
2 , x3 = t, x4 = − 1

2 , t ∈ R.
2.35. The system has no solution.

2.36. The system has a solution, because

3 ·


3
2
2
3

−


3
3

−3
−2

− 5 ·


1

−1
1
1

 =


1
8
4
6

 .
2.37. System of linear equations

3x1 + 2x3 = 1,
x1 + x3 = 2,

7x1 + 4x3 = 3,
5x1 + 3x3 = 4,

x2 = 5

has no solution, while the system

3x1 + 2x3 = 1,
x1 + x3 = 1,

7x1 + 4x3 = 1,
5x1 + 3x3 = 1,

x2 = 1

has a unique solution x1 = −1, x2 = 1, x3 = 2.
2.38. The set of all solutions is

{(−10t, (a + 4)t, (3a − 8)t) ; t ∈ R}.
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2.39. For a = 0 the system has no solution, for a ̸= 0 it has in�nitely many solutions.

2.40. The correct answers are �yes�, �no�, �no� and �yes� respectively.

2.41. i) For b ̸= −7 is x = z = (2 + a)/(b + 7), y = (3a − b − 1)/(b + 7) (1b). ii) For b = −7 (1b) and

a ̸= −2 (1b) has no solution (1b), for a = −2 the solution is x = z, 3z− 1 (2b).

2.43. From the knowledge of the inverse matrix F−1 we obtain

F ∗ = (αδ − βγ ) F−1 =
 δ −β 0

−γ α 0
0 0 αδ − βγ

 ,
for any α, β, γ , δ ∈ R.
2.44. The matrices are

(a)


1 1 −2 −4
0 1 0 −1

−1 −1 3 6
2 1 −6 −10

 , (b)

(
6 −2i

−3 + 2i 1 + i

)
.

2.47. It is easy to check that it is a vector space. The �rst coordinate does not a�ect the results of the operations

� it is just the vector space (R,+, ·) written in a di�erent way.
2.52. There is a unique solution

p = 2, q = −2, r = 3.

2.55. (2 + 1√
3
, 2 − 1√

3
).

2.56. The vectors are dependent whenever at least one of the conditions

a = b = 1, a = c = 1, b = c = 1

is satis�ed.

2.57. Vectors are linearly independent.

2.58. It su�ces to add for instance the polynomial x.

2.70.  1/4 −√
6/4 3/4√

6/4 −1/2 −√
6/4

3/4
√

6/4 1/4


2.74.  5/6 −1/6 1/3

−1/6 5/6 1/3
1/3 1/3 1/3

 .
2.75.  5/9 2/9 −4/9

2/9 8/9 2/9
−4/9 2/9 5/9


2.80. cos =

√
2√
3
.

2.81.

q1 : (2 −
√

3
2
, 2

√
3 + 1

2
)t, q2 : (2 +

√
3

2
,−2

√
3 + 1

2
)t.

2.84. For instance the inner product that follows from the isomorphism of the space of all real 3 × 3 matrices

with the space R9. If we use the product from R9, we obtain an inner product that assigns to two matrices the

sum of products of two corresponding elements. For the given matrix we obtain∥∥∥∥∥∥
1 2 0

0 2 0
1 −2 −3

∥∥∥∥∥∥ =
⟨1 2 0

0 2 0
1 −2 −3

 ,
1 2 0

0 2 0
1 −2 −3

⟩ =
√

12 + 22 + 02 + 02 + 22 + 02 + 12 + (−2)2 + (−3)2 = √
23.
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2.87. The vector that gives the subspace U is perpendicular to each of the three vectors that generate V . The

subspaces are thus orthogonal. But it is not true that R4 = U ⊕ V . The subspace V is only two-dimensional,

because

(−1, 0,−1, 2) = (−1, 0, 1, 0)− 2 (0, 0, 1,−1) .

2.88. In the �rst case we have dim U = 2 for t ∈ {1, 2}, otherwise we have dim U = 3. In the second case we

have dim U = 2 for t ̸= 0 and dim U = 1 for t = 0.
2.89. Using the Gram-Schmidt orthogonalisation process we can obtain the result

((1, 1, 1, 1), (1, 1, 1,−3), (−2, 1, 1, 0)) .

2.90. Preserving the order of the subspaces from the problem statement we have for instance the orthogonal

bases

((1, 0, 1, 0), (0, 1, 0,−7))

and

((1, 2, 2,−1), (2, 3,−3, 2), (2,−1,−1,−2)).

2.91. The result is a = 9/2, b = −5, because it must hold

1 + b + 4 + 0 + 0 = 0, 1 − b + 0 + 3 − 2a = 0.

2.92. The basis must contain a single vector. It is some non-zero scalar multiple of the vector

(3,−7, 1,−5, 9).

2.93. Orthogonal complement V ⊥ is a set of all scalar multiples of the vector (4, 2, 7, 0).
2.94.

(a) W⊥ = ⟨ (1, 0,−1, 1, 0), (1, 3, 2, 1,−3) ⟩ ;
(b) W⊥ = ⟨ (1, 0,−1, 0, 0), (1,−1, 1,−1, 1) ⟩.

2.95. There is in�nitely many possible extensions, of course. A very simple one is for instance

(1,−2, 2, 1), (1, 3, 2, 1), (1, 0, 0,−1), (1, 0,−1, 1).

2.101. Je |A− λE | = −λ3 + 12λ2 − 47λ+ 60, . λ1 = 3, λ2 = 4, λ3 = 5.
2.102. The result is the sequence 0, 1, 2.
2.103. Dimension is 1 for λ1 = 4 and 2 for λ2 = 3.
2.105. Matrix B has two distinct eigenvalues, and thus such expression exists. For instance it holds that(

5 6
6 5

)
= 1

2

(√
2 −√

2√
2

√
2

)
·
(

11 0
0 −1

)
· 1

2

( √
2

√
2

−√
2

√
2

)
.

There exist exactly two diagonal matrices D:(
11 0
0 −1

)
,

(−1 0
0 11

)
,

but the columns of the matrix P−1 can be substituted with their arbitrary non-zero scalar multiples, thus there

are in�nitely many tuples D, P .

2.112. i) (1, 7)(2, 6)(5, 3), ii) (1, 6)(6, 8)(8, 7)(7, 3)(2, 4), iii) (1, 4)(4, 10)(10, 7)(7, 9)(9, 3)(2, 6)(6, 5)
2.113. i) 17 inversions, odd, ii) 12 inversions, even iii) 25 inversions, odd

2.114. The matrix has only one eigenvalue � −1.
2.115. The root −1 of the polynomial |A− λE | has multiplicity three.
2.116. For instance,
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(a)


6 0 0 0
0 7 0 0
0 0 7 0
0 0 0 7

 ; (b)


6 0 0 0
0 7 1 0
0 0 7 0
0 0 0 7

 ;

(c)


6 0 0 0
0 7 1 0
0 0 7 1
0 0 0 7

 .
2.117. Triple eigenvalue −1, corresponding eigenspace is ⟨(1, 0, 0), (0, 2, 1)⟩.
2.118. Characteristic polynomial is −(λ − 2)2(λ − 9), that is, eigenvalues are 2 and 9 with associated eigen-

vectors

(1, 2, 0) , (−3, 0, 1) a (1, 1, 1)



We have already developed a pretty useful package of tools

and it is time to show some applications of the matrix calculus.

On some relatively easy problems we see that the theory allows us

both qualitative and quantitative analyses and sometimes it leads

quite easily to some surprising results.

Although it might seem that the assumption of linearity of re-

lations between the quantities is too restrictive, it is quite often note

so � in real problems there linear relations tend to either directly

appear or the �nal process is a result of an iteration of many linear

steps. And even if it is not the case, we can using this approach at

least approximate the real processes.

We like to view the matrices (and linear mappings) as objects

with which we would like to work with as if they were

scalars. In order to do that, a pretty hard work to be done in

the fourth chapter is required. We show a quick and useful

application then on the so-called matrix decompositions,

which are needed for numerical mastery of matrix calculus in a

most robust way.

1. Linear processes

3.1. Solution of system of linear equations. Simple linear pro-

cesses are given by linear mappings φ : V → W

on vector spaces. As we can surely imagine, the vec-

tor v ∈ V can represent the state of some system we

are observing, while φ(v) gives the result after some

process was realised.

If we want to reach a given result b ∈ W of such process, we

solve the problem

φ(x) = b

for some unknown vector x and a known vector b.

In �xed coordinates we then have a matrix A of a mapping

φ and coordinate expression of the vector b. As we have already

noted in the introduction to the second chapter, the set of all solu-

tions of the so-called homogeneous system

A · x = 0

is a vector space.

If the dimension of V is �nite, say n, and the dimension of

the image of the mapping φ is k, then by solving of this system

using the row echelon transformation (see 2.7) we �nd out that the

dimension of the space of all solutions is exactly n− k. Indeed, as
the columns of the matrix of the mapping are exactly the images of

the vectors of the basis, in the matrix of the system there are exactly

k linearly independent columns and thus also the same number of

linearly independent rows. Therefore even after doing the transfor-

mation into the row echelon form exactly n− k zero rows remain.

CHAPTER 3

Linear models and matrix calculus

where are the matrices useful?

� basically almost everywhere. . .

A. Processes with linear restrictions

Let us show an example of a very simple linear optimisation prob-

lem:

3.1. A company manufactures bolts and nuts. Nuts and bolts are

moulded � moulding a box of bolts takes one minute, box of nuts is

moulded for 2 minutes. Preparing the box itself takes one minute for

bolts, 4 minutes for nuts. The company has at its disposal two hours

for moulding and three hours for box preparation. Demand says, that it

is necessary to manufacture at least 90 boxes of bolts more than boxes

of matrices. Due to technical reasons it is not possible to manufacture

more than 110 boxes of bolts. The pro�t from one box of bolts is 40 K£

and the pro�t from one box of 60K£. The company has no trouble with

selling. How many boxes of nuts and bolts should be manufactured in

order to have maximal pro�t?

Solution. Let us write the given data into a table:
Bolts Nuts Capacity
1 box 1 box

Mould 1 min./box 2 min./box 2 hours
Box 1 min./box 4 min./box 3 hours
Pro�t 40 K£/box 60 K£/box
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When solving the system of equation we are thus left with exactly

n− k free parameters and by setting one of them to have the value

one andmaking the other to be zero we obtain exactly n−k linearly
independent solutions. All solutions are then given by all the linear

combinations of these n − k solutions. Every such (n − k)-tuple

of solutions is called fundamental system of solutions of the given

homogeneous system of equations. We have proved:

Theorem. The set of all solutions of the homogeneous system of

equations

A · x = 0
for n variables with the matrix A of rank K is a vector subspace

of Kn of dimension n − k. Every basis of such subspace forms a

fundamental system of solutions of the given homogeneous system.

3.2. Non-homogeneous systems of equations. Consider now the

general system of equations

A · x = b.

Let us now realise once again that the columns of the matrix A are

actually images of the vectors of the standard basis inKn under the
linear mapping φ corresponding to the matrix A. If there is to be

a solution, b must be in the image under φ and thus it must be a

linear combination of the columns in A.

If we extend the matrix A by the column b, the number of

linearly independent columns and thus also rows might increase

(but does not have to). If this number increases, then b is not in the

image and the system of equations does not have a solution. If on

the other hand the number of linearly independent rows does not

change after adding the column b to the matrix A, it means that b

must be a linear combination of the columns of A. Coe�cients of

such combinations are then exactly the solutions of our system.

Consider now two �xed solutions x and y of our system and

some solution z of the homogeneous system with the same matrix.

Then clearly

A · (x − y) = b − b = 0
A · (x + z) = 0 + b = b.

Thus we can summarise:

3.3. Theorem. The solution of non-homogeneous system of linear

equations A · x = b exists if and only if adding the column b to

the matrix A does not increase the number of linearly independent

rows. In such case the space of all solution is given by all sums of

one �xed particular solution of the system and all solutions of the

homogeneous system that has the same matrix.

In literature, this theorem is often called Frobenius theorem

and its usual formulation is "system has a solution if and only if

the rank of its matrix equals the rank of its extended matrix".

3.4. Optimisation linear models. In the parallel column we have

started this chapter with painting problems. We shall

continue with this. Imagine that our very specialised

painter in the black-white world is willing to paint

facades of either small family houses or of big public building,

and that he uses only black and white colours. He can arbitrarily

choose, in what range will he do x units of area of the �rst type or y

units of the second type. Let us assume that his maximal workload

in a given interval is L units of area, his clean income (that is, after

subtracting the costs) is c1 per a unit of area for small houses and

138

Denote by x1 the number of manufactured boxes of bolts and by

x2 the number of manufactured boxes of nuts. From the restriction on

the moulding time and from the restriction on the box preparation we

obtain the following restrictive conditions:

x1 + 2x2 ≤ 120

x1 + 4x2 ≤ 180

x1 ≥ x2 + 90

x1 ≥ 110

The objective function (the function that gives the pro�t for given

number of manufactured nuts and bolts) is 40x1 + 60x2. The previous

system of inequalities gives R2 a certain area and the optimisation of

the pro�t means to �nd in this area the point (points) in which the

objective function has the maximum value, that is, to �nd the highest

k such that the line 40x1 + 60x2 = k has a non-empty intersection

with the given area. Graphically, we can �nd the solution for example

by placing the line p into the plane such that it satis�es the equation

40x1 + 60x2 = 0 and start moving it "upwards" as long as it has some

intersection with the area. It is clear that the last intersection is either

a point or the borderline of the line (and the line must be parallel to

p). Thus we obtain (see the �gure) the point x1 = 110 and x2 = 5.
Maximum possible income is thus 40 · 100 + 60 · 5 = 4700 K£. □

3.2.Minimisation of costs for feeding Stable in Ni²ovice u Volyn¥

buys fodder for winter: hay and oat. The nutritional values of the

fodder and required daily portions for one foal are given in the table:
g/kg Hay Oat Requirements

Dry basis 841 860 At least 6300 g
Digestible nitrogen stu� 53 123 At most 1150 g

Starch 0,348 0,868 At most 5,35 g
Calcium 6 1,6 At least 30 g
Phosphate 2,8 3,5 At most 44 g
Natrium 0,2 1,4 Approximately 7 g
Cost 1,80 1,60

Every foal must obtain in daily meal at least 2 kg of oat. Average
cost (counting the payment for the transportation) cost 1, 80K£ per

1 kg of hay and 1, 60K£ per 1 kg of oat. Compose daily diet for one

foal which has minimum costs.

3.3.Optimal distribution of material. On inner wooden panelling of

a cottage there are following requirements

• at most 120 planks of length 35 cm,

• from 180 to 330 planks of length 120 cm,

• at least 30 planks of length 95 cm.
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c2 per unit of area for big buildings. Furthermore, he has only W

kg of white colour andB kg of black colour at his disposal. Finally,

a unit of area for small houses requires w1 kg of white colour and

b1 kg of black colour, while for big buildings the corresponding

values are w2 and b2.

If we sum it all into (in)equalities, we obtain the conditions

x1 + x2 ≤ L(3.1)

w1x1 + w2x2 ≤ W(3.2)

b1x1 + b2x2 ≤ B.(3.3)

The total clean income of the painter,

h(x1, x2) = c1x1 + c2x2,

should be maximised.

Each of the given inequalities clearly gives in the plane of

the variables (x1, x2) a half-plane, bounded by a line given by

the corresponding equality, and we must also assume that both x1
and x2 are non-negative real numbers (because the painter cannot

paint negative areas). Thus we have the restrictions for the val-

ues (x1, x2) � either the restrictions are unsatis�able, or they allow

points inside of a polygon with at most �ve vertices, see the picture.

In general we speak of linear programming problemwhenever

we seek either maximum or minimum of a linear form h over Rn
over a set bounded by a system of linear inequalities which we call

linear restrictions. Vector on the right side is then called vector of

restrictions, the linear form h is also called objective function.

Formulation with inequalities ≤ at restrictive conditions, non-

negative variables and maximalisation of the objective functions is

called standard maximalisation problem. On the other hand, stan-

dard minimisation problem is de�ned by seeking minimum of the

objective function while the restrictive inequalities are ≥ and the

variables are non-negative.

It is easy to see that every general linear programming prob-

lem can be transformed into a standard one of either type. Aside

of sign changes we can work with decomposition of the variables

that have no sign restriction into a di�erence of two non-negative

ones. Without loss of generality we shall further work only with

the standard maximisation problem.

How to solve such problem. We seek maximum of a linear

form h over subsetsM of a vector space which are given by linear

inequalities, that is, in the plane by the intersection of half planes,

in general we shall speak in the next chapter about half-spaces.

Note that every linear form over real vector space h : V → R
(that is, arbitrary linear scalar function) is monotone in every cho-

sen direction � that is, in the direction it either grows all the time

or decreases. More precisely, if we choose a �xed starting vector

u ∈ V and "directional" vector v ∈ V , then composition of our

form h with parametrisation yields

t 7→ h(u+ t v) = h(u)+ t h(v).

This expression is indeed with increasing parameter t always either

increasing or decreasing, or constant (depending on whether h(v)

is positive, negative or zero).

Thus we surely must expect that problems similar to the one

with the painter are either unsatis�able (if the given set with re-

strictions is empty), or the pro�t is unbounded (if the restrictions

give an unbounded of the space and the form h is in some of the

unbounded directions non-zero) or they attain a maximal solution
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But only planks of length 4 meters can be bought. The total waste can-

not be greater that 360 cm. Determine the minimal number of planks

that can be bought (and how to cut them) in order to meet the require-

ments.



CHAPTER 3. LINEAR MODELS AND MATRIX CALCULUS

in at least one of the "vertices" of the set M (while usually that

would be the case for only a single vector, it can also be the case

that the maximum is attained on a part of the boundary of the area

M.

3.5. Formulation using linear equations. Finding an optimum

is not always as simple as in the previous case. The

problem can contain many variables and restrictions

and even deciding whether the set M of satis�able

points is non-empty can be a problem.

We don't have space here for the complete theory, but we men-

tion at least two directions of ideas, which show that actually the

solution can be always found in a way similar to the previous para-

graph.

Let us begin by comparison with systems of linear equations

� because we understand those well. Let us write the equations

(3.1)-(3.3) in general form:

A · x ≤ b,

where x is now an n-dimensional vector, b is m-dimensional vec-

tor and A is the corresponding matrix. By an inequality between

vectors we mean individual inequalities between coordinates. We

want to maximise the product c · x for a given row vector of coe�-

cients of the linear form h. If we add a new auxiliary variable for

every equation and add another variable z for the value of the lin-

ear form h, we can rewrite the whole system as a system of linear

equations (
1 −c 0
0 A Em

)
·
 zx
xs

 =
(

0
b

)
where the matrix is composed of the blocks with 1+n+m columns

and 1 +m rows, with corresponding individual components of the

vectors. Additionally we require for all coordinates X and xs non-

negativity.

If the given system of equations has a solution, in this set of

solutions we seek values for the variables z, x and xs , such that

all x are non-negative and z maximised. In the paragraph 4.11 on

page 215 we will discuss this situation from the viewpoint of a�ne

geometry.

Speci�cally, in our problem of black and white painter the sys-

tem of linear equations looks like this:


1 −c1 −c2 0 0 0
0 1 1 1 0 0
0 w1 w2 0 1 0
0 b1 b2 0 0 1

 ·


z

x1
x2
x3
x4
x5

 =


0
L

W

B



3.6. Duality of linear programming. Consider the real matrix

A with m rows and n columns, vector of restrictions b and

row vector c giving the objective function. From these data

we can compose two problems of linear programming for

x ∈ Rn and y ∈ Rm.

Maximisation problem: Maximise c · x under the conditions A ·
x ≤ b and x ≥ 0.

Minimisation problem: Minimise yT ·b under the condition yT ·
A ≥ cT and y ≥ 0.
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We say that these two problems are mutually dual. For deriv-

ing other properties of linear programming we �rst introduce some

terminology.

We say that the problem is solvable if there is some admissible

vector x which meets all restrictions. Solvable maximisation (min-

imisation) is bounded, if the objective function is bounded from

above (bellow) over the set of admissible vectors.

Lemma. If x ∈ Rn is an admissible vector for the standard max-

imisation problem and y ∈ Rm is admissible vector for the dual

minimisation problem, then for the objective functions we have

c · x ≤ yT · b
Proof. It is actually a simple observation: x ≥ 0 and cT ≤

yT · A, but also y ≥ 0 and A · x ≤ b, thus it must also hold that

c · x ≤ yT · A · x ≤ yT · b,
which is what we wanted to prove. □

>From here we immediately see that if both dual problems are

solvable, then they must be bounded. Even more interesting is the

following corollary, which is directly implied by the inequality in

the previous proof.

Corollary. If there exist admissible vectors x and y of dual lin-

ear problems such that for the objective functions it holds that

c ·x = yT ·b, then both are optimal solution for the corresponding
problem.

3.7. Theorem (About duality). If a standard problem of linear pro-

gramming is solvable and bounded, then its dual is also bounded

and solvable, there exist an optimal solution for each of the prob-

lems and the optimal values of the corresponding objective func-

tions are equal.

Proof. One direction was already proved in the previous

corollary. It remains to prove the existence of an optimal solution.

That is easy to prove by constructing an algorithm, which we won't

do in a great detail now. We will return to the missing part of the

proof in the part about a�ne geometry at the page 215. □
Let us note yet another corollary of the just formulated duality

theorem:

Corollary (Equilibrium theorem). Consider two admissible vec-

tors x and y for the standard maximisation problem and its dual

problem from the de�nition 3.6. Then both these vectors are opti-

mal if and only if yi = 0 for all coordinates with index i for which∑n
j=1 aijxj < bi and simultaneously xj = 0 for all coordinates

with index j such that
∑m
i=1 yiaij > ci .

Proof. Consider that both relations regarding the zeroes

among xi and yi hold. Then we can in the follow-

ing computation calculate with equation, because

the summands with strict inequality have zero

coe�cients anyway:

m∑
i=1

yibi =
m∑
i=1

yi

n∑
j=1

aijxj =
m∑
i=1

n∑
j=1

yiaijxj

and from the same reason also
m∑
i=1

n∑
j=1

yiaijxj =
n∑
j=1

cjxj .
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This shows one implication, thanks to the duality theorem.

Consider now that both x and y are optimal vectors. We thus

know that

m∑
i=1

yibi ≥
m∑
i=1

n∑
j=1

yiaijxj ≥
n∑
j=1

cjxj ,

but simultaneously the left- and right-hand sides are equal. Thus

there is equality everywhere. If we rewrite the �rst equality as

m∑
i=1

yi

(
bi −

n∑
j=1

aijxj

)
= 0

we see that it can be satis�ed only if the relation from the statement

holds, because it is a sum of non-negative numbers and it equals

zero. From the second equality we similarly derive the second part

and the proof is �nished. □

The duality theorem and equilibrium theorem are useful when

solving linear programming problems, because they show us rela-

tions between zeroes among the additional variables and satisfying

the restrictions.

3.8. Notes about linear models in economy. Our very schematic

problem of black-white painter from the paragraph

3.4 can be used to illustrate one of the typical eco-

nomical models, the so-called model of production

planing. Themodel tries to capture the problem com-

pletely, that is, to capture both external and internal relations. Left-

hand sides of the equations (3.1), (3.2), (3.3) and of the objective

function h(x1, x2) are expressing various production relations. De-

pending on the character of the problem, we have on the right-hand

sides either exact values (and then we solve equations) or capacity

restrictions and goal optimisation (then we obtain linear program-

ming problems).

We can thus in general solve the problem of source allocation

with supplier restrictions and either minimise costs or maximise in-

come. We can also interpret duality from this point of view. If our

painter would like to set up costs of his work yL, of white colour

yW and of black colour yB , then he minimises the objective func-

tion

L · yL +WyW + ByB

with restrictions

yL + w1yW + b1yB ≥ c1

yL + w2yW + b2yB ≥ c2.

But that is exactly the dual problem to the original one and the theo-

rem 3.7 says that optimal state is such when the objective functions

have the same value.

Among economical models we can �nd many modi�cations.

One of them are problems of �nancial planing, which are con-

nected to the optimisation of portfolio. We are setting up volume

of investment into individual investment possibilities with the goal

to meet the given restrictions for risk factors while maximising the

pro�t, or dually minimise the risk under given volume.

Another commonmodel ismarketing application, for instance

allocation of costs for advertisement in various media or placing

advertisement into time intervals. Restrictions are in this case de-

termined by budget, target population, etc.
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Very common are models of nutrition, that is, setting up how

much of di�erent kinds of food should be eaten in order to meet

total volume of speci�c components, e.g. minerals and vitamins.

Problems of linear programming arise with personal tasks,

where workers with speci�c quali�cations and other properties are

distributed into working shifts. Common are also problems of

merging, problems of splitting and problems of goods distribution.

2. Di�erence equations

We have already met di�erence equations in the �rst chapter,

albeit brie�y and of �rst order only. Now we

show amore general theory for linear equations

with constant coe�cients, which gives not only

very practical tools but also nice illustration for

concepts of vector spaces and linear mappings.

Homogeneous linear difference equation of order k

3.9. De�nition. Homogeneous linear di�erence equation of order

k is given by the expression

a0xn + a1xn−1 + · · · + akxn−k = 0, a0 ̸= 0 ak ̸= 0,

where the coe�cients ai are scalars, which can possibly also de-

pend on n.

We also say that such equality gives homogeneous linear re-

currence of order k and we usually denote the sequence in question

as a function

xn = f (n) = −a1

a0
f (n− 1)− · · · − ak

a0
f (n− k).

Solution of this equation is a sequence of scalars xi , for all

i ∈ N (or i ∈ Z), which satisfy the equation with any �xed n.

By giving any k values xi in sequence are determined all the

other values uniquely. Indeed, we work over a �eld

of scalars, thus the values a0 and ak are invertible

and thus using the de�nition any xn can be computed

uniquely, similarly for xn−k . Induction thus immediately proves

that all remaining values are uniquely determined.

The space of all in�nite sequences xi forms a vector space,

where addition and multiplication by scalars works coordinate-

wise. Directly from the de�nition is immediate that a sum of two

solutions of a homogeneous linear equation or a multiple of a solu-

tion is again a solution. Analogously as with homogeneous linear

systems we see that the set of all solutions form a subspace.

Initial condition on the values of the solutions is given as a

k-dimensional vector in Kk . Sum of initial conditions determines

the sum of the corresponding solutions, similarly for scalar multi-

ples. Note also that plugging zeroes and ones into initial k values

immediately yields k linearly independent solutions of the equa-

tion. Thus although the vectors are in�nite sequences, the set of all

solutions has �nite dimension, we know that its dimension equals

to the order of the equation k, and we can easily obtain a basis

of all those solutions. Again we speak of fundamental system of

solutions and all other solutions are its linear combinations.

As we have already checked, if we choose k indices i, i +
1, . . . , i + k − 1 in sequence, the homogeneous linear di�erence

equation gives a linear mapping Kk → K∞ of k-dimensional vec-

tors of initial values into in�nitely-dimensional sequences of the

same scalars. Independence of such solutions is equivalent to the
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independence of the initial values � which can be easily told from

determinant. If we have a k-tuple of solutions (x
[1]
n , . . . , x

[k]
n ), it is

independent if and only if the following determinant, the so-called

Casortian, is non-zero for one n (which then implies it is non-zero

for all n)

C(x[1]
n , . . . , x

[k]
n ) =

∣∣∣∣∣∣∣∣∣∣
x

[1]
n · · · x

[k]
n

x
[1]
n+1 . . . x

[k]
n+1

...
. . .

...

x
[1]
n+k−1 . . . x

[k]
n+k−1

∣∣∣∣∣∣∣∣∣∣
̸= 0

3.10. Solution of homogeneous recurrences with constant co-

e�cients. It is hard to �nd a universal mechanism for �nding a

solution of general homogeneous linear di�erence equations, that

is, directly computable expression for the general solution xn.

In practical models there are very often equations, where the

coe�cients are constant. In this case it is possible

to guess suitable form for the solution and indeed we

will be able to �nd k linearly independent solutions.

This is a complete solution of the problem, as all other

solutions will be linear combinations.

For simplicity let us start with equations of second order. Such

are very often encountered in practical problems, where there are

relations based on two previous values. Linear di�erence equation

(recurrence) of second order with constant coe�cients is for us

thus a form

(3.4) f (n+ 2) = a · f (n+ 1)+ b · f (n)+ c,

where a, b, c are known scalar coe�cients.

For instance in population models we can assume that the indi-

viduals in a population mature and start breeding two seasons later

(that is, they add to the value f (n+ 2) by a multiple b · f (n) with
positive b > 1), while immature individuals tire and destroy part

of the mature population (that is, the coe�cient a is negative). Fur-

thermore, it might be that somebody destroys (uses, eats) a �xed

amount c every season.

Special such case with c = 0 is for instance the Fibonacci

sequence of numbers y0, y1, . . . , where yn+2 = yn+1 + yn.

If when solving a mathematical problem we don't have any

new idea, we can always try to what success leads some known

solution of a similar problem. Let us try to plug into the equa-

tion (3.4) with coe�cient c = 0 similar solution as with the linear

equations, that is, f (n) = λn for some scalar λ. By plugging in

we obtain

λn+2 − aλn+1 − bλn = λn(λ2 − aλ− b) = 0.

This relation will hold either for λ = 0 or for the choice of the

values

λ1 = 1
2
(a +

√
a2 + 4b), λ2 = 1

2
(a −

√
a2 + 4b).

We have thus determined when actually such solutions indeed

work, we just have to suitably choose the scalar λ. But this is not

enough for us, since we need to �nd a solution for any two ini-

tial values f (0) and f (1), and we have only found two speci�c se-
quences satisfying given equation (or possibly only one sequence

� if λ2 = λ1).

As we have already derived for even very general linear re-

currences, sum of two solutions f1(n) and f2(n) of our equation

f (n+ 2)− a · f (n+ 1)− b · f (n) = 0 is clearly again a solution
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of the same equation and the same holds for the scalar multiples

of the solution. Our two speci�c solutions thus allow even more

general solutions

f (n) = C1λ
n
1 + C2λ

n
2

for arbitrary scalars C1 and C2 and for unique solution of the spe-

ci�c problem with given initial values f (0) and f (1) it remains
just to �nd the corresponding scalars C1 and C2. (And we also

need to check whether it is possible for any two initial values).

3.11. Choice of scalars. Let us show how this canwork on at least

one example. Let us concentrate on the problem that the roots of

the characteristic polynomial are in general not in the same �eld

of the scalars as the coe�cients in the equation. Thus we solve the

problem:

(3.5)
yn+2 = yn+1 + 1

2
yn

y0 = 2, y1 = 0.

In our case is thus λ1,2 = 1
2 (1 ± √

3) and clearly

y0 = C1 + C2 = 2

y1 = 1
2
C1(1 + √

3)+ 1
2
C2(1 − √

3)

is satis�ed for exactly one choice of these constants. Direct calcu-

lation yields C1 = 1 − 1
3

√
3, C2 = 1 + 1

3

√
3 and our problem has

unique solution

f (n) = (1 − 1
3

√
3)

1
2n
(1 + √

3)n + (1 + 1
3

√
3)

1
2n
(1 − √

3)n.

Note that even if the found solutions for the equation with inte-

gral coe�cients look complicated and are expressedwith irrational

(or possibly complex) numbers, we know a priori that the solution

itself is again integral. Without this "step aside" into bigger �eld

of scalars we would not be able to describe the general solution.

We will meet with similar events very often. General solu-

tion allows us also without direct enumeration of constant to dis-

cuss qualitative behaviour of the sequence of numbers f (n), that

is, whether the values with growing n approach some �xed value

or oscillate in some interval or are unbounded.

3.12. General case of homogeneous recurrences. Let us now

try similarly as in the case of second order to plug in

the choice xn = λn for some (yet unknown) scalar λ

into the general homogeneous equation from the de�-

nition 3.9. For every n we obtain the condition

λn−k(a0λ
k + a1λ

k−1 · · · + ak) = 0
which means that either λ = 0 or λ is the root of the so-called

characteristic polynomial in the parentheses. Characteristic poly-

nomial is independent of n.

Assume that the characteristic polynomial has k distinct roots

λ1, . . . , λk . We can for this purpose extended the �eld of scalars

we are working in, for instance Q into R or R into C, because
the result of the calculations will again solutions that stay in the

original �eld thanks to the equation itself. Each of the roots gives

us single possible solution

xn = (λi)
n.

In order to be happy, we require k linearly independent solutions.

145

B. Recurrent equations

Distinct linear dependences can be a good tool for describing var-

ious models of growth. Let us begin with a very popular population

model that uses linear di�erence equation of second order:

3.4. Fibonacci sequence. In the beginning of the Spring a stork

brought on a meadow two newborn rabbits, male and fe-

male. The female is, after being two months old, able to

deliver two newborns, male and female. The newborns

can then start delivering after one month and then every month. Every

female is pregnant for one month and then she delivers. How many

pairs of rabbits will be there after nine months (if none of them dies

and none "moves in")?

Solution. After one month, there is still one pair, but the female is al-

ready pregnant. After two months, �rst newborns are delivered, thus

there are two pairs. Every next month, there are that many new pairs

as there were pregnant females one month before, which equals to the

number of at least one month-old pairs, which equals the number of

pairs that were there two months ago. The total number of pairs pn
after n months is thus the sum of the number of pairs in the previous

two months. For the number of pairs we thus have the following ho-

mogeneous linear recurrent formula

(3.1) pn+2 = pn+1 + pn, n = 1, . . . ,

which along with initial conditions p1 = 1 and p2 = 1 uniquely de-

termines the numbers of pairs of rabbits at the meadow in individual

months. Linearity of the formula means that all members of the se-

quence (pn) appear in the �rst power, the meaning of the word recur-

rence is hopefully clear and the homogeneity means that in the for-

mula the absolute term is missing (see further for non-homogeneous

formula). For the value of the n-th member we can derive an explicit

formula. In searching for the formula we can use the observation that

for certain r the function rn is a solution of the di�erence equation

without initial conditions. This r can be obtained by plugging into the

recurrent relation:

rn+2 = rn+1 + rn and after dividing by rn we obtain

r2 = r + 1,

which is the so-called characteristic equation of the giver recurrent

formula. Our equation thus has roots 1−√
5

2 and 1+√
5

2 and the sequences

an = ( 1−√
5

2 )n and bn = ( 1+√
5

2 )n, n ≥ 1 satisfy the given relation.

The relation is also satis�ed by any linear combination, that is, any
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In order to do this it su�ces to check the independence by

plugging k values for n = 0, . . . , k− 1 for k choices of λi into the

Casortian (see 3.9). We thus obtain the so-called Vandermonde

matrix and it is a nice (but not entirely trivial) exercise to compute

that for every k and any k-tuple of distinct λi is determinant of such

matrix non-zero, see ∥2.24∥ on the page 87. But that means that

the chosen solutions are linearly independent.

We have thus found the fundamental system of solutions of the

homogeneous di�erence equation in the case that all the roots of

its characteristic polynomial are distinct.

Consider now the multiple root λ and plug into the de�nition

the assumed solution xn = nλn. We obtain the condition

a0nλ
n + · · · + ak(n− k)λn−k = 0.

This condition can be rewritten using the so-called derivation of a

polynomial (see ?? on the page ??), which we denote by apostro-

phe:

λ(a0λ
n + · · · + akλ

n−k)′ = 0
and right at the beginning of the �fth chapter we shall see that the

root of a polynomial f has multiplicity greater than one if and only

if it is a root of f ′. Our condition is thus satis�ed.
With greater multiplicity ℓ of the root of the characteristic

polynomial we can proceed similarly and use the fact

that a root with multiplicity ℓ is a root of all deriva-

tions of the polynomial up to ℓ − 1 (inclusively).

Derivations look like this:

f (λ) = a0λ
n + · · · + akλ

n−k

f ′(λ) = a0nλ
n−1 + · · · + ak(n− k)λn−k−1

f ′′(λ) = a0n(n−1)λn−2+· · ·+ak(n−k)(n−k−1)λn−k−2

...

f (ℓ+1) = a0n . . . (n− ℓ)λn−ℓ−1 + . . .

+ ak(n− k) . . . (n− k − ℓ)λn−k−ℓ−1

Let us look on the case for a triple root λ and try to �nd a

solution in the form n2λn. Plugging into the de�nition we obtain

the equation

a0n
2λn + · · · + ak(n− k)2λn−k = 0.

Clearly the left side equals the expression λ2f ′′(λ) + λf ′(λ) and
because λ is a root of both derivations, the condition is satis�ed.

Using induction we easily prove that even for general condi-

tion for the solution in the form xn = nℓλn,

a0n
ℓλn + . . . ak(n− k)ℓλn−k = 0,

the solution can be obtained as a linear combination of the deriva-

tions of the characteristic polynomial starting with the expression

λℓ+1f (ℓ+1) + 1
2
λℓℓ(ℓ+ 1)f (ℓ) + . . .

andwe have thus came close to the complete proof of the following:

Theorem. Every homogeneous linear di�erence equation of the

order k over any �eld of scalars K contained in the complex num-

bers K has as a set of all solutions a k-dimensional vector space

generated by the sequences xn = nℓλn, where λ are (complex)

roots of the characteristic polynomial and the powers ℓ run over all
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sequence cn = san+ tbn, s, t ∈ R. The numbers s and t can be chosen
so that the resulting combination satis�es the initial conditions, in our

case c1 = 1, c2 = 1. For simplicity it is clever to de�ne the zero-th

member of the sequence as c0 = 0 and compute s and t from the

equations for c0 and c1. We �nd out that s = − 1√
5
, t = 1√

5
and thus

(3.2) pn = (1 + √
5)n − (1 − √

5)n

2n(
√

5)
.

Such sequence satis�es the given recurrent formula and also the initial

conditions c0 = 0, c1 = 1, thus it is the single sequence given by

this requirements. Note that the value of the formula (∥3.2∥) is integer
for any natural n (it gives the integer Fibonacci sequence), although it

might not seem so at the �rst glance. □

3.5. Simpli�ed model for behaviour of gross domestic product.

Consider the di�erence equation

(3.3) yk+2 − a(1 + b)yk+1 + abyk = 1,

where yk is the gross domestic product at the year k. The constant

a is the so-called consumption tendency, which is

a macroeconomical factor that gives the fraction

of money that the people spend (from what they

have at their disposal), and the constant b describes the dependence

of the measure of investment of the private sector on the consumption

tendency.

We further assume that the size of the domestic product is nor-

malised such that on the right-hand side of the equation the result is

1.

Compute the values yn for a = 3
4 , b = 1

3 , y0 = 1, y1 = 1.

Solution. Let us �rst look for the solution of the homogeneous equa-

tion (the right side being zero) in the form of rk . The number r must

be a solution of the characteristic equation

x2 − a(1 + b)x + ab = 0, that is, x2 − x + 1
4

= 0,

which has a double root 1
2 . All the solutions of the homogeneous equa-

tion are then of the form a( 1
2)
n + bn( 1

2)
n.

Let us also note that if we �nd some solution of the non-

homogeneous equation (the so-called particular solution), then if we

add to it any solution of the homogeneous solution, we obtain another

solution of the non-homogeneous equation. It can be shown that by

this we obtain all solutions of the non-homogeneous equation.

In our case (that is, when all the coe�cients and the non-

homogeneous term are constant) is a particular solution the constant
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natural numbers between zero and multiplicity of the correspond-

ing root λ.

Proof. Aforementioned relations between the multiplicity of

a root and the derivation of the polynomial will be proven later, and

we won't prove the fact that every complex polynomial has exactly

that many roots (counting multiplicities) as is its degree. Thus it

just remains to prove that the found k-tuple of solutions is linearly

independent. Even in this case we can inductively prove that the

corresponding Casortian is non-zero, as we have already done in

the case of Vandermonde determinant before.

For illustration of our approach we show how does the calcu-

lation look like for the case of a root λ1 with multiplicity one and

a root λ2 with multiplicity two:

C(λn1, λ
n
2, nλ

n
2) =

∣∣∣∣∣∣
λn1 λn2 nλn2
λn+1

1 λn+1
2 (n+ 1)λn+1

2
λn+2

1 λn+2
2 (n+ 2)λn+2

2

∣∣∣∣∣∣
= λn1λ

2n
2

∣∣∣∣∣∣
1 1 n

λ1 λ2 (n+ 1)λ2
λ2

1 λ2
2 (n+ 2)λ2

2

∣∣∣∣∣∣
= λn1λ

2n
2

∣∣∣∣∣∣
1 1 n

λ1 − λ2 0 λ2
λ1(λ1 − λ2) 0 λ2

2

∣∣∣∣∣∣
= −λn1λ2n

2

∣∣∣∣ λ1 − λ2 λ2
λ1(λ1 − λ2) λ2

2

∣∣∣∣ = λn1λ
2n+1
2 (λ1 − λ2)

2 ̸= 0.

In the general case the proof can be carried on in a completely

similar way, inductively. □

3.13. Real basis of the solutions. For equations with real coe�-

cients the initial real conditions always lead to

real solutions. Still, the corresponding funda-

mental solutions derived using the just proven

theorem might exists only in the complex domain.

Let us therefore try to �nd other generators, which will be

more convenient for us. Because the coe�cients of the character-

istic polynomial are real, each its root is either real or the roots are

paired as complex conjugates.

If we describe the solution in the polar form as

λn = |λ|n(cos nφ + i sin nφ)

λ̄n = |λ|n(cos nφ − i sin nφ),

we immediately see that their sum and di�erence leads to other two

linearly independent solutions

xn = |λ|n cos nφ, yn = |λ|n sin nφ.

Di�erence equations very often appear as a model of dynam-

ics of some system. Nice topic to think about is connection be-

tween absolute values of individual roots and stability of the solu-

tion � either of all of them or with dependence on the initial con-

ditions. We will not go into details here, because only in the �fth

chapter we will speak of convergence of values to some limit value

and so on, but still there is some space fore some interesting numer-

ical experiments for instance with oscillations of suitable popula-

tion or economical models.
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yn = c. By plugging into the equation we obtain c− c+ 1
4c = 1, that

is, c = 4. All solutions of the di�erence equation

yk+2 − yk+1 + 1
4

· yk = 1

are thus of the form 4 + a( 1
2)
n + bn( 1

2)
n. We require that y0 = y1 = 1

and these two equations give a = b = −3, thus the solution of this

non-homogeneous equation is

yn = 4 − 3
(

1
2

)n
− 3n

(
1
2

)n
.

Again, as we know that the sequence given by this formula satis�es

the given di�erence equation and also the given initial conditions, it is

indeed the only sequence characterised by these properties. □
In the previous case we have used the so-called method of indeter-

minate coe�cients. It is based on the following: on the basis of the

non-homogeneous term of the given di�erence equation we "guess"

the form of the particular solution. The forms of the particular solu-

tions are known for many non-homogeneous terms. For instance the

equation

(3.4) yn+k + a1yn+k−1 + · · · + akyn = Pm(n),

where P(m) is a polynomial of degree n and the corresponding charac-

teristic equation has real roots, has (almost always) particular solution

of the formQm(n), whereQm(n) is a polynomial of degree m.

Other possible way how to solve such equation is the so-called

variation of constants method, where we �rst �nd a solution

y(n) =
k∑
i=1

cifi(n)

of the homogenised equation and we consider the constants ci as func-

tions ci(n) of the variable n and we look for a particular solution of

the given equation in the form

y(n) =
k∑
i=1

ci(n)fi(n).

Let us show on the picture the values of fi for i ≤ 35 with the

equation

f (n) = 9
8
f (n− 1)− 3

4
f (n− 2)+ 1

2
, f (0) = f (1) = 1.
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3.14. Non-homogeneous linear di�erence equations.

Analogously to the case of systems of linear

equations we can obtain all solutions of non-

homogeneous linear di�erence equations

a0(n)xn + a1(n)xn−1 + · · · + ak(n)xn−k = b(n),

where the coe�cients ai and b are scalars which might depend on

n, and a0(n) ̸=, ak(n) ̸= 0.
We proceed by �nding one solution and adding whole vector

space of dimension k of solutions of the corresponding homoge-

neous system. Indeed this yields a solution and because the di�er-

ence of two solutions of a non-homogeneous system is a solution

of the homogeneous system, we obtain all solutions in this way.

When we were working with systems of linear equations, it

was possible that there was no solution. This is not possible with

di�erence equations. But it is usually not easy to �nd that one

particular solution of a non-homogeneous system, if the behaviour

of the scalar coe�cients in the equation is complicated. For linear

recurrences the situation is similar.

Let us restrict ourselves to single case, where the correspond-

ing homogeneous system has constant coe�cients and b(n) is a

polynomial of degree s. The solution can then be found in the

form of the polynomial

xn = α0 + α1n+ · · · + αsn
s

with unknown coe�cients αi , i = 1, . . . , s. By plugging into the
di�erence equation and comparing the coe�cients at the individ-

ual powers of n we obtain a system of s + 1 equations for s + 1
variables αi . If this system has a solution, we have found a solu-

tion of our original problem. If it has no solution, it is enough to

increase the degree s of the polynomial in question.

For instance the equation xn−xn−2 = 2 cannot have a constant
solution, but by setting xn = α0 + α1n we obtain the solution

α1 = 1 (and the coe�cientα0 can be arbitrary) and thus the general

solution of our equation is

xn = C1 + C2(−1)n + n.

Note that the matrix of the corresponding system of equations for

a polynomial of lower degree is zero and the equation 0 · α0 = 2
has no solution.

3.15. Linear �lters. We will now consider now the in�nite se-

quences

x = (. . . , x−n, x−n+1, . . . , x−1, x0, x1, . . . , xn, . . . )

and will work, similarly to the case of systems of linear equations,

with the operation T that maps the whole sequence x to the se-

quence z = T x with elements

zn = a0xn + a1xn−1 + · · · + akxn−k.

With sequences x we can again work as with vectors, oper-

ations working coordinate-wise, and the vector space is

in�nitely-dimensional. Our mapping T is clearly a linear

mapping in such space.

The sequences can be imagined as discrete values of

some signal, subtracted usually in very short time units, operation

T can then be a �lter that works with the signal. We are interested

in estimating the properties such "�lter" can have.
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x

1

35

0,95

30

0,9

0,85

25

0,8

0,75

20

0,7

151050

Let us do some exercises about solving linear di�erence equation

of the second order with constant coe�cients. The sequence satisfy-

ing the given recurrence equation of the second order is uniquely de-

termined whenever we give some two neighbouring members. Let

us again note a further usability of complex numbers: for determin-

ing the explicit formula for the n-th member of the sequence of real

numbers we might require calculations with complex numbers (that

happens when the characteristic polynomial of the di�erence equation

has complex roots).

3.6. Find explicit formula for the sequence satisfying the following

linear di�erence equation with the initial conditions:

xn+2 = 2xn + n, x1 = 2, x2 = 2.

Solution. Homogenised equation is

xn+2 = 2xn.

Its characteristic polynomial is x2 −2, its roots are±√
2. The solution

of the homogenised equation is of the form

a(
√

2)n + b(−√
2)n, for any a, b ∈ R.

We look for the particular solution using the method of indeterminate

coe�cients. The non-homogeneous part of the equation is a linear

polynomial n, particular solution will thus be in the form of linear

polynomial in the variable n, that is, kn + l, where k, l ∈ R. By

substituting into the original equation we obtain

k(n+ 2)+ l = 2(kn+ l)+ n.

By comparing the coe�cients at the variable n on both sides of the

equation we obtain the relation k = 2k + 1, that is, k = −1, by com-
paring the absolute terms we obtain 2k+ l = 2l, that is, l = −2. Thus
the particular solution is the sequence −n− 2.
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Signals are very often from their essence a sum of some parts,

which are by themselves basically periodical. From our de�nition

it is clear that periodic sequences xn, that is, sequences satisfying

for some �xed natural number p

xn+p = xn

will also have periodic images z = T x

zn+p = a0xn+p + a1xn−1+p + · · · + akxn−k+p
= a0xn + a1xn−1 + · · · + akxn−k = zn

with the same period p.

For a �xed operation T we are interested in the following:

which input periodic sequences remain roughly the same (up to

a multiple) and which will be suppressed to zero values.

In the second case we are looking for the kernel of our linear

mapping T . That is given by homogeneous di�erence equation

a0xn + a1xn−1 + · · · + akxn−k = 0, a0 ̸= 0 ak ̸= 0,

which we are able to solve.

3.16. Bad equaliser. As an example, let us consider a very simple

linear �lter given by the equation

zn = (T x)n = xn+2 + xn.

The results of such operation on a signal are hinted at in the

following four pictures for gradually increasing fre-

quency of periodic signal xn = cos(φn). Red is the

original signal, green is the result after using the �lter.

Unevenness of the curves are consequence of impre-

cise depicting, both signals are of course smooth sinus curves.

1

1
0

2

2

-1

0

-2

43 5

A = 7.1250

1

1
0

2

2

-1

0

-2

43 5

A = 19.375

1

1
0

2

2

-1

0

-2

43 5

A = 25.500

1

1
0

2

2

-1

0

-2

43 5

A = 29.583

Note that in the areas where the resulting signal is roughly as

strong as the original there is a dramatic shift in the phase. Cheap

equaliser indeed work in such a bad way.
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Thus the solution of the non-homogeneous di�erence equation of

the second order without initial condition is of the form a(
√

2)n +
b(−√

2)n − n− 2, a, b ∈ R.
Now, by plugging in the initial conditions, we determine the inde-

terminate a, b ∈ R. For calculational simplicity we use a little trick:

from the initial conditions and the given recurrence relation we com-

pute the member x0 : x0 = 1
2(x2 − 0) = 1. The given recurrence

formula along with the conditions x0 = 1 and x1 = 1 is then clearly

satis�ed by the same formula that satis�es the original initial condi-

tions. Thus we have the following relations for a, b:

x0 : a(
√

2)0 + b(−√
2)0 − 2 = 1, thus a + b = 3,

x1 :
√

2a − √
2b = 5,

whose solution gives us a = 6+5
√

2
4 , b = 6−5

√
2

4 . The solution is thus

the sequence

xn = 6 + 5
√

2
4

(
√

2)n + 6 − 5
√

2
4

(−√
2)n − n− 2.

□

3.7. Determine the real basis of the space of all solutions of the ho-

mogeneous di�erence equation

xn+4 = xn+3 + xn+1 − xn,

Solution. The characteristic polynomial of the given equation is x4 −
x3 −x+1. If we are looking for its roots, we are solving the reciprocal
equation

x4 − x3 − x + 1 = 0

Standard procedure is to solve the equation by the expression x2 and

then we use the substitution t = x + 1
x
, that is, t2 = x2 + 1

x2 + 2. We

obtain the equation

t2 − t − 2 = 0,

with roots t1 = −1, t2 = 2. For both of these values of the indetermi-
nate t we solve separately the equation given by the substitution:

x + 1
x

= −1.

It has two complex roots: x1 = − 1
2 + i

√
3

2 = cos(2π/3)+ i sin(2π/3)
and x2 = − 1

2 − i
√

3
2 = cos(2π/3)− i sin(2π/3).

For the second value of the indeterminate t we obtain the equation

x + 1
x

= 2
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3. Iterated linear processes

3.17. Iterated processes. In practical models we very often en-

counter the situation where the evolution of a system

in a given time interval is given by a linear process,

and we are interested in the behaviour of the system

after many iteration. Very often is the linear process

remains the same, from the mathematical point of view it is thus

repeated multiplication of the state vector by the same matrix.

While for solving the systems of linear equation we needed

only minimal knowledge of properties of linear mappings, in order

to understand the behaviour of an iterated system we need to know

the properties of eigenvalues, properties of eigenvectors and other

structural results.

In a sense we are in the same environment as with linear recur-

rences and actual our description of �lters in previous paragraphs

can be described in such way. Imagine that we are working with

sound and are keeping track by the state vector

Yn = (xn, . . . , xn−k+1)

of all values from the actual one to the last one that is yet being

processed in our linear �lter. In one time interval (for the frequency

of audio signal a very short one) we then move to the state vector

Yn+1 = (xn+1, xn, . . . , xn−k+2),

where the �rst value xn+1 = a1xn+· · · +akxn−k+1 is computed as

with homogeneous di�erence equations, the others are just shift by

one position and last one is forgotten. The corresponding square

matrix of order k that satis�es Yn+1 = A · Yn looks as follows:

A =



a1 a2 . . . ak−1 ak
1 0 . . . 0 0

0 1
. . . 0 0

...
...

. . .
...

0 0 . . . 1 0.


For such simple matrix we have derived explicit procedure for the

complete formula for the solution. In general, it wont be so easy

even for very similar systems. One of the typical cases is study of

dynamics of a population in distinct biological systems.

Note also that the matrix A has (understandably) the charac-

teristic polynomial

p(λ) = λk − a1λ
k−1 − · · · − ak,

as can be easily derived by expanding the last column and the re-

currence. That is explainable also directly, because the solution

xn = λn, λ ̸= 0 basically means that the matrix A by multipli-

cation takes the eigenvector (λk, . . . , λ)T to its λ-multiple. Thus

such λ must be eigenvalue of the matrix A.

3.18. Leslie model for population growth. Imagine that we are

dealing with some system of individuals (cattle, in-

sects, cell cultures, etc.) divided into m groups (ac-

cording to their age, evolution stage, etc.). The state

Xn is thus given by the vector

Xn = (u1, . . . , um)
T

depending on the time tn in which we are observing the system.

Linear model of evolution of such system is then given by the ma-

trix A of dimension n, which gives the change of the vector Xn
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with double root 1. Thus the basis of the vector space of the sequences
that are a solution of the di�erence equation in question is the follow-

ing quadruple of sequences: {
(
− 1

2 + i
√

3
)n}∞n=1, {

(
− 1

2 − i
√

3
)n}∞n=1,

{1}∞n=1 (constant sequence) and {n}∞n=1. If we are looking for a real ba-

sis, we must replace two of the generators (sequences) from this basis

by some sequences that are real only. As these generators are power

series whose members are complex conjugates, it su�ces to take as

suitable generators the sequences given by the half of the sum and by

the half of the i-th multiple of the di�erence of that complex genera-

tors. This yields the following real basis of the solution space: {1}∞n=1

(constant sequence), {n}∞n=1, {cos(n · 2π/3)}∞n=1, {sin(n · 2π/3)}∞n=1.

□

3.8. Find a sequence that satis�es the given non-homogeneous dif-

ference equation with the initial conditions:

xn+2 = xn+1 + 2xn + 1, x1 = 2, x2 = 2.

Solution. General solution of the homogenised equation is of the form

a(−1)n + b2n. Particular solution is the constant −1/2. General solu-
tion of the given non-homogeneous equation without initial conditions

is thus

a(−1)n + b2n − 1
2
.

By plugging in the initial conditions then gives us the constants a =
−5/6, b = 5/6. The given di�erence equation with initial conditions
is thus satis�ed by the sequence

−5
6
(−1)n + 5

3
2n−1 − 1

2
.

□

3.9. Determine the sequence of real numbers that satis�es the follow-

ing non-homogeneous di�erence equation with initial conditions:

2xn+2 = −xn+1 + xn + 2, x1 = 2, x2 = 3.

Solution. General solution of the homogenised equation is of the form

a(−1)n + b(1/2)n. Particular solution is the constant 1. General so-
lution of the non-homogeneous equation without initial conditions is

thus

a(−1)n + b

(
1
2

)n
+ 1.

By plugging into the initial conditions we obtain the constants a = 1,
b = 4. The given equation with initial conditions is thus satis�ed by
the sequence

(−1)n + 4
(

1
2

)n
+ 1.
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to

Xn+1 = A ·Xn
when time changes from tn to tn+1.

Let us show as an example the so-called Leslie model for pop-

ulation growth, where there is the matrix

A =



f1 f2 f3 . . . fm−1 fm
τ1 0 0 . . . 0 0
0 τ2 0 . . . 0 0

0 0 τ3
. . . 0 0

...
. . .

. . .
...

0 0 0 . . . τm−1 0


,

whose parameters are tied with the evolution of a population di-

vided into m age groups such that fi denotes the relative fertility

of the corresponding age group (in the observed time shift fromN

individuals in the i-th group arise new fiN ones � that is, they are

in the �rst group), while τi is relative mortality in the i-th group in

one time interval. Clearly suchmodel can be used with any number

of age groups.

All coe�cients are thus non-negative real numbers and the

numbers τi are between zero and one. Note that when all τ are

equal one, it is actually a linear recurrence with constant coe�-

cients and thus has either exponential growth/decay (for real roots

λ of the characteristic polynomial) or oscillation connected with

potential growth/decay (for complex roots).

Before we introduce more general theory, let us play for a

while with this speci�c model.

Direct computation with the Laplace expansion of the last col-

umn yields the characteristic polynomial pm(λ) of the matrixA for

the model with m groups:

pm(λ) = |A− λE| = −λpm−1(λ)+ (−1)m−1fmτ1 . . . τm−1.

Easily by induction we derive that this characteristic polynomial is

of the form

pm(λ) = (−1)m(λm − a1λ
m−1 − · · · − am−1λ− am)

and mainly non-negative coe�cients a1, . . . , am, if all parameters

τi and fi are positive. For instance it is always

am = fmτ1 . . . τm−1.

Let us qualitatively estimate the distribution of the roots of

the polynomial pm. Sadly, details of this procedure could

be exactly explained only later, after understanding some

parts of the so-called mathematical analysis in the chapter

�ve and later, however it should all be intuitively clear even

now. We express the characteristic polynomial in the form

pm(λ) = ±λm(1 − q(λ))

where q(λ) = a1λ
−1 + · · · + amλ

−m is a strictly decreasing non-

negative function for λ > 0. Evidently there exists exactly one

positive λ for which q(λ) = 1 and thus also pm(λ) = 0. In other
words, for every Leslie matrix there exists exactly one positive real

eigenvalue.

For actual Leslie models of populations all coe�cients τi and

fj are between one and zero and a typical situation is when the only

real eigenvalue λ1 is greater or equal to one, while the absolute

values of the other eigenvalues are strictly smaller than one.
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□

3.10. Solve the following di�erence equation:

xn+4 = xn+3 − xn+2 + xn+1 − xn.

Solution. From the theory we know that the space of the solutions of

this di�erence equation is a four-dimensional vector space whose gen-

erators can be obtained from the roots of the characteristic polynomial

of the given equation. The characteristic polynomial is

x4 − x3 + x2 − x + 1 = 0.

It is a reciprocal equation (that means that the coe�cients at the (n−
k)-th and k-th power of x, k = 1, . . . , n, are equal). Thus we use the
substitution u = x+ 1

x
. After dividing the equation by x2 (zero cannot

be a root) and substituting (note that x2 + 1
x2 = u2 − 2) we obtain

x2 − x + 1 − 1
x

+ 1
x2

= u2 − u− 1 = 0.

Thus we obtain the indeterminates u1,2 = 1±√
5

2 . From there then by

the equation x2 − ux + 1 = 0 we determine the four roots

x1,2,3,4 = 1 ± √
5 ±

√
−10 ± 2

√
5

4
.

Now we note that the roots of the characteristic equation could

have been "guessed" right away � it is

x5 + 1 = (x + 1)(x4 − x3 + x2 − x + 1),

and thus the roots of the polynomial x4 − x3 + x2 − x + 1 are

also the roots of the polynomial x5 + 1, which are exactly the �fth

roots of the −1. By this we obtain that the solutions of the charac-

teristic polynomial are the numbers x1,2 = cos(π5 ) ± i sin(π5 ) and
x3,4 = cos( 3π

5 )± i sin( 3π
5 ). Thus the real basis of the space of the so-

lution of the given di�erence equation is for instance the basis of the

sequences cos(nπ5 ), sin(nπ5 ), cos( 3nπ
5 ) and sin( 3nπ

5 ), which are sines

and cosines of the arguments of the corresponding powers of the roots

of the characteristic polynomial.

Note that we have by the way derived the algebraic expressions for

cos(π5 ) = 1+√
5

4 , sin(π5 ) =
√

10−2
√

5
4 , cos( 3π

5 ) =
√

5−1
4 and sin( 3π

5 ) =√
10+2

√
5

4 (because all the roots of the equation have the absolute value

1, they are real (imaginary) parts of the corresponding roots). □

3.11. Determine the explicit expression of the sequence satisfying

the di�erence equation xn+2 = 2xn+1 − 2xn with members x1 = 2,
x2 = 2.

Solution. The roots of the characteristic polynomial x2 − 2x + 2 are

1+ i and 1− i. The basis of the (complex) vector space of the solution
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If we begin with any state vectorX which is given as a sum of

eigenvectors

X = X1 + · · · +Xm

with eigenvalues λi , then iterations yield

Ak ·X = λk1X1 + . . . λkmXm,

thus under the assumption that |λi | < 1 for all i ≥ 2, all com-
ponents in the eigensubspaces decrease very fast, except for the

component λ1X
k
1 .

Distribution of the population among the age groups are thus

very fast approaching the ratios of the components of eigenvector

to the dominant eigenvalue λ1.

For example for the matrix (let us realise the meaning of indi-

vidual coe�cient, they are taken from the model for sheep breed-

ing, that is, the values τ contain both natural deaths and activities

of breeders)

A =


0 0.2 0.8 0.6 0

0.95 0 0 0 0
0 0.8 0 0 0
0 0 0.7 0 0
0 0 0 0.6 0


the eigenvalues are approximately

1.03, 0, −0.5, −0, 27 + 0.74i, −0.27 − 0.74i

with absolute values 1.03, 0, 0.5, 0.78, 0.78 and the eigenvector

corresponding to the dominant eigenvalue is approximately

XT = (30 27 21 14 8).

We have immediately chosen the eigenvector whose coordinates

sum to 100, it directly gives us the percentual distribution of the

population.

If we instead of three-percent total growth of the population

rather wanted constant number and said that we will eat sheep from

second group, we would be asking the question howmuch shall we

decrease τ2 so that the dominant eigenvalue would be one.

3.19. Matrices with non-negative elements. Real matrices that

have no negative elements have very special proper-

ties. Also, they are very often present in practical

models. We shall thus introduce the so-calledPerron-

Frobenius theory which deals with such matrices.

Let us begin with de�nition of some notions in order to be able

to formulate our ideas.

Positive and primitive matrix

De�nition. Under positive matrix we understand a square matrix

A whose all elements aij are real and strictly positive. Primitive

matrix is such square matrixA such that some powerAk is positive.

Let us recall that spectral radius of matrix A is the maximum

of absolute values of all (complex) eigenvalues of A. Spectral ra-

dius of a linear mapping over (�nitely-dimensional) vector space is

the spectral radius of the corresponding matrix under some basis.

Norm of a matrix A ∈ Rn2
or of a vector x ∈ Rn is the sum

of absolute values of all elements. For vector x we write |x| for its
norm.

The following result is very useful and hopefully also well un-

derstandable. Its proof is with its hardness quite atypical for this
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is thus formed by the sequences yn = (1 + i)n and zn = (1 − i)n. The
sequence in question can thus be expressed as a linear combination of

these sequences (with complex coe�cients). It is thus xn = a ·yn+b ·
zn, where a = a1 + ia2, b = b1 + ib2. From the recurrent relation we

compute x0 = 1
2(2x1 − x2) = 0 and by substitution n = 0 and n = 1

into the expression of xn we obtain

1 = x0 = a1 + ia2 + b1 + ib2

2 = x1 = (a1 + ia2)(1 + i)+ (b1 + ib2)(1 − i),

and by comparing the real and the complex part of both equations we

obtain a linear system of four equations with four indeterminates

a1 + b1 = 1

a2 + b2 = 0

a1 − a2 + b1 + b2 = 2

a1 + a2 − b1 + b2 = 0

with solution a1 = b1 = b2 = 1
2 and a2 = −1/2. Thus we can express

the sequence in question as

xn = (
1
2

− 1
2
i)(1 + i)n + (

1
2

+ 1
2
i)(1 − i)n.

The sequence can also be expressed using the real basis of the (com-

plex) vector space of the space of solutions, that is, using the se-

quences un = 1
2(yn + zn) = (

√
2)n cos(nπ4 ) and vn = 1

2 i(zn − yn) =
(
√

2)n sin(nπ4 ). The transition matrix for the changing the basis from
the complex one to the real one is

T :=
( 1

2 − 1
2 i

1
2

1
2 i

)
,

the inverse matrix is T −1 =
(

1 1
i −i

)
, for expressing the sequence xn

using the real basis, that is, for expressing the coordinates (c, d) of the

sequence xn under the basis {un, vn}, we have(
c

d

)
= T −1

(
a

b

)
=
(

1
1

)
,

thus we have again an alternative expression of the sequence xn where

there are no complex numbers (but there are square roots):

xn = (
√

2)n cos
(nπ

4

)
+ (

√
2)n sin

(nπ
4

)
,

which we could have obtained by solving two linear equations in two

variables c, d, that is, 1 = x0 = c · u0 + d · v0 = c and 2 = x1 =
c · u1 + d · v1 = c + d. □
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textbook, so we give at least a vague idea how to do it. If the reader

has some problems with smooth reading, we suggest skipping the

proof immediately.

Theorem (Perron). If A is a primitive matrix with spectral radius

λ ∈ R, then λ is a simple root of characteristic polynomial of the

matrix A, which is strictly greater than the absolute value of any

other eigenvalue of the matrix A. Furthermore, there exist eigen-

vector x associated with λ such that all elements xi of x are posi-

tive.

Vague idea. In the proof we shall rely on the intuition from

elementary geometry. Partly we will make the used

concepts more precise in the analytical geometry in

the fourth chapter, some analytical aspects will be

studied in more detail in the �fth chapter and later,

and some claims won't be proven in this textbook at all. Hopefully

the presented ideas will not just illuminate the theorem but alsowill

motivate for deeper study of geometry and analysis by themselves.

Let us begin with a understandable auxiliary lemma:

Lemma. Consider any polyhedron P containing the origin 0 ∈
Rn. If some iteration of the linear mapping ψ : Rn → Rn maps P
in its inside, then the spectral radius of the mapping ψ is strictly

smaller than one.

Consider the matrix A of the mapping ψ under the standard

basis. Because the eigenvalues of Ak are the k-th powers of the

eigenvalues of the matrix A, we can without loss of generality as-

sume that the mappingψ already maps P into its inside. Clearlyψ

cannot have any eigenvalue with absolute value greater than one.

Let us argue by contradiction. Assume that there exists eigen-

value λwith |λ| = 1. Thus there are two possibilities, either λk = 1
for suitable k or there is no such k.

The image ofP is a closed set (that means that when the points

in the image group about some point y in Rn, the point y is also in
the image) and the border of P is not intersected at all by the image.

Thus ψ cannot have a �xed point on the border and there cannot

even be any point on the border to which the points in the image

would converge. The �rst argument excludes that some power of λ

is one, because such �xed point on the border ofP would then exist.

In the remaining case there would de�nitely be a two-dimensional

subspaceW ⊂ Rn on which the restriction of ψ acts as a rotation

by an irrational argument and thus there de�nitely exist a point y

in the intersection of W with the border of P . But then the point

y could be approached arbitrarily close by the points from the set

ψn (y) (through all iterations) and thus would have to be in the

image also. That leads to a contradiction and thus the lemma is

proven.

Now let us prove the Perron theorem. Our �rst step is ensuring

the existence of the eigenvector which has all elements positive.

Let us consider the so-called standard simplex

S = {x = (x1, . . . , xn)
T , |x| = 1, xi ≥ 0, i = 1, . . . , n}.

Because all elements in the matrix A are non-negative, the image

A · x has all non-negative coordinates as x does and at least one of
them is always non-zero. The mapping x 7→ |A · x|−1(A · x) thus
maps S to itself. This mapping S → S satis�es all the assumptions

of the so-called Brouwer �xed point theorem and thus there exists

vector y ∈ S such that it is mapped by this mapping to itself. That
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3.12. Determine the explicit expression of the sequence satisfying the

di�erence equation xn+2 = 3xn+1 + 3xn with members x1 = 1 and

x2 = 3. ⃝
3.13. Determine the explicit formula for the n-th member of the unique

solution {xn}∞n=1 that satis�es the following conditions:

xn+2 = xn+1 − xn, , x1 = 1, x2 = 5.

⃝
3.14. Determine the explicit formula for the n-th member of the unique

solution {xn}∞n=1 that satis�es the following conditions:

−xn+3 = 2xn+2 + 2xn+1 + xn, x1 = 1, x2 = 1, x3 = 1.

⃝
3.15. Determine the explicit formula for the n-th member of the unique

solution {xn}∞n=1 that satis�es the following conditions:

−xn+3 = 3xn+2 + 3xn+1 + xn, x1 = 1, x2 = 1, x3 = 1.

⃝

C. Population models

Population models which we are to deal with right now will have

recurrence relations in vector spaces. The unknown in this case is

not a sequence of numbers but a sequence of vectors. The role of

coe�cients is played by matrices. We begin with a simple (two-

dimensional) case.

3.16. Savings. With a friend we are saving for a holiday together by

monthly payments in the following way. At the beginning I give 10

Cand he gives 20 C. Every consecutive month each of us gives as

many as last month plus one half of what the other has given the month

before. How much will we have after one year? How much many will

I pay in the twelfth month?

Solution. The amount of many I pay in the n-th month is denoted as

xn and the amount my friend is paying is yn. The �rst month we thus

give x1 = 10, y1 = 20. For the following payments we can write down
a recurrent relation:

xn+1 = xn + 1
2yn

yn+1 = yn + 1
2xn

If we denote the common savings as zn = xn + yn, then by summing

the equations we obtain zn+1 = zn + 1
2zn = 3

2zn. That is a geometric

sequence and we obtain zn = 3.( 3
2)
n−1. In a year we will thus have

z1 + z2 + · · · + z12. This partial sum is easy to compute

3(1 + 3
2

+ · · · + (
3
2
)11) = 3

( 3
2)

12 − 1
3
2 − 1

.= 772, 5.



CHAPTER 3. LINEAR MODELS AND MATRIX CALCULUS

means that

A · y = λ y, λ = |A · y|
and we have found an eigenvector that lies in S. Because some

power of Ak has due to our assumption all elements positive and

of course we have Ak · y = λky, all elements of the vector y are

strictly positive (that is, they lie inside of S) and λ > 0.
In order to prove the rest of the theorem, we will consider the

mapping given by the matrix A in a more suitable basis and fur-

thermore we shall multiply it by a constant λ−1:

B = λ−1(Y−1 · A · Y ),
where Y is a diagonal matrix with coordinates yi of a just-found

eigenvector y on a diagonal. Evidently B is also a primitive ma-

trix and furthermore the vector z = (1, . . . , 1)T is its eigenvector,

because clearly Y · z = y.

If we know prove that µ = 1 is a simple root of the charac-

teristic polynomial of the matrix B and that all other roots have

absolute value strictly smaller than one, the proof is �nished.

In order to do that we use the auxiliary lemma. Consider the

matrix B to be a matrix of a linear mapping that maps the row

vectors

u = (u1, . . . , un) 7→ u · B = v,

that is, using multiplication from the right. Thanks to the fact that

z = (1, . . . , 1)T is an eigenvector of the matrix B, the sum of the

coordinates of the row vector v

n∑
i,j=1

uibij =
n∑
i=1

ui = 1,

whenever u ∈ S. Therefore the mapping maps the simplex S on

itself and thus has in S a (row) eigenvector w with eigenvalue one

(�xed point, thanks to the theorem of Brouwer). Because some

power Bk contains only strictly positive elements, the image of

the simplex S in the k-th iteration of the mapping given by B lies

inside of S. We are getting close to using our lemma prepared for

this proof.

We shall still work with the row vectors. Denote by P the

shift of the simplex S into the origin by the eigenvector w we have

just found, that is, P = −w + S. Evidently P is a polyhedron

containing the origin and the vector subspaceV ⊂ Rn generated by
P is invariant to the action of the matrix B through multiplication

of the row vectors from the right. Restriction of our mapping on P

thus satis�es the assumptions of the auxiliary lemma and thus all

its eigenvalues are strictly smaller than one.

We have yet to deal with the problem that the just considered

mapping is given by multiplication of the row vectors from the

right with the matrix B, while originally we were interested in the

mapping given by the matrix B and multiplication of the column

vectors from the left. But that is equivalent to the multiplication

of the transposed column vectors with the transposed matrix B in

the usual way � from the left. Thus we have proven the claim

about eigenvalues for the transpose of B. But transposing does

not change the eigenvalues.

Dimension of the space V is n− 1, thus completing the proof.
□
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In a year we will have saved over 772 C.

The recurrent system of equation describing the savings system

can be written by matrices as follows:(
xn+1
yn+1

)
=
(

1 1
2

1
2 1

)(
xn
yn

)
It is thus again a geometric sequence. Its elements are now vectors and

the quotient is not a scalar, but a matrix. The solution can be found

analogously: (
xn
yn

)
=
(

1 1
2

1
2 1

)n−1 (
x1
y1

)
The power of the matrix acting on the vector (x1, y1) can be found by

expressing this vector in the basis of eigenvectors. The characteristic

polynomial of the matrix is (1 − λ)2 − 1
4 − 0 and the eigenvalues are

thus λ1,2 = 3
2 ,

1
2 . The corresponding eigenvectors are thus (1, 1) and

(1,−1). For the initial vector (x1, y1) = (1, 2) we compute(
1
2

)
= 3

2

(
1
1

)
− 1

2

(
1

−1

)
and thus (

xn
yn

)
= 3

2

(
3
2

)n−1 (1
1

)
− 1

2

(
1
2

)n−1 ( 1
−1

)
That means that in the 12. month I pay

x12 =
(

3
2

)12

−
(

1
2

)12
.= 130

EUR and my friend pays basically the same amount. □

Remark. The previous example can be solved also without matrices

by rewriting the recurrent equation: xn = xn + 1
2yn = 1

2xn + 1
2zn.

The previous example was actually a model of growth (in the case

of growth of saved money). Let us now go to the models of growth

describing primarily a growth of some population. Leslie model of

population growth with which we have coped with in great detail in

the theoretical part describes very well not only populations of sheep

(according to which it was developed), but can be also applied in mod-

elling of the following populations:

3.17. Rabbits for the second time. Let us show how the Leslie

model can describe the population of the rabbits on the meadow with

which we have worked in the exercise (∥3.4∥). Let us consider that

the rabbits are dying after reaching the ninth year of age (in the orig-

inal model the rabbits were immortal). Let us denote the numbers

of rabbits according to their age in months in time t (in months) as

x1(t), x2(t),. . . , x9(t), then the numbers of rabbits in individual cat-

egories are after one month described by the formula x1(t + 1) =
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3.20. Simple corollaries. The following very useful claim has

with the knowledge of the Perron theorem a surpris-

ingly simple proof and shows how strong is the prop-

erty of the primitive matrix of a mapping.

Corollary. IfA = (aij ) is a primitive matrix and x ∈ Rn its eigen-
vector with all coordinates non-negative and eigenvalue λ, then

λ > 0 is the spectral radius of A. Furthermore it holds that

minj∈{1,...,n}
n∑
i=1

aij ≤ λ ≤ maxj∈{1,...,n}
n∑
i=1

aij .

Proof. Consider the eigenvector x from the statement. Be-

cause A is primitive, we can �x k such that Ak has only positive

elements, then of course Ak · x = λkx is a vector with all coordi-

nates strictly positive. Necessarily then λ > 0.
>From the theorem of Perron we know that the spectral radius

µ is an eigenvalue and choose such eigenvector y associated withµ

such that the di�erence x−y has only strictly positive coordinates.
Then necessarily for all the powers of n we have

0 < An · (x − y) = λnx − µny,

but we also have that λ ≤ µ. From there we directly have λ = µ.

It remains to estimate the spectral radius using the minimum

and maximum of sums of individual columns of the matrix. We

denote them by bmin and bmax, choose x to be a vector with the

sum of coordinates equal to one and count:

n∑
i,j=1

aijxj =
n∑
i=1

λxi = λ

λ =
n∑
j=1

( n∑
i=1

aij

)
xj ≤

n∑
j=1

bmaxxj = bmax

λ =
n∑
j=1

( n∑
i=1

aij

)
xj ≥

n∑
j=1

bminxj = bmin.

□

Note that for instance all Leslie matrices from 3.18, where all

the coe�cients fi and τj are strictly positive, are primitive and

thus we can apply on them the just derived results.

Perron-Frobenius theorem is a generalisation of the Perron the-

orem for more general matrices, which we won't give here. More

information can be found for instance in ??.

3.21. Markov chains. Very frequent and interesting case of linear

processes with only non-negative elements in matrix

is a mathematical model of a system which can be in

one ofm states with various probabilities. In a given

point of time the system is in state i with probabil-

ity xi and transition form the state i to the state j happens with

probability tij .

We can write the process as follows: at time n the system is

described by the probability vector

xn = (u1(n), . . . , um(n))
T .

That means that all components of the vector x are real non-

negative numbers and their sum equals one. Components give

the distribution of the probability of individual possibilities for the

state of the system. The distribution of the probabilities at time
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x2(t)+ x3(t)+ · · · + x9(t), xi(t + 1) = xi−1(t), pro i = 2, 3, . . . , 10,
or 

x1(t + 1)

x2(t + 1)

x3(t + 1)

x4(t + 1)

x5(t + 1)

x6(t + 1)

x7(t + 1)

x8(t + 1)

x9(t + 1)


=



0 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0





x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

x6(t)

x7(t)

x8(t)

x9(t)


.

Characteristic polynomial of the givenmatrix isλ9−λ7−λ6−λ5−λ4−
λ3 − λ2 − λ− 1. Roots of this equation are hard to explicitly express,
but we can estimate one of them very well � λ1

.= 1, 608 (why must it

be smaller than (
√

5 + 1)/2)?). Thus the population grows according
to this model approximately with the geometric sequence 1, 608t .

3.18. Pond. Let us have a simple model of a pond where there lives a

population of white �sh (roach, bleak, vimba, nase, etc.). We assume

that 20 % of babies survive their second year and from that age on they

are able to reproduce. For these young �sh, approximately 60 % of

them survives their third year and in the following years the mortality

can be ignored. Furthermore we assume that the birth rate is three

times the number of �sh that can reproduce.

Such population would clearly very quickly �ll the pond. Thus

we want to maintain a balance by using a predator, for instance esox.

Assume that one esox eats per year approximately 500 mature white

�sh. How many esox should be put into the pond in order for the

population to stagnate?

Solution. If we denote by p the number of babies, by m the number

of young �sh and by r the number of adult �sh, then the state of the

population in the next year is given by:pm
r

 7→
 3m+ 3r

0, 2p
0, 6m+ τr

 ,
where 1 − τ is the relative mortality of the adult �sh caused by the

esox. The corresponding matrix describing this model is then 0 3 3
0.2 0 0
0 0.6 τ


If the population is to stagnate, then this matrix must have eigenvalue

1. In other words, one must be the root of the characteristic polynomial

of this matrix. That is of the form λ2(τ−λ)+0, 36−0, 6.(τ−λ) = 0.
That means that τ must satisfy

τ − 1 + 0.36 − 0.6(τ − 1) = 0
0.4τ − 0.04 = 0
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n + 1 is given by multiplying the probabilistic transition matrix

T = (tij ), that is,

xn+1 = T · xn.
Because we assume that the vector x captures all possible states

and thus with total probability one again transits into some of the

state, all columns of T are also given by probabilistic vectors. Such

process is called (discrete) Markov process and the resulting se-

quence of vectors x0, x1, . . . is calledMarkov chain xn.

Note that every probabilistic vector x is actually mapped by

a Markov process on a vector with a sum of coordinates equal to

one: ∑
i,j

tijxj =
∑
j

(∑
i

tij

)
xj =

∑
j

xj = 1.

Now we can use the Perron-Frobenius theory in its full power.

Because the sum of the rows of the matrix is always equal to the

vector (1, . . . , 1), we can easily see that thematrix T−E is singular

and thus one is surely an eigenvalue of the matrix T .

If furthermore T is a primitive matrix (for instance, when all

elements are non-zero), from the corollary 3.20 we know that one

is a simple root of the characteristic polynomial and all others have

absolute value strictly smaller than one.

Theorem. Markov processes with the matrix that has no zero ele-

ment or that some its power has this property, satisfy:

• there exist unique eigenvector x∞ for the eigenvalue 1 which

is probabilistic,

• the iteration T kx0 approaches the vector x∞ for any initial

probabilistic vector x0.

Proof. This claim follows directly from the positivity of the

coordinates of the eigenvector derived in the Perron theo-

rem.

Assume �rst that the algebraic and geometric multi-

plicities of the eigenvalues of the matrix T are the same.

Then every probabilistic vector x0 can be (in complex extension

Cn) written as linear combination

x0 = c1x∞ + c2u2 + · · · + cnun,

where u2 . . . , un extend x∞ to a basis of the eigenvectors. But then

the k-th iteration gives again a probabilistic vector

xk = T k · x0 = c1x∞ + λk2c2u2 + · · · + λkncnun.

Because all eigenvalues λ2, · · · λn are in absolute value strictly

smaller than one, all components of the vector xk but the �rst one

approach (in norm) zero very rapidly. But xk is still probabilistic,

thus it must be that c1 = 1 and the second claim is proven.

In reality even with distinct algebraic and geometric multiplic-

ities of eigenvalues we reach the same conclusion using a more de-

tailed study of the so-called root subspaces of the matrix T which

we reach in the connection with the so-called Jordanmatrix decom-

position even in this chapter, see the note 3.33.

Even in the general case we reach in the eigensubspace ⟨x∞⟩
a uniquely determined invariant (n− 1)-dimensional complement,
on which are all eigenvalues in absolute value smaller than one

and thus the corresponding component in xk approaches zero as

before. □
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In the next year only 10 % is allowed to survive and the rest should be

eaten by the esox. If we denote the desired number of esox by x, then

together they eat 500x �sh, which should according to the previous

computation be 0.9r. The ratio of the number of white �sh to the

number of esox should thus be r
x

= 500
0.9 . That is approximately one

esox for 556 white �sh. □
In general, we can work with the previous model as follows:

3.19. Let in the population model prey-predator be the relation be-

tween the number of predators Dk and preys Kk in the given and the

following month (k ∈ N ∪ {0}) be given by the linear system
(a)

Dk+1 = 0.6Dk + 0.5Kk,
Kk+1 = −0.16Dk + 1.2Kk;

(b)
Dk+1 = 0.6Dk + 0.5Kk,
Kk+1 = −0.175Dk + 1.2Kk;

(c)
Dk+1 = 0.6Dk + 0.5Kk,
Kk+1 = −0.135Dk + 1.2Kk.

Let us analyse the behaviour of this model after a very long time.

Solution. Note that individual variants di�er from each other only in

the value of the coe�cients atDk in the second equation. We can thus

express all three cases as(
Dk

Kk

)
=
(

0.6 0.5
−a 1.2

)
·
(
Dk−1
Kk−1

)
, k ∈ N,

where we gradually set a = 0.16, a = 0.175, a = 0.135. The value
of the coe�cient a represents here the average number of preys killed

by one (clearly a �humble�) predator per month. When denoting

T =
(

0.6 0.5
−a 1.2

)
we immediately obtain(

Dk

Kk

)
= T k ·

(
D0
K0

)
, k ∈ N.

Using the powers of the matrix T we can determine the evolution of

the populations of predators and preys after a very long time.

We easily compute the eigenvalues

(a) λ1 = 1, λ2 = 0.8;

(b) λ1 = 0.95, λ2 = 0.85;

(c) λ1 = 1.05, λ2 = 0.75

the matrix T is and the respective eigenvectors are

(a) (5, 4)T , (5, 2)T ;

(b) (10, 7)T , (2, 1)T ;

(c) (10, 9)T , (10, 3)T .
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3.22. Iteration of the stochastic matrices. Matrices of Markov

chains, that is, matrices whose rows have sum of their

components equal to one are called stochastic matri-

ces. Standard problems connected with Markov pro-

cesses contain answers to the question about the ex-

pected time elapsed between transition from one state to another

and so on. Right now we are not prepared for solving these prob-

lems, but we return to this topic later.

We reformulate the previous theorem into a simple, but sur-

prising result. By convergence to a limit matrix in the following

theorem we mean the following: if we say that we want to bound

the possible error ε > 0, then we can �nd a bound on the number
of iterations k after which all the components of the matrix di�er

from the limit one by less than ε.

Corollary. Let T be a primitive stochastic matrix from a Markov

process and let x∞ be the stochastic eigenvector for the dominant

eigenvalue 1 (as in the theorem before). Then the iterations T k

converge to the limit matrix T∞, whose columns all equal to x∞.

Proof. Columns in the matrix T k are images of the vectors of

the standard basis under the corresponding iterated linear mapping.

But these are images of the probabilistic vectors and thus all of

them converge to x∞. □

Now for a short goodbye to Markov processes we think about

the problem whether there exist for a given system the states into

which the system tends to get in and stay in them.

We say that a state is transient, if the system stays in it with

probability strictly smaller than one. State is absorbing if the sys-

tem stays in it with probability one and into which the system can

get with non-zero probability from any of the transient states. Fi-

nally, Markov chain xn is absorbing, if all its states are either ab-

sorbing or transient.

If in the absorbing Markov chain �rst of r states of the system

are absorbing, then for the stochastic matrix T of the system this

means that it decomposes into "block-wise" upper triangular form

T =
(
E R

0 Q

)
where E is a unit matrix whose dimension is given by the num-

ber of absorbing states, while R is a positive matrix and Q non-

negative. In any case, iterations of this matrix yield a matrix which

has the same block of zero values in the bottom-left block and thus

it is not primitive, for instance

T 2 =
(
E R + R ·Q
0 Q2

)
.

Even about such matrices we can obtain many information using

the full Perron-Frobenius theory andwith knowledge of probability

and statistics also estimate expected time after which the system

gets into one of the absorbing states.

4. More matrix calculus

On pretty practical examples we have seen that understanding

the inner structure of matrices and their properties is a strong tool

for speci�c computations and analyses. Even more is it true for

e�ectivity of numerical calculations with matrices. Therefore we

will for a while deal with abstract theory.
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For k ∈ N thus holds that

(a)

T k =
(

5 5
4 2

)
·
(

1 0
0 0.8

)k
·
(

5 5
4 2

)−1

;
(b)

T k =
(

10 2
7 1

)
·
(

0.95 0
0 0.85

)k
·
(

10 2
7 1

)−1

;
(c)

T k =
(

10 10
9 3

)
·
(

1.05 0
0 0.75

)k
·
(

10 10
9 3

)−1

.

>From there we further have for big k ∈ N that

(a)

T k ≈
(

5 5
4 2

)
·
(

1 0
0 0

)
·
(

5 5
4 2

)−1

= 1
10

(−10 25
−8 20

)
;

(b)

T k ≈
(

10 2
7 1

)
·
(

0 0
0 0

)
·
(

10 2
7 1

)−1

=
(

0 0
0 0

)
;

(c)

T k ≈
(

10 10
9 3

)
·
(

1, 05k 0
0 0

)
·
(

10 10
9 3

)−1

= 1, 05k

60

(−30 100
−27 90

)
,

because exactly for big k ∈ N we can set

(a) (
1 0
0 0.8

)k
≈
(

1 0
0 0

)
;

(b) (
0.95 0

0 0.85

)k
≈
(

0 0
0 0

)
;

(c) (
1.05 0

0 0.75

)k
≈
(

1.05k 0
0 0

)
.

Let us note that in the variant (b), that is for a = 0.175, it was not
necessary to compute the eigenvectors.

Thus we have obtained

(a) (
Dk

Kk

)
≈ 1

10

(−10 25
−8 20

)
·
(
D0
K0

)
= 1

10

(
5 (−2D0 + 5K0)

4 (−2D0 + 5K0)

)
;



CHAPTER 3. LINEAR MODELS AND MATRIX CALCULUS

We will investigate further some special types of linear map-

pings on vector spaces and also a general case where the structure

is described using the so-called Jordan theorem.

3.23. Unitary spaces and mappings. We are already used to the

fact that it is e�cient to work in the domain of com-

plex numbers even in the case when we are interested

only in real objects. Furthermore, in many areas the

complex vector spaces are necessary component of

the problem. For instance, take the so-called quantum computing,

which became a very active area of theoretical computer science,

although quantum computers have not been constructed yet (in a

usable form).

Therefore we extend what we know about orthogonal map-

pings and mappings from the end of the second chapter with the

following de�nitions:

Unitary spaces

De�nition. Unitary space is a complex vector space V along with

the mapping V × V → C, (u, v) 7→ u · v, which satis�es for all
vectors u, v,w ∈ V and scalars a ∈ C
(1) u · v = v · u (the bar stands for complex conjugation),
(2) (au) · v = a(u · v),
(3) (u+ v) · w = u · w + v · w,
(4) if u ̸= 0, then u · u > 0 (notably if the expression is real).

Such mapping is called scalar product over V .

Real number
√
v · v is called size of the vector v and vector is

normalised, if its size equals one. Vectors u and v are called or-

thogonal if their scalar product is zero, basis composed of mutually

orthogonal and normalised vectors is called orthonormal basis V .

On �rst sight this is an extension of the de�nition of Euclidean

vector spaces into the complex domain. We will keep on using

the alternative notation ⟨u, v⟩ for scalar product of vectors u and

v. Identically to the real domain, we obtain immediately from the

de�nition the following simple properties of the scalar product for

all vectors in V and scalars in C:
u · u ∈ R

u · u = 0 if and only if u = 0
u · (av) = ā(u · v)

u · (v + w) = u · v + u · w
u · 0 = 0 · u = 0(∑

i

aiui
) · (∑

j

bjvj
) =

∑
i,j

ai b̄j (ui · vj ),

where the last equality holds for all �nite linear combinations. It is

a simple exercise to prove everything formally, for instance the �st

property follows from the de�nition property (1).

Standard example of scalar product over complex vector space

Cn is
(x1, . . . , xn)

T · (y1, . . . , xn)
T = x1ȳ1 + · · · + xnȳn.

Thanks to conjugation of the coordinates of the second argument

this mapping satis�es all required properties. The space Cn with
this scalar product is called standard unitary space of dimension n.

We can denote this scalar product with matrix notation as x · y =
ȳT · x.
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(b) (
Dk

Kk

)
≈
(

0 0
0 0

)
·
(
D0
K0

)
=
(

0
0

)
;

(c) (
Dk

Kk

)
≈ 1.05k

60

(−30 100
−27 90

)
·
(
D0
K0

)
= 1.05k

60

(
10 (−3D0 + 10K0)

9 (−3D0 + 10K0)

)
.

These results can be interpreted as follows:

(a) If 2D0 < 5K0, the sizes of both populations stabilise on non-

zero sizes (we say that they are stable); if 2D0 ≥ 5K0, both

populations die out.

(b) Both populations die out.

(c) For 3D0 < 10K0 begins a population boom of both kinds;

for 3D0 ≥ 10K0 both populations die out.

Even a tiny change of the size of a can lead to a completely dif-

ferent result. This is caused by the constantness of the value of a � it

does not depend on the size of the populations. Note that this restric-

tion (that is, assuming a to be constant) has no interpretation in reality.

But still we obtain an estimate on the sizes of a for stable populations.

□

3.20. Remark. Other model for the populations of predators and preys

is the model by Lotka and Volterra, which describes a relation between

the populations by a system of two ordinary di�erential equations. Us-

ing this model both populations oscillate, which is in accord with ob-

servations.

In linear models an important role is played by the primitive ma-

trices (3.19).

3.21. Which of the matrices

A =
(

0 1/7
1 6/7

)
, B =

1/2 0 1/3
0 1 1/2

1/2 0 1/6

 , C =
 0 1 0

1/4 0 1/2
3/4 0 1/2

 ,

D =


1/3 1/2 0 0
1/2 1/3 0 0
0 1/6 1/6 1/3

1/6 0 5/6 2/3

 , E =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


are primitive?

Solution. Because

A2 =
(

1/7 6/49
6/7 43/49

)
, C3 =

3/8 1/4 1/4
1/4 3/8 1/4
3/8 3/8 1/2

 ,
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Completely analogously to the Euclidean spaces and orthogo-

nal mappings, great importance is in those mappings that respect

scalar product.

Unitary mapping

Linear mapping φ : V → W between unitary spaces is called

unitary mapping, if for all vectors u, v ∈ V we have

u · v = φ(u) · φ(v).
Unitary isomorphism is a bijective unitary mapping.

3.24. Properties of spaces with scalar product. In a brief dis-

cussion about Euclidean spaces in the previous

chapter we have already derived some simple

properties of spaces with scalar product. The

proofs for the complex case are very similar.

In the following we shall work with real and complex spaces

simultaneously and we write K for R or C, in the real case the

conjugation is just the identity mapping (as the actual restriction of

the conjugation in the complex plane to the real line is). Similarly

to the real space we de�ne in general for arbitrary vector subspace

U ⊂ V in the space with scalar product its orthogonal complement

U⊥ = {v ∈ V ; u · v = 0 for all u ∈ U},
which is clearly also a vector subspace in V .

In the following paragraphs we work exclusively with �nitely-

dimensional unitary or Euclidean spaces. However, many of our re-

sults have a natural generalisation for the so-called Hilbert spaces,

which are speci�c in�nitely-dimensional spaces with scalar prod-

ucts, to which we return later, albeit brie�y.

Proposition. For every �nitely-dimensional space V of dimension

n with scalar product we have:

(1) In V there exists an orthonormal basis.

(2) Every system of non-zero orthogonal vectors in V is linearly

independent and can be extended to an orthogonal basis.

(3) For every system of linearly independent vectors (u1, . . . , uk)

there exists an orthonormal basis (v1, . . . , vn) such that its

vectors respectively generate the same subspaces as the vector

uj , that is, ⟨v1, . . . , vi⟩ = ⟨u1 . . . , ui⟩, 1 ≤ i ≤ k.

(4) If (u1, . . . , un) is an orthonormal basis V , then coordinates

of every vector u ∈ V are expressed via

u = (u · u1)u1 + · · · + (u · un)un.
(5) In any orthonormal basis the scalar product has the coordi-

nate form

u · v = x · y = x1ȳ1 + · · · + xnȳn

where x and y are columns of coordinates of the vectors u and

v in a chosen basis. Notably, every n-dimensional space with

scalar product is isomorphic to the standard Euclidean Rn or
the unitary Cn.

(6) Orthogonal sum of unitary subspaces V1 + · · · + Vk in V is

always a direct sum.

(7) IfA ⊂ V is an arbitrary subset, thenA⊥ ⊂ V is a vector (and

thus also unitary) subspace and (A⊥)⊥ ⊂ V is exactly the

subspace generated by A. Furthermore we have V = ⟨A⟩ ⊕
A⊥.

(8) V is orthogonal product of n one-dimensional unitary sub-

spaces.
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the matrices A and C are primitive, and because1/2 0 1/3
0 1 1/2

1/2 0 1/6

 ·
0

1
0

 =
0

1
0

 ,
the middle column of the matrix Bn is always (for n ∈ N) the vector
(0, 1, 0)T , that is, the matrix B cannot be primitive. The product

1/3 1/2 0 0
1/2 1/3 0 0
0 1/6 1/6 1/3

1/6 0 5/6 2/3

 ·


0
0
a

b

 =


0
0

a/6 + b/3
5a/6 + 2b/3

 , a, b ∈ R

implies that the matrix D2 has in the right upper corner a zero two-

dimensional (square) sub-matrix. By repetition of this implication we

obtain that the same property is shared by the matrices D3 = D ·D2,

D4 = D · D3, . . . , Dn = D · Dn−1, . . . , thus the matrix D is not

primitive. The matrix E is a permutation matrix (in every row and ev-

ery column there is exactly one non-zero element, 1). It is not di�cult

to realise that the powers of the permutation matrix are again permu-

tation matrices. The matrix E is thus also not primitive. This can be

easily veri�ed by calculating the powers E2 , E3 , E4 . The matrix E4

is a unit matrix. □
Now we show a more robust model.

3.22. Model of spreading of annual plants. We consider the plants

that at the beginning of the summer blossom, at the peak of the summer

produce seeds and die. Some of the seeds burst into �owers at the

end of the autumn, some survive the winter in the ground and burst

into �owers at the start of the spring. The �owers that burst out in

autumn and survive the winter are usually bigger in the spring and

usually produce more seeds. After this, the whole cycle repeats.

The year is thus divided into four parts and in each of these parts

we distinguish between some "forms" of the �ower:
Part Stage
beginning of the spring small and big seedlings
beginning of the summer small, medium and big blossoming �owers
peak of the summer seeds
autumn seedlings and seeds

We denote by x1(t) and by x2(t) the number of small and big seedlings

respectively at the start of the spring in the year t and by y1(t), y2(t)

and y3(t) the number of small, medium and big �owers respectively

in the summer of that year. From the small seedlings either small or

big �owers grow, from the big seedlings either medium or big �owers

grow. Each of the seedlings can of course die (weather, be eaten by a

cow, etc.) and nothing grows out of it. Denote by bij the probability

that the seedling of the j -th size, j = 1, 2 grows into a �ower of the
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Proof. (1), (2), (3): We �rst extend the given system of vec-

tors into any basis (u1, . . . , un) of the space V and

then start the Gramm-Schmidt orthogonalisation from

2.42. This yields an orthogonal basis with properties

as required in (3). But from the Gramm-Schmidt or-

thogonalisation algorithm it is clear that when the original k vec-

tors formed an orthogonal system of vectors, then during the pro-

cess they won't be changed. Thus we have also proved (2) and (1).

(4): If u = a1u1 + · · · + anun, then

u · ui = a1(u1 · ui)+ · · · + an(un · ui) = ai∥ui∥2 = ai

(5): Similarly we compute for any vectors u = x1u1 + · · · + xnun,

v = y1u1 + · · · + ynun

u · v = (x1u1 + · · · + xnun) · (y1u1 + · · · + ynun)

= x1ȳ1 + · · · + xnȳn.

(6): We need to show that for any tuple Vi , Vj from the given sub-

spaces their intersection is trivial. If we have u ∈ Vi and simulta-
neously u ∈ Vj , then we have u ⊥ u, that is, u · u = 0. That is
possible only for the zero vector u ∈ V .
(7): Let u, v ∈ A⊥. Then (au + bv) · w = 0 for all w ∈ A,

a, b ∈ K (from the distributivity of the scalar product). We have

thus checked that A⊥ is a unitary subspace in V . Let (v1, . . . , vk)

be some basis ⟨A⟩ chosen among the elements of A, and let

be (u1, . . . , uk) the orthonormal basis outputted by the Gramm-

Schmidt orthogonalisation of the vectors (v1, . . . , vk). We extend

it to the orthonormal basis of the whole V (both exist thanks to the

already proven parts of this proposition). Because it is an orthog-

onal basis, necessarily ⟨uk+1, . . . , un⟩ = ⟨u1, . . . , uk⟩⊥ = A⊥
and A ⊂ ⟨uk+1, . . . , un⟩⊥ (this follows from expressing the co-

ordinates under the orthonormal bassi). If u ⊥ ⟨uk+1, . . . , un⟩,
then u is necessarily a linear combination of the vectors u1, . . . , uk ,

but that happens whenever it is a linear combination of the vectors

v1, . . . , vk , which is equivalent to u being in ⟨A⟩.
(8): This is equivalent to the formulation of existence of the or-

thonormal basis. □

3.25. Important properties of size. Nowwe have everything pre-

pared for basic properties connected with our de�-

nition of the size of vectors. We speak also of the

norm de�ned by the scalar product. Note also that all

claims always consider �nite sets of vectors and their

validity does not depend on the dimension of the space V where it

all takes place.

Theorem. For any two vectors u, v in the space V with scalar

product we have

(1) ∥u+ v∥ ≤ ∥u∥ + ∥v∥, with equality if and only if u and v are
linearly dependent.

(triangle inequality)

(2) |u · v| ≤ ∥u∥ ∥v∥, with equality if and only if u and v are

linearly dependent.

(Cauchy inequality)

(3) For every orthonormal system of vectors (e1, . . . , ek) we have

∥u∥2 ≥ |u · e1|2 + · · · + |u · ek|2

(Bessel inequality).
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i-th size, i = 1, 2, 3. Then we have

0 < b11 < 1, b12 = 0, 0 < b21 < 1, 0 < b22 < 0, b31 = 0,

0 < b32 < 1, b11 + b21 < 1, b22 + b32 < 1

(think in detail about what each of these inequalities expresses). If

we consider the classical probability, we can compute b11 as a ratio

of the positive results (small seedling grew into a small �ower) and

of all possible results (the number of small seedlings), that is, b11 =
y1(t)/x1(t). From the

y1(t) = b11x1(t).

Analogously, we obtain the equality

y3(t) = b32x2(t).

If we denote for a while by y2,1(t) and y2,2(t) the number of medium

�owers that grew out of small and big seedlings respectively, we have

y2(t) = y2,1(t)+ y2,2(t) and b21 = y2,1(t)/x1(t), b22 = y2,2(t)/x2(t)

and thus

y2(t) = b21x1(t)+ b22x2(t).

Denote

B =
b11 0
b21 b22
0 b32

 , x(t) =
(
x1(t)

x2(t)

)
, y(t) =

y1(t)

y2(t)

y3(t)


and rewrite the previous equation in the matrix notation

y(t) = Bx(t).

Denote by c11, c12 and c13 the number of seed produced by small,

medium and big �owers respectively, and by z(t) the total number of

produced seeds in the summer of the year t, we have

z(t) = c11y1(t)+ c12y2(t)+ c13y3(t),

or in matrix calculus

z(t) = Cy(t)

with the notation

C = (
c11 c12 c13

)
.

If we want the matrix C to describe the modelled reality, we assume

that the inequalities

0 < c11 < c12 < c13

hold.

Denote �nally byw1(t) andw2(t) the number of seeds that burst in

the autumn and the number of seeds that stay in the ground during the

winter respectively, and by d11 and d21 the probabilities that the seed

burst out in the autumn and that the seed does not burst respectively,

and by f11 and f22 the probabilities that the seedling and the seed do
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(4) For orthonormal system of vectors (e1, . . . , ek) the vector u

belongs to the subspace ∈ ⟨e1, . . . , ek⟩ if and only if
∥u∥2 = |u · e1|2 + · · · + |u · ek|2.

(Parseval equality)

(5) For orthonormal system of vectors (e1, . . . , ek) and vector u ∈
V is the vector

w = (u · e1)e1 + · · · + (u · ek)ek
the only vector which minimises the size ∥u − v∥ for all v ∈
⟨e1, . . . , ek⟩.
Proof. All proofs rely on direct computations:

(2): De�ne the vector w := u− u·v
v·v v, that is, w ⊥ v and compute

0 ≤ ∥w∥2 = ∥u∥2 − (u·v)
∥v∥2 (u · v)− u·v

∥v∥2 (v · u)+ (u·v)(u·v)
∥v∥4 ∥v∥2

0 ≤ ∥w∥2∥v∥2 = ∥u∥2∥v∥2 − 2(u · v)(u · v)+ (u · v)(u · v)
>From there it directly follows that ∥u∥2∥v∥2 ≥ |u · v|2 and the

equality holds if and only if w = 0, that is, whenever u and v are
linearly dependent.

(1): Again it su�ces to compute

∥u+ v∥2 = ∥u∥2 + ∥v∥2 + u · v + v · u
= ∥u∥2 + ∥v∥2 + 2 Re(u · v)
≤ ∥u∥2 + ∥v∥2 + 2|u · v| ≤ ∥u∥2 + ∥v∥2 + 2∥u∥∥v∥
= (∥u∥ + ∥v∥)2

Because these are positive real numbers, it indeed is that ∥u+v∥ ≤
∥u∥ + ∥v∥. Furthermore, with equality it must be that in all pre-

vious inequalities equality also holds, but that is equivalent to the

condition that u and v are linearly dependent (using the previous

part).

(3), (4): Let (e1, . . . , ek) be an orthonormal system of vectors. We

extend to an orthonormal basis (e1, . . . , en) (that is always possible

thanks to the previous theorem). Then, again using the previous

theorem, is for every vector u ∈ V

∥u∥2 =
n∑
i=1

(u · ei)(u · ei) =
n∑
i=1

|u · ei |2 ≥
k∑
i=1

|u · ei |2

But that is the Bessel inequality. Furthermore, equality can hold

if and only if u · ei = 0 for all i > k, which proves the Parseval

equality.

(5): Choose arbitrary v ∈ ⟨e1, . . . , ek⟩ and extend the given

orthonormal system to the orthonormal basis (e1, . . . , en). Let

(u1, . . . , un) and (x1, . . . , xk, 0, . . . , 0) be coordinates of u and v
under this basis. Then

∥u− v∥2 = |u1 − x1|2 + · · · + |uk − xk|2 + |uk+1|2 + · · · + |un|2
and this expression is clearly minimised when choosing the indi-

vidual vectors to be x1 = u1, . . . , xk = uk . □

3.26. Properties of unitary spaces. The properties of orthogo-

nal mapping have a direct analogue in the complex

domain. We can easily formulate them and prove

together:

Proposition. Consider the linear mapping (endomorphism) φ :
V → V on the space with scalar product. Then the following

conditions are equivalent.
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not die during the winter respectively. The probabilities d11, d21 clearly

must satisfy the inequalities

0 < d11, 0 < d21, d11 + d21 = 1,

and because a seedling dies in the winter more easily than a seed hid-

den in the ground, we assume about f11, f22 that

0 < f11 < f22 < 1.

When denoting

D =
(
d11
d21

)
, F =

(
f11 0
0 f22

)
, w(t) =

(
w1(t)

w2(t)

)
we obtain with similar ideas as before the equalities

w(t) = Dz(t), x(t + 1) = Fw(t).

Because the matrix multiplication is associative, we can for the

numbers in individual stages of �owers in the following year from the

previous equalities compose the recurrent formulas:

x(t + 1) =Fw(t) = F
(
Dz(t)

) = (FD)z(t) = (FD)
(
Cy(t)

) =
=(FDC)y(t) = (FDC)

(
Bx(t)

) = (FDCB)x(t),

y(t + 1) =Bx(t + 1) = B
(
Fw(t)

) = (BF)w(t) = (BF)
(
Dz(t)

) =
=(BFD)z(t) = (BFD)

(
Cy(t)

) = (BFDC)y(t),

z(t + 1) =Cy(t + 1) = C
(
Bx(t + 1)

) = (CB)x(t + 1) = (CB)
(
Fw(t)

) =
=(CBF)w(t) = (CBF)

(
Dz(t)

) = (CBFD)z(t),

w(t + 1) =Dz(t + 1) = D
(
Cy(t + 1)

) = (DC)y(t + 1) =
=(DC)(Bx(t + 1)

) = (DCB)x(t + 1) = (DCB)
(
Fw(t)

) =
==(DCBF)w(t).

Using the notation

Ax = FDCB, Ay = BFDC, Az = CBFD, Aw = DCBF,

we simplify them into the formula

x(t+1) = Axx(t), y(t+1) = Ayy(t), z(t+1) = Azz(t), w(t+1) = Aw(t).

>From these formulas we can compute the distribution of the popu-

lation of the �owers in any part of any year, if we know the starting

distribution of the population (that is, in the year zero).

For instance, let the distribution of the population be known in the

summer, that is, z(0) of seeds. The distribution of the population at

the beginning of the spring in the t-th year is

x(t) =Axx(t − 1) = A2
xx(t − 2) = · · · = At−1

x x(1) = At−1
x Fw(0) =

=At−1
x FDz(0).
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(1) φ is unitary or orthogonal transformation,

(2) φ is linear isomorphism and for every u, v ∈ V it holds that

φ(u) · v = u · φ−1 (v),

(3) the matrix A of the mapping φ in any orthonormal basis

satis�es A−1 = ĀT (for Euclidean spaces this means that

A−1 = AT ),

(4) matrix A of a mapping φ under some orthonormal basis sat-

is�es A−1 = ĀT ,

(5) rows of the matrix A of the mapping φ under orthonormal ba-

sis form an orthonormal basis of the space Kn with standard
scalar product,

(6) columns of the matrix A of the mapping φ under orthonormal

basis form an orthonormal basis of the space Kn with stan-

dard scalar product.

Proof. (1) ⇒ (2): The mapping φ is injective, therefore it

must be onto. It also holds that φ(u) · v = φ(u) · φ(φ−1 (v)) =
u · φ−1 (v).

(2) ⇒ (3): Standard scalar product is in Kn always given for

columns x, y of scalars by the expression x · y = xT Eȳ , where E

is the unit matrix. The property (2) thus means that the matrixA of

the mapping φ is invertible and it holds that (Ax)T ȳ = xT A−1y.

That means that x̄T (ĀT y − A−1y) = 0 for all x ∈ Kn. Notably
by substituting the expression in the parentheses for x we �nd out

that this is possible only when ĀT = A−1.

(3) ⇔ (4): If ĀT = A−1 under some orthonormal basis, then

the condition (2) holds (φ(u) · v = (Ax)TEȳ = xT EA−1y =
u · φ−1 (v)) and thus also (3).

(4) ⇒ (5) The claim is expressed via the matrixA of the mapping

φ as the equation AĀT = E, which is ensured thanks to (4).

(5) ⇒ (6): Because for the determinant we have |ĀTA| = |E| =
|AĀT | = |A||A| = 1, there exists the inverse matrix A−1. But

we also have AĀTA = A, therefore also ĀTA = E which is ex-

pressed exactly by (6).

(6) ⇒ (1): In the chosen orthonormal basis we have

φ(u) · φ(v) = (Ax)T (Ay) = xAT Āȳ = xT Ēȳ = xT ȳ

where x and y are columns of coordinates of the vectors u and v.

That ensures that the scalar product is preserved. □

Characterisation from the previous theorem deserves some

notes. The matrix A ∈ Matn(K) with the property A−1 =
ĀT are called unitary matrices for complex scalars (and in

the case R we have already used the name orthogonal ma-

trices for them). From the de�nition we have that a product

of unitary (orthogonal) matrices is again unitary (orthogonal), the

same holds for inverses. Unitary matrices thus form a subgroup

U(n) ⊂ Gln(C) in the group of all invertible complex matrices

with the product operation. Orthogonal matrices form a subgroup

O(n) ⊂ Gln(R) in the group of real invertible matrices. We speak

of unitary group and of orthogonal group.

Simple calculation

1 = detE = det(AĀT ) = detA detA = | detA|2
shows that the determinant of a unitary matrix has always size

equal to one, in the case of real scalars the determinant is equal

±1. Furthermore, if Ax = λx for unitary or orthogonal matrix,

then (Ax) · (Ax) = x · x = |λ|2(x · x). Therefore the real eigen-
values of orthogonal matrices in the real domain are equal ±1, the

162

Note that the matrixAz = CBFD is of the type 1×1; it is not a matrix
but just a scalar. We can denote by λ = Az, compute

(3.5)

λ = CBFD = (
c11 c12 c13

)b11 0
b21 b22
0 b32

(f11 0
0 f22

)(
d11
d21

)
=

= (
c11b11 + c12b21 c12b22 + c13b32

) (f11d11
f22d21

)
=

= b11c11d11f11 + b21c12d11f11 + b22c12d21f22 + b32c13d21f22

and order the previous computation into a suitable form

x(t) = (FDCB)t−1FDz(0) = FD(CBFD)t−2CBFDz(0) =
= FD(CBFD)t−1 z(0) = FDAt−1

z z(0) = λt−1FDz(0);
in this way only two matrix multiplications remain.

Let us list concrete values of the matricesB, C,D, F ; they are the

parameters of a hypothetical �ower, which were inspired by the actual

grass Vulpia ciliata:

B =
0.3 0

0.1 0.6
0 0.2

 , C = (
1 10 100

)
, D =

(
0.5
0.5

)
, F =

(
0.05 0

0 0.1

)
.

Now we can compute the individual matrices, which map the vector

describing the distribution of the population in some vegetative part of

the year on the vector of the distribution of the population in the same

part of the next year:

Ax =
(

0.0325 0.6500
0.0650 1.3000

)
Ay =

0.0075 0.0750 0.7500
0.0325 0.3250 3.2500
0.0100 0.1000 1.0000

 ,
Az = 1.3325, Aw =

(
0.0325 1.3000
0.0325 1.3000

)
.

The value λ = Az = 1.3325 expresses the relative increment of the

population between two years. Check by yourself that each of the ma-

tricesAx ,Ay ,Aw has only one non-zero eigenvalue λ = 1.3325; other
eigenvalues are equal to 0.

We show one more application of the given model. We can be in-

terested in the "�exibility" of the reaction of the relative incrementλ on

the change of the individual "demographic parameters" � for instance,

how the change of the probabilities of survival of the seeds changes

the yearly increment. Let us be more precise in the formulation of the

question. By �exibility of the reaction of the characteristic λ on the

parameter s, denote d by e(λ, s), we mean the relative change of the

value λ related to the relative change of the parameter s. Even more

precisely: by λ(s) we denote the yearly increment in dependence on

the parameter s. Then 1λ(s) = λ(s + 1s) − λ(s) expresses the ab-

solute change of the relative increment λ with the absolute change of
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eigenvalues of unitary matrices are always complex units in the

complex plane.

As with the orthogonal mappings we can easily check that or-

thogonal complements of invariant subspaces with respect to uni-

tary φ : V → V are always also invariant. Indeed, if φ(U) ⊂ U ,

u ∈ U and v ∈ U⊥ are arbitrary, then

φ(v) · φ(φ−1 (u)) = v · φ−1 (u).

Because the restriction φ|U is also unitary, it must thus be a bijec-

tion, notably we have that φ−1 (u) ∈ U . But then φ(v) · u = 0,
because v ∈ U⊥. That means that also φ(v) ∈ U⊥.

This yields an immediate useful corollary in the complex do-

main

Corollary. Let φ : V → V be a unitary mapping of complex vec-

tor spaces. Then V is orthogonal sum of one-dimensional eigen-

subspaces.

Proof. There surely exist at least one eigenvector v ∈ V .

Then the restriction φ on the invariant subspace ⟨v⟩⊥ is again uni-

tary and surely has also some eigenvector. After n such steps we

obtain the desired orthogonal basis of eigenvectors. After normal-

ising the vectors we obtain an orthonormal basis. □

Now it is possible to easily understand the details of the proof

of spectral decomposition of the orthogonal mapping from 2.50 at

the end of the second chapter � real matrix of an orthogonal map-

ping is interpreted as a matrix of a unitary mapping on a complex

extension of Euclidean space and we carefully observe the corollar-

ies of the structure of the roots of the real characteristic polynomial

over the complex domain. We automatically obtain invariant two-

dimensional subspaces given by tuples of complexly conjugated

eigenvalues and thus the corresponding rotation for restricted orig-

inal real mapping.

3.27. Dual and adjoint mappings. When discussing vector

spaces and linear mappings in the second chapter we have

already brie�y mentioned the dual vector space V ∗ of all

linear forms over the vector space V , see 2.39.

For every linear mapping between vector spaces ψ : V → W

we can naturally de�ne its dual mapping ψ∗ : W ∗ → V ∗ by the

relation

(3.6) ⟨v, ψ∗ (α)⟩ = ⟨ψ(v), α⟩,
where ⟨ , ⟩ denotes evaluation of the form (the second ar-

gument) on the vector (�rst argument), v ∈ V and α ∈ W ∗ are

arbitrary.

Let us choose bases v over V , w over W and let us write A

for the matrix of the mapping ψ under these bases. Then we easily

compute in dual bases the matrix of the mapping ψ∗ in the corre-

sponding dual bases over the dual spaces. Indeed, the de�nition

says that if we represented the vectors fromW ∗ in the coordinates
as rows of scalars, then themappingψ∗ is given by the samematrix

as ψ, if we multiply by it the row vectors from the right:

⟨ψ(v), α⟩ = (α1, . . . , αn) · A ·
v1
...

vn

 = ⟨v, ψ∗ (α)⟩.

That means that the matrix of the dual mappingψ∗ is the transpose

AT , because α · A = (AT · αT )T .
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the parameter s by1s. The relative change of the increment of the pa-

rameter s is1s/s. The �exibility is then the ratio of these two relative

changes, that is,

e(λ, s) = 1λ(s)/λ(s)

1s/s
= s

λ(s)

λ(s +1s)− λ(s)

1s
.

Speci�cally, the yearly relative increment of the population depending

on the survival of the seeds over the winter is according to (∥3.5∥)
λ(f22) = d21(b22c12 + b32c13)f22 + d11(b11c11f11 + b21c12f11)

and for speci�c values of the other parameters

λ(f22) = 13f22 + 0.0325.

Because f22 = 0.1, we can compute

λ(0.1) = 1.3325, λ(0.1+1s) = 1.3325+131s, 1λ(0.1) = 131s,

therefore

e(λ, 0.1) = 0.1
1.3325

131s
1s

.= 0.976.

Analogically we can compute the �exibility of the reaction of the rela-

tive increment λ of the population on the other "demographic parame-

ters". The results are summarised in the table

parameter �exibility parameter �exibility
b11 0.006 c11 0.006
b21 0.019 c12 0.244
b22 0.225 c13 0.751
b23 0.750 f11 0.024
d11 0.024 f22 0.976
d21 0.976

>From it we can see that the increment λ is mostly in�uenced by the

number of the seed that overwinter (parameter d21) and their surviv-

ability (parameter f22). This revelation is not surprising, the farmers

are aware of this fact since the times of neolithic times. The result

shows that the mathematical model indeed adequately describes the

reality.

Other interesting and well-described models of growth can be

found in the collection of exercises after this chapter.

3.23. Consider the following Leslie model: farmer breeds sheep.

The birth-rate of sheep depends only on their age and is on average

2 lambs per sheep between one and two years of age, 5 lambs per

sheep between two and three years of age and 2 lambs per sheep be-

tween three and four years of age. Younger sheep do not deliver any

lambs. Every year, half of the sheep die, uniformly distributed among

all age groups. Every sheep older than four years is sent to the butch-

ery. Farmer would like to sell (living) lambs younger than one year for

their skin. What part of the lambs can be sold every year such that the
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Let us further assume that we are in a vector space with scalar

product. If we choose one �xed vector v ∈ V , substituting vectors
for the second argument in the scalar product gives us a mapping

V → V ∗ = Hom(V ,K)

V ∋ v 7→ (w 7→ ⟨v,w⟩ ∈ K).

The non-degeneracy condition of the scalar product ensures that

this mapping is a bijection. Furthermore we know that it indeed is a

linear mapping over complex or real scalars, because we have �xed

the second argument. On �rst sight it is clear that the vectors of the

orthonormal basis are mapped on forms that constitute a dual basis,

and every vector can be thus understood using the scalar product

as a linear form.

In the case of vector spaces with scalar product our identi�ca-

tion of a vector space with its dual also takes the dual mapping ψ∗
to the mapping ψ∗ : W → V given by the formula

(3.7) ⟨ψ(u), v⟩ = ⟨u,ψ∗ (v)⟩,
where by the same notation of parentheses as in the de�nition

(3.6) we now mean scalar product. This mapping is called adjoint

mapping to ψ.

Equivalently we can understand the relation (3.27) to be the

de�nition of the adjoint mapping ψ∗ , for instance by substituting

all tuples of vectors of an orthonormal basis for the vectors u and

v we directly obtain all values of the matrix of the mapping ψ∗ .
The previous calculation for the dual mapping in coordinates

can be now repeated, we just have to keep in mind that

in orthonormal bases in unitary spaces the coordinates

of the second argument are conjugated:

⟨ψ(v),w⟩ = (w1, . . . , wn) · A ·
v1
...

vn



=
(
ĀT ·

w1
...

wn

)T ·
v1
...

vn

 = ⟨v,ψ∗ (w)⟩

Therefore we see that if A is the matrix of the mapping ψ in an

orthonormal basis, then thematrix of the adjoint mappingψ∗ is the

transposed and conjugated matrixA � we denote this byA∗ = ĀT .

The matrix A∗ is called the adjoint matrix of the matrix A.

Note that adjoint matrices are well de�ned for any rectangular ma-

trix. We should not confuse them with algebraic adjoints, which

we have used for square matrices when working with determinants.

We can thus summarise that for any linear mapping ψ : V →
W between unitary spaces under orthonormal bases with the ma-

trix A, its dual mapping has in the dual bases the matrixAT . If we

also identify using the scalar product the vector spaces with their

duals, then the dual mapping corresponds to the adjoint mapping

ψ∗ : W → V (it is a custom to denote this mapping in the same

way as the dual mapping), which has the matrix A∗. The distinc-
tion between the matrix of the dual mapping and of the adjoint

mapping is thus in the additional conjugation, which is of course

the corollary of the fact that unifying the unitary space with its dual

is not complexly linear mapping (since from the second argument

in the scalar product the scalars are brought out conjugated).
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size of the herd remains the same? In what ratio will then the sheep

be distributed among individual age categories?

Solution. Matrix of the model (without action of the farmer) is

L =


0 2 5 2
1
2 0 0 0
0 1

2 0 0
0 0 1

2 0


The farmer can in�uence how many sheep younger than one year

stay in his herd to the next year, that is, he can in�uence the element

l12 of the matrix L. Thus we are dealing with the model

L =


0 2 5 2
a 0 0 0
0 1

2 0 0
0 0 1

2 0

 ,
and we are looking for an a such that the matrix has the eigenvalue 1
(we know that it has only one real positive eigenvalue). The character-

istic polynomial of this matrix is

λ4 − 2aλ2 − 5
2
λ− 1

2
,

and if we require it to have 1 as a root, it must be that a = 1
5 (we

substitute λ = 1 and set the polynomial equal to zero). The farmer can
thus sell 1

2− 1
5 = 3

10 of lambs that are born that year. The corresponding

eigenvector for the eigenvalue 1 of the given matrix is (20, 4, 2, 1) and
in these ratios the population stabilises. □

3.24. Consider the Leslie population growth model for the population

of rats, divided into three groups according to age: younger than one

year, between one year and two years and between two years and three

years. Assume that there exists no rat older than three years. The aver-

age birth-rate of one rat in individual age categories is the following:

in the �rst group it is zero, in the second and in the third it is 2 rats.

The mortality in the second group is zero, that is, the rats that survive

their �rst year die after three years of life. Determine the mortality

in the �rst group, if you know that the population stagnates (the total

number of rats does not change). ⃝

D. Markov processes

3.25. Sweet-toothed gambler. Gambler bets on a coin � whether a

�ip results in a head or in a tail. At the start of the game he has three

sweets. On every �ip, he bets on sweet and if he wins, he gains one

additional, if he looses, he looses the sweet. The game ends when he

loses all sweets or has at least �ve sweets. What is the probability that

the game does not end after four bets?
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3.28. Self-adjoint mappings. A special case of linear mapping

are those that are identical with their adjoint map-

pings: ψ∗ = ψ. Such mappings are called self-

adjoint. Equivalently we can say that they are those

mappings whose matrixA is under one (and thus under all) orthog-

onal basis satis�es A = A∗.
In the case of Euclidean spaces the self-adjoint mappings are

those that have symmetric matrix (under some basis). Often they

are called symmetric matrices and symmetric mappings.

In the complex domain the matrices that satisfy A = A∗ are

called Hermitian matrices. Sometimes they are also called self-

adjoint matrices. Note that Hermitian matrices form a real vector

subspace in the space of all complex matrices, but it is not a sub-

space in the complex domain.

Remark. Especially interesting is in this connection the following

remark. If we multiply a Hermitian matrix A by the imaginary

unit, we obtain the matrix B = i A, which has the property B∗ =
ī ĀT = −B. Such matrices are called anti-Hermitian. As every

real matrix is a sum of a symmetric and an anti-symmetric part,

A = 1
2
(A+ AT )+ 1

2
(A− AT ),

in the complex domain we analogously have

A = 1
2
(A+ A∗)+ i

1
2i
(A− A∗)

and can thus express every complex matrix in exactly one way as

a sum

A = B + i C

with Hermitian matrices B and C. It is an analogy of the decom-

position of a complex number into its real and purely imaginary

component and in the literature we often encounter the notation

B = reA = 1
2
(A+ A∗), C = imA = 1

2i
(A− A∗).

In the language of linear mappings this means that every com-

plex linear automorphism can be uniquely expressed using two self-

adjoint mappings.

3.29. Spectral decomposition. We consider a self-adjoint map-

ping ψ : V → V with matrix A under some orthonormal

basis and we try to proceed similarly as in 2.50. Again,

we �rst look in general at the invariant subspaces of self-

adjoint mappings and on their orthogonal complements. If

for any subspace W ⊂ V and self-adjoint mapping ψ : V → V

we have ψ(W) ⊂ W , then also for every v ∈ W⊥, w ∈ W

⟨ψ(v),w⟩ = ⟨v, ψ(w)⟩ = 0.
That means that also ψ(W⊥) ⊂ W⊥.

Consider now the matrix A of a self-adjoint mapping under

some orthonormal basis and A · x = λx for some eigenvector x ∈
Cn. We obtain

λ⟨x, x⟩ = ⟨Ax, x⟩ = ⟨x,Ax⟩ = ⟨x, λx⟩ = λ̄⟨x, x⟩.
Positive real number ⟨x, x⟩ can be cancelled out and thus it must

be λ̄ = λ, that is, eigenvalues are always real.

The characteristic polynomial det(A−λE) has that many com-
plex roots as is the dimension of the square matrix A, and all of

them are actually real. Thus we have proved important general re-

sult:
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Solution. Before the j -th round we can describe

the state of the player by the random vector Xj =
(p0(j), p1(j), p2(j), p3(j), p4(j), p5(j)), where pi is the prob-

ability that the player has i sweets. If the player has before the j -th bet

i sweets (i = 2, 3, 4), then after the bet he has with 1/2 probability

(i − 1) sweets with 1/2 probability (i + 1) sweets. If he attains �ve
sweets or loses them all, the number of sweets does not change. The

vector Xj+1 is then obtained from the vector Xj by multiplying it

with the matrix

A :=


1 0.5 0 0 0 0
0 0 0.5 0 0 0
0 0.5 0 0.5 0 0
0 0 0.5 0 0.5 0
0 0 0 0.5 0 0
0 0 0 0 0.5 1

 .

At the start we have

X1 =


0
0
0
1
0
0

 ,

after four bets the situation is described by the following vector

X5 = A4X1 =



1
8
3
16
0
5
16
0
3
8

 ,

that is, the probability that the game ends in the fourth bet or sooner is

one half.

Note also that the matrix A describing the evolution of the prob-

abilist vector X is itself probabilistic, that is, in each column the sum

is one. But it does not have the property required by the Perron-

Frobenius theorem and by a simple computation you can check (or

you can see it straight without any computation) that there exist two

linearly independent eigenvectors corresponding to the eigenvalue 1 �

the case that the player has no sweet, that is x = (1, 0, 0, 0, 0, 0)T , or
the case when the player has 5 sweets and the game thus ends with

him keeping all the sweets, that is, x = (0, 0, 0, 0, 0, 1)T . All other
eigenvalues (approximately 0.8, 0.3,−0.8,−0.3) are in absolute value
strictly smaller than one. Thus the components in the corresponding

eigensubspaces with iteration of the process with arbitrary initial dis-

tribution vanish and the process approaches the limiting value of the

probabilistic vector of the form (a, 0.0, 0.0, 1 − a), where the value a
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Proposition. Orthogonal complement of an invariant subspace

for self-adjoint mapping is also invariant. Furthermore, all eigen-

values of a Hermitian matrix A are always real.

>From the de�nition itself it is clear that restriction of a self-

adjoint mapping on an invariant subspace is again self-adjoint. The

previous claim thus ensures that there always exists a basis of V

composed of eigenvectors. Indeed, the restriction of ψ on the or-

thogonal complement of an invariant subspace is again self-adjoint

mapping, thus we can add into the basis one eigenvector after an-

other, until we obtain whole decomposition of V . Eigenvector as-

sociated with distinct eigenvalues are perpendicular, because from

the equations ψ(u) = λu, ψ(v) = µv we have that

λ⟨u, v⟩ = ⟨ψ(u), v⟩ = ⟨u,ψ(v)⟩ = µ̄⟨u, v⟩ = µ⟨u, v⟩.
Usually our result is formulated using projections on eigensub-

spaces. About the projector P : V → V we say that it is perpen-

dicular if ImP ⊥ KerP . Two perpendicular projectors P,Q are

mutually perpendicular if ImP ⊥ ImQ.

Theorem (About the spectral decomposition). For every self-

adjoint mapping ψ : V → V on a vector space with scalar prod-

uct there exists an orthonormal basis composed of eigenvectors. If

λ1, . . . , λk are all distinct eigenvalues ofψ and P1, . . . , Pk are the

corresponding perpendicular and mutually perpendicular projec-

tors on the eigenspaces corresponding to the eigenvalues, then

ψ = λ1P1 + · · · + λkPk.

Dimension of images of these projectors is always equal to the al-

gebraic multiplicity of the eigenvalues λi .

3.30. Orthogonal diagonalisation. Mappings for which we can

�nd an orthonormal basis as in the previous theo-

rem about spectral decomposition are called orthog-

onally diagonalisable. They are of course exactly

such mappings for which we can �nd an orthonor-

mal basis such that the matrix of the mapping is diagonal under

this basis. Let us think for a while how can they look like.

For the Euclidean case it is simple: diagonal matrices are �rst

of all symmetric, thus they are exactly the self-adjoint mappings.

As a corollary we obtain a result that an orthogonal mapping of

an Euclidean space into itself is orthogonally diagonalisable if and

only if it is self-adjoint (they are exactly the self-adjoint mappings

with eigenvalues ±1).
For complex unitary spaces the situation is more complicated.

Consider arbitrary linear mapping φ : V → V of a unitary space

and let φ = ψ + iη be the (uniquely given) decomposition of φ

into its Hermitian and anti-Hermitian part. If φ has under a suitable

orthonormal basis a diagonal matrix D, then D = reD + iimD,

where the real and the imaginary parts are exactly the matrices ψ

and η (follows from the uniqueness of the decomposition). Thus it

also holds that ψ ◦ η = η ◦ψ and φ ◦ φ∗ = φ∗ ◦ φ. The mappings
φ : V → V with the last listed property are called normal.

Mutual connections are shown in the following proposition

(we follow the notation of this paragraph):

Proposition. The following conditions are equivalent:

(1) φ is orthogonally diagonalisable,

(2) φ∗ ◦ φ = φ ◦ φ∗ (that is, φ is a normal mapping),

(3) ψ ◦ η = η ◦ ψ,
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depends on the initial number of sweets. In our case it is a = 0.4, if
there were 4 sweets at the start, it would be a = 0.2 and so on. □

3.26. Car rental. Company that rents cars every week has two

branches � one in Prague and one in Brno. A car rented in Brno

can be returned in Prague and vice versa. After some time it has

been discovered that in Prague, roughly 80 % of the cars rented in

Prague and 90 % of the cars rented in Brno are returned there. How

to distribute the cars among the branches such that in both there is at

the start of the week always the same number of cars as in the week

before? How will the situation look like after some long time, if the

cars are distributed at the start in a random way?

Solution. Let us denote the components of the vector in question, that

is, the initial number of cars in Brno and in Prague by xB and xP respec-

tively. The distribution of the cars between branches is then described

by the vector x =
(
xB
xP

)
. If we consider such a multiple of the vector x

such that the sum of its components in 1, then its components give the
procentual distribution of the cars. At the end of the week is according

to the statement the state is described by the vector

(
0.1 0.2
0.9 0.8

)(
xB
xP

)
.

The matrix A =
(

0.1 0.2
0.9 0.8

)
thus describes our (linear) system of car

rental. If at the end of the week in the branches there should be the

same number of cars as at the beginning, we are looking for such vec-

tor x for which it holds that Ax = x. That means that we are looking

for an eigenvector of the matrix A associated with the eigenvalue 1.

The characteristic polynomial of the matrix A is (0.1 − λ)(0.8 −
λ) − 0.9.0.2 = (λ − 1)(λ + 0.1) and 1 is indeed an eigenvalue of

the matrix A. The corresponding eigenvector x =
(
xB
xP

)
satis�es the

equation

(−0.9 0.2
0.9 −0.2

)(
xB
xP

)
= 0. It is thus a multiple of the vector(

0.2
0.9

)
. For determining the procentual distribution we are looking for

a multiple such that xB + xP = 1. That is satis�ed by the vector
1

1,1

(
0.2
0.9

)
=
(

0.18
0.82

)
. The suitable distribution of the cars between

Prague and Brno is such that 18% of the cars are in Brno and 82% of

the cars are in Prague.

If we choose arbitrarily the initial state x =
(
xB
xP

)
, then the state

after n week is described by the vector xn = Anx. Now it is useful to

express the initial vector x in the basis of the eigenvectors of A. The

eigenvector of the eigenvalue 1 has already been found and similarly

we �nd eigenvectors of the eigenvalue −0.1. That is for instance the

vector

(−1
1

)
.
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(4) for a matrix A = (aij ) of a mapping φ under some orthonor-

mal basis and its m = dimV eigenvalues λi it holds that∑
i,j |aij |2 = ∑m

i=1 |λi |2.
Brief proof. The implication (1) ⇒ (2) was already dealt

with.

(2) ⇔ (3): it su�ces to do a direct calculation

φφ∗ = (ψ + iη)(ψ − iη) = ψ2 + η2 + i(ηψ − ψη)

φ∗φ = (ψ − iη)(ψ + iη) = ψ2 + η2 + i(ψη − ηψ)

Subtraction yields 2i(ηψ − ψη).

(2) ⇒ (1): let u ∈ V be an eigenvector of the normalmapping

φ. Then

φ(u) · φ(u) = ⟨φ∗φ(u), u⟩ = ⟨φφ∗ (u), u⟩ = φ∗ (u) · φ∗ (u),
thus also |φ(u)| = |φ∗ (u)|. If φ is normal, then (φ − λ idV )∗ =
(φ∗ −λ̄ idV ) and thus (φ−λ idV ) is also a normal mapping. From
the previous equation follows that if φ(u) = λu, then φ∗ (u) =
λ̄u. That means that φ and φ∗ have the same eigenvectors and

conjugated eigenvalues.

As with self-adjoint mappings we know easily prove orthogo-

nal diagonalisability. A necessary and su�cient condition for that

is that the orthogonal complement of every eigensubspace for nor-

mal φ is invariant (note that a restriction of a normal mapping on

an invariant subspace is again normal). Consider an eigenvector

u ∈ V with eigenvalue λ, v ∈ ⟨u⟩⊥. We have

φ(v) · u = v · φ∗ (u) = ⟨v, λ̄u⟩ = λu · v = 0

and thus again φ(v) ∈ ⟨u⟩⊥.
(1) ⇔ (4): the expression

∑
i,j |aij |2 is the trace of the matrix

AA∗, which is the matrix of the mapping φ ◦ φ∗ . Therefore it

does not depend on the choice of orthonormal basis. Thus if φ is

diagonalisable, this expression equals exactly
∑
i |λi |2.

The other implication is a direct corollary of the Schur the-

orem about unitary triangulation of an arbitrary linear mapping

V → V , which we prove later in 3.37. The theorem says that for

every linear mapping φ : V → V there exists an orthonormal

basis under which φ has upper triangular matrix. On its diagonal

there must be then all the eigenvalues of φ. As we have already

shown, the expression
∑
i,j |aij |2 does not depend on the choice

of the orthonormal bassi, thus from the assumed equality we have

that all elements that are not on the diagonal must be in this matrix

equal to zero. □
In terms of matrices of mappings we obtain: a mapping is nor-

mal if and only if its matrix under some orthonormal basis (equiv-

alently, under any orthonormal basis) satis�es AA∗ = A∗A. Such
matrices are called normal matrices.

Remark. Note that for the calculations with linear mappings on

complex unitary spaces, we can understand the last theorem as

a generalisation of common calculations with complex numbers

in the polar form � the role of real numbers is played by self-

adjoint mappings, the role of complex numbers is played by uni-

tary mappings. Very notable is also the analogy to the expres-

sion of complex units in the form cos t + i sin t with the property
cos2 t + sin2 t = 1:

Corollary. Unitary mappings on unitary space V are exactly

those normal mappings for which the aforementioned unique de-

composition φ = ψ + iη satis�es ψ2 + η2 = idV .
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The initial vector can thus be expressed as a linear combination

x = a

(
0.2
0.9

)
+ b

(−1
1

)
. State after n weeks is then

xn = An(a

(
0.18
0.82

)
+ b

(−1
1

)
) = a

(
0.18
0.82

)
+ b(−0.1)n

(−1
1

)
The second summand is for n → ∞ approaching zero and thus the

state stabilises at a

(
0.18
0.82

)
, that is, the coordinate of the initial vector

at the direction of the �rst eigenvector. The coe�cient and can be

easily expressed using the initial states of the cars: a = xB+xP
1,1 . □

3.27. Popularity of the media. In a certain country there are two tele-

vision channels. From a public survey it follows that in one year 1/6
of the viewers of the �rst channel move to the second, 1/5 viewers of

the second move to the �rst channel. Determine the time evolution

of the number of viewers watching given channels using Markov pro-

cesses, write down a matrix of the process, �nd its eigenvalues and

eigenvectors. ⃝

3.28. Students at the lecture. Students can be divided into, say, three

group � those that are present on a lecture and pay attention, those that

are present but pay no attention and those who are in a pub instead.

Now let us observe, lecture after lecture, how the numbers in the indi-

vidual groups change. The �rst step is to observe what are the prob-

abilities that a student changes his state. Let us say that it can be as

follows:

Student that pays attention: with probability 50% stays in the same

state, with 40% stops paying attention and with 10% moves to the pub.

Student that pays no attention: starts paying attention with 10%, with

50% stays in the same state and with 40% moves to the pub. Student

that is in pub has zero probability of returning to the lectures.

How does the model evolve in time? How does the situation

change if we assume at least ten percent probability that a student re-

turns from the pub to the lecture (but is not going to pay any attention)?

Solution. The matrix of the Markov process is

0.5 0.1 0
0.4 0.5 0
0.1 0.4 1

. Its
characteristic polynomial is (0.5 − λ)2(1 − λ)− 0.4(1 − λ) = 0. Evi-
dently one is an eigenvalue of this matrix (the other roots are 0.3 and

0.7). In the course of time, the students divide into groups as described
by the corresponding eigenvector � which is a solution of the equality−0.5 0.1 0

0.4 −0.5 0
0.1 0.4 0

xy
z

 = 0, which are exactly multiples of the vec-

tor (0, 0, 1). In other words, all students end up in the pub.
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Proof. For unitary mapping φ is φφ∗ = idV = φ∗φ and thus
φφ∗ = (ψ + iη)(ψ − iη) = ψ2 + 0 + η2 = idV . On the other
hand, for normal mapping the last calculation shows that the other

implication holds too. □

3.31. Non-negative mappings and roots. Non-negative real

numbers are exactly those which we can write as

square roots. Generalisation of such behaviour for

matrices and mappings can be seen in products

of matrices B = A∗ · A (that is, composition of

mappings ψ∗ ◦ ψ):

⟨B · x, x⟩ = ⟨A∗ · A · x, x⟩ = ⟨A · x,A · x⟩ ≥ 0

for all vectors x. Furthermore, we clearly have

B∗ = (A∗ · A)∗ = A∗ · A = B.

HermitianmatricesB with such property are called positively semi-

de�nite and if the zero value is attained only for x = 0, they are

called positively de�nite. Analogously, we speak of positively def-

inite and positively semide�nite mappings ψ : V → V .

For every positively semide�nite mappingψ : V → V we can

�nd its root, that is, a mapping η such that η◦η = ψ. It is simplest

to see under an orthonormal basis where ψ has diagonal matrix.

Such basis exists (as we have already proven) and the matrix A of

the mapping ψ has on diagonal only non-negative real numbers,

the eigenvalues of ψ. If some of them were negative, then the con-

dition for non-negativity would not be satis�ed already for some of

the basis vectors. But then it su�ces to de�ne the mapping η using

thematrixB with square roots of the corresponding eigenvalues on

diagonal.

3.32. Spectra and nilpotentmappings. At the end of this section

we return to the question about behaviour of linear

mapping in full generality. We shall still work with

real or complex vector spaces.

Let us recall that spectrum of linear mapping f : V → V is a

sequence of roots of the characteristic polynomial of the mapping

f , counting multiplicities. Algebraic multiplicity of eigenvalue is

its multiplicity as of a root of the characteristic polynomial, geomet-

ric multiplicity of eigenvalue is the dimension of the corresponding

subspace of eigenvectors.

Linear mapping f : V → V is called nilpotent, if there exists

an integer k ≥ 1 such that the iterated mapping f k is identically

zero. The smallest k with such property is called degree of nilpo-

tency of the mapping f . The mapping f : V → V is called

cyclic, if there exists a basis (u1, . . . , un) of the space V such that

f (u1) = 0 and f (ui) = ui−1 for all i = 2, . . . , n. In other words,
the matrix of f under this basis is of the form

A =
0 1 0 . . .

0 0 1 . . .
...

...
. . .

 .
If f (v) = a · v, then for every natural k we have f k(v) = ak · v.
Notably, the spectrum of nilpotent mapping can contain only zero

scalar (and that is always present).

Directly from the de�nition follows that every cyclic mapping

is nilpotent, furthermore its degree of nilpotency is equal to the
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Such result is clear even without any computation � as the proba-

bility of returning from the pub is zero, all students end up in the pub.

Adding 10 percent possibility for leaving the pub, this changes. The

corresponding matrix is now

0.5 0.1 0
0.4 0.5 0.1
0.1 0.4 0.9

. Again we have that

the state stabilises on the eigenvector associated with the eigenvalue 1.

That is in this case the solution of the equation−0.5 0.1 0
0.4 −0.5 0.1
0.1 0.4 −0.1

xy
z

 = 0.

A solution is for instance the vector (1, 5, 21). The distribution of

the students in the individual group is then given by the multiple of

this vector for that the coordinates sum to one, that is, the vector

( 1
27 ,

5
27 ,

21
27). Again, most of the students end up in the pub, but some

will be at school. □

3.29. Roulette. The player of the roulette has the following strategy:

he came to play with C10. He always bets everything he has. He

always bets on black (there are 37 numbers in the roulette, 18 black,

18 red and zero). The player ends whenever he has nothing, or when

he wins C80. Consider this problem as a Markov process and write

down its matrix.

Solution. In the course of the game and at its end the player can have

only one of the following amounts of money (in C): 0, 10, 20, 40,

80. If we view the situation as a Markov process, then these amounts

corresponds to its states, and we easily construct the matrix:

A =


1 a a a 0
0 0 0 0 0
0 b 0 0 0
0 0 b 0 0
0 0 0 b 1

 ,
where a = 19

37 and b = 18
37 . Note that the matrix is probabilistic and

singular. The eigenvalue 1 is double. The game does not converge to

a single vector x∞, but ends in one of the eigenvectors associated with

eigenvalue 1, that is, either (1, 0, 0, 0, 0) (the player looses it all), or
(0, 0, 0, 0, 1) (the player wins C80). Furthermore we observe that the
game ends after three bets, that is, the sequence {An}∞n=1, is constant

for n ≥ 3:

A∞ := A3 = An =


1 a + ab + ab2 a + ab a 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 b3 b2 b 1


and we easily determine that the game ends with the probability a +
ab + ab2 .= 0, 885 as a loss and with the probability roughly 0, 115
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dimension of the space V . The operator of derivation on polyno-

mials,D(xk ) = kxk−1 , is an example of cyclic mapping on spaces

Kn[x] of all polynomials of degree at most n over scalars K.
Surprisingly, this also holds the other way � every nilpotent

mapping is a direct sum of cyclic mappings. A proof of this claim

takes a lot of work, thus we �rst formulate the results we are aiming

at, and then gradually start with the technical work. In the resulting

theorem about Jordan decomposition appear vector (sub)spaces

and linear mappings on them with a single eigenvalue λ and a ma-

trix

J =


λ 1 0 . . . 0
0 λ 1 . . . 0
...

...
. . .

...

0 0 0 . . . λ

 .
These matrices (and corresponding invariant subspaces) are called

Jordan blocks.

Theorem (Jordan theorem about canonical form). Let V be a vec-

tor space of the dimension n and f : V → V be a linear mapping

with n eigenvalues, counting algebraic multiplicities. Then there

exists a unique decomposition of the space V into a direct sum of

subspaces

V = V1 ⊕ · · · ⊕ Vk

such that f (Vi) ⊂ Vi , restriction of f on every Vi has a single

eigenvalue λi and the restriction f − λi · id on Vi is either cyclic

or zero mapping.

The theorem thus says that for a suitable basis every linear

mapping has block-diagonal form with Jordan blocks along the di-

agonal. The total number of ones over the diagonal in such form

equals the di�erence between total algebraic and geometric multi-

plicity of the eigenvalues.

3.33. Notes. Note that we have already proven the Jordan theorem

for the cases when all eigenvalues are either distinct or when the

geometric and algebraic multiplicities of the eigenvalues are the

same. Speci�cally, we have already proven it for unitary, normal

and self-adjoint mappings.

Another useful observation is that for every linear mapping f ,

every eigenvalue of f has uniquely determined invariant subspace

that corresponds to the Jordan block in the matrix.

We should also mention one very useful corollary of the Jor-

dan theorem (which we have already used in the discus-

sion about the behaviour of Markov chains). Assume that

the eigenvalues of our mapping f are all in absolute value

smaller than one. Then repeated application of the linear

mapping on every vector v ∈ V leads to a fast decrease of all coor-

dinates of f k(v) bellow any bounds. Indeed, assume for simplic-

ity that on whole V the mapping f has only one eigenvalue λ and

f −λ idV is cyclic (that is, we consider only one Jordan block) and

let v1, . . . , vℓ be the corresponding basis. Then the condition from

the theorem says f (v2) = λv2 + v1, f
2(v2) = λ2v2 + λv1 + λv1,

and similarly for other vi and higher powers. In any case, iteration

results in higher and higher powers of λ at all non-zero components,

while the smallest of them can be at most the degree of nilpotency

lower than the number of iterations.

This proves the claim (and the same argument can be used

to prove that for the mapping with all eigenvalues with absolute
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as a win of C80. (We multiply by the matrix A∞ the initial vector

(0, 1, 0, 0, 0) and obtain the vector (a + ab + ab2, 0, 0, 0, b3).) □

3.30. Consider the situation from the previous case and assume that

the probability of both win and loss is 1/2. Denote by A the matrix

of the process. Without using any computational software determine

A100. ⃝
3.31. Absent-minded professor. Consider the following situation:

absent-minded professor carries an umbrella with him, but with prob-

ability 1/2 he forgets it where he is leaving from. In the morning, he

leaves to the work. At the work, he goes for a lunch into a restaurant,

and then back. After he is �nished with his work, he leaves for home.

Consider for simplicity that he does not go anywhere else and that in

the restaurant the umbrella stays on his favourite spot, where he can

take it from on the next day (if he does not forget it there). Consider

this situation as Markov process and write down its Matrix. What is

the probability that after many days in the morning the umbrella is lo-

cated in the restaurant? (It is useful to take as a time unit one day �

from morning to morning.)

Solution.

A =
11/16 3/8 1/4

3/16 3/8 1/4
1/8 1/4 1/2


We compute for instance the element a1

1 , that is, the probability

that the umbrella starts its day at home and stays there (that is, will be

there the next day in the morning) � there are three disjoint ways for

the umbrella:

D the professor forgets it at home in the morning p1 = 1
2 ,

DPD the professor takes it to the work, then he forgets to take it on

the lunch and in the evening he takes it home: p2 = 1
2 · 1

2 · 1
2 =

1
8 ,

DPRPD the professor takes the umbrella all the time with him and

does not forget it anywhere: p3 = 1
2 · 1

2 · 1
2 · 1

2 = 1
16 .

In total a1
1 = p1 + p2 + p3 = 11

16 .

The eigenvector of this matrix corresponding to the dominant

eigenvalue 1 is (2, 1, 1), and thus the desired probability is 1/(2 +
1 + 1) = 1/4. □

3.32. Algorithm for determining the importance of pages. Inter-

net browsers can �nd on the Internet (almost) all pages containing a

given word or phrase. But how to sort the pages such that the user

receives a list sorted according to the relevance of the given pages?

One of the possibilities is the following algorithm: the collection of

all found pages is considered to be a system and each of the found
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value strictly greater than one leads to unbounded growth of all

coordinates for the iteration f k(v)).

The rest of this part of the third chapter is devoted to the proof

of the Jordan theorem and some necessary lemmata. It is waymore

di�cult than anything so far and the reader can skip it, until the

beginning of the �fth part of this chapter.

3.34. Root spaces. On examples we have already seen that the

eigensubspaces describe additional geometric properties only for

some linear mappings. Thus we now introduce a more subtle tool,

the so-called root subspaces.

De�nition. Non-zero vector u ∈ V is called root vector of a linear

mapping φ : V → V , if there exists a ∈ K and an integer k > 0
such that (φ − a · idV )k(u) = 0, that is, k-th iteration of the given
mapping maps u to zero. The set of all root vectors corresponding

to a �xed scalar λ along with the zero vector is called the root

subspace associated to the scalar λ ∈ K, and is denote asRλ.

If u is a root vector and the k from the de�nition is chosen the

smallest possible, then (φ − a · idV )k−1(u) is an eigenvector with

the eigenvalue a. Thus we have Rλ = {0} for all scalars λ which
are not in the spectrum of the mapping φ.

Proposition. For linear mapping φ : V → V we have:

(1) for every λ ∈ K isRλ ⊂ V a vector subspace,

(2) for every λ,µ ∈ K is Rλ invariant with respect to the linear

mapping (φ − µ · idV ), notably it is thatRλ is invariant with

respect to φ,

(3) if µ ̸= λ, then (φ − µ · idV )|Rλ
is invertible,

(4) the mapping (φ − λ · idV )|Rλ
is nilpotent.

Proof. (1) Checking the properties of the vector vector sub-

space is easy and we leave it on the reader.

(2) Assume that (φ − λ · idV )k(u) = 0 and consider v =
(φ − µ · idV )(u). Then

(φ−λ · idV )k(v) =
= (φ − λ · idV )k((φ − λ · idV )+ (λ− µ) · idV )(u)

= (φ − λ · idV )k+1(u)+ (λ− µ) · (φ − λ · idV )k(u)
= 0

(3) If u ∈ Ker(φ − µ · idV )|Rλ
, then

(φ − λ · idV )(u) = (φ − µ · idV )(u)+ (µ− λ) · u = (µ− λ) · u
>From there we have that 0 = (φ − λ · idV )k(u) = (µ − λ)k · u
and thus also u = 0 for λ ̸= µ.

(4) Choose a basis e1, . . . , ep of the subspace Rλ. Because

according to the de�nition there exist numbers ki such that (φ−λ ·
idV )ki (ei) = 0, we have that the whole mapping (φ − λ · idV )|Rλ

is nilpotent. □
3.35. Factor subspaces. Our next aim is to show that the dimen-

sion of the root spaces is always equal to the algebraic

multiplicity of the corresponding eigenvalues. Let us

�rst introduce some useful technical tools.

De�nition. Let U ⊂ V be a vector subspace. On the set of all

vectors in V we de�ne an equivalence relation as follows: v1 ∼ v2
if and only if v1 − v2 ∈ U . Axioms of equivalence are easy to

check. The set V/U of the classes of this equivalence, along with

the operations de�ned using representants, that is, [v] + [w] =
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pages as one of its states. We describe a random walk on these pages

as a Markov process. The probabilities of transitions between pages

are given by the hyperlink: each link, say from page A to page B, de-

termines the probability (1/(total number of links from the page A)),

with which the process moves from the page A to the page B. If from

some page there are no leading links, we consider it to be a page from

which a link leads to every other page. This gives us probabilistic

matrixM (the element mij corresponds to the probability with which

we move form the i-th page to the j -th page). Thus if one randomly

clicks on links in the found pages (and from a linkless page one just

chooses randomly the next one) the probability that at a given point

in time (distant enough from the beginning) one is located on the i-th

page corresponds to the i-th component of the unit eigenvector of the

matrixM, corresponding to the eigenvalue 1. Looking at the sizes of

these probabilities we de�ne the importance of the individual pages.

This algorithm can be modi�ed by assuming that the users stops

clicking from a link to link after certain time and again starts on a

random page. Say that with probability d he chooses randomly a new

page and with probability (1−d) keeps clicking. In such situation the
probability of transition between any two pages Si and Sj is non-zero

� it is d/n + (1 − d)/total number of links at the page Si if from Si

there is a link to Sj , and d/n otherwise (if there are no links at Si , then

it is 1/n). According to the Perron-Frobenius theorem the eigenvalue

1 is with multiplicity one and dominant, and thus the corresponding

eigenvector is unique (if we chose transitional probabilities only as

described in the previous paragraph, it would not have to be so).

For illustration consider pages A, B, C and D. The links lead from

A to B and to C, from B to C and from C to A, from D nowhere. Let

us say that the probability that the user chooses a random new page is

1/5. Then the matrixM looks as follows:

M =


1/20 1/20 17/20 1/4
9/20 1/20 1/20 1/4
9/20 17/20 1/20 1/4
1/20 1/20 1/20 1/4


The eigenvector corresponding to the eigenvalue 1 is

(305/53, 175/53, 315/53, 1), the importance of pages is thus

given according to the order of the sizes of the corresponding

components, that is, C > A > B > D.

3.33. Based on the temperature at 14:00 the days are divided into

warm, average and cold. From the all-year statistics, after a warm day

in half of the cases the next day is warm in 50 % of the cases and

average day in 30 % of the cases, after an average day the next day is

in 40 % of the cases average and cold in 30 % of the cases, and after
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[v+w], a · [u] = [a ·u], forms a vector space which we call factor
vector space of the space V by the subspace U .

Check the correctness of the de�nition of the op-

erations and that all the axiom of the vector space hold!

Classes (vectors) in the factor space V/U will be often de-

noted as a formal sum of one representant with all vectors of the

subspace U , for instance u+ U ∈ V/U , u ∈ V . Zero vector is in
V/U exactly the class 0 + U , that is, the vector u ∈ V represents

the zero element in V/U if and only if it is u ∈ U .
For simple examples, think about V/{0} ∼= V , V/V ∼= {0}

and about the factor space of the planeR2 by any one-dimensional

subspace (here, every one-dimensional subspace U ⊂ R2 is a line

passing through the origin), where the classes of equivalence are

parallel lines with this line.

Proposition. Let U ⊂ V be a vector subspace and (u1, . . . , un)

be such basis of V such that (u1, . . . , uk) is a basis of U . Then

dimV/U = n− k and the vectors

uk+1 + U, . . . , un + U

form a basis of V/U .

Proof. Because V = ⟨u1, . . . , un⟩, it is also that V/U =
⟨u1 +U, . . . , un+U⟩. But �rst k generators are zero, thus V/U =
⟨uk+1 +U, . . . , un +U⟩. Assume that ak+1 · (uk+1 +U)+ · · · +
an · (un + U) = (ak+1 · uk+1 + · · · + an · un) + U = 0 ∈ V/U .
That is equivalent to the belonging of a linear combination of the

vectors uk+1, . . . , un to the subspace U . Because U is generated

by the remaining vectors, the combination is necessary zero, that

is, all coe�cients ai are zero. □

3.36. Induced mappings on factor spaces. Assume that U ⊂ V

is an invariant subspace with respect to linear map-

ping φ : V → V and choose basis u1, . . . , un of

the space V such that the �rst k vectors of this basis

is a basis of U . In this basis φ has the block matrix

A =
(
B C

0 D

)
. Then we are able to prove the following lemma:

Lemma. (1) the mapping φ induces a linear mapping φV/U :
V/U → V/U , φV/U (v +U) = φ(v)+U with the matrix D

under the induced basis uk+1 + U, . . . , un + U on V/U ,

(2) characteristic polynomial of φV/U divides the characteristic

polynomial of φ.

Proof. For v,w ∈ V , u ∈ U , a ∈ K we have φ(v + u) ∈
φ(v)+ U (because U is invariant), (φ(v)+ U)+ (φ(w)+ U) =
φ(v+w)+U and a · (φ(v)+U) = a · φ(v)+U = φ(a · v)+U

(because φ is linear), thus the mapping φV/U is well-de�ned and

linear. Furthermore we have directly from the de�nition of the

matrix of the mapping that the matrix φV/U in the induced basis

on V/U is exactly the matrixD (when counting the images of the

basis elements the coe�cients of the matrixC add only to the class

U ). The characteristic polynomial of the induced mapping φV/U
is thus |D− λ ·E|, while characteristic polynomial of the original
mapping φ is |A− λ · E| = |B − λ · E||D − λ · E|. □

Corollary. Let V be a vector space over K of dimension n and

let φ : V → V be a linear mapping whose spectrum contains n

elements (that is, all roots of the characteristic polynomial lie in

K and we count their multiplicities). Then there exists a sequence
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a cold day the next day is in 50 % of the cases cold and in 30 % of

the cases average. Without any further information derive how many

warm, cold and average days can be expected in a year.

Solution. For each day exactly one of the states �warm day�, �average

day�, �cold day� is attained. If the vector xn has as its components

the probabilities that a certain (n-th) day is warm, average and cold

(respectively), then the components of the vector

xn+1 =
0.5 0.3 0.2

0.3 0.4 0.3
0.2 0.3 0.5

 · xn

give the probabilities that the next day is warm, average and cold re-

spectively. For verifying it su�ces to substitute

xn =
1

0
0

 , xn =
0

1
0

 , xn =
0

0
1

 ,
while for instance for the third choice we must obtain the probabilities

that after a cold day follows a warm, average and cold day (respec-

tively). We see that the problem is a Markov chain with probabilistic

transitional matrix

T =
0.5 0.3 0.2

0.3 0.4 0.3
0.2 0.3 0.5

 .
Because all the elements of this matrix are positive, there exists a prob-

abilistic vector

x∞ = (
x1

∞, x
2
∞, x

3
∞
)T
,

to which the vector xn approaches as n grows, independently of the

vector xn for small n. Furthermore, thanks to the corollary of the

Perron-Frobenius theorem x∞ is the eigenvector of the matrix T for

the eigenvalue 1. Thus it must hold that

x1∞ = 0.5 x1∞ + 0.3 x2∞ + 0.2 x3∞,
x2∞ = 0.3 x1∞ + 0.4 x2∞ + 0.3 x3∞,
x3∞ = 0.2 x1∞ + 0.3 x2∞ + 0.5 x3∞,

1 = x1∞ + x2∞ + x3∞,

where the last condition means that the vector x∞ is probabilistic. It

is easy to compute that this system has a single solution

x1
∞ = x2

∞ = x3
∞ = 1

3
.

Thus we can expect roughly the same number of warm, average and

cold days.

Let us emphasise that the sum of the numbers from any column

of the matrix T had to equal 1 (otherwise it would not be a Markov

process). Because T T = T (the matrix is symmetric), the sum of all

numbers from any row is also equal 1. We say that a matrix with non-

negative elements and with the property that the sum of the numbers
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of invariant subspaces {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V with

dimensions dimVi = i. Under the basis u1, . . . , un of the space

V such that Vi = ⟨u1, . . . , ui⟩ the mapping φ has as its matrix the

upper triangular matrix:λ1 . . . ∗
...

. . .
...

0 . . . λn

 ,
where λ1, . . . , λn is a sequence of the elements of the spectrum.

Proof. Construction of the subspaces Vi is done inductively.

Let λ1, . . . , λn be elements in the spectrum of the mapping φ, that

means that the characteristic polynomial of the mapping φ is in the

form (λ−λ1)·· · ··(λ−λn). We chooseV0 = {0}, V1 = ⟨u1⟩, where
u1 is an arbitrary eigenvector with eigenvalue λ1. According to the

previous theorem is the characteristic polynomial of the mapping

φV/V1 of the form (λ− λ2) · · · · · (λ− λn). Assume that we have

already constructed linearly independent vectors u1, . . . , uk and

invariant subspaces Vi = ⟨u1 . . . , ui⟩, i = 1, . . . , k < n such that

the characteristic polynomial of φV/Vk
is of the form (λ− λk+1) ·

· · · · (λ− λn) and φ(ui) ∈ (λi · ui + Vi−1) for all i = 1, . . . , k.
Thus there exists an eigenvector uk+1 + Vk ∈ V/Vk of the

mapping φV/Vk
with the eigenvalue lak+1. Consider now the space

Vk+1 = ⟨u1, . . . , uk+1⟩. If the vector uk+1 is a linear combination

of the vectors u1, . . . , uk that means that uk+1+Vk is the zero class
in V/Vk , but that is not possible. Thus we have dimVk+1 = k+ 1.
It remains to study the induced mapping φV/Vk+1 . Characteristic

polynomial of this mapping is of degree n− k− 1 and divides the

characteristic polynomial of themapping φ. But adding the vectors

u1, . . . , uk+1 to the basis ofV yields a blockmatrix of themapping

φ with upper triangular submatrix B in the left upper corner and

zero in the left lower corner, and the diagonal elements are exactly

the scalars λ1, . . . , λk+1. Therefore the roots of the characteristic

polynomial of the induced mapping have the required properties.

□

3.37. Notes. If the decomposition of the whole space V into di-

rect sum of eigensubspaces exists, then there exists

a basis of eigensubspaces and the previous theorem

actually does not say anything interesting. But its

strength is that the only assumption is the existence

of dimV roots of the characteristic polynomial (countingmultiplic-

ities). That is ensured whenever the �eld K is algebraicly closed,

for instance the complex numbers C. A direct corollaries of this

are interesting claims about the determinant and the trace of the

mapping: they are always the product and the sum of the elements

in the spectrum respectively. This can be also used for all real ma-

trices. We can always consider them to be complex, calculate what

we need, and because both determinant and the trace are algebraic

expressions in terms of the elements of the matrix, the results are

exactly the values we wanted.

If we are given a scalar product on a vector space V , we can in

every inductive step of the previous proof use the fact that it always

holds that V/Vk ≃ V ⊥
k and V ⊥

k ∋ u 7→ (u + Vk) ∈ V/Vk . That

means that in every class of the factor V/Vk there exists exactly

one vector from V ⊥
k . Indeed, the factor space by any subspace in a

unitary space has this property � if u, v ∈ V ⊥
k are in the same class,

then their di�erence belongs to Vk∩V ⊥
k , thus they are equal. Thus

we can choose as the representant uk+1 of the class (the eigenvector
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in any column equals one and analogously for rows is called doubly

stochastic. Important property of every doubly stochastic primitive

matrix (for any dimension � the number of states) is that the corre-

sponding vector x∞ has all the components identical, that is, after suf-

�ciently many iterations all the states in the corresponding Markov

chain are attained with the same frequency. □

3.34. John is used to go running every evening. He has three tracks

� short, middle and long. Whenever he chooses a short track, the next

day he feels bad about it and chooses uniformly between long and

medium. Whenever he chooses a long track, the next day he chooses

arbitrarily among all three. Whenever he chooses the medium track,

the next he feels good about it and again chooses uniformly between

medium and long. Assume that he has been running like this for a

very long. How often does he choose the short one and how often the

long one? What is the probability that he chooses a long one when he

picked it a week before?

Solution. Clearly it is a Markov process with three possible states �

choices for short, medium and long tack. This order of the states gives

a probabilistic transitions matrix

T =
 0 0 1/3

1/2 1/2 1/3
1/2 1/2 1/3

 .
It su�ces to realise that for instance the second column corresponds

to the choice of the medium track in the previous day, which means

that with the probability 1/2 again a medium track will be chosen (the

second row) and with probability 1/2 a long track will be chosen (the

third row). Because we have

T 2 =
 1/6 1/6 1/9

5/12 5/12 4/9
5/12 5/12 4/9

 ,
we can use the corollary of the Perron-Frobenius theorem for Markov

chains. It is not di�cult to compute that eigenvector corresponding to

the eigenvalue 1 and which is probabilistic vector, namely:(
1
7
,

3
7
,

3
7

)T
.

The values 1/7, 3/7, 3/7 then give respectively the probabilities that

in a randomly chosen day he choose short, medium and long track.

Let John at a certain day (that is, in time n ∈ N) choose a long
track. This corresponds to the probabilistic vector

xn = (0, 0, 1)T .
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φV/Vk
) choose exactly the vector fromV ⊥

k . This modi�cation leads

us to the orthogonal basis with the properties required in the claim

about triangulation. Therefore there also exists such orthonormal

basis:

Corollary (Schur orthogonal triangulation theorem). Let φ :
V → V be arbitrary linear mapping in a (real or complex) uni-

tary space with m = dimV eigenvalues (counting multiplicities).

Then there exists an orthonormal basis of the space V such that the

matrix of φ is under this basis upper triangular with eigenvalues

λ1, . . . , λm on the diagonal.

3.38. Theorem. Let φ V → V be a linear mapping. The sum of

root spaces

Rλ1 , . . . ,Rλk

that correspond to distinct eigenvalues λ1 . . . , λk is direct. Fur-

thermore, for every eigenvalue λ the dimension of the subspace

Rλ equals to the algebraic multiplicity of λ.

Proof. We do the proof by induction over the number k of

root spaces. Assume that the theorem holds for less

than k spaces and that for vectors u1 ∈ Rλ1 , . . . , uk ∈
Rλk

we have that u1 + · · · + uk = 0. For suitable j
then (φ − λk · idV )j (uk) = 0 and also yi = (φ − λk ·

idV )j (ui) are non-zero vectors in Rλi
, i = 1, . . . , k − 1, if ui are

non-zero (see the previous theorem).

But also

y1 + · · · + yk−1 =
k∑
i=1

(φ − λk · idV )j (ui) = 0

and thus using the inductive assumption all yi are non-zero. But

then also uk = 0 and linear independence is proven.

It remains to show that the dimension of every root spaceRλ

equals the algebraic multiplicity of the root λ of the characteris-

tic polynomial. Let thus be λ an eigenvalue of φ, denote by φ̄ the

restriction φ|Rλ
and let ψ : V/Rλ → V/Rλ be the mapping in-

duced by φ on the factor space. Assume that the dimensionRλ is

smaller than the multiplicity of the root λ of the characteristic poly-

nomial. Using the lemma 3.36 we conclude that λ is also an eigen-

value of the mapping ψ. Let (v+Rλ) ∈ V/Rλ be the correspond-

ing eigenvector, that is,ψ(v+Rλ) = λ·(v+Rλ), which according

to the de�nition denotes v /∈ Rλ and φ(v) = λ · v+w for suitable

w ∈ Rλ. We thus havew = (φ−λ·idV )(v) a (φ−λ·idV )j (w) = 0
for suitable j . We have thus derived (φ−λ·idV )j+1 (v) = 0, which
contradict the choice v /∈ Rλ.

This proves that the dimension of Rλ equals the multiplicity

of the root λ of the characteristic polynomial of φ. □

Corollary. For every linear mapping φ : V → V whose whole

spectrum is inK is V = Rλ1 ⊕· · ·⊕Rλn the direct sum of the root

subspaces. If we choose suitable bases for these subspaces, then

φ has under this basis block-diagonal form with upper triangular

matrices in the blocks and eigenvalues λi on the diagonal.

3.39. Nilpotent and cyclic mappings. Now almost everything is

prepared for the discussion about canonical forms of

matrices. It only remains to clear the relation be-

tween cyclic and nilpotent mappings and compose

together the already proven results.
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For the following day it holds that

xn+1 =
 0 0 1/3

1/2 1/2 1/3
1/2 1/2 1/3

 ·
0

0
1

 =
1/3

1/3
1/3

 ,
and after seven days we have

xn+7 = T 7 ·
0

0
1

 = T 6 ·
1/3

1/3
1/3

 .
The enumeration gives us as components of xn+7 the values

0.142 861 225 . . . ; 0.428 569 387 . . . ; 0.428 569 387 . . .

Thus the probability that he chooses a long track under the condi-

tion that he chose it seven days ago is roughly 0.428 569 ≈ 3/7 .=
0.428 571. □

3.35. The production line is not reliable: individual products di�er in

quality in a non-neglectible way. Furthermore, a certain worker tries

to improve the quality of the products and intervenes to the process.

The products are distributed into classes I, II, III according to their

quality, and a report found out that after a product of class I the next

product has the same quality in 80 % of the cases and is of quality II in

10 % of the cases; after a product of the class the next product is of the

class in 60 % of the cases and is of quality I in 20 % of the cases, and

after a product of the quality III the next product is of the quality III in

50 % of the cases and in 25 % of the cases it is of quality II. Compute

the probability that the 18-th product is of the quality I, if the 16-th

product is of quality III.

Solution. Let us �rst solve the problem without using a Markov chain.

The event in question is satis�ed by the cases (16-th product is of the

class III)

• 17-th product is of the class I and 18-th product is of class I;

• 17-th product is of the class II and 18-th product is of class

I;

• 17-th product is of the class III and 18-th product is of class

I,

with probabilities respectively

• 0.25 · 0.8 = 0.2;
• 0.25 · 0.2 = 0.05;
• 0.5 · 0.25 = 0.125.

Thus we easily obtain the result

0.375 = 0.2 + 0.05 + 0.125.

Now let us view the problem as a Markov process. From the state-

ment we have that to the order of the possible states �product is of



CHAPTER 3. LINEAR MODELS AND MATRIX CALCULUS

Theorem. Let φ V → V be a nilpotent linear mapping. Then

there exists a decomposition of V into a direct sum of subspaces

V = V1 ⊕ · · · ⊕ Vk such that the restriction of φ on any of them is

cyclic.

Proof. Verifying this is quite straightforward and consists of

construction of such basis of the space V that the action

of the mapping φ on the basis vectors directly show the

decomposition into the cyclic mappings. But taking care

of the details will take some time.

Let k be the degree of nilpotency of the mapping φ and denote

Pi = im(φi ), i = 0, . . . , k, that is,

{0} = Pk ⊂ Pk−1 ⊂ · · · ⊂ P1 ⊂ P0 = V.

Choose arbitrary basis ek−1
1 , . . . , ek−1

pk−1
of the space Pk−1,

where pk−1 > 0 is the dimension of Pk−1. >From the de�nition it

follows that Pk−1 ⊂ Kerφ, that is, always φ(ek−1
j ) = 0.

Assume that Pk−1 ̸= V . Because Pk−1 = φ(Pk−2), there

necessarily exist in Pk−2 the vectors ek−2
j , j = 1, . . . , pk−1 such

that φ(ek−2
j ) = ek−1

j . Assume

a1e
k−1
1 + · · · + apk−1e

k−1
pk−1

+ b1e
k−2
1 + · · · + bpk−1e

k−2
pk−1

= 0.

Application of the mapping φ on this linear combination yields

b1e
k−1
1 +· · ·+bpk−1e

k−1
pk−1

= 0, therefore all bj = 0. But then also
aj = 0, because it is a combination of the basis vectors. Thus we
have veri�ed the linear independence of all 2pk−1 chosen vectors.

We extend them to a basis

ek−1
1 , . . . , ek−1

pk−1

ek−2
1 , . . . , ek−2

pk−1
, ek−2
pk−1+1, . . . , e

k−2
pk−2

of the space Pk−2. Furthermore, the images of the added basis vec-

tors are in Pk−1, necessarily they must be linear combinations of

the basis elements ek−1
1 , . . . , ek−1

pk−1
. We can thus exchange the cho-

sen vectors ek−2
pk−1+1, . . . , e

k−2
pk−2

with vectors ek−2
j − φ(ek−2

j ). This

ensures that the vectors added to the basis of Pk−2 belong to the

kernel of the mapping φ. Let us thus assume it right about the

chosen basis (1).

Let us assume further that we have already constructed a basis

of the subspace Pk−ℓ such that we can directly compose it into the
schema

ek−1
1 , . . . , ek−1

pk−1

ek−2
1 , . . . , ek−2

pk−1
, ek−2
pk−1+1, . . . , e

k−2
pk−2

ek−3
1 , . . . , ek−3

pk−1
, ek−3
pk−1+1, . . . , e

k−3
pk−2

, ek−3
pk−2+1, . . . , e

k−3
pk−3

...

ek−ℓ1 ,. . ., ek−ℓpk−1
, ek−ℓpk−1+1,. . ., e

k−ℓ
pk−2

, ek−ℓpk−2+1,. . ., e
k−ℓ
pk−3

, . . . ek−ℓpk−ℓ

where the value of the mapping φ on any basis vector is lo-

cated above him, or equals zero if there is nothing above that

basis vector. If Pk−ℓ ̸= V , then again there must exist vectors

ek−ℓ−1
1 , . . . , ek−ℓ−1

pk−ℓ
which map on ek−ℓ1 , . . . , ek−ℓpk−ℓ

and we can ex-

tend them to a basis Pk−l−1, say by the vectors

ek−ℓ−1
pk−ℓ+1, . . . , e

k−ℓ−1
pk−ℓ−1

.

By gradual subtraction of the values through iteration of the map-

ping φ on these vectors yields that the vectors added to the basis
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class I�, �product is of class II�, �product is of class III� corresponds

the probabilistic matrix 0.8 0.2 0.25
0.1 0.6 0.25
0.1 0.2 0.5

 .
Situation that the product is in the class III is given by the probabilistic

vector (0.0.1)T . For the next product we obtain the probabilistic vector0.25
0.25
0.5

 =
0.8 0.2 0.25

0.1 0.6 0.25
0.1 0.2 0.5

 ·
0

0
1


and for the next product in order then the vector0.375

0.3
0.325

 =
0.8 0.2 0.25

0.1 0.6 0.25
0.1 0.2 0.5

 ·
0.25

0.25
0.5

 ,
whose �rst component is the desired probability.

Let us add that the �rst method of the solution (without using the

Markov process) led to the result faster. But let us realise how unclear

it would become if we wanted to compute, say, 22-nd or 30-th product.

In the second method one can in a sense restrict the computations to

relevant parts of the matrices only instead of �mindlessly� multiplying

the whole matrix. When using the Markov process, we have also di-

rectly obtained the probabilities that the 18-th product belongs to the

class II and III. □

3.36. Repeated dice casting. Write down the transitional probabilis-

tic matrix T for the Markov chain with states �maximum resulting

number after n attempts� with the order of the states 1, . . . , 6. Then
determine T n for every n ∈ N.

Solution. We can immediately list

T =


1/6 0 0 0 0 0
1/6 2/6 0 0 0 0
1/6 1/6 3/6 0 0 0
1/6 1/6 1/6 4/6 0 0
1/6 1/6 1/6 1/6 5/6 0
1/6 1/6 1/6 1/6 1/6 1

 ,

where the �rst column is determined by the state 1 and probability

1/6 that it is preserved (that is, the next result is one) and probability

1/6 for transition into any of the other states 2, . . . , 6 (the result on

the dice would be 2, . . . , 6), the second column is given by the state

2 and probabilities 2/6 that it is preserved (the result is 1 or 2) and

probability for transition 1/6 for transition into any of the other states

3, . . . , 6 (the result would be 3, . . . , 6), and the last column is derived
from the fact that the state 6 is persistent (if 6 has already been seen,

no greater result can be).
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Pk−ℓ−1 lie in the kernel of φ and analogically as before we verify

that we indeed obtain a basis Pk−ℓ−1.

After k steps we obtain a basis of the whole V , which has

the properties given for the basis of the subspace Pk−ℓ. Individ-

ual columns of the resulting schema then generate the subspaces

Vi and additionally we have directly found the bases of these sub-

spaces that show that corresponding restrictions of φ are cyclic

mappings. □

3.40. Proof of the Jordan theorem. Let λ1, . . . , λk be all distinct

eigenvalues of themapping φ. From the assumptions of the

Jordan theorem it follows that V = Rλ1 ⊕ · · · ⊕Rλk
. The

mappings φi = (φ|Rλi
− λi · idRλi

) are nilpotent and thus

each of the root spaces is a direct sum

Rλi
= P1,λi

⊕ · · · ⊕ Pji ,λi

of spaces on which the restriction of the mapping φ−λi ·idV cyclic.

Matrices of these restricted mappings on Pr,s are Jordan blocks

corresponding to the zero eigenvalue, the restricted mapping φ|Pr,s

has thus for its matrix the Jordan block with the eigenvalue λi .

For the proof of Jordan theorem it remains to prove the claim

about uniqueness. Because the diagonal values λi are given as

roots of the characteristic polynomial, their uniqueness is immedi-

ate. We express the dimensions of individual Jordan blocks using

the ranks rk(λi) of the mapping (φ − λi · idV )k . This will show
that the blocks are uniquely determined (up to their order). On

the other hand, switching the order of the blocks corresponds to

renumbering the vectors of basis, thus we can obtain them in any

order.

If ψ is a cyclic operator on an n-dimensional space, then the

defect of the iterated mappingψk is k for 0 ≤ k ≤ n and is n for all

k ≥ n. This implies that if the matrix J of the mapping φ contains

dk(λ) of Jordan blocks of the order k with the eigenvalue λ, then

the defect of the matrix (J − λ · E)ℓ is
d1(λ)+ 2d2(λ)+ . . . ℓdℓ(λ)+ ℓdℓ+1(λ)+ . . .

>From here we calculate

n− rℓ(λ) = d1(λ)+ 2d2(λ)+ · · · + ℓdℓ(λ)+ ℓdℓ+1(λ)+ . . .

dk(λ) = rk−1(λ)− 2rk(λ)+ rk+1(λ)

(where the last row arises by combining the previous for values

ℓ = k − 1, k, k + 1).

3.41. Note. The proof of the theorem about the existence of the

Jordan canonical form was constructive, but it does

not give us a perfect algorithmic approach for the con-

struction. Now we summarise the already derived ap-

proach for the explicit computation of the basis under

which the given mapping φ : V → V has the matrix in the canon-

ical Jordan form.

(1) We �nd the roots of the characteristic polynomial.

(2) If there are less than n = dimV of them (counting multiplici-

ties), there is no canonical form.

(3) If there are n linearly independent eigenvectors, we obtain a

basis of V composed of eigenvectors and under it φ has diag-

onal matrix.

(4) Let λ be the eigenvalue with geometric multiplicity strictly

smaller than algebraic multiplicity and v1, . . . , vk be the cor-

responding eigenvectors. They should be the vectors on the
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Also, for n ∈ N we can directly determine

T n =



(
1
6

)n
0 0 0 0 0(

2
6

)n −
(

1
6

)n (
2
6

)n
0 0 0 0(

3
6

)n −
(

2
6

)n (
3
6

)n −
(

2
6

)n (
3
6

)n
0 0 0(

4
6

)n −
(

3
6

)n (
4
6

)n −
(

3
6

)n (
4
6

)n −
(

3
6

)n (
4
6

)n
0 0(

5
6

)n −
(

4
6

)n (
5
6

)n −
(

4
6

)n (
5
6

)n −
(

4
6

)n (
5
6

)n −
(

4
6

)n (
5
6

)n
0

1 −
(

5
6

)n
1 −

(
5
6

)n
1 −

(
5
6

)n
1 −

(
5
6

)n
1 −

(
5
6

)n
1


.

The values in the �rst column correspond gradually to the probabilities

that n-times in a row the result is 1, n-times in a row the result is 1 or 2

and there was at least one 2 (therefore we subtract the probability given

in the �rst row), n-times in a row the result is 1, 2 or 3 and at least once

the result is 3, up to the last row where there is the probability that at

least once during n throws the result is 6 (this can be easily derived

from the probability of the complementary event). Similarly, in the

fourth column are the non-zero probabilities of the events �n-times in

a row the result is 1, 2, 3 or 4�, �n-times in a row the result is 1, 2, 3,

4 or 5 and at least once it is 5� and �at least once during n attempts

the result is 6�. Interpretation of the matrix T as the probabilistic tran-

sition matrix of a Markov process allows for quick expression of the

powers T n, n ∈ N. □

3.37. In this problem we deal with a certain property of an animal

species which is determined independently of the sex but just by a

certain gene � a tuple of alleles. Every individual gains one allele

from each of its parent, randomly and independently. There are forms

of the gene given by various alleles a, A � they form three possible

states aa, aA = Aa and AA of the property.

(a) Assume that each individual of a certain population mates

only with an individual of another population, where there

appears only the property caused by the tuple aA. Exactly

one of their o�spring (randomly chosen one) will be left on

the spot and he will also mate only with an individual of that

speci�c population, and so on. Determine the probabilities

of appearance of aa, aA, AA in the considered population

after certain time.

(b) Solve the problem given in the case (a), if the other popula-

tion is composed only of individual with the tuple AA.

(c) Randomly chosen two individuals of opposite sex are bred.

>From their progeny again randomly choose two of opposite

sex and breed them. If you carry on with this for a long time,

compute the probability that both bred individuals have a tu-

ple of alleles AA, or aa (then the process of breeding ends).
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upper border of the scheme from the proof of the theorem 3.39,

but it is necessary to �nd a suitable basis by application of iter-

ations φ−λ · idV . By doing this we also �nd out in which row
are the vectors located, and we �nd the linearly independent

solutions of the equations (φ − λ id)(x) = vi from the rows

bellow it. We repeat the procedure iteratively (that is, for wi
and so no). We �nd by this "chains" of basis vectors that give

subspaces, where φ − λ id are cyclic.

The procedure is practical for matrices where the multiplicities of

the eigenvalues are small, or at least the degrees of nilpotency are

small. For instance, for the matrix

A =
2 0 1

0 2 1
0 0 2


we obtain the two-dimensional subspace of eigenvectors

⟨(1, 0, 0), (0, 1, 0)⟩.
We need to �nd the solutions of the equations (A − 2E)x =
(a, b, 0)T for suitable constants a, b. This system is solvable only

for a = b and one of the possible solutions is v = (0, 0, 1),
a = b = 1. The whole basis is then composed of (1, 1, 0),
(0, 0, 1), (1, 0, 0). Note that we had many choices for bases and

thus there are many such bases.

5. Decompositions of the matrices and pseudoinversions

In the previous part we concentrated on the geometric descrip-

tion of the structure of the mapping. Now we

translate our results into the language of the so-

called matrix decompositions, which is a very

important topic for numerical methods and ma-

trix calculus in general.

Even when computing with real numbers we are using for sim-

plicity decompositions into products. The simplest is expression

of every real number uniquely in the form

a = sgn(a) · |a|,
that is, as a product of the sign and the absolute value. In the fol-

lowing text we brie�y list some of such decompositions for distinct

types of matrices. For instance, we have already used a suitable de-

composition for positively semide�nite matrices in the paragraph

3.31 for construction of the square root of the matrix.

3.42. LU-decomposition. Let us begin with reformulation of

some results we have already derived. In the para-

graphs 2.7 and 2.8 we have transformed matrices

over scalars from any �eld into the row echelon form.

For this we have used elementary row transforms,

which were based on gradual multiplication of our matrix by

invertible lower triangular matrices Pi which acted by adding

multiples of rows under the one transformed at the moment.

Assume for simplicity that our matrix A is square and that

Gaussian elimination does not force us to swap rows � thus all our

matrices Pi can be lower triangular with ones on diagonal. Finally,

it su�ces to note that inverses of such Pi are again lower triangular

with ones on the diagonal and we obtain

U = P · A = Pk · · ·P1 · A
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(d) Solve the problem from the case (c) without the condition

that the individuals have the same parent. Thus you just

breed random individuals from a population among them,

then you breed among their progeny, and so on.

Solution. Case (a). It is a Markov process given by the matrix

T =
1/2 1/4 0

1/2 1/2 1/2
0 1/4 1/2

 ,
while the order of the states corresponds to the order of the tuples of

alleles aa, aA,AA. The values in the �rst column follow from the fact

that an o�spring of parents that have alleles aa and aA has probability

1/2 for the tuple aa and probability 1/2 for the tuple aA. Analogously,
we work out the third column. The values in the second column follow

from the fact that each of the four cases of the tuples of alleles aa, aA,

Aa, AA has the same probability for an individual whose both parents

have the tuple aA. Note that there is a di�erence between counting

probability � where we must distinguish between aA and Aa (which

allele comes from which parent) � and investigating just the proper-

ties caused by the tuples aA and Aa (which are then the same). For

determining the resulting state it thus then su�ces the probabilistic

vector associated with the eigenvalue 1 of the matrix T , because the

matrix

T 2 =
3/8 1/4 1/8

1/2 1/2 1/2
1/8 1/4 3/8


satis�es the condition of the Perron-Frobenius theorem (all its ele-

ments are positive). The probabilistic vector is(
1
4
,

1
2
,

1
4

)T
,

which gives the probabilities 1/4, 1/2, 1/4 of appearance of combi-

nations aa, aA and AA respectively, after a very long (theoretically

in�nite) time.

Case (b). For the order of the tuples of allelesAA, aA, aa we now

obtain the probabilistic matrix

T =
1 1/2 0

0 1/2 1
0 0 0

 .
We immediately see all eigenvalues 1, 1/2 and 0 (if we subtract them

from the diagonal, the rank of the resulting matrix is not 3, that is, the

homogeneous system given by this matrix will have a non-trivial so-

lution). To these eigenvectors then respectively correspond the eigen-

vectors 1
0
0

 ,
−1

1
0

 ,
 1

−2
1

 .
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where U is the upper triangular matrix and thus

A = L · U
where L is lower triangular matrix with ones on diagonal and U is

upper triangular. This decomposition is called LU -decomposition

of the matrix A.

In the case of the general matrix we can with Gaussian elimi-

nation into the row echelon form need some additional row permu-

tations, sometimes even column permutations. Then we obtain the

more general

A = P · L · U ·Q,
where P andQ are some permutation matrices.

3.43. Notes. A direct corollary of the Gaussian elimination is

also a realisation that up to the choice of suitable

bases on the domain and codomain, every mapping

f : V → W given by a matrix in block-diagonal

form with unit matrix, with size given by the dimension of the im-

age f and with zero blocks all around. This can be reformulated

as follows: every matrix A of the type m/n over a �eld of scalars

K can be decomposed into the product

A = P ·
(
E 0
0 0

)
·Q,

where P andQ are suitable invertible matrices.

For square matrices we have in 3.32 shown when discussing

properties of linear mappings f : V → V over complex vector

spaces that every square matrix A of the dimension m can be de-

composed into the product

A = P · B · P−1,

where B is block-diagonal with Jordan blocks associated to eigen-

values on the diagonal. Indeed, it is just a reformulation of the

Jordan theorem, because multiplying by the matrix P and by its in-

verse from the other side corresponds in this case just to a change

of the basis on the vector space V and the cited theorem says that

in a suitable basis every mapping has Jordan canonical form.

Analogously, when discussing the self-adjoint mappings we

have proved that for real symmetric matrices or for complex Her-

mitian matrices there always exists a decomposition into the prod-

uct

A = P · B · P ∗,
where B is a diagonal matrix with all (always real) eigenvalues on

the diagonal, counting multiplicities. Indeed, it is again a product

of matrices then stand for the change of the basis, but we allow only

changes between orthonormal bases and thus also the matrix P for

the change must be orthogonal. From there we have P−1 = P ∗.
For real orthogonal mappings we have derived analogous ex-

pression as for symmetric, only our B is diagonal with blocks of

size two or one, expressing either rotation or mirror symmetry or

identity with respect to the corresponding subspaces.

3.44. Singular decomposition theorem. Let us return to general

linear mappings between vector spaces (in general dis-

tinct). If a scalar product is de�ned on them and we

restrict ourselves on orthonormal bases only, we must

proceed in a more re�ned way than in the case of arbi-

trary bases.
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Therefore it is

T =
1 −1 1

0 1 −2
0 0 1

 ·
1 0 0

0 1/2 0
0 0 0

 ·
1 −1 1

0 1 −2
0 0 1

−1

=
1 −1 1

0 1 −2
0 0 1

 ·
1 0 0

0 1/2 0
0 0 0

 ·
1 1 1

0 1 2
0 0 1

 .
>From there for arbitrary n ∈ N it follows

T n =
1 −1 1

0 1 −2
0 0 1

 ·
1 0 0

0 1/2 0
0 0 0

n

·
1 1 1

0 1 2
0 0 1


=
1 −1 1

0 1 −2
0 0 1

 ·
1 0 0

0 2−n 0
0 0 0

 ·
1 1 1

0 1 2
0 0 1

 .
Clearly for big n ∈ N we can substitute 0 for 2−n, which implies

T n ≈
1 −1 1

0 1 −2
0 0 1

 ·
1 0 0

0 0 0
0 0 0

 ·
1 1 1

0 1 2
0 0 1

 =
1 1 1

0 0 0
0 0 0

 .
Thus if individuals of the original population procreate exclusively

with the member of the speci�c population (that, that has only AA),

necessarily after a su�cient number of breeding it results into a total

elimination of the tuples aA and aa (and it does not matter what their

original distribution was).

The case (c). Now we have 6 possible states (in this order)

AA,AA; aA,AA; aa,AA;
aA, aA; aa, aA; aa, aa,

while these states are given by the genotypes of the parents. Thematrix

of the corresponding Markov chain is

T =


1 1/4 0 1/16 0 0
0 1/2 0 1/4 0 0
0 0 0 1/8 0 0
0 1/4 1 1/4 1/4 0
0 0 0 1/4 1/2 0
0 0 0 1/16 1/4 1

 .
If we consider for instance the situation (second column), where one

of the parents has the tuple AA and the second has aA, then clearly

each of the four cases (we are talking about the tuple of alleles of two

randomly chosen o�springs)

AA,AA; AA, aA; aA,AA; aA, aA

occurs with the same probability. The probability of staying in the sec-

ond state is thus 1/2 and the probability for transition from the second

state to the �rst is 1/4 and to the fourth state also 1/4.
Now we should again determine the powers T n for big n ∈ N.

Considering the form of the �rst and of the last columnwe immediately
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Theorem. Let A be any matrix of the type m/n over real or com-

plex scalars. Then there exist square unitary matrices U and V

of dimensions m and n, and a real diagonal matrix D with non-

negative elements of dimension r, r ≤ min{m, n}, such that

A = USV ∗, S =
(
D 0
0 0

)
and r is the rank of the matrixAA∗. Furthermore, S is determined

uniquely up to the order of the elements and the elements of the

diagonal matrixD are the square roots of the eigenvalues di of the

matrix AA∗. If A is a real matrix, then the matrices U and V are

orthogonal.

Proof. Assume �rst that m ≤ n and denote φ : Kn → Km
the mapping between real and complex spaces with

standard scalar products, given by the matrix A un-

der the standard bases.

We can reformulate the statement of the theo-

rem as follows: there exists orthonormal bases on Kn and Km un-

der which the mapping φ has the matrix S from the claim of the

theorem.

As we have seen before, the matrix A∗A is positively semi-

de�nite. Therefore it has only real non-negative eigenvalues and

there exists an orthonormal basis w in Kn under which the corre-

sponding mapping φ∗ ◦ φ has for matrix a diagonal matrix with

eigenvalues on the diagonal. In other words, there exists unitary

matrix V such that A∗A = VBV ∗ for real diagonal matrix with

non-negative eigenvalues (d1, d2, . . . , dr , 0, . . . , 0) on the diago-

nal, di ̸= 0 for all i = 1, . . . , r. >From there

B = V ∗A∗AV = (AV )∗(AV ).

That is equivalent to the claim that �rst r columns of the matrix

AV are orthogonal and the remaining are zero, because they have

zero size.

Let us now denote �rst r columns v1, . . . , vr ∈ Rm. Thus it
holds that ⟨vi, vi⟩ = di , i = 1, . . . , r, and the normalised vectors
ui = 1√

di
vi form an orthonormal system of non-zero vectors. Let

us extend them to an orthonormal basis u = u1, . . . , un of the

wholeKm. If we express our original mapping φ under the basesw
inKn and u inKm, we obtain the matrix

√
B. The transformations

from the standard bases to the new chosen ones correspond to the

multiplication from the left with orthogonal matrixU and from the

right with V −1 = V ∗.
If m > n, we can apply the previous part of the proof on the

matrix A∗. From there we directly obtain the desired claim.

If we work over real scalars, all the previous steps in the proof

are also realised in the real domain. □

This proof of the theorem about singular decomposition is con-

structive and we can indeed use it for computing the unitary (or-

thogonal) matrices U and V and the non-zero diagonal elements

of the matrix S.

3.45. Geometric interpretation. Diagonal values of the matrix

D from the previous theorem are called singular val-

ues of the matrix A. Let us reformulate this theorem

in the real case more geometrically.
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�nd out that 1 is an eigenvalue of the matrix T . It is very easy to �nd

the eigenvectors

(1, 0, 0, 0, 0, 0)T , (0, 0, 0, 0, 0, 1)T

corresponding to the eigenvalue 1. By considering only a four-

dimensional submatrix of the matrix T (omitting the �rst and sixth

row and column) we �nd the remaining eigenvalues

1
2
,

1
4
,

1 − √
5

4
,

1 + √
5

4
.

If we recall the solution of the exercise called Sweet-toothed gambler,

we don't have to compute T n. In that exercise we obtained the same

eigenvectors corresponding to the eigenvalue 1 and the other eigenval-

ues also had their absolute value strictly smaller than 1 (the exact val-

ues were not used). Thus we obtain identical conclusion � the process

approaches the probabilistic vector

(a, 0, 0, 0, 0, 1 − a)T ,

where a ∈ [0, 1] is given by the initial state. Because only at the �rst
and sixth position of the resulting vector can be a non-zero number,

the states

aA,AA; aa,AA; aA, aA; aa, aA

after many breedings disappear. Let us further realise (follows also

from the exercise Sweet-toothed gambler) that the probability that the

process ends with AA,AA equals the relative ratio of the appearance

of A in the initial state.

The case (d). Let the values a, b, c ∈ [0, 1] give in this order

the relative ratios of occurrence of alleles AA, aA, aa in the given

population. We want to obtain the expression of relative ratios of the

tuples AA, aA, aa in the o�spring of the population. If the choice of

tuples for breeding is random, then for a suitably big population it can

be expected that the relative ratio of breeding of individuals that both

have AA is a2, the relative ratio for the tuple aA and AA is 2ab, the
relative ratio for aA (both of them) is b2 and so on. The o�spring of

the parents with tuplesAA, AAmust inheritAA. The probability that

the o�spring of the parents with tuples AA, aA has AA is clearly 1/2
and the probability that the o�spring of the parents with tuples aA, aA

hasAA is 1/4. There are no other cases for an o�spring with the tuple
AA (if one of the parents has the tuple aa, then the o�spring cannot

have AA). Relative frequency of AA in the progeny is thus

a2 · 1 + 2ab · 1
2

+ b2 · 1
4

= a2 + ab + b2

4
.
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For the corresponding linear mapping φ : Rn →
Rm the singular values have indeed simple geometric meaning: let

K ⊂ Rn be the unit ball for the standard scalar product. The image
φ(K) is the always an m-dimensional ellipsoid (possibly degener-

ate). The singular values of the matrix A are then the sizes of the

main half-axes and the theorem further says that the original sphere

always allows orthogonal grouped diameters, whose image are ex-

actly all half-axes of this ellipsoid.

For square matrices it can be seen that A is invertible if and

only if all singular values are non-zero. The ratio of the greatest to

the smallest singular value is an important parameter for the robust-

ness of the sequence of numerical computations with matrices, for

instance for the computation of the inverse matrix. Let us also note

that there exist fast methods of computations (approximations) for

eigenvalues, thus the singular decomposition is very e�ective to

work with.

3.46. Polar decomposition theorem. The singular decomposi-

tion theorem is a starting point for many very useful

tools. Let us now think about some direct corollar-

ies (which by themselves are quite non-trivial). The

statement of the theorem says that for any matrix A, real or com-

plex, A = USW ∗ with S diagonal with non-negative real num-

bers on the diagonal and U and W unitary. But then also A =
USU∗UW ∗ and let us call the matrices P = USU∗, V = UW ∗.
First of them, P , is Hermitian (in real case symmetric) and posi-

tively semide�nite, because it regards just how to write down the

mapping with real diagonal matrix S in another orthonormal basis,

while V is a product of two unitary matrices and thus again unitary

(in the real case orthogonal). Furthermore A∗ = WSU∗ and thus
AA∗ = USSU∗ = P 2 and our matrix P is actually the square

root of the easily computable Hermitian matrix AA∗.
Assume thatA = PV = QU are two such decompositions of

the matrix A into the product of positively semide�nite Hermitian

and unitary matrix and assume that A is invertible. But then

AA∗ = PVV ∗P = P 2 = QUU∗Q = Q2

is positively de�nite and thus the matrices Q = P = √
AA∗

are uniquely determined and invertible. But then also U = V =
P−1A.

We have thus completely derived a very useful analogy of the

decomposition of a real number into a sign (orthogonal matrix in

the case of dimension are exactly ±1) and the absolute value (the
matrix P , for which we can compute the square root).

Theorem (Polar decomposition theorem). Every square complex

matrix A of the dimension n can be always expressed in the form

A = P · V , where P is Hermitian and positively de�nite square

matrix of the same dimension and V is unitary. We have P =√
AA∗. If A is invertible, the decomposition is unique and V =

(
√
AA∗)−1A.

If we work over real scalars, P is symmetric and V orthogo-

nal.

If we apply the same theorem on A∗ instead of A, we obtain

the same result, but with the order of the Hermitian and unitary

matrices reversed. The matrices in the corresponding right and

left decomposition will of course be in general distinct.
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Analogically we set gradually the relative frequencies of the tuples aA

and aa in the progeny:

ab + bc + 2ac + b2

2
and

c2 + bc + b2

4
.

This process can be viewed as a mapping T that transforms the vector

(a, b, c)T . It holds that

T :

ab
c

 7→
 a2 + ab + b2/4
ab + bc + 2ac + b2/2

c2 + bc + b2/4

 .
Let us mention that the domain (and also the codomain) of T are just

the vectorsab
c

 , kde a, b, c ∈ [0, 1], a + b + c = 1.

We would like to give the operation T my multiplying the vector by

some constant matrix. But that is clearly not possible (the mapping T

is not linear). It is thus not a Markov process and the determination of

what happens after a long time cannot be simpli�ed as in the previous

cases. But we can compute what happens if we apply the mapping T

twice in a row. In the second step we obtain

T :

 a2 + ab + b2/4
ab + bc + 2ac + b2/2

c2 + bc + b2/4

 7→
t12t22
t32

 , kde

t12 =
(
a2 + ab + b2

4

)2

+
(
a2 + ab + b2

4

)(
ab + bc + 2ac + b2

2

)
+1

4

(
ab + bc + 2ac + b2

2

)2

,

t22 =
(
a2 + ab + b2

4

)(
ab + bc + 2ac + b2

2

)
+

+
(
ab + bc + 2ac + b2

2

)(
c2 + bc + b2

4

)
+

+ 2
(
a2 + ab + b2

4

)(
c2 + bc + b2

4

)
+ 1

2

(
ab + bc + 2ac + b2

2

)2

,

t32 =
(
c2 + bc + b2

4

)2

+
(
ab + bc + 2ac + b2

2

)(
c2 + bc + b2

4

)
+1

4

(
ab + bc + 2ac + b2

2

)2

.

It can be shown (using a + b + c = 1) that

t12 = a2 +ab+ b2

4
, t22 = ab+bc+2ac+ b2

2
, t32 = c2 +bc+ b2

4
,
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In the complex case the analogy with the decomposition of

numbers is evenmore funny � positively semide�nite

P again plays a role of the absolute value of the com-

plex number, the unitary matrix V then has a unique

expression as a sum V = reV + i imV with Hermit-

ian real and imaginary parts and the property (reV )2 + (imV )2 =
E, that is, we obtain a full analogy for the polar form for the com-

plex numbers (see the �nal remark in 3.30). But note that in the

case with more dimensions it is important in what order is this

"polar form" of matrix written. It is possible in both ways, but the

results are in general distinct.

For many practical applications it is faster to use the so-called

QR decomposition of matrices, which is an analogy of the Schur

orthogonal triangulation theorem:

3.47. Theorem. For every complex matrixA of the typem/n there

exists a unitary matrix Q and an upper triangular matrix R such

that A = QTR.

If we work over real scalars, bothQ and R are real.

Proof. In the geometric formulation we need to prove that for

every mapping φ : Kn → Km with the matrix A under the

standard bases we can choose new orthonormal basis on

Km such that then φ has upper triangular matrix.

Consider the images φ(e1), . . . , φ(en) ∈ Km of the

vectors of the standard orthonormal basis, and choose from them

maximal linearly independent system v1, . . . , vk in such a way that

the removed dependent vectors are always a linear combination

of the previous vectors, and we extend it into a basis v1, . . . , vm.

Let u1, . . . , um be an orthonormal basis Km obtained by Gramm-

Schmidt orthogonalisation of this system of vectors.

Now for every ei is φ(ei) either one of vj , j ≤ i, or it is

a linear combination of v1, . . . , vi−1, therefore in the expression

of φ(ei) under the basis u appear only vectors u1, . . . , ui . The

mapping φ thus has under the standard basis onKn and under u on
Km upper triangular matrix R. The change of the basis u on Rm
corresponds to the multiplication by unitary matrixQ from the left,

that is, R = QA, equivalently A = QTR.

The last claim is clear from our construction. □

To close this part of the text let us note the especially use-

ful and important application of our results for the

approximate numerical calculations. It is a quite

straightforward application of singular decomposi-

tions of matrices, as can be already seen from the following:

3.48. De�nition. Let A be a real matrix of the type m/n and let

A = USV ∗, S =
(
D 0
0 0

)
be its singular decomposition (notably,D is invertible). Thematrix

A† := V S′U∗, S′ =
(
D−1 0

0 0

)
is called the pseudoinverse matrix of the matrix A.

As the following theorem shows, the pseudoinverse is an im-

portant generalisation of the notion of inversematrix, together with

direct applications.

3.49. Theorem. Let A be real or complex matrix of the type m/n.

Then for its pseudoinverse it holds that:
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that is,

T :

 a2 + ab + b2/4
ab + bc + 2ac + b2/2

c2 + bc + b2/4

 7→
 a2 + ab + b2/4
ab + bc + 2ac + b2/2

c2 + bc + b2/4

 .
We have obtain a surprising result that further application of the trans-

form T does not change the vector obtained in the �rst step. That

means that the appearance of the considered tuples is after arbitrary

long time time the same as in the �rst generation of o�spring. For

a big population we have thus proven that the evolution takes place

during �rst generation (unless there are some mutation or selection).

□

3.38. Let there are two boxes, which contain together n white and n

black balls. In regular time intervals from both boxes a ball is taken

and moved to the other urn, while the number of balls in each of the

boxes is at the beginning (and thus for all the time) equal to n. Give

for this Markov process its probabilistic transition matrix T .

Solution. This case is often used in physics as a model of blending

two incompressible liquids (already in the year 1769 introduced by

D. Bernoulli) or analogously, as a model of di�usion of gases. The

states 0, 1, . . . , n correspond for instance to the number of white balls
in the �rst box. This information already says how many black balls

are in the �rst box (and the remaining balls are then in the second box).

If in the certain step a state changes from j ∈ {1, . . . , n} to j − 1,
it means that from the �rst box a white ball was drawn and from the

second a black ball was drawn. That happens with probability

j

n
· j
n

= j 2

n2
.

Transition from the state j ∈ {0, . . . , n − 1} to the state j + 1 corre-

sponds to drawing the black ball from the �rst box and a white ball

from the second box, with probability

n− j

n
· n− j

n
= (n− j)2

n2
.

The system stays in the state j ∈ {1, . . . , n − 1}, if from both boxes

balls of the same colour were drawn, which has the same probability

j

n
· n− j

n
+ n− j

n
· j
n

= 2j (n− j)

n2
.

Let us add that from the state 0 it is necessary (with probability 1) to
go to the state 1 and similarly from the state n with probability one to
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(1) if A is invertible (notably, it is square), then

A† = A−1,

(2) for pseudoinverse A† it holds that A†A and AA† are Hermit-

ian (in real case symmetric) and

AA†A = A, A†AA† = A†,

(3) pseudoinverse matrices A† is by the four properties from the

previous point determined uniquely. Thus if some matrix B of

the type n×m satis�es that BA and AB are both Hermitian,

ABA = A and BAB = b, then B = A†,

(4) if A is a matrix of the system of linear equations Ax = b with

the right-hand side b ∈ Km, then the vector y = A†b ∈ Kn
minimises the size ∥Ax − b∥ for all vectors x ∈ Kn,

(5) the system of linear equationsAx = b with b ∈ Km is solvable

if and only if it holds thatAA†b = b. In this case all solutions

are given by the expression

x = A†b + (E − A†A)u,

where u ∈ Kn is arbitrary.

Proof. (1): If A is invertible, then the matrix S = U∗AV is

also invertible and right from the de�nition we have S′ =
S−1 . From that it follows that A(−1)A = AA(−1) = E.

(2): Direct computation yields SS′S = S and S′SS′ =
S′ , therefore

AA(−1)A = USV ∗V S′U∗USV ∗ = USS′SV ∗ = USV ∗ = A

and analogically for the second equation. Furthermore,

(AA(−1))∗ = (USS′U∗)∗ = U(S′ )∗S∗U∗

= U(SS′ )∗U∗ = USS′U∗ = AA(−1)

and similarly it can be proven that (A(−1)A)∗ = A(−1)A.

(3) The claim can be proven via direct computation. We con-

sider for a while the mapping φ given under the standard basis by

the matrix A, and we express the mapping φ under the basis form

the singular decomposition theorem, that is, under this basis the

mapping φ has matrix S from the de�nition of pseudoinverse A†.

Without loss of generality we now work in this basis, that is, we

can assume that in the block form

A =
(
D 0
0 0

)
, A† =

(
D−1 0

0 0

)
,

with diagonal matrixD of all non-zero singular numbers, and B is

a matrix satisfying the assumptions. Clearly

A†A =
(
E 0
0 0

)
and thus we obtain

A† = A†ABAA† =
(
E 0
0 0

)
B

(
E 0
0 0

)
=
(
D−1 0

0 0

)
.

>From there we see that

B =
(
D−1 P

Q R

)
for suitable matrices P ,Q and R. But now

BA =
(
D−1 P

Q R

)(
D 0
0 0

)
=
(
E 0
QD 0

)
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the state n− 1. Considering it all we obtain the matrix

T = 1
n2



0 1 0 · · · 0 0 0

n2 2 · 1(n− 1) 22 . . . 0 0 0

0 (n− 1)2 2 · 2(n− 2)
. . . 0 0 0

...
. . .

. . .
. . .

. . .
. . .

...

0 0 0
. . . 2 · (n− 2)2 (n− 1)2 0

0 0 0
. . . 22 2 · (n− 1)1 n2

0 0 0 · · · 0 1 0


for the order of the states 0, 1, . . . , n.

When using this model in physics we are of course interested in

the distribution of balls in boxes after a certain time (the number of

drawings). If the initial state is for instance 0, we can use the powers

of the matrix T to observe with what probability the number of white

balls in the �rst box is increasing. We can con�rm the expected result

that the initial distribution of the balls in�uences their distribution after

certain time in a very negligible way.

If we had numbered the individual balls, we would instead of ball

drawing draw some of the numbers 1, 2, . . . , 2n and the ball whose

number was draw would move to the other ball. We would obtain a

Markov process with states 0, 1, . . . , 2n (the number of balls in the

�rst box), where we are not distinguishing the colour any more. This

Markov chain is also very important in physics (P. and T. Ehrenfest

have introduced it in 1907). It is used as a model of interchange of heat

between two isolated bodies (the heat is represented by the number of

balls, the bodies by the boxes). □

3.39. Two players, A and B, gamble for money repeatedly a certain

game, which can result only in a victory of one of the players. The

winning probability for the player A is in each individual game p ∈
[0, 1/2) and both bet always only C1, that is, after each game with

probabilityp the playerB gives C1 to the playerA andwith probability

1−p the other way round. They play as long as both have somemoney.

If the player A has at the start of the game Cx and the player B has

Cy, determine the probability that the player A loses it all.

Solution. This problem is called Ruining of a player. It is a special

Markov chain (see also the exercise Sweet-toothed gambler) withmany

important applications. The probability in question is

(3.6)
1 −

(
p

1−p
)y

1 −
(

p

1−p
)x+y .

Let us investigate what is this value for speci�c choices of p, x, y. If

the player B wants to be almost sure and requires that the probability

that the player A loses with him C1 000 000 c is at least 0.999, then it
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should be Hermitian, thus QD = O and thus also Q = O (the

matrixD is diagonal and invertible). Analogously, the assumption

thatAB is Hermitian implies that P is zero. Additionally, we have

B = BAB =
(
D−1 0

0 R

)(
D 0
0 0

)(
D−1 0

0 R

)
.

On the right side in the right-lower corner there is zero, and thus

also R = O and the claim is proven.

(4): Consider the mapping φ : Kn → Km, x 7→ Ax, and

direct sums Kn = (Kerφ)⊥ ⊕ Kerφ, Km = Imφ ⊕ (Imφ)⊥.
The restricted mapping φ̃ := φ|(Ker φ)⊥ : (Kerφ)⊥ → Imφ is

a linear isomorphism. If we choose suitable orthonormal bases

on (Kerφ)⊥ and Imφ and extend them to orthonormal bases on

whole spaces, the mapping φ will have matrix S and φ̃ the matrix

D from the theorem about the singular decomposition. For given

b ∈ Km is the point z ∈ Imφ that minimises the distance ∥b − z∥
(that is, the point that realises the distance from the a�ne subspace

ρ(b, Imφ), see the next chapter) exactly the component z = b1 of

the decomposition b = b1 + b2, b1 ∈ Imφ, b2 ∈ (Imφ)⊥. But
in a suitably chosen basis is the mapping φ(−1) , originally given

under standard bases by the pseudoinverse A(−1), given by the ma-

trix S′ from the singular decomposition theorem, notably we have

φ(−1) (Imφ) = (Kerφ)⊥ and D−1 is the matrix of the restriction

φ
(−1)
| Im φ and φ

(−1)
|(Im φ)⊥ is zero. Indeed we have

φ ◦ φ(−1) (b) = φ(φ(−1) (z)) = z

and the proof is �nished.

(5) Evidently, from the equality Ax = b for a �xed x ∈ Kn it
follows that

b = AA†Ax = AA†b.

Thus it is a necessary condition. On the other hand, if this condi-

tion holds, then we can for the given expression x compute

Ax = A(A†b + (E − A†A)u) = b + (A− AA†A)u = b.

The rank of the matrixA−A†A gives the correct size of the image

of the corresponding mapping according to the Frobenius theorem

about solution of the system of linear equations, and thus we obtain

in this way all solutions. □

Remark. It can be also shown that the matrixA(−1) minimises the

expression

∥AA(−1) − E∥2

that is, the sum of squares of all elements of the given matrix.

>From the point (4) of the previous theoremwe obtain that the

matrix AA† is the matrix of the perpendicular projection form the

vector space Rn, where n is the number of the rows of the matrix
A on the subspace generated by the columns of the matrix A (this

interpretation has of course meaning only for matrices that have

more rows than columns).

Furthermore, for matrices A whose columns for independent

vectors, the expression (ATA)−1AT makes sense and it is not hard

to verify that this matrix satis�es all properties from (1) and (2)

from the previous theorem, thus it is a pseudoinverse of the matrix

A.
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su�ces for him to have C346 c if p = 0.495 (or C1 727 if p = 0.499).
Therefore it is possible in big casinos that �passionate� players play

almost fair games. □

3.40. In a certain company there exist two competing departments.

The management has decided that every week they will measure rel-

ative (with respect to the number of employees) incomes attained by

these two departments. To the more successful department will then 2

employees of the other department be moved. This process will go on

as long as both departments have some employees. You have gained

a position in this company and you can choose one of these two de-

partments where you will work. You want to choose the department

which won't be cancelled due to the employee movement. What will

be your choice, if one of the departments has 40 employees, the other

10 employees and you estimates that the second onewill have relatively

greater income in 54 % of the cases? ⃝
Another application of the Markov chains are in the additional ex-

ercises after this chapter.

E. Unitary spaces

Even in the previous chapter we have de�ned the scalar product in

real vector spaces (2.40), in this chapter we extend its de�nition to the

complex spaces too (3.23).

3.41. Groups O(n) and U(n). If we consider all linear mappings

from R3 to R3 which preserve the given scalar product, that is, with

respect to the de�nitions of the lengths of the vectors and deviations of

two vector all linear mappings that preserve lengths and angles, then

these mappings form with respect to the operation of composition a

group (see 1.1); composition of two such mappings is by the the de�-

nition also a mapping that preserves lengths and angles, unit element

of the group is the identity mapping, the inverse element for a given

mapping is its inverse mapping � thanks to the condition on the lengths

preservation such mapping exists. Matrices of such mappings thus

form a group with the operation of matrix multiplication (see ), it is

called the orthogonal group and is denoted by 0(n). It is a subgroup
of all invertible mappings from Rn to Rn.

If we additionally require that the matrices have determinant one,

we speak of the special orthogonal group SO(n) (in general the deter-

minant of a matrix in O(n) can be either 1 or −1).
Similarly we de�ne the unitary group U(n) as group of all (com-

plex) matrices that correspond to the complex linear mappings from
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3.50. Linear regression. The approximation property (3) from

the previous theorem is very useful in the cases

where we are to �nd as good approximation as possi-

ble for the (non-existent) solution of a given system

Ax = b, where A is a real matrix of the type m/n

and m > n.

For instance, an experiment gives us many measured real val-

ues bj and we want to �nd a linear combination of some functions

fi , which approximates the values bj . The actual values of the

chose functions in the points yj ∈ R give a matrix aij = fj (yi),

whose columns are given by values of the individual functions fj
in the considered points, and our goal is to determine the coe�-

cients xj ∈ R so that the sum of the squares of the deviations from

the actual values

m∑
i=1

(bi − (

n∑
j=1

xjfj (yi)))
2 =

m∑
i=1

(bi − (

n∑
j=1

aijxj ))
2

is minimised. In other words, we seek a linear combination

of the functions fi such that we interpolate the given values bi
"well". Thanks to the previous theorem are the optimal coe�cients

A(−1)b.

In order to have a more speci�c idea, consider just two

functions f1(x) = x, f2(x) = x2 and assume that the "measured

values" of their unknown combination g(x) = y1x + y2x
2

in integral values for x between 1 and 10 are bT =
(1.44 10.64 4.48 14.56 31.12 39.20 54.88 71.28 85.92 104.16).
This vector arose by computing the values x + x2 in given points

shifted by random values in range ±8. The matrix A = (bij ) is in

our case equal to

AT =
(

1 2 3 4 5 6 7 8 9 10
1 4 9 16 25 36 49 64 81 100

)

and the coe�cients in the combination are

y = A(−1) · b =
(

0.61
0.99

)
.

The resulting interpolation can be seen at the picture, where the

given values b are interpolated with a green polygonal chain, while

the red graph corresponds to the combination g. The computations

were done in the system Maple using the command leastsqrs(B,b).

If you are enfriended with Maple (or some other similar software),

try to do some experiments with similar tasks.
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Cn to Cn that preserve a given scalar product in a unitary space. Anal-
ogously, SU(n) denotes the subgroup of matrices in U(n) with de-

terminant one (in general, determinant of matrix in U(n) can be any

complex unit).

3.42. Consider the vector space V of functions R → C. Determine
whether the mapping φ from the unitary space V is linear.

i) φ(u) = λu where λ ∈ C
ii) φ(u) = u∗

iii) φ(u) = u2(= u.u)

iv) φ(u) = du
dx

V is for suitable functions a unitary space of in�nite dimension. Scalar

product is de�ned by the relation f.g = ∫∞
−∞ f (x)g(x)dx.

Solution. yes, no, no, yes □

3.43. Show that if H is a Hermitian matrix, then U = exp(iH) =∑∞
n=0

1
n!(iH)

n is a unitary matrix and compute its determinant.

Solution. >From the de�nition of exp we can show that it holds that

exp(A+B) = exp(A). exp(B) as we are used to with the exponential
mapping in the domain of numbers. Because in general it is (u+v)∗ =
u∗ + v∗ and (cv)∗ = c̄v∗, we obtain

U ∗ = (

∞∑
n=0

1
n!
(iH)n)∗ =

∞∑
n=0

1
n!
(−iH ∗)n

and because H ∗ = H , then

U ∗ =
∞∑
n=0

(−1)n
1
n!
(iH)n = exp(−iH)

and thus

U ∗U = exp(iH) exp(−iH) = exp(0) = 1.

det(U) = etrace(iH) .

□

3.44. Hermitian matrices A, B, C satisfy [A,C] = [B,C] = 0 and

[A,B] ̸= 0, where [, ] is a commutator of matrices de�ned de�ned by
the relation [A,B] = AB−BA. Show that at least one eigensubspace

of the matrix C must have dimension > 1.

Solution. We prove it by contradiction. We assume that all eigensub-

spaces of the operator C have dim = 1. Then we can for any vector u
write u = ∑

k ckuk where uk are linearly independent eigenvectors of

the operator C associated with the eigenvalue λk (and ck = u.uk) For

these eigenvectors it clearly holds that

0 = [A,C]uk = ACuk − CAuk = λkAuk − C(Auk)
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>From there we see that Auk is an eigenvector of the matrix C with

the eigenvalue λk. But that means that Auk = λAk uk for some number

λAk . Similarly we derive Buk = λBk uk for some number λ
B
k . For the

commutator of matrices A and B we then obtain

[A,B]uk = ABuk − BAuk = λAk λ
B
k uk − λBk λ

A
k uk = 0

But that means that

[A,B]u = [A,B]
∑
k

ckuk −
∑
k

ck[A,B]uk = 0

and because u was arbitrary, that means that [A,B] = 0, which is a

contradiction. □

3.45. Applications in quantum physics. In quantum physics we

don't give to quantities any numerical value, as in classical

physics, but a Hermitian operator. That is nothing but a Her-

mitian mapping, which can lead (and often does) to a linear

transformation between unitary spaces of in�nite dimension (we can

imagine this as a matrix of in�nite dimension). Vectors in this unitary

space then represent the states of the given physical system. When

measuring a given physical quantity we obtain only values that are

eigenvalues of the corresponding operator.

For instance instead of the coordinate x we have an operator of

the coordinate x̂, that results in multiplication by x. If the state of the

system is described by the vector V , then it holds that x̂(v) = xv, that

is, it corresponds to the multiplication of the vector by the real number

x. At the �rst glance this Hermitian operator is di�erent from our cases

of �nite dimensions. Evidently every real number is an eigenvalue (x̂

has the so-called continuous spectrum). Similarly, in place of speed

(more precisely, momentum) we have the operator p̂ = −i d
dx
. The

eigenvectors are solution of the di�erential equation−i dv
dx

= λv. Even

in this case is the spectrum continuous. That expresses the fact that the

corresponding physical quantity is continuous (it can attain any real

value). On the other hand, we have physical quantities, for instance

energy, that can attain only discrete values (energy exists in quanta).

The corresponding operators are then really similar to the Hermitian

matrices, they just have in�nitely many eigenvalues.

3.46. Show that x̂ and p̂ are Hermitian and that

[x̂, p̂] = i

Solution. For any vector v it holds that

[x̂, p̂]v = x̂p̂v − p̂x̂v = x(−i dv
dx
)+ i

d(xv)

dx
− = iv

and from there we directly have our claim. □
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3.47. Show that

[x̂ − p̂, x̂ + p̂] = 2i

Solution. Evidently we have that [x̂, x̂] − 0 and [p̂, p̂] = 0 and the

rest follows from the linearity of the commutator from the previous

exercise. □

3.48. Jordan form. Find the Jordan form of the matrix A. What is

the geometric interpretation of this decomposition of the matrix?

i) A =
(−1 1

−6 4

)
ii) A =

(−1 1
−4 3

)
Solution. i)We �rst compute the characteristic polynomial of the ma-

trix A

|A− λE| =
∣∣∣∣−1 − λ 1

−6 4 − λ

∣∣∣∣ = λ2 − 3λ+ 2

The eigenvalues of the matrix A are the roots of this polynomial, that

means that λ1,2 = 1, 2. Because the matrix is of order two and has two

distinct eigenvalues, its Jordan form is a diagonal matrix J =
(

1 0
0 2

)
.

The eigenvector (x, y) associated with the eigenvalue 1 satis�es 0 =
(A−E)x =

(−2 1
−6 3

)(
x

y

)
, that is, −2x+y = 0. That holds exactly

for the multiples of the vector (1, 2). Similarly we �nd out that the

eigenvector associated with the eigenvalue 2 is (1, 3). The matrix P is

then obtained by writing these eigenvectors into tho columns, that is,

P =
(

1 1
2 3

)
. For the matrix A we then have A = P · J · P−1. The

inverse of P is P−1 =
(

3 −1
−2 1

)
and we obtain(−1 1

−6 4

)
=
(

1 1
2 3

)(
1 0
0 2

)(
3 −1

−2 1

)
This decomposition tells us that the matrix A determines such linear

mapping that has in basis of the eigenvectors (1, 2), (1, 3) the afore-
mentioned diagonal form. That means that in the direction (1, 2)
nothing is changing and in the direction (1, 3) every vector is being

stretched twice.

ii) Characteristic polynomial of the matrix A is in this case

|A− λE| =
∣∣∣∣−1 − λ 1

−4 3 − λ

∣∣∣∣ = λ2 − 2λ+ 1 = 0

We obtain a double root λ = 1 and the corresponding eigenvector

(x, y) satis�es

0 = (A− E)x =
(−2 1

−4 2

)(
x

y

)
The solutions are, as in the previous case, multiples of the vector (1, 2).
The fact that the system has no two linearly independent vectors as a
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solution says that the Jordan form in this case is not optimal, but it

will be a matrix

(
1 1
0 1

)
. The basis for which A has this form is the

eigenvector (1, 2) and a vector that maps on this vector by the mapping
A− E, it is thus a solution of the system of equations( −2 1 1

−4 2 2

)
∼
( −2 1 1

0 0 0

)
The solutions are themultiples of the vector (1, 3). We obtain the same

basis as in the previous case and we can write(−1 1
−4 3

)
=
(

1 1
2 3

)(
1 1
0 1

)(
3 −1

−2 1

)
The mapping now acts on the vector as follows: the component in

the direction (1, 3) stays the same and the component in the direction
(1, 2) is multiplied by the sum of the coe�cients that determine the

components in the directions (1, 3) and (1, 2). □

3.49. Find the Jordan form of the matrix A and write down the de-

composition. What is geometric interpretation of this decomposition?

A1 = 1
3

(
5 −1

−2 4

)
and A2 = 1

3

(
5 −1
4 1

)
and draw how the vectors

v = (3, 0), A1v and A2v decompose with respect to the basis of the

eigenvectors of the matrix A1,2.

Solution. The matrices have the same Jordan forms as the matrices in

the previous exercise and both have in the basis of the vectors (1, 2)
and (1,−1), that is,

1
3

(
5 −1

−2 4

)
=
(

1 1
2 −1

)(
1 0
0 2

)(
1 1
2 −1

)−1

and
1
3

(
5 −1
4 1

)
=
(

1 1
2 −1

)(
1 1
0 1

)(
1 1
2 −1

)−1

For vector v = (3, 0) we obtain v = (1, 2) + 2(1,−1) and for its

images A1v = (5,−2) = (1, 2)+ 2 · 2 · (1,−1) and A2v = (5, 4) =
(2 + 1) · (1, 2)+ 2 · (1,−1). □

F. Matrix decompositions

3.50. Prove or disprove:

• Let A be a square matrix n × n. Then the matrix ATA is

symmetric.

• Let A be a square matrix with only real positive eigenvalues.

Then A is symmetric.

3.51. Find an LU-decomposition of the following matrix:−2 1 0
−4 4 2
−6 1 −1
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Solution. 1 0 0
2 1 0
3 −1 1

−2 1 0
0 2 2
0 0 1


We �rst multiply the matrices that correspond to the Gaussian elimina-

tion, we thus obtain for the original matrix A, XA = U , where X is a

lower triangular matrix given by the Gaussian reduction, U upper tri-

angular. From this equality we have A = X−1U , which is the desired

decomposition (we thus have to compute the inverse of X). □

3.52. Find the LU-decomposition of the matrix

1 1 0
1 −1 2
− 1 −1

. ⃝

3.53. Ray-tracing. In computer 3D-graphics the image is very often

displayed using the Ray-tracing algorithm. The basis of this algorithm

is an approximation of the light waves by a ray (line) and approxima-

tion of the displayed objects by polyhedrons. These are bounded by

planes and it is necessary to compute where exactly are the light rays

re�ected from these planes. From physics we know how are the rays

re�ected � the angle of impact equals the angle of re�ection. With this

topic we have already met in the exercise ∥1.64∥.
The ray of light in the direction v = (1, 2, 3) hits the plane given

by the equation x + y + z = 1. In what direction is it re�ected?

Solution. Unit normal vector to the plane is n = 1√
3
(1, 1, 1). The

vector that gives the direction of the re�ected ray vR lies in the plane

given by the vectors v, n. We can express it as a linear combination

of these vectors. Furthermore, the rule for the angle of re�ection says

that ⟨v, n⟩ = −⟨vR, n⟩. >From there we obtain a quadratic equation

for the coe�cient of the linear combination.

This exercise can be solved in an easier, more geometric way.

From the picture we can directly derive that

vR = v − 2⟨v, n⟩n
and in our case we obtain vR = (−3,−2,−1). □

3.54. Singular decomposition, polar decomposition, pseu-

doinverse. Compute the singular decomposition of the matrix

A =
 0 0 − 1

2−1 0 0
0 0 0

. Then compute its polar decomposition and

�nd its pseudoinverse.

Solution. We �rst compute ATA:

ATA =
 0 −1 0

0 0 0
− 1

2 0 0

 0 0 − 1
2−1 0 0

0 0 0

 =
1 0 0

0 0 0
0 0 1

4


and obtain a diagonal matrix. But we need to �nd such orthonormal

basis under which the matrix is diagonal and the zero row is the last
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one. This can be clearly obtained by rotating through the right angle

about the x-axis (the y-coordinate then goes to z and z goes to −y).
This rotation is an orthogonal transformation given by the matrix V =1 0 0

0 0 1
0 −1 0

. By this we have (without much computation) found the
decomposition ATA = VBV T , where B is diagonal with eigenvalues

(1, 1
4 , 0) on the diagonal. Because now we have B = (AV )T (AV ),

the columns of the matrix

AV =
 0 0 − 1

2−1 0 0
0 0 0

1 0 0
0 0 1
0 −1 0

 =
 0 1

2 0
−1 0 0
0 0 0


form an orthogonal system of vectors, which we normalise and extend

to a basis. That is then of the form (0,−1, 0), (1, 0, 0), (0, 0, 1). The
transition matrix of changing from this basis to the standard one is

then U =
 0 1 0

−1 0 0
0 0 1

. Finally, we obtain the decomposition A =

U
√
BV T 0 0 − 1

2−1 0 0
0 0 0

 =
 0 1 0

−1 0 0
0 0 1

1 0 0
0 1

2 0
0 0 0

1 0 0
0 0 −1
0 1 0


Geometrical interpretation of decomposition is the following: �rst, ev-

erything is rotated through the right angle by the x-axis, then follows

a projection to the xy plane such that the unit ball is mapped on the el-

lipse with major half-axes 1 and 1
2 and the result is the rotated through

the right angle about the z-axis.

The polar decompositionA = P ·W can be simply obtained from

the singular one: P := U
√
BUT andW := UV T , that is,

P =
 0 1 0

−1 0 0
0 0 1

1 0 0
0 1

2 0
0 0 0

0 −1 0
1 0 0
0 0 1

 =
 1

2 0 0
0 1 0
0 0 0


and

W =
 0 1 0

−1 0 0
0 0 1

1 0 0
0 0 −1
0 1 0

 =
 0 0 −1

−1 0 0
0 1 0


and from that it follows that 0 0 − 1

2−1 0 0
0 0 0

 =
 1

2 0 0
0 1 0
0 0 0

 0 0 −1
−1 0 0
0 1 0


Pseudoinversematrix is then given by the expressionA(−1) := V S′UT ,

where S′ =
1 0 0

0 2 0
0 0 0

. Thus we have
A(−1) =

1 0 0
0 0 1
0 −1 0

1 0 0
0 2 0
0 0 0

0 −1 0
1 0 0
0 0 1

 =
0 −1 0

0 0 0
2 0 0
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□

3.55. QR decomposition. QR decomposition of a matrix A is very

useful in the case whenwe are given a system of linear equationsAx =
b which has no solution, but we need to �nd an approximation as good

as possible. That is, we want to minimise ∥Ax − b∥. According to

the Pythagorean theorem we have ∥Ax− b∥2 = ∥Ax− b∥∥2 + ∥b⊥∥2,

where b was decomposed into b∥ that belongs to the range of the linear
transformationA (that corresponds to the matrixA) and into b⊥, that is
perpendicular to this range. Projection on the range ofA can bewritten

in the form QQT for a suitable matrix Q. Speci�cally for this matrix

we obtain it through Gram-Schmidt orthonormalisation of the column

of the matrix A. Then we have Ax − b∥ = Q(QTAx − QT b). The

system in the parentheses has a solution, for which we obtain ∥Ax −
b∥ = ∥b⊥∥, which is the minimal value. Furthermore, the matrix

R := QTA is upper triangular and therefore the approximate solution

can be found very easily.

Find an approximate solution of the system

x + 2y = 1
2x + 4y = 4

Solution. We have a system Ax = b with A =
(

1 2
2 4

)
and b =(

1
4

)
(which evidently has no solution). We thus orthonormalise the

columns of A. We take the �rst of them and divide it by its size. This

yields the �rst vector of the orthonormal basis 1√
5

(
1
2

)
. But the sec-

ond is twice the �rst and thus it will be after orthonormalisation zero.

Therefore we have Q = 1√
5

(
1
2

)
. The projector on the range of A is

thenQQT = 1
5

(
1 2
2 4

)
, next we compute

QT b = 1√
5

(
1 2

) (1
4

)
= 9√

5

and

R = 1√
5

(
1 2

) (1 2
2 4

)
= 1√

5

(
5 9

)
The approximate solution then satis�es Rx = QT b and that in our

case means 5x + 9y = 9 (approximate solution is thus not unique).

QR decomposition of the matrix A is then(
1 2
2 4

)
= 1√

5

(
1
2

)
1√
5

(
5 9

)
□
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3.56. Minimise ∥Ax− b∥ for A =
 2 −1 −1

−1 2 −1
−1 −1 2

 and b =
1

0
0


and write down the QR decomposition of the matrix A.

Solution. Normalised �rst column of the matrix A is 000 e1 =
1√
6

 2
−1
−1

. From the second column we subtract its component in

the direction e1. We have

⟨
−1

2
−1

 , 1√
6

 2
−1
−1

⟩ = − 3√
6

and therefore we obtain−1
2

−1

− ⟨
−1

2
−1

 , 1√
6

 2
−1
−1

⟩ 1√
6

 2
−1
−1

 = 1
2

0
3
3


By this we have created an orthogonal vector, which we normalise and

obtain e2 = 1√
2

 0
1

−1

. The third column of the matrix A is already

linearly dependent (we can verify this by computing the determinant).

The desired column-orthogonal matrix is then

Q = 1√
6

 2 0
−1

√
3

−1 −√
3


Next we compute

R = QTA = 1√
6

(
2 −1 −1
0

√
3 −√

3

) 2 −1 −1
−1 2 −1
−1 −1 2


= 1√

6

(
6 −3 −3
0 3

√
3 −3

√
3

)
and

QT b = 1√
6

(
2 −1 −1
0

√
3 −√

3

)1
0
0

 = 1√
6

(
2
0

)
The solution of the equation Rx = QT b is x = y = z. Multiples of

the vector (1, 1, 1) thus minimise ∥Ax − b∥.
The mapping given by the matrix A is a projection on the plane

with a normal vector (1, 1, 1).

□

3.57. Linear regression. The knowledge we have obtained in this

chapter can be successfully used practically for solving problems with

linear regression. It is about �nding the best approximation of some

functional dependence using a linear function.

We are thus given a functional dependence in some points (for

instance, we investigate the value of the property of people depending
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on their intelligence, the value of the property of their parents, number

of mutual friends with Mr. Williams, . . . ), that is, f (a1
1, . . . , a

1
n) =

y1,. . . , f (ak1, a
k
2, . . . , a

k
n) = yk, k > n (we have thus more equations

than unknowns) and we want "best possible" approximation of this

dependency using a linear function, that is, we want to express the

value of the property as a linear function f (x1, . . . , xn) = b1x1 +
b2x2+· · ·+bnxn+c. If we also de�ne "best possible" by minimisation
of

k∑
i=1

yi − n∑
j=1

(bjxj + c)

2

with regard to the real constants b1, . . . , bn, c. Our goal is to �nd

such linear combination of the columns of the matrix A = (aij ) (with

coe�cients b1, . . . , bn), that has the smallest distance from the vector

(y1, . . . , yk) in Rk, it is thus about �nding an orthogonal projection

of the vector (y1, . . . , yk) on the subspace generated by the columns

of the matrix A. Using the theorem 3.49 this projection is the vector

(b1, . . . , bn)
T = A(−1)(y1, . . . , bn).

3.58. Using the least squares method, solve the system

2x + y + 2z = 1

x + y + 3z = 2

2x + y + z = 0

x + z = −1

Solution. Our system has no solution, since its matrix has rank 3, the

extended matrix has rank 4. The best approximation of the vector b =
(1, 2, 0,−1) formed by the right sides of the equations can be thus

obtained using the theorem 3.49 by the vectorA(−1)b. (AA(−1)b is then

the best approximation � the perpendicular projection of the vector b

on the space generated by the columns of the matrix A).

Because the columns of the matrix A are linearly independent, its

pseudoinverse is given by the relation (ATA)−1AT . Thus we have

A(−1) =




2 1 2
1 1 3
2 1 1
1 0 1


2 1 2 1

1 1 1 0
2 3 1 1




−12 1 2 1
1 1 1 0
2 3 1 1



=
10 5 10

5 3 6
10 6 15

−12 1 2 1
1 1 1 0
2 3 1 1
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=
3/5 −1 0

−1 10/3 −2/3
0 −2/3 1/3

2 1 2 1
1 1 1 0
2 3 1 1


=
1/5 −2/5 1/5 3/5

0 1/3 2/3 −5/3
0 1/3 −1/3 1/3


The desired x equals

A(−1)b = (−6/5, 7/3, 1/3)T .

The projection (the best possible approximation of the column of the

right sides) is then the vector (3/5, 32/15, 4/15,−13/15). □
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G. Additional exercises for the whole chapter

3.59. Model of evolution of a whale population. For evolution of a population females are impor-

tant, and for them the important factor is not age but fertility. From this point of view we can divide

the females into newborns (juvenile), that is, females who are yet infertile; young fertile females; adult

females with highest fertility and postclimacterial females which are not fertile anymore (but are still

important with respect to taking care of newborns and food gathering).

We model the evolution of such population in time. For a time unit we choose time it takes to

reach adulthood. Newborn female which survives this interval becomes fertile. The evolution of

a young female to full fertility and to postclimacterial state depends on the environment. That is,

transition to next category is a random event. Analogously, death of an individual is also a random

event. Young fertile female has per unit interval less children than adult female. Let us formalise

these statements.

Denote by x1(t), x2(t), x3(t), x4(t) the number of juvenile, young, adult and postclimacterial

females in time t respectively. The amount can be expressed as a number of individuals, but also as a

number of individuals relative on a unit area (the so-called population density), or as a total biomass

and similarly. Further denote byp1 the probability that a juvenile female survives the unit time interval

and becomes fertile, and by p2 and p3 the respective probabilities that a young female becomes adult

and that adult female becomes old. Another random event is dying (positively formulated: survival)

of females that do not move to the next category � we denote the probabilities respectively q2, q3 and

q4 for young, adult and old females. Each of the numbers p1, p2, p3, q2, q3, q4 is as a probability

from the interval [0, 1]. Young female can survive, reach adulthood or die; these events are mutually
exclusive, together they form a sure event and cannot be excluded. Thus we have p2 + q2 < 1. From
similar reasons we have p3+q3 < 1. Finally, we denote by f2 and f3 the average number of daughters

of a young and adult female, respectively. These parameters satisfy 0 < f2 < f3.

Expected number of newborn females in the next time interval is the sum of daughters of young

and of adult females, that is

x1(t + 1) = f2x2(t)+ f3x3(t).

We denote for a while by x2,1(t + 1) the amount of young females in time t + 1, which were in the
previous time interval, that is, in time t, juvenile, and by x2,2(t+1) the amount of young females, that
were already in time t fertile, survived that time interval bud did not move into the adulthood. The

probability p1 that a juvenile female survives the interval can be expressed by classical probability,

that is, by the ratio x2,1(t + 1)/x1(t), and similarly we can express the probability q2 as the ratio

x2,2(t + 1)/x2(t). Because young females in time t + 1 are exactly those that survived the juvenile

stage and those that already were fertile, did survive and did not evolve, it holds that

x2(t + 1) = x2,1(t + 1)+ x2,2(t + 1) = p1x1(t)+ q2x2(t).

Analogically we derive the expected number of fully fertile females

x3(t + 1) = p2x2(t)+ q3x3(t)

and the expected number of postclimacterial females by

x4(t + 1) = p3x3(t)+ q4x4(t).
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Figure 1. Evolution of a population of orca whale.
On the horizontal axis the time is in years, on the ver-
tical axis is the size of the population. Individual ar-
eas depict the number of juvenile, young, adult and
old females respectively, from bellow.

Now we can denote

A =


0 f2 f3 0
p1 q2 0 0
0 p2 q3 0
0 0 p3 q4

 , x(t) =


x1(t)

x2(t)

x3(t)

x4(t)


and rewrite the previous recurrent formulas in the matrix form

x(t + 1) = Ax(t).

Using this matrix di�erence equation we can easily compute the expected number of whale females

in individual categories, if we know the distribution of population at some initial time.

Speci�cally, for the population of orca whales the following parameters were observed:
p1 = 0,9775, q2 = 0,9111, f2 = 0,0043,
p2 = 0,0736, q3 = 0,9534. f3 = 0,1132,
p3 = 0,0452, q4 = 0,9804;

Time interval is in this case one year.

If we start at the time t = 0 with unit measure of young female in some unoccupied area, that is,

with the vector x(0) = (0, 1, 0, 0)T , we can compute

x(1) =


0 0,0043 0,1132 0

0,9775 0,9111 0 0
0 0,0736 0,9534 0
0 0 0,0452 0,9804




0
1
0
0

 =


0,0043
0,9111
0,0736

0

 ,

x(2) =


0 0,0043 0,1132 0

0,9775 0,9111 0 0
0 0,0736 0,9534 0
0 0 0,0452 0,9804




0,0043
0,9111
0,0736

0

 =


0,01224925
0,83430646
0,13722720
0,00332672


and we can carry on. The results of the computation can be also expressed graphically; see the picture

∥1∥. Try by yourself a computation and graphical depiction of the results even for a di�erent initial
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distribution of the population. The result should be an observation that the total population grows

exponentially, but the ratios of the sizes of individual groups stabilise gradually on constant values.

The matrix A thus has the eigenvalues

λ1 = 1,025441326, λ2 = 0,980400000, λ3 = 0,834222976, λ4 = 0,004835698,

eigenvector associated with the largest eigenvalue λ1 is

w = (0,03697187, 0,31607121, 0,32290968, 0,32404724);

this vector is normed such that the sum of its components equals 1.

Compare the evolution of the size of the population with the exponential function F(t) = λt1x0,

where x0 is the total size of the initial population. Compute also the relative distribution in individual

categories in the population after certain time of evolution, and compare it with the components of the

eigenvectorw. They will appear very close, this is caused by the fact thatA has only single eigenvalue

that has the greatest absolute value and by the fact that the vector space generated by the eigenvectors

associated with the eigenvalues λ2, λ3, λ4 has with the non-negative orthant intersection only the zero

vector. The structure of the matrixA itself does not ensure such easily predictable evolution, because

it is a so-called reducible matrix (see ??).

3.60. Model of growth of population of teasels Dipsacus sylvestris. This plant can be seen in four

stages. Either as a blossoming plant or as rosette of leaves, while with the rosette there are three

sizes � small, medium and large. The life cycle of this monoicous perennial plant can be described

as follows.

Blossoming plant produces in late summer some number of seeds and dies. From the seeds,

some sprout already in that year into a rosette of leaves, usually of medium size. Other seeds spend

the winter in the ground. Some of the seeds in the ground sprout in the spring into a rosette, but

because they were weakened during the winter, the size is usually small. After three or more winters

the "sleeping" (formally, dormant) seeds die as they loose the ability to sprout. Depending on the

environment of the plant, small or medium rosette can during the year grow, and any rosette can stay

in its category or die (wither, be eaten by insects, etc.) Medium or large rosette can in the next year

burst into a �ower. Blossoming �ower then produces seeds and the cycle repeats.

In order to be able to predict the spreading of the population of the teasels, we need to quantify

the described events. The botanists discovered that a blossoming plant produces on average 431 seeds.

The probabilities that a seed sprouts, that a rosette grows or bursts into a �ower are summarised in

the following table:
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event probability
seed produced by a �ower dies 0,172
seed sprouts into a small rosette in the current year 0,008
seed sprouts into a medium rosette in the current year 0,070
seed sprouts into a large rosette in the current year 0,002
seed sprouts into a small rosette after spending the winter 0,013
seed sprouts into a medium rosette after spending the winter 0,007
seed sprouts into a large rosette after spending the winter 0,001
seed sprouts into a small rosette after spending two winters 0,001
seed dies after spending one winter 0,013
small rosette survives but does not grow 0,125
medium rosette survives but does not grow 0,238
large rosette survives but does not grow 0,167
small rosette grows into a medium one 0,125
small rosette grows into a large one 0,036
medium rosette grows into a large one 0,245
medium rosette bursts into a �ower 0,023
large rosette bursts into a �ower 0,750

Note that all the relevant events in the life cycle have their probabilities given and that the events are

mutually incompatible.

Let us imagine that we always observe the population at the beginning of the vegetative year, say

in March, and that all considered events take place in the rest of the year, say from April to February.

In the population there are blossoming �owers, rosettes of three sizes, produced seeds and seeds

that have been dormant for a year or two. This could lead us to division of the population into seven

classes � just-produced seeds, seeds dormant for one year, seeds dormant for two years, rosettes small,

medium and large and blossoming �owers. But the just-produced seeds are in the same year changed

either into rosettes or they spend winter, thus they do not form an individual category. Let us thus

denote:
x1(t)� the number of seeds dormant for one year in the spring of the year t
x2(t)� the number of seeds dormant for two years in the spring of the year t
x3(t)� the number of small rosettes in the spring of the year t
x4(t)� the number of medium rosettes in the spring of the year t
x5(t)� the number of large rosettes in the spring of the year t
x6(t)� the number of blossoming �owers in the spring of the year t

The number of produced seeds in the year t is 431x6(t). The probability that the seeds stays dormant

for the �rst year equals the probability that the seed does not sprout into any rosette and does not die,

that is, 1 − (0,008 + 0,070 + 0,002 + 0,172) = 0,748. The expected number of seeds dormant for
winter in the next year is thus

x1(t + 1) = 0,748 · 431x6(t) = 322,388x6(t).

The probability that the seed that have been dormant for one year stays dormant for the second year

equals the probability that the dormant seed does not sprout into any rosette and that it does not die,

that is, 1 − 0,013 − 0,007 − 0,001 − 0,013 = 0,966. The expected number of seeds dormant for two
winters is thus

x2(t + 1) = 0,966x1(t).

Small rosette can sprout from the seeds immediately, from a seed dormant for one year or from a

seed dormant for two years. The expected number of small rosettes sprouted from non-dormant seeds

in the year t equals 0,008 · 431x6(t) = 3,448x6(t). The expected number of small rosettes sprouted
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from the seeds dormant for one and two years is 0,013x1(t) and 0,010x2(t) respectively. With these

newly sprouted small rosettes there are in the population also the older small rosettes (those that have

not grown yet) � of those there are 0,125x3(t). The total expected number of small rosettes is thus

x3(t + 1) = 0,013x1(t)+ 0,010x2(t)+ 0,125x3(t)+ 3,448x6(t).

Analogically we determine the expected number of medium and large rosettes

x4(t + 1) =0,007x1(t)+ 0,125x3(t)+ 0,238x4(t)+ 0,070 · 431x6(t) =
=0,007x1(t)+ 0,125x3(t)+ 0,238x4(t)+ 30,170x6,

x5(t + 1) =0,245x4(t)+ 0,167x5(t)+ 0,002 · 431x6(t) =
=0,245x4(t)+ 0,167x5(t)+ 0,862x6(t).

The blossoming �ower can arise either from medium or from large rosette. The expected number of

blossoming �owers is thus

x6(t + 1) = 0,023x4(t)+ 0,750x5(t).

We have thus reached six recurrent formulas for individual components of the investigated plant. We

now denote

A =


0 0 0 0 0 322,388

0,966 0 0 0 0 0
0,013 0,010 0,125 0 0 3,448
0,007 0 0,125 0,238 0 30,170
0,008 0 0,038 0,245 0,167 0,862

0 0 0 0,023 0,750 0

 , x(t) =


x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

x6(t)


and write the previous equalities in the matrix form suitable for the computation

x(t + 1) = Ax(t).

If we know the distribution of the individual components of the population in some initial year t = 0,
we can compute the expected numbers of �owers and seeds in the following years. We can also

compute the total number of individuals n(t) at the time t, n(t) =
6∑
i=1
xi(t), relative distribution

of the individual components xi(t)/n(t), i = 1, 2, 3, 4, 5, 6 and the yearly relative change in the

population n(t + 1)/n(t). The results of such calculations for �fteen years and the case that we have
put into some locality one blossoming �ower, are given in the table ∥1∥. Unlike the whale population,
the image would not be very clear, as the numbers of �owers are negligible compared to the numbers

of seeds (the individual areas for �owers would merge in the picture).

ThematrixA has the eigenvalues
λ1 = 2,3339 λ4 = 0,1187 + 0,1953i
λ2 = −0,9569 + 1,4942i λ5 = 0,1187 − 0,1953i
λ3 = −0,9569 − 1,4942i λ6 = −0,1274

The eigenvector associated with the eigenvalue λ1 is

w = (0,6377, 0,2640, 0,0122, 0,0693, 0,0122, 0,0046);
this vector is normed such that the sum of its components is equal to one. We see that with increas-

ing time t the relative increment in the size of population approaches the eigenvalue λ1, relative

distribution of the components in the population approach the components of the normed eigenvec-

tor associated with the eigenvector λ1. Every non-negative matrix that has non-zero elements at the
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t x1 x2 x3 x4 x5 x6 n(t)

0 0,00 0,00 0,00 0,00 0,00 1,00 1,00

1 322,39 0,00 3,45 30,17 0,86 0,00 356,87

2 0,00 311,43 4,62 9,87 10,25 1,34 337,50

3 432,13 0,00 8,31 43,37 5,46 7,91 497,18

4 2 550,50 417,44 33,93 253,07 22,13 5,09 3 282,16

5 1 641,69 2 463,78 59,13 235,96 91,78 22,42 4 514,76

6 7 227,10 1 585,88 130,67 751,37 107,84 74,26 9 877,12

7 23 941,29 6 981,37 382,20 2 486,25 328,89 98,16 34 218,17

8 31 646,56 23 127,29 767,29 3 768,67 954,73 303,85 60 568,39

9 97 958,56 30 570,58 1 786,27 10 381,63 1 627,01 802,72 143 126,78

10 258 788,42 94 627,97 4 570,24 27 597,99 4 358,70 1 459,04 391 402,36

11 470 376,19 249 989,61 9 912,57 52 970,28 10 991,08 3 903,78 798 143,52

12 1 258 532,41 454 383,40 23 314,10 134 915,73 22 317,98 9 461,62 1 902 925,24

13 3 050 314,29 1 215 742,31 56 442,70 329 291,15 55 891,57 19 841,54 4 727 523,56

14 6 396 675,73 2 946 603,60 127 280,49 705 398,22 133 660,97 49 492,37 10 359 111,38

15 15 955 747,76 6 179 188,75 299 182,59 1 721 756,52 293 816,44 116 469,89 24 566 161,94

t
x1(t)

n(t)

x2(t)

n(t)

x3(t)

n(t)

x4(t)

n(t)

x5(t)

n(t)

x6(t)

n(t)

n(t + 1)
n(t)

0 0,000 0,000 0,000 0,000 0,000 1,000 356,868
1 0,903 0,000 0,010 0,085 0,002 0,000 0,946
2 0,000 0,923 0,014 0,029 0,030 0,004 1,473
3 0,869 0,000 0,017 0,087 0,011 0,016 6,602
4 0,777 0,127 0,010 0,077 0,007 0,002 1,376
5 0,364 0,546 0,013 0,052 0,020 0,005 2,188
6 0,732 0,161 0,013 0,076 0,011 0,008 3,464
7 0,700 0,204 0,011 0,073 0,010 0,003 1,770
8 0,522 0,382 0,013 0,062 0,016 0,005 2,363
9 0,684 0,214 0,012 0,073 0,011 0,006 2,735
10 0,661 0,242 0,012 0,071 0,011 0,004 2,039
11 0,589 0,313 0,012 0,066 0,014 0,005 2,384
12 0,661 0,239 0,012 0,071 0,012 0,005 2,484
13 0,645 0,257 0,012 0,070 0,012 0,004 2,191
14 0,617 0,284 0,012 0,068 0,013 0,005 2,371
15 0,650 0,252 0,012 0,070 0,012 0,005
Table 1. Modelled evolution of the population of
teasels Dipsacus sylvestris. Sizes of the individual
components of population, the total size of popula-
tion, relative distribution of the individual compo-
nents of population and the relative increments of
sizes.

same positions asA is primitive. The evolution of the population thus necessarily approaches a stable

structure.

3.61. Nonlinear model of population. Investigate in detail the evolution of the population for a

non-linear model from the text book (1.12) and the values andK = 1 and

i) rate of growth r = 1 and the initial state p(1) = 0, 2
ii) rate of growth r = 1 and the initial state p(1) = 2
iii) rate of growth r = 1 and the initial state p(1) = 3
iv) rate of growth r = 2, 2 and the initial state p(1) = 0, 2
v) rate of growth r = 3 and the initial state p(1) = 0, 2

Compute some �rst members and predict the future growth of the population.
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Solution.

i) The �rst ten members of the sequence p(n) is in the following table. >From there we can

see that the size of the population converges to the value 1.

n p(n)

1 0,2
2 0,36
3 0,5904
4 0,83222784
5 0,971852502
6 0,999207718
7 0,999999372

Graph for the evolution of the population for r = 1 and p(1) = 0, 2:
ii) For the initial value p(1) = 2 we obtain p(2) = 0 and after that the population does not

change.

iii) For p(1) = 3 we obtain

n p(n)

1 3
2 -15
3 -255
4 -65535

and from there we see that the populations decreases under all bounds.

iv) For the measure of growth r = 2, 2 and the initial state p(1) = 0, 2 we obtain

n p(n)

1 0,2
2 0,552
3 1,0960512
4 0,864441727
5 1,122242628
6 0,820433675
7 1,144542647
8 0,780585155
9 1,157383491
10 0,756646772
11 1,161738128
12 0,748363958
!3 1,162657716
14 0,74660417

We see that instead of convergence we obtain in this case an oscillation � after some time

the population jumps between the values 1,16 and 0,74. The graph of the evolution of the

population for r = 2, 2 and p(1) = 0, 2 then looks as follows:

v) For the rate of growth r = 3 and the initial state p(1) = 0, 2 we obtain
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n p(n)

1 0,2
2 0,68
3 1,3328
4 0,00213248
5 0,008516278
6 0,033847529
7 0,131953152
8 0,475577705
9 1,223788359
10 0,402179593
11 1,123473097
12 0,707316989
13 1,328375987
14 0,019755658
15 0,077851775
16 0,293224403
17 0,91495596
18 1,148390614
19 0,63715945
20 1,330721306
21 0,010427642
22 0,041384361
23 0,160399447

In this case the situation is more complicated � the population starts oscillating between

more values. In order to be able to see between what values, we would need to compute

more members. For the members from the table we have the following graph:

□

3.62. In a lab an experiment is being carried on with the same probability of success and failure. If

the experiment succeeds, the probability of the success of the second experiment is 0, 7. If the �rst
experiment fails, the probability of the success of the second experiment is only 0, 6.

This process goes on, that is, if the previous experiment was successful, the probability of the next

success is 0, 7 and if the previous experiment was a failure, then the probability of the next success

is 0, 6. For any n ∈ N determine the probability that the n-th experiment is successful.

Solution. Let us introduce the probabilistic vector

xn = (
x1
n, x

2
n

)T
, n ∈ N,

where x1
n is the probability of the success of the n-th experiment and x

2
n = 1 − x1

n is the probability

of its failure. According to the statement it is

x1 =
(

1/2
1/2

)
and clearly also

x2 =
(

0, 7 0, 6
0, 3 0, 4

)
·
(

1/2
1/2

)
=
(

13/20
7/20

)
.

Using the notation

T =
(

7/10 3/5
3/10 2/5

)
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it holds that

(3.7) xn+1 = T · xn, n ∈ N,

because the probabilistic vector xn+1 depends only on xn and this dependency is identical for both x2

and x1. >From the relation (∥3.7∥) we directly have

(3.8) xn+1 = T · T · xn−1 = · · · = T n · x1, n ≥ 2, n ∈ N.

Therefore we express T n, n ∈ N. It is a Markov process, and thus 1 is an eigenvalue of the matrix T .

The second eigenvalue 0, 1 follows for instance from the fact that the trace (the sum of the elements

on the diagonal) equals to the sum of the eigenvalues (every eigenvalue is counted with its algebraic

multiplicity). To these eigenvalues then correspond the eigenvectors(
2
1

)
,

(
1

−1

)
.

We thus obtain

T =
(

2 1
1 −1

)
·
(

1 0
0 1/10

)
·
(

2 1
1 −1

)−1

,

that is, for n ∈ N we have

T n =
(

2 1
1 −1

)
·
(

1 0
0 1/10

)n
·
(

2 1
1 −1

)−1

=

=
(

2 1
1 −1

)
·
(

1n 0
0 10−n

)
·
(

2 1
1 −1

)−1

.

Substitution (
2 1
1 −1

)−1

= 1
3

(
1 1
1 −2

)
and multiplication yields

T n = 1
3

(
2 + 10−n 2 − 2 · 10−n
1 − 10−n 1 + 2 · 10−n

)
, n ∈ N.

>From there, from (∥3.7∥) and from (∥3.8∥) it follows that

xn+1 =
(

2
3

− 1
6 · 10n

,
1
3

+ 1
6 · 10n

)T
, n ∈ N.

Specially, we see that for big n the probability of success of the n-th experiment is close to 2/3. □

3.63. Student on a student dormitories is very "socially tired" (as a result, he is not able to fully

perceive the universe around him and coordinate his movements). In this state he decides that he

invites on the party-in-progress his friend which lives at the end of the hall. But, at the other end

of the hall there lives somebody he de�nitely does not want to invite. But he is so �tired�, that he

realises the decision to make a step in a desired direction only in 53 of 100 attempts (in the remaining

47, he makes a step in exactly the opposite direction). Assuming that he starts in the middle of the

hall and that the distance to both of the doors at the ends corresponds to twenty of his awkward steps,

determine the probability that he �rst reaches the desired door. ⃝
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3.64. Let n ∈ N of persons be playing the so-called "silent post". For simplicity assume that the �rst

person whispers to the second person exactly one (arbitrarily chose) of the words �yes�, �no�. The

second person then whispers to the third one that of the words �yes�, �no� the second person thinks

that the �rst person whispered. This then continues to the n-th person. If the probability that the

word changes (on purpose, accidentally) to the other word during one transmission equals p ∈ (0, 1),
determine for big n ∈ N the probability that the n-th person correctly receives the word transmitted

by the �rst person.

Solution. We can view this problem as a Markov chain with two states called Yes and No, and we

say that the process is in the Yes state in the time m ∈ N, if the m-th person thinks that the received
word is �yes�. For the order of the states Yes, No the probabilistic matrix is

T =
(

1 − p p

p 1 − p

)
.

The product of the matrix T m−1 and the probabilistic vector of the initial choice of the �rst person

then gives the probability of what the m-th person thinks. We don't have to compute the powers of

this matrix, because all the elements of the matrix T are positive numbers. Furthermore, this matrix

is doubly stochastic. Thus we know that for big n ∈ N the probabilistic vector is close to the vector

(1/2, 1/2)T . The probability that the n-th person says �yes� is thus approximately the same as the

probability that the n-th person says �no�, independently of the initial word. For a big number of

participants thus holds that roughly half of them hears �yes� (we repeat that this does not depend on

the initial word).

For completeness let us determine what would be the result if we assumed that the probability of

change from �yes� to �to� is for any person equal to p ∈ (0, 1) and the probability of change from

�no� to �yes� is equal to (in general distinct) q ∈ (0, 1). In this case for the same order of the states
we obtain a probabilistic matrix

T =
(

1 − p q

p 1 − q

)
,

which leads to (for big n ∈ N) to the probabilistic vector close to the vector(
q

p + q
,

p

p + q

)T
,

which for instance follows from the expression of the matrix

T n = 1
p + q

[(
q q

p p

)
+ (1 − p − q)n

(
p −q

−p q

)]
.

Again, with su�ciently many people it does not depend on the initial choice of the word. Simply

speaking, in this model it holds that it does not depend on the initial state, because the people decide

about what the transmitted information is; more precisely, the people themselves decide about the

frequency of appearance of �yes� and �no�, if there is enough of them (and there is no checking

present).

Let us further add that the obtained result was experimentally con�rmed. In psychological ex-

periment there was an individual repeatedly exposed to an event that could have been interpreted in

two ways, and it was being done in time intervals that ensured that the subject still remembered the

previous event. See for instance �T. Havr'anek et al.: Matematika pro biologick'e a l'eka°sk'e v¥dy,

Praha, Academia 1981�, where there is an experiment in which an ambiguous object (say, a drawing
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of a cube which can be perceived from both the bottom and the top) is in �xed time intervals lighted

on. Such process is a Markov chain with the transition matrix(
1 − p q

p 1 − q

)
,

where p, q ∈ (0, 1). □

3.65. In a certain game you can choose one of two opponents. The probability that you beat the

better one is 1/4, while the probability that you beat the worse one is 1/2. But the opponents cannot
be distinguished, thus you do not know which one is the better one. But you await a big number of

games (and for each of them you can choose a di�erent opponent). And of course you want reach the

winning ratio as big as possible. Consider these two strategies:

1. For the �rst game choose the opponent randomly. If you win some game, carry on with the

same opponent; if you lose the game, change the opponent.

2. For the �rst two games, choose (one) opponent randomly. Then for the next two games, if

you lost both the previous games, change the opponent, otherwise stay with the same.

Which of the strategies is better?

Solution. Both strategies are a Markov chain. For simplicity denote the worse opponent by A and

the better opponent by B. In the �rst case for the states �game with A� and �game with B� (in this

order) we obtain the probabilistic transition matrix(
1/2 3/4
1/2 1/4

)
.

This matrix has all elements positive, and thus it su�ces to �nd the probabilistic vector x∞, which is

associated with the eigenvalue 1. It holds that

x∞ =
(

3
5
,

2
5

)T
.

Its components correspond to the probabilities that after a long row of games the opponent is the

player A or player B. Thus we can expect that 60 % of the games will be played against the worse of

the opponents. Because

2
5

= 3
5

· 1
2

+ 2
5

· 1
4
,

there will be roughly 40 %.

For the second strategy, let us use the states �two games in a row with A� and �two games in a

row with B� that lead to the probabilistic transition matrix(
3/4 9/16
1/4 7/16

)
.

We easily determine that now it is

x∞ =
(

9
13
,

4
13

)T
.

Against the worse opponent we would then play (9/4)-times more frequently than against the better
one. Let us recall that for the �rst strategy it was (3/2)-times more frequently. The second strategy
is thus better. Let us also note that for the second strategy roughly 42,3 % of the games are winning

� it su�ces to enumerate

0, 423 .= 11
26

= 9
13

· 1
2

+ 4
13

· 1
4
.
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□

3.66. Petr regularly meets his friend. But he is �well-known� for his bad timekeeping. Bud he is

trying to change, thus it holds that in half of the cases he comes on time and in one tenth of the cases

he comes even sooner than he should, if he was late for the last meeting. But if he was on time or

sooner for the last meeting, he returns back to his �carelessness� and with probability 0, 8 comes late,

and with only 0, 2 he is on time. What is the probability that on the 20-th meeting he comes late,

when on the eleventh he was on time?

Solution. Clearly it is a Markov process with states �Petr came late�, �Petr came on time�, �Petr

came sooner� with the probabilistic transition matrix (with the given order of states)

T =
0, 4 0, 8 0, 8

0, 5 0, 2 0, 2
0, 1 0 0

 .
The eleventh meeting is determined by the probabilistic vector (0, 1, 0)T (we surely know that Petr

came on time). To the twentieth meeting corresponds the vector

T 9 ·
0

1
0

 =
0, 571 578 368

0, 371 316 224
0, 057 105 408

 .
The desired probability is thus 0, 571 578 368 (exactly). Let us add that

T 9 =
0, 571 316 224 0, 571 578 368 0, 571 578 368

0, 371 512 832 0, 371 316 224 0, 371 316 224
0, 057 170 944 0, 057 105 408 0, 057 105 408

 .
>From there we see that it really does not depend on whether he came on the eleventh meeting late

(�rst column), on time (second) or sooner (third). □

3.67. Two students A and B spend every Monday morning by playing a certain computer game.

The person who wins then pays for both of them in the evening in the restaurant. The game can also

be a draw � then each pays for the half. The result of the previous game partially determines the

next game. If a week ago the student A has won, then with the probability 3/4 wins again and with

probability 1/4 it is a draw. Draw is repeated with the probability 2/3 and with probability 1/3 the

next game is won by B. If the student B won a game, then with the probability 1/2 he wins again and

with probability 1/4 student A is the winner of the next game. Determine the probability that today

each of them pays half of the costs, if the �rst game played long time ago was won by A.

Solution. We are actually given a Markov process with the states �the student A wins�, �the game

ends with a draw, �the student B wins� (in this order) with the probabilistic transition matrix

T =
3/4 0 1/4

1/4 2/3 1/4
0 1/3 1/2

 .
We want to �nd the probability of the transition from the �rst state to the second after a big number

n ∈ N of steps (weeks). The matrix T is primitive, because

T 2 =
 9/16 1/12 5/16

17/48 19/36 17/48
1/12 7/18 1/3

 .
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It thus su�ces to �nd the probabilistic eigenvector x∞ of the matrix T associated with the eigenvalue

1. It is easy to compute that

x∞ =
(

2
7
,

3
7
,

2
7

)T
.

We know that the vector x∞ di�ers only very slightly from the probabilistic vector for big n and also

does not depend on the initial state, that is, for big n ∈ N we can set

T n ≈
2/7 2/7 2/7

3/7 3/7 3/7
2/7 2/7 2/7

 .
The desired probability is the element of this matrix on the second position in the �rst column (the

second component of the vector x∞). Thus we have (quite quickly) found the result 3/7. □
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Solutions of the exercises

3.2. Daily diet should contain 3, 9 kg of hay and 4, 3 kg of oat. The costs per foal are then 13, 82K£.
3.3.

3.12.

xn = 1√
21

(
3 + √

21
2

)n
− 1√

21

(
3 − √

21
2

)n
.

3.13. xn = 2
√

3 sin(n · (π/6))− 4 cos(n · (π/6)).
3.14. xn = −3(−1)n − 2 cos(n · (2π/3))− 2

√
3 sin(n · ((2π/3)).

3.15. xn = (−1)n(−2n2 + 8n− 7).
3.24. Leslie matrix of the given model is (the mortality of the �rst group is denoted by a)0 2 2

a 0 0
0 1 0

 .
The stagnation condition corresponds to the fact that the matrix has 1 for the eigenvalue, that is, the polynomial

λ3 − 2aλ− 2a has 1 as its root, that is, a = 1/4.
3.27. ( 5

6
1
5

1
6

4
5

)
.

The matrix has the dominant eigenvalue 1, the corresponding eigenvector is ( 6
5 , 1). Because the eigenvalue is

dominant, the ratio of the viewers stabilises on 6 : 5.

3.30. As in (∥3.29∥) the game ends after three bets. Thus all the powers of A, starting with A3, are identical.

A100 = A3 =


1 7/8 3/4 1/2 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1/8 1/4 1/2 1


3.40. We can use the result of the exercise called Ruining of the player. The probability that the �rst department

is cancelled is according to this exercise equals to

1 −
(

0.46
1−0.46

)5

1 −
(

0.46
1−0.46

)25
.= 0.56.

It was enough to plug in p = 1 − 0.54, y = 10/2 and x = 40/2 to (∥3.6∥). It is thus more clever to choose
the smaller department.

3.50.

• The claim holds. (B := ATA, bij = (i-th row of AT ) · (j -th column of A)= bji = (j -th row of

AT ) · (i-th column of A)=(j -th column of A) · (i-th row of AT )

• The claim does not hold. Consider for instance A =
(

1 1
0 1

)
3.52. 1 0 0

1 −2 0
0 1 1

1 1 0
0 1 −1
0 0 0


3.63. Again it is a special case of the Ruining of the player. It su�ces to reformulate the statement accordingly.

For p = 0, 47, y = 20 and x = 20 from (∥3.6∥) follows the result

0, 917 .=
1 −

(
0,47

1−0,47

)20

1 −
(

0,47
1−0,47

)40 .



Nowwe come back to our view on geometry that we had when

we studied positions of points in the plane in the 5th part of the

�rst chapter, c.f. 1.23. First we will be interested in properties of

objects in the Euclidean space, delimited by points, straight lines,

planes etc. The essential point will be to clarify how their proper-

ties are related to the notion of vectors and whether they depend

on the notion of length of vectors.

In the next part, we will use linear algebra for the study of

objects which are de�ned in a nonlinear way. To do this we will

need a little bit more from the theory of matrices again. The re-

sults will be important later on, while discussing the technique for

optimalization, i.e. searching for extrema of functions.

At the end of this chapter we show how the projectivization

of a�ne spaces help us to get a simpli�cation and stability of algo-

rithms typical for computer graphics.

1. A�ne and euclidean geometry

While we were clarifying the structure of solutions of linear

equations in the �rst part of the previous chapter we

found out in paragraph 3.1 that all solutions of non-

homogeneous systems of linear equations does not

form vector spaces but always arise in such a way that to an one

particular solutionwe add the vector space of solutions of the corre-

sponding homogeneous system. On the other hand, the di�erence

of any two solutions of the nonhomogeneous system is always a

solution of the homogeneous system. This behaviour is similar to

the behaviour of linear di�erence equations, as we have seen in

paragraph 3.14 already.

4.1. A�ne spaces. A direction how to deal with the theory is

given already in the discussion about the geometry of the plane, c.f.

paragraph 1.25 and further. There we described straight lines and

points as sets of solutions of systems of linear equations. Any line

was considered as a one-dimensional subspace, although its points

were described by two coordinates. Parametrically, the line was

de�ned by the sum of a single point (i.e. to a pair of coordinates)

and multiples of a �xed direction vector. Now we will proceed in

the same way in arbitrary dimension.

Standard affine space

Standard a�ne space An is a set of all points in Rn = An

together with an operation which to a point A = (a1, . . . , an) ∈
An and a vector v = (v1, . . . , vn) ∈ Rn = V assigns the point

A+ v = (a1 + v1, . . . , an + vn) ∈ Rn = An.

CHAPTER 4

Analytic geometry

position, incidence, projection

� and we return to matrices again...

A. A�ne geometry

4.1. Find the parametric equation for a line inR3 given by equations

x − 2y + z = 2,
2x + y − z = 5.

Solution. It is obviously su�cient to solve the equation system. How-

ever we can use di�erent approach. We need to �nd non-zero direction

vector ortogonal to normal vectors (1,−2, 1), (2, 1,−1). Cross prod-
uct

(1,−2, 1)× (2, 1,−1) = (1, 3, 5)

gives us such vector. We can notice that triple

(x, y, z) = (2,−1,−2)

satis�es the respective system and we obtain the solution

[2,−1,−2] + t (1, 3, 5) , t ∈ R.

□

4.2. Plane in R4 is given by its parametric equation

ϱ : [0, 3, 2, 5] + t (1, 0, 1, 0)+ s (2,−1,−2, 2) , t, s ∈ R

Find its implicit equation.
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This operation satis�es the following three properties:

(1) A+ 0 = A for all points A ∈ An and the null vector 0 ∈ V ,
(2) A + (v + w) = (A + v) + w for all vectors v,w ∈ V and

points A ∈ An,

(3) for every two pointsA,B ∈ An there exists exactly one vector

v ∈ V such that A + v = B. This vector is denoted by v =
B − A, sometimes also A⃗B.

The underlying vector space Rn is called the di�erence space of

the standard a�ne space An.

We notice a danger of several formal ambiguities. We are

using the same symbol "+" for two di�erent oper-

ations: for adding a vector from the di�erence space

to a point in the a�ne space, and for for summing

vectors in the di�erence space V = Rn. Also we do not introduce
speci�c letters for the set of points in the a�ne space, i.e. An de-

notes both this set of points and also the whole structure de�ning

the a�ne space.

Why do we actually want to distinguish between the set of

points in the a�ne spaceAn and its di�erence space V when both

spaces can be viewed asRn? It is going on fundamental formal step
to understanding the geometry in Rn: The thing is that the geomet-
ric objects like straight lines, points, planes etc. do not depend di-

rectly on the vector space structure of the setRn, and do not depend
at all on the fact that we are working with n�tuples of scalars. We

only need to know what it means to move "straight in a given direc-

tion". For instance, we consider the a�ne plane as an unbounded

board without chosen coordinates but with the possibility to move

about a given vector. When we switch to such abstract view, we

will be able to discuss the "plane geometry" for two-dimensional

subspaces, i.e. planes in higher-dimensional spaces, the geometry

of "Euclidean space" for three-dimensional subspaces etc., without

the need to work with k�tuples of coordinates.

This point of view is present in the following de�nition:

4.2. De�nition. The a�ne spaceA with the di�erence space V is

a set of points P, together with the map
P × V → P, (A, v) 7→ A+ v,

where V is a vector space and our map satis�es the properties

(1)�(3) from the de�nition of the standard a�ne space.

So for a �xed vector v ∈ V we get a translation τv : A → A
as the restricted map

τv : P ≃ P × {v} → P, A 7→ A+ v.

By the dimension of an a�ne space A, we mean the dimension of

its di�erence space.

In sequel we do not distinguish accurately between denoting

the set of points A and the set of vectors P, we talk about points

and vectors of the a�ne space A instead.

It follows immediately form the axioms that for arbitrary

points A,B,C in the a�ne space A
A− A = 0 ∈ V(4.1)

B − A = −(A− B)(4.2)

(C − B)+ (B − A) = C − A.(4.3)

Indeed, (4.1) follows from the fact thatA+0 = 0 and that such vec-
tor is unique (the �rst and the third de�ning property). By adding
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Solution. Our task is to �nd a system of equations with 4 variables

x, y, z, u (because dimension of the space is 4) which are satis�ed by

the coordinates of precisely those points which lie in the plane. Note

that sought system must contain 2 = 4 − 2 linearly independent equa-

tions. We solve the problem by so called elimination of parameters.

Points [x, y, z, u] ∈ ϱ satisfy
x = t + 2s,
y = 3 − s,

z = 2 + t − 2s,
u = 5 + 2s,

where t, s ∈ R. We can express the system as matrix
1 2 −1 0 0 0 0
0 −1 0 −1 0 0 3
1 −2 0 0 −1 0 2
0 2 0 0 0 −1 5

 ,
where the �rst two columns are direction vectors of the plane, followed

by negative identity matrix and �nally the last column is vector of co-

ordinates of point [0, 3, 2, 5]. We expressed the system in such a way

so that it is a system in t, s, x, y, z, u and we move all the unknown

variables to the one side of the equations. We transform obtained ma-

trix using elementary row operations in order to get as much zero-rows

on the left-hand side of the �rst vertical line. Adding (−1)-times the
�rst row and (−4)-times the second row to the third row and adding

twice the second row to the �rst row we obtain
1 2 −1 0 0 0 0
0 −1 0 −1 0 0 3
1 −2 0 0 −1 0 2
0 2 0 0 0 −1 5

 ∼

∼


1 2 −1 0 0 0 0
0 −1 0 −1 0 0 3
0 0 1 4 −1 0 −10
0 0 0 −2 0 −1 11

 .
Which implies result

x + 4y − z − 10 = 0,
−2y − u + 11 = 0.

Coe�cients on the right-hand side of the �rst vertical line,

respective to the rows which are zero-rows on the left-hand

side of that line, are the coe�cients of general equations of a planes.

Note that if we expressed the original system as a matrix
1 0 0 0 1 2 0
0 1 0 0 0 −1 3
0 0 1 0 1 −2 2
0 0 0 1 0 2 5

 ,
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successively B−A andA−B toA, according to the second de�n-

ing property we obtain obviously A again. So we added the null

vector which proves (4.2). Similarly, (4.3) follows from the de�n-

ing property 4.1 (2) and the uniqueness.

Let us remark that the choice of one �xed point A0 ∈ A deter-

mines a bijection between V andA. So for a �xed basis u in V we

get for every point A ∈ A a unique expression

A = A0 + x1u1 + · · · + xnun.

We talk about an a�ne coordinate system (A0; u1, . . . , un) given

by the origin of the a�ne coordinate system A0 and the basis u of

the corresponding di�erence space, or also about an a�ne frame

(A0, u).

We can summarize the situation as follows: A�ne coordinates

of a point A in the frame (A0, u) are the coordinates of the vector

A− A0 in the basis u of the di�erence space V .

The choice of an a�ne coordinate system identi�es each

n-dimensional a�ne space A with the standard a�ne space An.

4.3. A�ne subspaces. If we choose only such points inA which

have some of in advance chosen coordinates equal to

zero (for instance the last one), we obtain again a set

which behaves as an a�ne space. Indeed, this is the

spirit of the following de�nition of the so called a�ne

subspaces.

Subspaces of an affine space

De�nition. The nonempty subset Q ⊂ A of an a�ne space A
with a di�erence space V is called an a�ne subspace in A if the

subsetW = {B −A;A,B ∈ Q} ⊂ V is a vector subspace and for

any A ∈ Q, v ∈ W we have A+ v ∈ Q.

It is important to include both of the conditions in the de�ni-

tion since it is easy to �nd examples of sets which satisfy the �rst

condition but not the second one. Have a think about a straight line

in the plane with one removed point.

For an arbitrary set of pointsM ⊂ A in an a�ne space with a

di�erence space V , we de�ne the vector space

Z(M) = ⟨{B − A;B,A ∈ M}⟩ ⊂ V

of all vectors generated by the di�erences of points inM.

In particular, V = Z(A) and every a�ne subspace Q ⊂ A
itself satis�es the axioms for an a�ne space with the di�erence

space Z(Q).
Directly from the de�nitions we also get that the intersection

of any set of a�ne subspaces is either an a�ne subspace or the

empty set.

The a�ne subspace ⟨M⟩ in A generated by a nonempty set

M ⊂ A is the intersection of all a�ne subspaces which contain all

points of the subsetM.

Affine hull and parametric description of a subspace

The a�ne subspaces can be nicely described by their di�er-

ence spaces if we choose a point A0 ∈ M in a generating set M.

Indeed, we get ⟨M⟩ = {A0 + v; v ∈ Z(M) ⊂ Z(A)}, i.e. to gen-
erate the a�ne subspace we take the vector subspace Z(M) in the

di�erence space generated by all di�erences of points in M, and

we add this vector space to an arbitrary point in M. We talk also

about the a�ne hull of the set of pointsM in A.

209

where x, y, z, u remains on the left-hand side of the equations, similar

transformation
1 0 0 0 1 2 0
0 1 0 0 0 −1 3
0 0 1 0 1 −2 2
0 0 0 1 0 2 5

 ∼


1 0 0 0 1 2 0
0 1 0 0 0 −1 3

−1 −4 1 0 0 0 −10
0 2 0 1 0 0 11


gives us the result

−x − 4y + z = −10,
2y + u = 11.

When expressing system as a matrix, it is important to take into con-

sideration whether the vertical line separates left-hand side from right-

hand side. As we saw in this exercise, parameter elimination method

can be long-winded and it is not di�cult to make a mistake along the

way.

Another solution All we wanted to obtain in fact, are two linearly

independent normal vectors, i.e. vectors perpendicular to (1, 0, 1, 0),
(2,−1,−2, 2). If we �guessed� that these vectors could be for exam-
ple (0, 2, 0, 1), (−1, 0, 1, 2), inputting x = 0, y = 3, z = 2, u = 5 to

the equations

2y + u = a,

−x + z + 2u = b

we get a = 11, b = 12, and the sought implicit expression is

2y + u = 11,
−x + z + 2u = 12.

□

4.3. Find a parametric equation of the plane passing through points

A = [2, 1, 1], B = [3, 4, 5], C = [4,−2, 3].

Then �nd a parametric equation of the open half-plane containing the

point C and bounded by line going through the points A, B.

Solution. We need one point and two (linearly independent) vectors

lying in this plane for the parametric equation of the plane. It is enough

to choose the point A and vectors B − A = (1, 3, 4) and C − A =
(2,−3, 2), which are obviously independent. A point [x, y, z] lies in
the plain if and only if there exist numbers t, s ∈ R so that

x = 2 + 1 · t + 2 · s, y = 1 + 3 · t − 3 · s, z = 1 + 4 · t + 2 · s;
which means the parametric equation is

[2, 1, 1] + t (1, 3, 4)+ s (2,−3, 2) , t, s ∈ R.

Setting s = 0 gives us a line passing through points A, B. For

t = 0, s ≥ 0 we get a ray with initial point A and passing through C.

Particular but arbitrarily choosen t ∈ R and variable s ≥ 0 gives us

a ray initiated on the border line and going through the half-plane in
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On the other hand, whenever we choose a subspace U in

the di�erence space Z(A) and a �xed point A ∈ A the subset

A+U , created by all possible sums of the point A and all vectors

in U , is an a�ne subspace. This approach leads to the notion of

parametrization of subspaces:

Let Q = A + Z(Q) is an a�ne subspace in An and

(u1, . . . , uk) is a basis of Z(Q) ⊂ Rn. Then the expression of

the subspace

Q = {A+ t1u1 + · · · + tkuk; t1, . . . , tk ∈ R}
is called the parametric description of the subspace Q.

We have seen already another way how to prescribe a�ne

spaces: If we choose a�ne coordinates, then the di�erence space

may be described by a homogeneous system of linear equations

in these coordinates. By inserting the coordinates of one point of

our subspaceQ into the system of equations we get the right-hand

side of the nonhomogeneous system with the same matrix, and the

whole subspaceQ is exactly the set of solutions of this system. The

description of the subspaceQ by a system of equations in given co-

ordinates is called an implicit description of the subspace Q.

The following general proposition says that we can prescribe

all a�ne subspaces in this way, and so it also shows the geometric

nature of solutions of systems of linear equations.

4.4. Theorem. Let (A0; u) be an a�ne coordinate system in a

n-dimensional a�ne space A. In these coordinates,

a�ne subspaces of dimension k in A are exactly the

sets of solutions of solvable systems of n− k linearly
independent equations in n variables.

Proof. Let us consider an arbitrary solvable system of n− k

linearly independent equations αi(x) = bi , where bi ∈ R, i =
1, . . . , n− k. If A = (a1, . . . , an)

T ∈ Rn is a �xed solution of this
(nonhomogeneous) system and ifU ⊂ Rn is the vector space of all
solutions of the homogenized system αi(x) = 0, then the dimen-

sion of U is k and the subset of all solutions of the given system

is of the form {B;B = A + (y1, . . . , yn)
T , y = (y1 . . . , yn)

T ∈
U} ⊂ Rn, c.f. 3.1. So the corresponding a�ne subspace is de-

scribed parametrically by the initial coordinates (A0; u).
In the opposite direction, let us consider an arbitrary a�ne

subspace Q ⊂ An, let us choose a point B therein, and let us

consider this point to be the origin of an a�ne coordinate system

(B, v) for the a�ne space A. Since Q = B + Z(Q), we need to
describe the di�erence space of the subspace Q as a subspace of

solutions of a homogeneous system of linear equations. Therefore

let us choose a basis v of Z(A) such that the �rst k vectors form

a basis of Z(Q). Then in these coordinates the vectors v ∈ Z(Q)
are given by equations

αj (v) = 0, j = k + 1, . . . , n,

where αi are linear forms from the so called dual basis to v, i.e.

functions which assign to a vector the corresponding coordinates

in our basis v.

Hence our vector subspace Z(Q) of dimension k in the

n-dimensional space Rn is given indeed as a solution of a homo-

geneous system of n − k independent equations. The description

of the chosen a�ne subspace in our newly chosen coordinate

system (B; v) is therefore given by a system of homogeneous

linear equations.
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which point C lies. That means that the sought open half-plane can be

expressed parametrically as

[2, 1, 1] + t (1, 3, 4)+ s (2,−3, 2) , t ∈ R, s > 0.

□

4.4. Determine relative position of lines

p : [1, 0, 3] + t (2,−1,−3) , t ∈ R,

q : [1, 1, 3] + s (1,−1,−2) , s ∈ R.

Solution. We will �nd common points of given lines (subspaces inter-

section). We get a system

1 + 2t = 1 + s,

0 − t = 1 − s,

3 − 3t = 3 − 2s.

>From the �rst two equations we get that t = 1, s = 2. However,

this does not satisfy the third equation. The system does not have a

solution. Direction vector (2,−1,−3) of the line p is not a multiple

of direction vector (1,−1,−2) of the line q which means that the lines
are not parallel. Hence, they are skew lines. □

4.5. Find all numbers a ∈ R so that lines

p : [4,−4, 8] + t (2, 1,−4) , t ∈ R,

q : [a, 6,−5] + s (1,−3, 3) , s ∈ R

are intersecting.

Solution. Lines are intersecting if and only if the system

4 + 2t = a + s,

−4 + t = 6 − 3s,
8 − 4t = −5 + 3s

has exactly one solution. Expressing the system as a matrix (the �rst

column corresponding to t, the second to s), we solve 2 −1 a − 4
1 3 10

−4 −3 −13

 ∼
 1 3 10

2 −1 a − 4
−4 −3 −13


∼
 1 3 10

0 −7 a − 24
0 1 3

 .
We see that the system has exactly one solution if and only if the second

row is a multiple of the third row. This property is satis�ed only for

a = 3. Let us add that the point of intersection of the lines is [6,−3, 4].
□
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It remains to copewith the consequences of transition from the

former coordinate system (A; u) to the our adapted system (B; v).
It follows from a general consideration about transformations of

coordinates in the following paragraph that the �nal description of

the subspace will be again via system of linear equations, but this

time nonhomogeneous in general. □
4.5. Coordinate transformations. Any two arbitrarily chosen

a�ne coordinate systems (A0, u), (B0, v) di�er in the

basis of the di�erence spaces and in that the origin of

the latter one is translated about the vector (B0 −A0).

Hence we can read o� the equations for the corre-

sponding coordinate transformations from the rule for a transfor-

mation of a point X ∈ A

X = B0 + x′1v1 + · · · + x′nvn
= B0 + (A0 − B0)+ x1u1 + · · · + xnun.

Let y = (y1, . . . , yn)
T denotes the column of coordinates of

the vector (A0 −B0) in the basis v, and letM = (aij ) be the matrix

expressing the basis u in terms of the basis v. Then

x′1 = y1 + a11x1 + · · · + a1nxn

...

x′n = yn + an1x1 + · · · + annxn

i.e.in matrix notation

x′ = y +M · x.
As an example, we may express the in�uence of such a change

of basis on the coordinates of subsets described by systems

of linear equations. Let our system in coordinates (A0; u)
has the form

S · x = b

where S is the matrix of the system. Then

S · x = S ·M−1 · (y +M · x)− S ·M−1 · y = b.

Thus in the new coordinates (B0; v) considered above, the system
will have the form

(S ·M−1 ) · x′ = b′ = b + (S ·M−1 ) · y.
Therefore, if a subset is described by a system of linear equa-

tions in an one a�ne frame, then it is so also in the all other a�ne

frames. This �nishes fully the proof of the previous proposition.

4.6. Examples of a�ne subspaces. (1) The one-dimensional

(standard) a�ne space is the subset of all points of

a real straight line A1. Its di�erence space is an one-

dimensional vector space R (and the supporting set

is also R). The a�ne coordinates are obtained by a

choice of an origin and a scale (i.e. a basis in the vector space R).
All proper a�ne spaces are 0-dimensional, they are exactly formed
by all points of the real straight line R.
(2) The two-dimensional (standard) a�ne space is a set of all points

in the space A2 with the di�erence space R2. (The supporting set

isR2.) The a�ne coordinates are obtained by a choice of an origin

and two linearly independent vectors (directions and scales). The

proper subspaces then are all points and straight lines in the plane

(0-dimensional and 1-dimensional). The lines are prescribed by a
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4.6. In R3, determine the relative position of a line p de�ned implic-

itly by
x + y − z = 4,
x − 2y + z = −3

and a plane ϱ : y = 2x − 1.

Solution. Normal vector ϱ is (2,−1, 0) (consider ϱ : 2x−y+0z = 1).
It can be seen that

(1, 1,−1)+ (1,−2, 1) = (2,−1, 0),

which means that the normal vector of the plane ϱ is a linear com-

bination of the p normal vectors. Vector de�ning the line (given by

non-zero direction vector perpendicular to the normal vectors) lies in

a subspace of the plane ϱ (direction vector is perpendicular to the vec-

tor (2,−1, 0)). Therefore we know that the line p is parallel to the

plane ϱ. Now we have to �nd whether they intersect (meaning that p

lies in ϱ). System of equations

x + y − z = 4,
x − 2y + z = −3,

2x − y = 1

has in�nitely many solutions, because by suming up the �rst two equa-

tions we get the third one. Line p lies in plane ϱ. □
The following exercise is a typical vector spaces intersection exer-

cise. Reader should be able to solve this exercise. We

recommend not to continue in reading this book unless

it is so.

4.7. Find intersection of subspacesQ1 andQ2, where

Q1 : [4,−5, 1,−2] + t1 (3, 5, 4, 2)+ t2 (2, 4, 5, 1)+ t3 (0, 3, 1, 2) ,

Q2 : [4, 4, 4, 4] + s1 (0,−6,−2,−4)+ s2 (−1,−5,−3,−3) ,

for t1, t2, t3, s1, s2 ∈ R.

Solution. Point X = [x1, x2, x3, x4] ∈ R4 lies inQ1 ∩Q2 if and only

if 
x1
x2
x3
x4

 =


4

−5
1

−2

+ t1


3
5
4
2

+ t2


2
4
5
1

+ t3


0
3
1
2


for some numbers t1, t2, t3 ∈ R and, as well,

x1
x2
x3
x4

 =


4
4
4
4

+ s1


0

−6
−2
−4

+ s2


−1
−5
−3
−3


for some s1, s2 ∈ R. We get an equation

t1


3
5
4
2

+ t2


2
4
5
1

+ t3


0
3
1
2

 =


4 − 4
4 + 5
4 − 1
4 + 2

+ s1


0

−6
−2
−4

+ s2


−1
−5
−3
−3

 .
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choice of a point and one generator of direction, i.e. a vector from

the corresponding di�erence space (so called parametric de�nition

of the straight line).

(3) The three-dimensional (standard) a�ne space is a set of all

points in the space A3 with the di�erence space R3. The a�ne

coordinates are obtained by a choice of an origin and three linearly

independent vecors (directions and scales). The proper a�ne sub-

spaces are then all points, straight lines and planes (0-dimensional,
1-dimensional and 2-dimensional).
(4) The subspace of all solutions of one linear equation a · x = b

for an unknown point [x1, . . . , xn] ∈ An, known nonzero vector of

coe�cients (a1, . . . , an) and a scalar b ∈ R is an a�ne subspace

of dimension n−1 (we also say that the subspace is of codimension
1), i.e. so called hyperplane in An.

4.7. A�ne combinations of points. Let us now introduce an

analogue of the linear combination of vectors. Let

A0, . . . , Ak be points in the a�ne space A. Their

a�ne hull ⟨{A0 . . . , Ak}⟩ can be written as

{A0 + t1(A1 − A0)+ · · · + tk(Ak − A0); t1, . . . , tk ∈ R}
and in any a�ne coordinates (i.e. each point Ai is expressed by a

column of scalars) we can write the same set as

⟨A0, . . . , Ak⟩ = {t0A0 + t1A1 + · · · + tkAk; ti ∈ R,
k∑
i=0

ti = 1}.

Affine combinations of points

In general, by formulae t0A0 + t1A1 + · · · + tkAk with

coe�cients satisfying
∑k
i=0 ti = 1 we mean the points A0 +∑k

i=1 ti(Ai − A0), and we all them the a�ne combinations of

points.

The points A0 . . . , Ak are in a general position if they gen-

erate a k-dimensional a�ne subspace. It is easy to see from our

de�nitions that this happens if and only if for each Ai the vectors

arose as di�erences of this point Ai and all other vectors Aj are

linearly independent. We also observe that an assignment of a se-

ries of (dimA)+ 1 points in a general position is equivalent to the

de�nition of an a�ne frame with the origin in the �rst of them.

4.8. Simplices. For points in an a�ne space the a�ne combina-

tion is a similar construction as the linear combination for vectors

in a vector space. Indeed, the a�ne subspace generated by points

A0 . . . , Ak is equal to the set of all a�ne combinations of its gener-

ators. We can generalize also the notion "to lie on the line between

two points". In the two-dimensional case we can imagine the inte-

rior of a triangle. In general we proceed as follows:

k�dimensional simplices

Let A0, . . . , Ak be k + 1 points in a general position in an

a�ne space A. The set 1 = 1(A0, . . . , Ak) de�ned as the set of

all a�ne combinations of points Ai with nonnegative coe�cients

only, i.e.

1 = {t0A0 + t1A1 + · · · + tkAk; ti ∈ [0, 1] ⊂ R,
k∑
i=0

ti = 1},

is called a k�dimensional simplex generated by the points Ai .
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Using matrix notation (variables are t1, t2, t3, s1, s2 respectively and

we move vectors corresponding to s1 and s2 to the left-hand side) we

solve by row operations
3 2 0 0 1 0
5 4 3 6 5 9
4 5 1 2 3 3
2 1 2 4 3 6

 ∼


3 2 0 0 1 0
0 2 9 18 10 27
0 7 3 6 5 9
0 −1 6 12 7 18

 ∼

· · · ∼


3 0 0 0 0 0
0 2 0 0 0 0
0 0 1 2 0 3
0 0 0 0 1 0

 .
We can see that t1 = t2 = s2 = 0 and for s1 = t ∈ R we have

t3 = 3 − 2t. Note that for determination ofQ1 ∩Q2 it is su�cient to

know either t1, t2, t3, or s1, s2. Let's go back to expression
x1
x2
x3
x4

 =


4
4
4
4

+ s1


0

−6
−2
−4

+ s2


−1
−5
−3
−3

 =


4
4
4
4

+ t


0

−6
−2
−4

 .
Intersection of given subspaces is line (s = −2t)

[4, 4, 4, 4] + s (0, 3, 1, 2) , s ∈ R.

For checking correctness of our solution we can substitute
x1
x2
x3
x4

 =


4

−5
1

−2

+ t1


3
5
4
2

+ t2


2
4
5
1

+ t3


0
3
1
2



=


4

−5
1

−2

+ (3 − 2t)


0
3
1
2

 =


4
4
4
4

+ t


0

−6
−2
−4

 .
□

4.8. Decide whether points [0, 2, 1], [−1, 2, 0], [−2, 5, 2] and

[0, 5, 4] in R3 all lie in the same plane.

Solution. Arbitrary pair of given points in R3 de�nes a vector (see

de�nition of a�ne space; its coordinates are given respectively by dif-

ferences of coordinates of two points). The fact that four points lie in

the same plane is equivalent to the fact that three vectors given by one

chosen point and one of the other three points are linearly dependent.

We can choose for example point [0, 2, 1] (regardless of the choice),
then we consider vectors [0, 2, 1] − [−1, 2, 0] = (1, 0, 1), [0, 2, 1] −
[−2, 5, 2] = (2,−3,−1) and [0, 2, 1] − [0, 5, 4] = (0,−3,−3). We

can see that the sum of twice the �rst vector and the third vector is

equal to the second vector and the vectors are linearly dependent (in
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The one�dimensional simplex is a line segment, the two�

dimensional simplex is a triangle, the zero�dimensional simplex

is a point.

We notice that each k�dimensional simplex has exactly k + 1
faces which are de�ned by equations ti = 0, i = 0, . . . , k. We

see directly from the de�nition that the faces are also simplices,

and their dimension is k − 1. We talk about the boundary of the

simplex. For instance, the boundary of a triangle is formed by the

three edges, and the boundary of each edge is formed by the two

vertices.

The description of a subspace as a set of a�ne combinations

of points in a general position is equivalent to the parametric de-

scription. We work similarly with the parametric description of

simplices.

4.9. Convex sets. The subsetM of an a�ne space is called convex

if and only if for any two pointsA,B ∈ M the set contains also the

whole line segment 1(A,B). We see directly from the de�nition

that each convex set with k+1 points in a general position contains
also the whole simplex de�ned by these points (A formal proof is

a part of poof of the following proposition).

The examples of convex sets are

(1) the empty set,

(2) a�ne subspaces,

(3) line segments, rays p = {P + t · v; t ≥ 0},
(4) more generally k�dimensional subspaces

α = {P + t1 · v1 + · · · + tk · vk; t1, . . . , tk ∈ R, tk ≥ 0},
(5) angles in two-dimensional subspaces

β = {P + t1 · v1 + t2 · v2; t1 ≥ 0, t2 ≥ 0}.
Directly from the de�nition, it also follows that an intersection

of an arbitrary system of convex sets is a convex set. The intersec-

tion of all convex sets containing given setM is called the convex

hull K(M) of the setM.

Theorem. The convex hull of any subsetM ⊂ A is

K(M) = {t1A1 + · · · + tsAs;
s∑
i=1

ti = 1, ti ≥ 0, Ai ∈ M}

Proof. Let S denotes the set of all a�ne combinations on

the right-hand side of the equation we want to

prove. First we check that S is convex. There-

fore, we choose two series of parameters ti ,

i = 1, .., s1, t′j , j = 1, . . . , s2 with the desired properties.
Without loss of generality, we may assume that s1 = s2 and

that the same points from M there appear in both combinations

(otherwise we simply add summands with zero coe�cients). Let

us consider an arbitrary point on the line segment given by vertices

de�ned by the two combinations:

ε(t1A1 + · · · + tsAs)+ (1 − ε)(t′1A1 + · · · + t′sAs), 0 ≤ ε ≤ 1.

Obviously any point of thise line segment lies in S.

It remains to show that the complex hull of the points

A1, . . . , As cannot be smaller than S. The points Ai themselves

correspond to the choice of parameters tj = 0 for all j ̸= i

and ti = 1. Let us assume that the claim holds for all sets

with s − 1 points at most. It means that the convex hull of the

points A1, . . . , As−1 is (according to the assumption) formed
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other words, rank of matrix constructed by taking these vectors as rows

is less than 3; in this case we have matrix1 0 1
2 −3 −1
0 −3 −3

 ,
which has rank of 2). Hence, given points lie in the same plane. □

4.9. Into how many parts can three planes slice a space (R3)? Give

an example of planes position for every case.

4.10. Decide whether point [2, 1, 0] lies within convex hull of points
[0, 2, 1], [1, 0, 1], [3,−2,−1], [−1, 0, 1].

Solution. We form nonhomogeneous linear system, for coe�cients t1,

t2, t3, t4, a�ne combination of given points, which gives the �rst point

(they are determined unambiguously if the points are not coplanar).
0 1 3 −1
2 0 −2 0
1 1 −1 1
1 1 1 1



t1
t2
t3
t4

 =


2
1
0
1

 .
The last equation says it is an a�ne combination. Solving it, we obtain

(t1, t2, t3, t4) = (1, 0, 1/2,−1/2), so it is not a convex combination.
□

4.11. In R3 you are given tetrahedron ABCD, where A = [4, 0, 2],
B = [−2,−3, 1], C = [1,−1,−3], D = [2, 4,−2].

a) Determine its volume.

b) Decide, whether point X = [0,−3, 0] lies inside this tetra-
hedron.

Solution. a) Volume of a tetrahedron is one sixth of volume of par-

allelepiped, of which three edges from the point A are B − A =
(−6,−3,−1), C − A = (−3,−1,−5) and D − A = (−2, 4,−4)
and it is given by absolute value of determinant∣∣∣∣∣∣

−6 −3 −1
−3 −1 −5
−2 4 −4

∣∣∣∣∣∣ = −124.

Thus, the volume of the tetrahedron is 124
6 . b) Given point does not lie

inside the tetrahedron. We express X as an a�ne combination of its

vertices (by solving system of four linear equation in four unknowns

a, b, c a d given by equality X = aA+ bB + cC + dD), and we get

X = 1
4A + 1

2B + 1
2C − 1

4D. This means that X does not lie in the

tetrahedron, i.e. in convex hull of points A, B, C andD (a, b, c and d

would have to be inside inerval ⟨0, 1⟩). □
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exactly by the combinations from the right side of the equa-

tion we want to prove, where ts = 0. Now consider a point

A = t1A1 + · · · + tsAs ∈ S, ts < 1, and a�ne combinations

ε(t1A1 + · · · + ts−1As−1)+ (1 − ε(1 − ts))As, 0 ≤ ε ≤ 1
1−ts .

It is a line segment with vertices given by parameters ε = 0
(the point As) and ε = 1/(1 − ts) (a point in the convex hull of

A1, . . . , As−1). The point A is an inner point of this line segment

with the parameter ε = 1, and thus A lies in the complex hull of

A1, . . . , As . □

The convex hulls of �nite sets are called convex polyhedrons.

If and only if the vertices A0, . . . , Ak de�ning the convex polyhe-

dron are in a general position, we get a k�dimensional simplex. In

the case of a simplex, the expression of any of its points as an a�ne

combination of the de�ning vertices is unique.

A speci�c example are the convex polyhedrons de�ned by one

point and a �nite number of vectors: Let u1, . . . , uk be arbitrary

vectors in the di�erence space Rn, A ∈ An a point. A paral-

lelepiped Pk(A; u1, . . . , uk) ⊂ An is the set

Pk(A; u1, . . . , uk) = {A+ c1u1 + · · · + ckuk; 0 ≤ ci ≤ 1}.
If the vectors u1, . . . , uk are independent, we talk about a k�

dimensional parallelepipedPk(A; u1, . . . , uk) ⊂ An. It is obvious

from the de�nition that the parallelepipeds are convex. In fact they

are the convex hulls of their vertices.

4.10. Examples of standard a�ne exercises. (1) To �nd a para-

metric description of an implicitly given subspace

and vice versa:

Finding a particular solution of a nonhomoge-

neous system and a fundamental solution of the ho-

mogenized system, we get (in the coordinates in which the equa-

tions have been set) exactly the desired parametric description. In

the opposite direction, if we write the parametric description in co-

ordinates and then we eliminate the free parameters t1, . . . , tk , we

get exactly the equations de�ning the given subspace implicitly.

(2) To �nd the subspace generated by several subspaces

Q1, . . . ,Qs (of di�erent dimensions in general, e.g. to �nd a

plane in R3 given by a straight line and a point, by three points

etc.), and to de�ne this subspace implicitly or parametrically:

The resulting subspace Q is always determined by one �xed

point Ai in a subspace Qi and by the sum of all di�erence spaces.

For instance,

Q = A1 + (Z({A1, . . . , Ak})+ Z(Q1)+ · · · + Z(Qs)).

If the subspaces are given implicitly, it is possible to convert them

into the parametric form �rst. Nevertheless, also di�erent methods

are advantageous in some concrete situations. Notice that we really

need to use one point of each from the subspaces. For example, two

parallel lines in a plane generate the whole plane but they share the

same one�dimensional di�erence space.

(3) To �nd the intersection of the subspaces Q1, . . . ,Qs:

If they are given in the implicit form, it is su�cient to unify all

equations into one system (and to leave out the linearly dependent).

If the system that has arisen is insolvable, then the intersection is

empty. In the opposite case, we get an implicit description of the

a�ne subspace which is the intersection we are searching for.
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4.12. A�ne transformation of point coordinates

Point X coordinates are expressed as [2, 2, 3] in a�ne basis

{[1, 2, 3], (1, 1, 1), (1,−1, 2), (2, 1, 1)} (in R3). De-

termine its coordinates in standard basis, i.e. in basis

{[0, 0, 0], (1, 0, 0), (0, 1, 0), (0, 0, 1)}.
Solution. Coordinates [2, 2, 3] in basis {[1, 2, 3], (1, 1, 1), (1,−1, 2), (2, 1, 1)}
give us [1, 2, 3]+2·(1, 1, 1)+2·(1,−1, 2)+3·(2, 1, 1) = [11, 5, 12]
coordinates of point X in standard basis. □

4.13. A�ne transformation of mapping. Find a�ne mapping f in

coordinate system with basis u = {(1, 1), (−1, 1)} and origin [2, 0],
which is de�ned as

f (x1, x2) =
(

2 1
0 1

)(
x1
x2

)
+
(

1
1

)
in standard basis in R2.

Solution. Change of basis matrix from basis u to the standard basis is(
1 −1
1 1

)
.

We get the transformation matrix in basis ([2, 0], u) by �rst transform-
ing coordinates in basis ([2, 0], u) to the standard basis, i.e. to basis

([0, 0], (1, 0), (0, 1)), then we apply transformation matrix f in the

standard basis and in the end we transform back to the coordinates in

basis ([2, 0], u). Transformation equations for changing coordinates

y1, y2 in basis ([2, 0], u) to coordinates x1, x2 in standard basis are(
x1
x2

)
=
(

1 −1
1 1

)(
y1
y2

)
+
(

2
0

)
.

And hereby we have(
y1
y2

)
=
(

1 −1
1 1

)−1 ((
x1
x2

)
−
(

2
0

)
.

)
=
( 1

2
1
2− 1

2
1
2

)(
x1
x2

)
+
(−1

1

)
.

Hence, our sought mapping is

f (y1, y2) =
=

( 1
2

1
2− 1

2
1
2

)[(
2 1
0 1

)((
1 −1
1 1

)(
y1
y2

)
+
(

2
0

))
+
(

1
1

)]
+
(−1

1

)
=

(
2 0

−1 1

)(
y1
y2

)
+
(

2
−1

)
□

4.14. Let there be a standard coordinate system in R3 space.

Agent K lives at point S with coordinates [0, 1, 2] and the head-

quarters gave him a coordinate system with origin S and basis

{(1, 1, 0), (−1, 0, 1), (0, 1, 2)}. Agent Bond lives at point D

with coordinates [1, 1, 1] and uses coordinate system with basis

{(0, 0, 1), (−1, 1, 2), (1, 0, 1)}. Agent K has set an appointment with

agent Bond in the old brick�eld which is (according to K's coordinate
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If we are given parametric forms, we may also directly search

for common points as solutions of the appropriate equations, simi-

larly as we were �nding the intersections of vector spaces. In this

way, we get directly the parametric description again. If the num-

ber of subspaces is greater then two, we must search for the inter-

section step by step.

If one of the subspaces is de�ned parametrically and the other

implicitly, it su�ces to substitute the parametrized coordinates and

to solve the resulting system of equations.

(4) To �nd a crossbar between skew lines p, q in A3 passing

through a given point or having a given direction:

By a crossbar we mean a straight line which has a

nonempty intersection with both the skew lines. Thus the

resulting crossbar is r is an one�dimensional a�ne sub-

space. If we are given its one pointA ∈ r, then the a�ne subspace

generated by p and A is either a straight line (A ∈ p) or a plane

(A /∈ p). In the �rst case, we have an in�nite number of solutions,
one for each point of q, in the second case, it su�ces to �nd the

intersection B of the plane ⟨p∪A⟩ with q, and r = ⟨{A,B}⟩. The
problem has no solution if the intersection is empty. If q ⊂ ⟨p∪A⟩,
we get an in�nite number of solutions again, and if the intersection

has one element, we get exactly one solution.

If we are given a direction u ∈ Rn, i.e. the di�erence space
of r, instead of a point, then we consider the subspace Q gener-

ated by p and the di�erence space Z(p) + ⟨u⟩ ⊂ Rn. Again, we
get in�nite number of solutions if q ⊂ Q, otherwise we consider

the intersection Q with q and we �nish in the same way as in the

previous case.

The solutions of many other practical geometric problems are

based mostly on the systematic use of the steps given above.

4.11. Remarks to linear programming. In the beginning of the

third chapter in paragraphs 3.4�3.8, we dealt with practical

problems which are given by systems of linear inequalities.

We easily check that each single inequality

a1x1 + · · · + anxn ≤ b

de�nes a halfspace in the standard a�ne space Rn which is

bounded by a hyperplane given by the corresponding equation

(compare with the de�nition in paragraph 4.9(4)). Indeed, if we

choose the parametric description of the hyperplane

{P + t1v1 + · · · + tn−1vn−1}
with vectors v1, . . . , vn−1 from the di�erence space, then by com-

pleting these vectors by v to a basis of the whole Rn, the value

a1x1 + · · · + anxn − b

on the linear combination t1v1 + · · · + tn−1vn−1 + tnv must be

positive for all vectors with either a positive or a negative tn.

At the same time we see that the set of all admissible vectors

for the problem of the linear programming is always an intersection

of a �nite number of convex sets and hence the set itself is either

convex or empty.

If the intersection is simultaneously nonempty and bounded,

then it is obviously a convex polyhedron. As we have justi�ed

in 3.4 already, each linear form is either permanently increasing

or permanently decreasing or constant along each (parametrized)

straight line in the a�ne space. Thus if a given problem from

linear programming is solvable and bounded, then it must have
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system) at point [1, 1, 0]. Where should Bond come (regarding his

coordinate system)?

Solution. Change of basis matrix from agent K's basis to the Bond's

one (with the same origins) is

T =
−4 2 −1

1 0 1
2 −1 1


Vector (0, 1, 2) thus has coordinates T · (0, 1, 2)T = (0, 2, 1)T ,
by transposing origin (we add vector (−1, 0, 1)) we get the result

(−1, 2, 2). □

4.15. Find a transversal of lines (line passing through both lines)

p : [1, 1, 1] + t (2, 1, 0), q : [2, 2, 0] + t (1, 1, 1),

so that [1, 0, 0] lies on this line.

Solution. We �nd intersection of sought transversal with line q (de-

note it by Q). Transversal contains some point lying on p and the

point [1, 0, 0], therefore it lies in plane ρ de�ned by this point and line
p, thus in plane

[1, 1, 1] + t (2, 1, 0)+ s(0, 1, 1).

PointQ is then intersection of this plane and line q. We will �nd it by

solving system

1 + 2t = 2 + u

1 + t + s = 2 + u

1 + s = u

Left-hand sides of equations represent all three coordinates of an ar-

bitrary point of plane ρ respectively, right-hand sides then represent

coordinates of arbitrary point on q (we denoted the free variable as u

in order not to be ambiguous). Solving this sytem, we obtain s = 2,
t = 2, u = 3 and by inputting u = 3 into line q equation we get

Q = [5, 5, 3] (we get the same point by inputting s = 2, t = 2, into
parametric equations of ρ). Sought transversal is thereby given by

point Q and point [1, 0, 0]. Now we easily compute the intersection

with p, point P = [7/3, 5/3, 1]. □

4.16. Find a common perpendicular of two skew lines

p : [3, 0, 3] + (0, 1, 2)t, t ∈ R

q : [0,−1,−2] + (1, 2, 3)s s ∈ R

Solution. We want to �nd a transversal perpendicular to both direc-

tion vector of line p and direction vector of line q. We can �nd
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the optimal solution in one of the vertices of the corresponding

convex polyhedron. The reader should be able to imagine this

claim without problems in the case of a two�dimensional or three�

dimensional problem. Nevertheless, the straightforward explana-

tion in these small dimensions hold also for all �nite�dimensional

cases.

So we have given a "geometric proof" of the existence part

of the fundamental theorem 3.7. Also we have translated the ini-

tial problem into a discrete (i.e. �nite) problem of the given cost

function in a �nite number of points in the space. An example of

a practical algorithm for �nding and evaluating the corresponding

vertices of the convex polyhedronwill be given in the chapter about

the discrete mathematics yet.

4.12. A�ne maps. A map f : A → B between a�ne spaces is

called the a�ne map if there exists a linear map φ :
Z(A) → Z(B) between their di�erence spaces such

that for all A ∈ A, v ∈ Z(A) the following holds

f (A+ v) = f (A)+ φ(v).

The maps f and φ are determined uniquely by this property and

by arbitrarily chosen images of (dimA + 1) points in a general

position.

Then for an arbitrary a�ne combination of points t0A0+· · · +
tsAs ∈ A we get

f (t0A0 + · · · + tsAs) =
= f (A0 + t1(A1 − A0)+ · · · + ts(As − A0))

= f (A0)+ t1φ(A1 − A0)+ · · · + tsφ(As − A0)

= t0f (A0)+ t1f (A1)+ · · · + tsf (As).

On the other hand, if a map preserves a�ne combinations,

we may use a speci�c combination of n + 1 �xed vectors gener-

ating the a�ne frame. Then choosing successively the coe�cients

t0 = 0 and ti = 1, we de�ne the value of the map φ between dif-

ference spaces by the relation φ(Ai −A0) = f (A1). The previous

computation can be read in the opposite direction, and so we can

check the correctness and linearity of φ. Indeed, the assumption

that the �rst and the last rows are equal implies that the second

and the third rows are equal. So we found out that we really get

an a�ne map with the corresponding linear map φ between di�er-

ence spaces which we described in the chosen a�ne frame by this

procedure. Therefore:

Theorem. The a�ne maps are exactly those maps which preserve

the a�ne combinations of points.

It is su�cient to check the invariance of a�ne combinations

for all pairs of points since we can create an arbitrary a�ne combi-

nation from them. Indeed, the a�ne combination of k + 2 points

A0, Ak+1 can be expressed as

r(t0A0 + · · · + tkAk)+ sAk+1,

where
∑k
i=0 tk = 1 and r + s = 1. Simply we choose a point

which is an a�ne combination of k + 1 points only and then we

make its combination with the last one. In this way, any �nite a�ne

combination can be made step by step from the combination of

pairs.
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the right direction for example by cross product of those two vec-

tors, and obtain direction (1,−2, 1). Now we form linear equation

system which expresses that a vector de�ned by some two points,

one of them lying on p, the other on q, was parallel with direction

(1,−2, 1). Symbolically we get system P − Q = k(1,−2, 1), or
[3, 0, 3] + (0, 1, 2)t︸ ︷︷ ︸

P

− [0,−1,−2] + (1, 2, 3)s︸ ︷︷ ︸
Q

= k(1,−2, 1). Treat-

ing this equality component-wisely, we get

3 − s = k

1 + t − 2s = −2k

5 + 2t − 3s = k

with solution t = 1, s = 2, k = 1. Inputting t = 1 into line p

parametric equation we get one point of the common perpendicular,

point [3, 1, 5], by inputting s = 2 into line q equation we then get

point [3, 1, 5]. The common perpendicular is de�ned by those two

points □

B. Eucledian geometry

4.17. Determine distance of lines in R3.

p : [1,−1, 0] + t (−1, 2, 3), and q : [2, 5,−1] + t (−1,−2, 1).

Solution. The distance is de�ned as the distance of ortogonal projec-

tions of arbitrary points on the respective lines to the ortogonal com-

plement of the vector subspace generated by their directions. We �nd

the ortogonal complement using cross product:

⟨(−1, 2, 3), (−1,−2, 1)⟩⊥ = ⟨(−1, 2, 3)× (−1,−2, 1)⟩
= ⟨(8,−2, 4)⟩ = ⟨(4,−1, 2)⟩.

Transversal is for example segment [1,−1, 0][2, 5,−1], so we project
vector [1,−1, 0] − [2, 5,−1] = (−1,−6, 1). We obtain distance of

lines:

ρ(p, q) = |(−1,−6, 1) · (4,−1, 2)|
∥(4,−1, 2)∥ = 4√

21
.

□

4.18. Find point A lying on line

p : x + 2y + z− 1 = 0, 3x − y + 4z− 29 = 0,

which has the same distance from both B = [3, 11, 4] and C =
[−5,−13,−2].

Solution. First, we express line p parametrically, we solve system

x + 2y + z = 1,
3x − y + 4z = 29.
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4.13. Ratio of colinear points. The a�ne combinations of pairs

of points can be also expressed with the help of so

called ratio of points on a straight line. If C is given

by an a�ne combination of points A and B ̸= C

where C = rA+ sB, then we say that the number

λ = (C;A,B) = − s
r

is the ratio of the point C with respect to the given points A and B.

Since we can express the point C as

C = A+ s(B − A) = B + r(A− B),

the ratio λ is the ratio of length of the oriented vectors C − A and

C − B. In particular, λ = −1 if and only if C is the center of

the line segment between A and B (i.e. r = s = 1
2 in our a�ne

combination).

Hence our characterization of a�ne maps in terms of a�ne

combinations has the following intelligible consequence:

Corollary. A�ne maps are exactly those maps which keep the ra-

tios invariant.

4.14. Changes of coordinates. Under the choice of an a�ne co-

ordinate system (A0, u) on A and a system (B0, v) on B, we get
the coordinate expression of the a�ne map f : A → B. It follows
directly from the de�nition that it is su�cient to express the image

f (A0) of the origin of coordinate system on A in the coordinate

system on B, i.e. to express the vector f (A0) − B0 in the basis v

as a column of coordinates y0, and everything else is then given by

multiplying by the matrix of the map φ in the chosen bases and by

adding the outcome. Each a�ne map therefore has the following

form in coordinates:

x 7→ y0 + Y · x,
where y0 is as above and Y is the matrix of the map φ.

The transformation of a�ne coordinates corresponds, simi-

larly as in the case of linear maps, to the expression of the identity

map in the chosen a�ne frames. The change of coordinate expres-

sion of an a�ne map caused by a change of the basis can be easily

computed by multiplying and adding matrices and vectors. Indeed,

changing basis on the domain by a translation w and a matrix M,

i.e. the new coordinates may be written in terms of the old ones as

x = w +M · x′ ,
and changing the basis on the target by a translation z and a matrix

N , i.e. the new coordinates may be written in terms of the old ones

as

y′ = z+N · y,
for the map given by the translation y0 and matrix Y in the old

bases we directy compute

y′ = z+N · y = z+N · (y0 + Y · x)
= (z+N · y0 +N · Y · w)+ (N · Y ·M) · x′ .

Hence the a�ne map in the new bases is given by the translation

vector z+N · y0 +N · Y · w a maticí N · Y ·M.
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We rewrite the system as an augmented matrix and perform row oper-

ations (
1 2 1 1
3 −1 4 29

)
∼
(

1 2 1 1
0 −7 1 26

)
∼

∼
(

1 0 9/7 59/7
0 1 −1/7 −26/7

)
.

We obtain expression

p :
[

59
7
,−26

7
, 0
]

+ t

(
−9

7
,

1
7
, 1
)
, t ∈ R.

Introducing substitution t = 7s + 26 we get

p : [−25, 0, 26] + s (−9, 1, 7) , s ∈ R.

We get point A by choosing certain s ∈ R. On top of that vectors

A− B = (−28 − 9s,−11 + s, 22 + 7s) ,

A− C = (−20 − 9s, 13 + s, 28 + 7s)

should be of the same length, i.e.√
(−28 − 9s)2 + (−11 + s)2 + (22 + 7s)2

=
√
(−20 − 9s)2 + (13 + s)2 + (28 + 7s)2 ,

or rather

(−28 − 9s)2 + (−11 + s)2 + (22 + 7s)2

= (−20 − 9s)2 + (13 + s)2 + (28 + 7s)2.

should hold. >From the last equation we get s = −3. Therefore

A = [−25, 0, 26] − 3 (−9, 1, 7) = [2,−3, 5].

□

4.19. Michael is standing in [2, 1, 2] and has a stick of length 4. Can
he touch lines p and q with this stick at the same time?

p : [−1, 4, 1] + t (−1, 2, 0),

q : [4, 4,−1] + s(1, 2,−4)?

(Stick has to pass through [2, 1, 2].)

Solution. We know how to compute transversal of those lines pass-

ing through [2, 1, 2]. It is segment [1, 0, 1][3, 2, 3], its length is
√

12,
which is less than 4. Michael is able to touch the lines. □

4.20. In Euclidian space R4 determine the distance of point A =
[2,−5, 1, 4] and subspace de�ned by equations

U : 4x1 −2x2 −3x3 −2x4 +12 = 0, 2x1 −x2 −2x3 −2x4 +9 = 0.

Solution. First, we �nd a parametric expression of subspace U . For

example,

B = [0, 3, 0, 3] ∈ U.
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4.15. Euclidean point spaces. So far we have not needed the no-

tions of distance and length for our geometric con-

siderations. But the length of vectors and the angel

between vectors, as we de�ned them at the end of the

third part of the second chapter (see 2.40 and farther), play a sig-

ni�cant role in many practical problems. In fact, this additional

information refers only to the vectors from the di�erence space,

and so there is not much work to be done:

Euclidean spaces

The standard euclidean point space En is the a�ne space An

whose di�erence space is the standard euclidean spaceRn with the
scalar product

⟨x, y⟩ = yT · x.
The Cartesian coordinate system is the a�ne coordinate sys-

tem (A0; u) with the orthonormal basis u.
The Euclidean distance between two points A,B ∈ En is de-

�ned as the length of the vector ∥B − A∥, and will be denoted by
ρ(A,B).

Euclidean subspaces in En are a�ne subspaces, where the cor-

responding di�erence spaces are considered with restricted scalar

products.

By a general euclidean point space E of dimension nwemean

an a�ne space, whose di�erence space is a real n�dimensional eu-

clidean vector space. The notion of a cartesian coordinate system

has the obvious meaning again. Since each choice of such a coor-

dinate system gives an identi�cation of E with the standard space

En, we deal, without loss of generality, mainly with the standard

euclidean spaces and their subspaces.

From the geometric point of view the simple properties of the

scalar product like triangular inequality, Cauchy in-

equality, Bessel inequality etc., derived in the fourth

part of the previous chapter (see 3.25), have very use-

ful consequences:

4.16. Theorem. For the points A,B,C ∈ En the following holds
(1) ρ(A,B) = ρ(B,A)

(2) ρ(A,B) = 0 if and only if A = B

(3) ρ(A,B)+ ρ(B,C) ≥ ρ(A,C)

(4) In each cartesian coordinate system (A0; e), the distance of

the points A = A0 + a1e1 + · · · + anen, B = A0 + b1e1 +
· · · + bnen is

√∑n
i=1(ai − bi)2.

(5) Given a point A and a subspace Q in En, there exists a point

P ∈ Q which minimalizes the distance between A and the

points in Q. The distance between A and P is equal to the

length of the orthogonal projection of the vector A − B into

Z(Q)⊥ for an arbitrary B ∈ Q.

(6) More generally, for subspacesQ andR in En there exist points
P ∈ Q and Q ∈ R which minimalize the distances of points

B ∈ Q and A ∈ R. The distance between the points P andQ

is equal to the length of the orthogonal projection of the vector

A− B into Z(Q)⊥ for arbitrary points B ∈ Q and A ∈ R.

Proof. The �rst three properties follow directly from the

properties of length of vectors in spaces with a scalar

product, the fourth one follows directly from the ex-

pression of the scalar product in an orthonormal basis.
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We know that the distance of A and U equals the length of orthogonal

projection of vector A − B to the ortogonal complement of direction

of subspace U . However we know the ortogonal complement of U

direction (it de�nes this subspace) � as set (of linear combination of

normal vectors)

V := {t (4,−2,−3,−2)+ s (2,−1,−2,−2) ; t, s ∈ R}.
We need to �nd orthogonal projection PA−B of vector A − B to V ,

which lies in V , and thus

PA−B = a (4,−2,−3,−2)+ b (2,−1,−2,−2)

for certain a, b ∈ R. Obviously it must hold that (A−B−PA−B) ⊥ V ,

thus

((A− B)− PA−B) ⊥ (4,−2,−3,−2) ,

((A− B)− PA−B) ⊥ (2,−1,−2,−2) .

By substitution of A− B and PA−B we obtain

((2,−8, 1, 1)− a(4,−2,−3,−2)− b(2,−1,−2,−2))

·(4,−2,−3,−2) = 0,

((2,−8, 1, 1)− a(4,−2,−3,−2)− b(2,−1,−2,−2))

·(2,−1,−2,−2)) = 0;
so

(2,−8, 1, 1)·(4,−2,−3,−2)

−a(4,−2,−3,−2)·(4,−2,−3,−2)

−b(2,−1,−2,−2)·(4,−2,−3,−2) = 0,

((2,−8, 1, 1)·(2,−1,−2,−2))

−a(4,−2,−3,−2)·(2,−1,−2,−2)

−b(2,−1,−2,−2)·(2,−1,−2,−2 = 0.

If we compute those dot products, we get system

19 − 33a − 20b = 0,
8 − 20a − 13b = 0,

with only solution a = 3, b = −4. Hence

PA−B = 3 (4,−2,−3,−2)− 4 (2,−1,−2,−2) = (4,−2,−1, 2) ,

where

||PA−B || =
√

42 + (−2)2 + (−1)2 + 22 = 5.

Recall that distance of A and U equals ||PA−B || = 5. □
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Let us look at the relation for the minimal dis-

tances ρ(A,B) forB ∈ Q. The vectorA−B decomposes uniquely

asA−B = u1 +u2, where u1 ∈ Z(Q), u2 ∈ Z(Q)⊥. The compo-
nent u2 does not depend on the choice ofB ∈ Q since any potential

change of the point B would show by adding a vector from Z(Q).
Now let us choose P = A+ (−u2) = B + u1 ∈ Q. We get

∥A− B∥2 = ∥u1∥2 + ∥u2∥2 ≥ ∥u2∥2 = ∥A− P ∥.
From here we see that the minimal possible distance is reached

exactly for our point P and its value is ∥u2∥ indeed.

We get the general result in a similar way. For the choice of ar-

bitrary points A ∈ R and B ∈ Q their di�erence is given as a sum

of vectors u1 ∈ Z(R)+Z(Q) and u2 ∈ (Z(R)+Z(Q))⊥, where
the component u2 does not depend on the choice of the points.

Adding suitable vectors from the di�erence spaces of R and Q
we obviously obtain points A′ and B′ whose distance is exactly

∥u2∥. □

Now we extend our brief overview of elementary problems in

the a�ne geometry.

4.17. Examples of standard problems. (1) To �nd the distance

from the point A ∈ En to the subspace Q ⊂ En:
A method of solving such problem is given in

the proposition 4.16.

(2) In E2 to construct the straight line q through a

given point A which form a given angle with a given line p:

Let us remind that we have worked with angles between vec-

tors in the plane geometry already (see e.g. 2.43). We �nd a vector

u ∈ R2 lying in the di�erence space of the line q, and we choose

a vector v having the prescribed angle with u. The desired line is

given by the point A and the di�erence space ⟨v⟩. The problem

has either two solutions or only one solution.

(3) To �nd the perpendicular from a point to a given line:

The procedure is introduced in the poof of the last but one item

of the proposition 4.16.

(4) In E3 to determine the distance of two lines p, q:

We choose arbitrarily one point from each of the lines, A ∈ p,
B ∈ q. The component of the vectorA−B lying in the orthogonal

complement (Z(p)+ Z(q))⊥ has the length equal to the distance

between p and q.

(5) In E3 to �nd the axis of two skew lines p a q:

By the axis we mean the crossbar which realizes the minimal

possible distance of the given skew lines in terms of the points of

intersection. Again, the procedure can be derived from the proof of

the proposition 4.16 (the last item). Let η is the subspace generated

by a single point A ∈ p and the sum Z(p) + (Z(p) + Z(q))⊥.
Provided that the lines p and q are not parallel, it is going to be a

plane. Then the intersection η∩q together with the di�erence space
(Z(p)+Z(q))⊥ give the parametric expression of the desired axis.

If the lines are parallel, then the problem has an in�nite number of

solutions.

4.18. Angles. Various geometric notions like angles, orientation,

volume etc. in the point spaces En are de�ned in

terms of suitable notions from the vector euclidean

spaces just as the notion of the distance. Let us re-

mind that we de�ned the angle between two vectors

at the end of the third part of the second chapter, see 2.43.
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4.21. In vector space R4 compute distance v between point

[0, 0, 6, 0] and vector subspace

U : [0, 0, 0, 0] + t1 (1, 0, 1, 1)+ t2 (2, 1, 1, 0)+ t3 (1,−1, 2, 3) ,

t1, t2, t3 ∈ R

Solution. We will solve the problem by the least squares method. Let

U 's generating vectors be columns of matrix

A =


1 2 1
0 1 −1
1 1 2
1 0 3


and we substitute point [0, 0, 6, 0] by corresponding vector b =
(0, 0, 6, 0)T . We will solve A · x = b, i.e. linear equation system

x1 + 2x2 + x3 = 0,
x2 − x3 = 0,

x1 + x2 + 2x3 = 6,
x1 + 3x3 = 0,

by least squares method. (Note that the system does not have a solution

� the distance would be 0 otherwise.) Let's multiply A · x = b by

matrix AT from the left-hand side. Augmented matrix AT · A · x =
AT · b then is  3 3 6 6

3 6 3 6
6 3 15 12

 .
By elementary row operations we transform the matrix to the normal

form 3 3 6 6
3 6 3 6
6 3 15 12

 ∼
 3 3 6 6

0 3 −3 0
0 −3 3 0

 ∼
 1 1 2 2

0 1 −1 0
0 0 0 0

 .
We continue with backward elimination 1 1 2 2

0 1 −1 0
0 0 0 0

 ∼
 1 0 3 2

0 1 −1 0
0 0 0 0

 ,
and see the solution

x = (2 − 3t, t, t) T , t ∈ R.

Note that the existence of in�nitely many solutions is caused by third

vector generating U , which is redundat because

3 (1, 0, 1, 1)− (2, 1, 1, 0) = (1,−1, 2, 3) .

Arbitrary (t ∈ R) linear combination

(2 − 3t) (1, 0, 1, 1)+ t (2, 1, 1, 0)+ t (1,−1, 2, 3) = (2, 0, 2, 2)

corresponds to a point [2, 0, 2, 2] in subspace U , which is the nearest
point to [0, 0, 6, 0]. The distance is therefore

v = || [2, 0, 2, 2] − [0, 0, 6, 0] || =
√

22 + 0 + (−4)2 + 22 = 2
√

6.

□
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Indeed, from Cauchy inequality follows 0 ≤ |u·v|
∥u∥∥v∥ ≤ 1, and

so it has sense to de�ne the angle φ(u, v) between vectors u, v ∈ V
in a real vector space with a scalar product given by the equation

cosφ(u, v) = u · v
∥u∥∥v∥ , 0 ≤ φ(u, v) ≤ 2π.

This is completely in accordance with the situation in the two�

dimensional euclidean space R2 and with our philosophy that the

notion related to the two vectors is the issue of the plane geometry

in fact.

In the euclidean plane, we used also the geometric functions

cos and sin which we de�ned by a pure geometric consideration.

We will come back to this in the beginning of the �fth chapter,

when we will be able to check precisely the geometric opinion that

the function cos is decreasing in the interval [0, π ]. Therefore, the
angle between two vectors in higher�dimensional spaces is mea-

sured in the plane which is generated by these two vectors (or it is

zero), and our de�ning relation corresponds to the conventions in

all dimensions.

In an arbitrary real vector space with a scalar product, it fol-

lows directly from de�nitions that

∥u− v∥2 = ∥u∥2 + ∥v∥2 − 2(u · v)
= ∥u∥2 + ∥v∥2 − 2∥u∥∥v∥ cosφ(u, v).

This is evidently the well known law of cosines from the plane

geometry.

Next, the following relation holds for each orthonormal basis

e of the di�erence space V and a non�zero vector u ∈ V
∥u∥2 =

∑
i

|u · ei |2.

By dividing this equation by the number ∥u∥2 we get

1 =
∑
i

(cosφ(u, ei))2,

which is the law of directional cosines φ(u, ei) of the vector u.

Now we can derive reasonable de�nitions for angles between

general subspaces in an euclidean vector space from the de�nitions

of angles between vectors. Concurrently we must decide how to

deal with cases, where the subspaces have a nontrivial intersec-

tion. As the angle between two lines, we want to take the smaller

one from the two possible angles, in the case of two nonparallel

planes in R3 we do not want to say that the angle is zero since they

intersect and have one direction in common:

Angles between subspaces

4.19. De�nition. Let us consider �nite�dimensional subspacesU1,

U2 in an euclidean vector space V of an arbitrary di-

mension.

The angle between vector subspaces U1, U2 is

the real number α = φ(U1, U2) ∈ [0, π2 ] satisfying:
(1) If dimU1 = dimU2 = 1, U1 = ⟨u⟩, U2 = ⟨v⟩, then

cosα = |u.v|
∥u∥∥v∥ .

(2) If the dimensions of U1, U2 positive and U1 ∩ U2 = {0},
then the angle is the minimum of all angles between one�

dimensional subspaces

α = min{φ(⟨u⟩, ⟨v⟩); 0 ̸= u ∈ U1, 0 ̸= v ∈ U2}.
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4.22. Compute volume of parallelepiped in R3 with base in

plane z = 0 and with edges given by pairs of vertices [0, 0, 0],
[−2, 3, 0]; [0, 0, 0], [4, 1, 0] a [0, 0, 0], [5, 7, 3].

Solution. Parallelepiped is given by vectors (4, 1, 0), (−2, 3, 0),
(5, 7, 3). We know that its volume is de�ned as determinant∣∣∣∣∣∣

4 −2 5
1 3 7
0 0 3

∣∣∣∣∣∣ = 3
∣∣∣∣4 −2
1 3

∣∣∣∣ = 3 · 14 = 42.

Note that if we modi�ed the order of vectors, we would get result±42,
because determinant gives us oriented volume of parallelepiped. Fur-

ther note that the volume would not change if the third vector was

[a, b, 3] for arbitrary a, b ∈ R. Its surface obviously depends only on
ortogonal distance of planes of its upper and lower base and their area∣∣∣∣4 −2

1 3

∣∣∣∣ = 14.

□

4.23. Let points [0, 0, 1], [2, 1, 1], [3, 3, 1], [1, 2, 1] de�ne a paral-
leloid. Determine pointX lying on line p : [0, 0, 1]+(1, 1, 1)t so that
parallelepiped de�ned by given paralleloid and pointX has volume of

1.

Solution. We will form a determinant which gives us volume of a

parallelepiped with X moving along line p:∣∣∣∣∣∣
t t t

2 1 0
1 2 0

∣∣∣∣∣∣ .
Volume should be 1 which introduces condition t = 1/3. □

4.24. LetABCDEFGH be a cube (with common notation, i.e. vec-

tors E−A, F −B,G−C,H −D are orthogonal to the plane de�ned

by vertices A, B, C, D) in Euclidean space R3. Compute angle φ

between vectors F − A a H − A.

Solution. We have solved this problem using formula for angle be-

tween vectors. Let's think about the problem further. Vertices A, F ,

H are vertices of a triangle with all sides of the same length, it is hence

equilateral triangle and therefore φ = π/3. □

4.25. Let S be a midpoint of edgeAB of cube ABCDEFGH (with

common labelling). Compute cosine of angle between lines ES and

BG.

Solution. Dilatation (homotethy) is similar mapping, hence it pre-

serves angles. We can therefore asume that the cube edge has length

1. Further, we can place the pointA to the origin of coordinate system

and points B and E to points [1, 0, 0] and [0, 0, 1] respectively. Other
coordinates are then given: S = [1/2, 0, 0], G = [1, 1, 1], vector
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We show in a moment that such minimum always exists.

(3) IfU1 ⊂ U2 orU2 ⊂ U1 (in particular if one of them is empty),

then α = 0.
(4) If U1 ∩ U2 ̸= {0} and U1 ̸= U1 ∩ U2 ̸= U2, then

α = φ(U1 ∩ (U1 ∩ U2)
⊥, U2 ∩ (U1 ∩ U2)

⊥).
The angle between a�ne subspaces Q1, Q2 in an euclidean

point space En is de�ned as the angle between their di�erence

spaces Z(Q1), Z(Q2).

Let us notice that the angle is always well de�ned, in particular

in the last case is

(U1 ∩ (U1 ∩ U2)
⊥) ∩ (U2 ∩ (U1 ∩ U2)

⊥) = {0}
and so we can indeed determine the angle according to the item (2).

Let us also notice that in the case U1 ∩ U2 = {0}, the subspaces
U1 and U2 are perpendicular in terms of our former de�nitions if

and only if the angle between them is π/2. However, if they have
a nontrivial intersection, then they cannot be perpendicular in the

former sense.

In order to show the correctness of the de�nition, it remains to

show that the vectors u ∈ U1, v ∈ U2 minimalizing the expression

for the angle always exist. First a special case:

4.20. Lemma. Let v be a vector in an euclidean space V andU ⊂
V an arbitrary subspace. Let us denote by v1 ∈ U ,

v2 ∈ U⊥ the (uniquely determined) components of

the vector v, i.e. v = v1 + v2. Then the angle φ

between the subspace generated by v and the subspace U satis�es

cosφ(⟨v⟩, U) = cosφ(⟨v⟩, ⟨v1⟩) = ∥v1∥
∥v∥ .

Proof. According to the Cauchy inequality, for all vectorsu ∈
U we have

|u · v|
∥u∥∥v∥ = |u · (v1 + v2)|

∥u∥∥v∥ = |u · v1|
∥u∥∥v∥

≤ ∥u∥∥v1∥
∥u∥∥v∥ = ∥v1∥

∥v∥ = ∥v1∥2

∥v∥∥v1∥ = |v1 · v|
∥v∥∥v1∥ .

This implies

cosφ(⟨v⟩, ⟨u⟩) ≤ cosφ(⟨v⟩, ⟨v1⟩) = ∥v1∥
∥v∥

and thus the vector v1, which we have found, represents the largest

possible value of the cosine of angles between all choices of vectors

inU . But since the function cos is decreasing on the interval [0, π2 ],
we get the smallest possible angle in this way, and so the claim is

proved. □

4.21. Calculating angles. The procedure in the previous lemma

can be understood as follows. We take the orthogonal pro-

jection of the one�dimensional subspace generated by v

into the subspace U , and we look at the ratio between v

and its image. A similar procedure is used in the higher

dimension too. However, the problem is to recognize the direc-

tions whose projections give the desired (minimal) angle. We can

see this in our previous example if we project the bigger space U

into one�dimensional ⟨v⟩ �rst, and then orthogonally back to U .

We �nd out that the desired angle corresponds to the direction of
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ES = (1/2, 0,−1) and BG = (0, 1, 1). Sought cosine of angle φ is

then

cos(φ) =
∣∣∣∣ (1/2, 0,−1) · (0, 1, 1)
∥(1/2, 0,−1)∥ ∥(0, 1, 1)∥

∣∣∣∣ =
√

2√
5

. □

4.26. Copmute angle between line p given by implicit equations

x + 3y + z = 0,
−x − y + z = 0

and plane ϱ : x + y + 2z+ 1 = 0.

Solution. We can see that normal vector of plane ϱ is (1, 1, 2). Now
we copy the �rst equation of line p and then sum both of them, obtain-

ing
x + 3y + z = 0,

2y + 2z = 0.
>From this system we can see that y = −z and x = 2z. Vector

(2,−1, 1) is therefore direction vector of p; in other words, we have

(p is obviously passing through the origin)

p : [0, 0, 0] + t (2,−1, 1) , t ∈ R.

For angle φ between vectors (1, 1, 2), (2,−1, 1) we have

cosφ = 2 − 1 + 2√
6 · √

6
= 1

2
.

Hence φ = 60 ◦. However, this is angle between direction vector of p
and normal vector ϱ. Sought angle is complement of this angle, so the

correct result is 30 ◦ = 90 ◦ − 60 ◦. □

4.27. In real plane, �nd a line which passes through point [−3, 0]
and angle between this line and line

p :
√

3x + 3y + 5 = 0

is 60 ◦.

Solution. First we have to realize that there will be two such lines.

General equation of line in plane has form of

ax+by+c = 0, and we may choose parameters so that a2+b2 = 1.

Let's �nd such numbers a, b, c ∈ R, so that all the conditions are

satis�ed. Inputting x = −3, y = 0 into the equation (line has to go

through[−3, 0]), we get c = 3a. Condition of angle between lines

equals 60 ◦ then gives

1
2

= cos 60 ◦ =
∣∣∣√3a + 3b

∣∣∣
√

12
, tj.

√
3 =

∣∣∣√3a + 3b
∣∣∣.

Performing further operations

±1 = a + √
3b and exponentation 1 = a2 + 3b2 + 2

√
3ab.
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the eigenvector of this map, and its eigenvalue is the square of the

cosine of the angle.

Hence let us consider two arbitrary subspaces U1, U2 in an

euclidean vector space V , U1 ∩ U2 = {0}, and let us choose or-

thonormal bases e and e′ of the whole space V such that U1 =
⟨e1, . . . , ek⟩, U2 = ⟨e′1, . . . , e′l⟩.

Let us consider the orthogonal projection φ of the space V

on U2, its restriction on U1 will be denoted by φ : U1 → U2 as

before. Similarly, let ψ : U2 → U1 be the map which has arisen

from the orthogonal projection on U1. In the bases (e1, . . . , ek)

and (e′1, . . . , e′l), these maps have matrices

A =
e1 · e′1 . . . ek · e′1

...
...

e1 · e′l . . . ek · e′l

 , B =
e

′
1 · e1 . . . e′l · e1
...

...

e′1 · ek . . . e′l · ek

 .
Since we are regarding scalar products on a real vector space, ei ·
e′j = e′j ·ei holds for all indices i, j , in particular we haveB = AT .

The composition of maps ψ ◦ φ : U1 → U1 has therefore a

symmetric positive semide�nite matrix ATA, and ψ is an adjoint

map to φ. We saw that each such map has only nonnegative real

eigenvalues and that it has a diagonal matrix with these eigenvalues

on the diagonal in a suitable orthonormal basis, see 3.29 a 3.31.

Now we can derive a general procedure for computing the an-

gle α = φ(U1, U2).

Theorem. In the previous notation, let λ be the largest eigenvalue

of the matrix ATA. Then (cosα)2 = λ.

Proof. Let u ∈ U1 be the eigenvector of the map ψ ◦ φ
corresponding to the eigenvalue λ. Let us consider

all eigenvalues λ1, . . . , λk (including multiplicities),

and let u = (u1, . . . , un) be the corresponding or-

thonormal basis of U1 made up from the eigenvec-

tors. We may directly assume that λ = λ1, u = u1.

We need to show that the angle between an arbitrary v ∈ U1
and U2 is at least as large as the angle between u and U2, i.e. to

show that the cosine of the corresponding angle cannot be greater.

By the previous lemma, it is su�cient to discuss the angle between

u and φ(u) ∈ U2, and we know that ∥u∥ = 1. Hence let us choose
v ∈ U1, v = a1u1 + · · · + akuk ,

∑k
i=1 a

2
i = ∥v∥2 = 1. Then

∥φ(v)∥2 = φ(v) · φ(v) = (ψ ◦ φ(v)) · v
≤ ∥ψ ◦ φ(v)∥∥v∥ = ∥ψ ◦ φ(v)∥.

Moreover, the previous lemma gives also a formula for computing

the angle α between the vector v and the subspace U2

cosα = ∥φ(v)∥
∥v∥ = ∥φ(v)∥.

Since we have chosen λ1 to be the largest eigenvalue and the sum

of squares of coordinates a2
i is �xed to one, we get

(cosα)2 = ∥φ(v)∥2 ≤ ∥ψ ◦ φ(v)∥ =

√√√√
k∑
i=1

(λiai)2 =
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If we use a2 + b2 = 1, we get

0 = 2b2 + 2
√

3ab, tj. 0 = b
(
b + √

3a
)
.

Together (remember that c = 3a and a2 + b2 = 1)

a = ±1, b = 0, c = ±3; a = ±1
2
, b = ∓

√
3

2
, c = ±3

2
.

We can easily check that lines determined by those coe�cients

x + 3 = 0,
1
2
x −

√
3

2
y + 3

2
= 0

satisfy all the conditions. □

4.28. Determine general equation of all planes so that angle between

every such plane and plane x+ y+ z− 1 = 0 is 60◦, and further, they
contain line p : [1, 0, 0] + t (1, 1, 0). ⃝

4.29. Determine angles between planes

σ : [1, 0, 2] + (1,−1, 1)t + (0, 1,−2)s

ρ : [3, 3, 3] + (1,−2, 0)t + (0, 1, 1)s

Solution. Line of intersection between planes has direction vector

(1,−1, 1), plane ortogonal to this vector has intersection with given

planes generated by vectors vektory (1, 0,−1) a (0, 1, 1). Angle be-
tween these one-dimensional subspaces is 60◦. □

4.30. Cube ABCDA′B′C′D′ (in standard notation, i.e. ABCD and

A′B′C′D′ are faces andAA′ is an edge). Compute angle betweenAB′

and AD′.

Solution. Consider cube of side 1 and place it in R3 in such way that

vertex A has coordinates [0, 0, 0], vertex B coordinates [1, 0, 0] and
vertexC coordinates [1, 1, 0]. Then vertexB′ has coordinates [1, 0, 1]
and vertex D′ coordinates [0, 1, 1]. We can determine vectors AB′ =
B′ −A = [1, 0, 1]− [0, 0, 0] = (1, 0, 1),AD′ = D′ −A = [0, 1, 1]−
[0, 0, 0] = (0, 1, 1). By de�nition of angle φ between those vectors

cos(φ) = (1, 0, 1) · (0, 1, 1)
∥ (1, 0, 1) ∥∥ (0, 1, 1) ∥ = 1

2
,

hence φ = 60◦.

□
For further exercise on angles see .

4.31. Now we will look at usage of Cauchy inequality. Prove that for

every n ∈ N and for all positive x1, x2, . . . , xn ∈ R an inequality

n2 ≤
(

1
x1

+ 1
x2

+ · · · + 1
xn

)
· (x1 + x2 + · · · + xn) .

holds. For what arguments does equality hold?
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=

√√√√
λ2

1 +
k∑
i=1

a2
i (λ

2
i − λ2

1) ≤
√
λ2

1.

If v = u, we get exactly ∥φ(v)∥2 = λ2
1∥v∥2 = λ2, and thus the

angle has the minimal value for this vector. □

4.22. Calculating volume. We met an indication of calculating

volumes in the plane geometry already at the end

of the �fth part of the �rst chapter (see 1.34). There

we found out that the notion of orientation played the

fundamental role. We could imagine the orientation as the decision

whether we looked at our planeR2 from above or from bellow. The

di�erence is in the order of the standard basis vectors e1 and e2 on

the unite circle. We proceed in the same way in general:

Orientation of a vector space

We say that two bases u and v of a real vector space V de-

termine the same orientation if the transformation matrix between

them has a positive determinant. Formally, by the orientation of a

vector space V we mean the equivalence class of bases u with re-

spect to the equivalence which we de�ned just now, by the sign of

the determinant. Equivalent bases in this sense are called agreeing

with the chosen orientation.

It follows directly from the de�nition that there exist exactly

two orientations on every vector space. From each agreeing ba-

sis we can obtain a disagreeing one by an arbitrary transformation

matrix with a negative determinant.

A vector space with a chosen orientation is called the oriented

vector space.

The oriented euclidean (point) space is an euclidean point

space whose di�erence space is oriented. In sequel we consider

the standard euclidean space En together with the orientation given
by the standard basis of Rn.

Let u1, . . . , uk be arbitrary vectors in the di�erence space Rn,
A ∈ En a point. As an example of a convex set, we de�ned the

parallelepiped Pk(A; u1, . . . , uk) ⊂ En by
Pk(A; u1, . . . , uk) = {A+ c1u1 + · · · + ckuk; 0 ≤ ci ≤ 1}.

If the vectors u1, . . . , uk are linearly independent, we talk about a

k�dimensional parallelepiped Pk(A; u1 . . . , uk) ⊂ En. For given
vectors u1, . . . , uk we have also the parallelepipeds of the lower

dimension

P1(A; u1), . . . ,Pk(A; u1, . . . , uk)

in euclidean subspaces A+ ⟨u1⟩, . . . , A+ ⟨u1, . . . , uk⟩ at our dis-
posal.

If u1, . . . , uk are linearly independent, we de�ne the volume

VolPk = 0.

Otherwise we think about it as we did in the case of the Gramm�

Schmidt orthogonalization

⟨u1, . . . , uk⟩ = ⟨u1, . . . , uk−1⟩⊕⟨u1, . . . , uk−1⟩⊥ ∩⟨u1, . . . , uk⟩.
In this decomposition, uk is uniquely expressed as

uk = u′
k + ek

where ek ⊥ ⟨u1, . . . , uk−1⟩.
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Solution. It is su�cient to consider Cauchy inequality

| u · v | ≤ || u || || v ||
in Euclidean space Rn for vectors

u =
(

1√
x1
,

1√
x2
, . . . ,

1√
xn

)
, v = (√

x1,
√
x2, . . . ,

√
xn
)
.

We obtain

(4.1) n ≤
√

1
x1

+ 1
x2

+ · · · + 1
xn

· √
x1 + x2 + · · · + xn.

Wewill get wanted inequality by raising (∥4.1∥) to a power. We further

know that Cauchy inequality is becoming equality when vector u is a

multiple of v, which implies x1 = x2 = · · · = xn. □

4.32. Vectors u = (u1, u2, u3) and v = (v1, v2, v3) are given. Find

third unit vector such that parallelepiped de�ned by those three vectors

had the greatest possible volume.

Solution. Denote sought vector as t = (t1, t2, t3). By Proposition

∥??∥ is volume of parallelepiped P3(0; u, v, t) de�ned as absolute

value of determinant∣∣∣∣∣∣
u1 v1 t1
u2 v2 t2
u3 v3 t3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
t1 t2 t3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ = t · (u× v) ≤ ∥t∥∥u× v∥ = ∥u× v∥.

Sign of inequality follows from Cauchy inequality, moreover we know

that this becomes equality if and only if t = c(u× v), c ∈ R. The vol-
ume therefore could be at most equal to the area of paralleloid de�ned

by vectors u, v (i.e. size of vector (u× v)). Equality holds if and only

if

t = ± (u× v)

∥(u× v)∥ .
□

4.33. Find foot of line passing through point [0, 0, 7] and perpendic-
ular to plane

ρ : [0, 5, 3] + (1, 2, 1)t + (−2, 1, 1)s.

4.34. In Euclidean space R5 determine the distance of planes

ϱ1 : [7, 2, 7,−1, 1] + t1 (1, 0,−1, 0, 0)+ s1 (0, 1, 0, 0,−1) ,

ϱ2 : [2, 4, 7,−4, 2] + t2 (1, 1, 1, 0, 1)+ s2 (0,−2, 0, 0, 3) ,

where t1, s1, t2, s2 ∈ R, and the distance of planes

σ1 : [0, 1, 2, 0, 0] + p1 (2, 1, 0, 0, 1)+ q1 (−2, 0, 1, 1, 0) ,

σ2 : [3,−1, 7, 7, 3] + p2 (2, 2, 4, 0, 3)+ q2 (2, 0, 0,−2,−1) ,

where p1, q1, p2, q2 ∈ R.

Solution. Case ϱ1, ϱ2. We �rst compute ortogonal complement to

sum of vectors de�ning the planes. We form a matrix where its rows
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We de�ne the absolute value of the volume of a parallelepiped

inductively such that we ful�l the idea that it is the

product of the volume of the "base" and the "altitude":

| Vol |P1(A; u1) = ∥u1∥
| Vol |Pk(A; u1, . . . , uk) = ∥ek∥| Vol |Pk−1(A; u1, . . . , uk−1).

If u1, . . . , un is a basis agreeing with the orientation of V , we de-

�ne the (oriented) volume of the parallelepiped by

VolPk(A; u1, . . . , un) = | Vol |Pk(A; u1, . . . , un),

in the case of a nonagreeing basis we set

VolPk(A; u1, . . . , un) = −| Vol |Pk(A; u1, . . . , un).

The following claim clari�es our former comments that the

determinant expresses the volume in a sense. The thing is that the

�rst claim says exactly that we get the volume of the parallelepiped

in a k�dimensional space, which is stretched on k vectors, such

that we write down their coordinates (in an orthonormal basis) into

columns of a matrix and we calculate the determinant.

The formula in the second claim is calledGramm determinant.

Its advantage is that it is independent on the choice of basis and,

therefore, it is better to handle in the case that k is lower then the

dimension of the whole space.

Theorem. Let Q ⊂ En be an euclidean subspace, and let

(e1, . . . , ek) be its orthonormal basis. Then for ar-

bitrary vectors u1, . . . , uk ∈ Z(Q) and A ∈ Q the

following holds

(1) VolPk(A; u1, . . . , uk) =

∣∣∣∣∣∣∣
u1 · e1 . . . uk · e1
...

...

u1 · ek . . . uk · ek

∣∣∣∣∣∣∣
(2) (VolPk(A; u1, . . . , uk))

2 =

∣∣∣∣∣∣∣
u1 · u1 . . . uk · u1
...

...

u1 · uk . . . uk · uk

∣∣∣∣∣∣∣
Proof. The matrix

A =
u1 · e1 . . . uk · e1

...
...

u1 · ek . . . uk · ek


has the coordinates of vectors u1, . . . , uk in the chosen basis in

columns, and

|A|2 = |A||A| = |AT ||A| = |ATA|

=

∣∣∣∣∣∣∣
u1 · u1 . . . uk · u1
...

...

u1 · uk . . . uk · uk

∣∣∣∣∣∣∣ .
Hence we see that if (1) holds, then also (2) holds.

The unoriented volume is directly form the de�nition equal to

the product

| Vol |Pk(A; u1, . . . , uk) = ∥v1∥∥v2∥ . . . ∥vk∥,
where v1 = u1, v2 = u2 + a2

1v1, . . . , vk = uk + ak1v1 + · · · +
akk−1vk−1 is the result of the Gramm-Schmidt orthogonalization.
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are direction vectors of planes. Then we transform this matrix into

normal form. We get
1 0 −1 0 0
0 1 0 0 −1
1 1 1 0 1
0 −2 0 0 3

 ∼ · · · ∼


1 0 −1 0 0
0 1 0 0 −1
0 0 1 0 1
0 0 0 0 1

 .
So the ortogonal complement is ⟨(0, 0, 0, 1, 0)⟩. (It was obvious that
vector (0, 0, 0, 1, 0) lies within the ortogonal complement. By trans-

forming the matrix into normal form we determined that the ortog-

onal complement is one-dimensional.) The distance between planes

equals the size of perpendicular projection of vectorA1 −A2 into sub-

space ⟨(0, 0, 0, 1, 0)⟩ for arbitrary points A1 ∈ ϱ1, A2 ∈ ϱ2. Choose

e.g. A1 = [7, 2, 7,−1, 1], A2 = [2, 4, 7,−4, 2]. Obviously the or-

togonal projection A1 − A2 = (5,−2, 0, 3,−1) to ⟨(0, 0, 0, 1, 0)⟩ is
(0, 0, 0, 3, 0). The size of (0, 0, 0, 3, 0) gives the sought distance 3.

Case σ1, σ2. Sum of directions of σ1, σ2 is generated by direction

vectors. Denote them by

u1 = (2, 1, 0, 0, 1) , u2 = (−2, 0, 1, 1, 0) ,

v1 = (2, 2, 4, 0, 3) , v2 = (2, 0, 0,−2,−1) .

Let's �nd such points X1 ∈ σ1, X2 ∈ σ2, that realize the distance

between σ1 and σ2. We know that

X1 −X2 = [0, 1, 2, 0, 0] − [3,−1, 7, 7, 3]

+p1u1 + q1u2 − p2v1 − q2v2

= (−3, 2,−5,−7,−3)+ p1u1 + q1u2 − p2v1 − q2v2

and it holds that

⟨X1 −X2, u1 ⟩ = 0, ⟨X1 −X2, u2 ⟩ = 0,

⟨X1 −X2, v1 ⟩ = 0, ⟨X1 −X2, v2 ⟩ = 0,

tj.

⟨ (−3, 2,−5,−7,−3), u1 ⟩ + p1 ⟨ u1, u1 ⟩ + q1 ⟨ u2, u1 ⟩
− p2 ⟨ v1, u1 ⟩ − q2 ⟨ v2, u1 ⟩ = 0,

⟨ (−3, 2,−5,−7,−3), u2 ⟩ + p1 ⟨ u1, u2 ⟩ + q1 ⟨ u2, u2 ⟩
− p2 ⟨ v1, u2 ⟩ − q2 ⟨ v2, u2 ⟩ = 0,

⟨ (−3, 2,−5,−7,−3), v1 ⟩ + p1 ⟨ u1, v1 ⟩ + q1 ⟨ u2, v1 ⟩
− p2 ⟨ v1, v1 ⟩ − q2 ⟨ v2, v1 ⟩ = 0,

⟨ (−3, 2,−5,−7,−3), v2 ⟩ + p1 ⟨ u1, v2 ⟩ + q1 ⟨ u2, v2 ⟩
− p2 ⟨ v1, v2 ⟩ − q2 ⟨ v2, v2 ⟩ = 0.

By computing those dot products we get linear equation system
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Thus we have

(VolPk(A; u1, . . . , uk))
2 =

∣∣∣∣∣∣∣
v1 · v1 0 . . . 0
...

. . .

0 0 . . . vk · vk

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
v1 · v1 . . . vk · v1
...

...

v1 · vk . . . vk · vk

∣∣∣∣∣∣∣ .
Let us denote by B the matrix whose columns are formed

by the coordinates of vectors v1, . . . , vk in the orthonor-

mal basis e. Since v1, . . . , vk have arisen from u1, . . . , uk
as images under a linear transformation with an upper�

triangular matrix C with ones on the diagonal, we have

B = CA and |B| = |C||A| = |A|. But then |A|2 = |B|2 = |A||A|,
and thus VolPk(A; u1, . . . , uk) = ±|A|. The resulting volume is
zero if the vectors u1, . . . , uk are dependent. Provided that they

are independent, the sign of the determinant is positive if and only

if the basis u1, . . . , uk de�nes the same orientation as the basis

e. □

We can formulate the following important geometric conse-

quence:

4.23. Corollary. For each linear map φ : V → V on an euclidean

spaceV , detφ is equal to the (oriented) volume of the
image of the parallelepiped determined by vectors of

an orthonormal basis. More generally, the image of

the parallelepiped P determined by arbitrary dimV

vectors has volume equal to detφ�multiple of of the former volume.

4.24. Outer product and cross product of vectors. The previ-

ous considerations are closely related to so called ten-

sor product of vectors. We will not go farther in this

technically more complicated area but we mention at

least the case of the outer product n = dimV of vec-

tors u1, . . . , un ∈ V .
Let (u1j , . . . , unj )

T be coordinate expressions of vectors uj in

a chosen orthonormal basis V , and letM be amatrix with elements

(uij ). Then the determinant |M| does not depend on the choice of
the basis, and its value is called the outer product of the vectors

u1, . . . , un, and denoted by [u1, . . . , un]. Hence the outer product
is exactly the oriented product of the corresponding parallelepiped,

see 4.22.

Several useful properties of the outer product follow directly

from the de�nition

(1) The map (u1, . . . , un) 7→ [u1, . . . , un] is antisymmetric n�
linear map. It means, it is linear in all arguments, and the

interchange of any two arguments causes the change of sign

of the result.

(2) The outer product is zero if and only if the vectors u1, . . . , un
are linearly dependent.

(3) Vectors u1, . . . , un form a positive basis if and only if their

outer product is positive.

In technical applications in the space R3, we often use a

closely related operation, so called cross product, which assigns

a vector to any pair of vectors.

Let us consider an arbitrary euclidean vector space V of di-

mension n ≥ 2 and vectors u1, . . . , un−1 ∈ V . If we substitute
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6p1 − 4q1 − 9p2 − 3q2 = 7,
−4p1 + 6q1 + 6q2 = 6,

9p1 − 33p2 − q2 = 31,
3p1 − 6q1 − p2 − 9q2 = −11,

which we solve by forming matrix and performing elementary row op-

erations.
6 −4 −9 −3 7

−4 6 0 6 6
9 0 −33 −1 31
3 −6 −1 −9 −11

 ∼ · · · ∼


1 0 0 0 0
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 2

 .
The solutions is (p1, q1, p2, q2) = (0,−1,−1, 2). We have found

X1−X2 = (−3, 2,−5,−7,−3)−u2+v1−2v2 = (−3, 4,−2,−4, 2).

The size of vector (−3, 4,−2,−4, 2) and at the same time distance

between planes σ1, σ2 is hence

7 = √
(−3)2 + 42 + (−2)2 + (−4)2 + 22.

We determined distance between ϱ1 and ϱ2 di�erently than the

distance between σ1 and σ2. We could have used both methods in both

cases. Let's try the former method for the case of σ1, σ2. Let's �nd

ortogonal complement of vector subspace generated by

(2, 1, 0, 0, 1) , (−2, 0, 1, 1, 0) , (2, 2, 4, 0, 3) , (2, 0, 0,−2,−1) .

We get
2 1 0 0 1

−2 0 1 1 0
2 2 4 0 3
2 0 0 −2 −1

 ∼ · · · ∼


1 0 0 0 3/2
0 1 0 0 −2
0 0 1 0 1
0 0 0 1 2

 ,
The ortogonal complement is ⟨(−3/2, 2,−1,−2, 1)⟩, or rather

⟨(3,−4, 2, 4,−2)⟩. Note that distance between σ1 and σ2 equals the

size of ortogonal projection of vector (di�erence of arbitrary point in

σ1 and arbitrary point in σ2)

u = (3,−2, 5, 7, 3) = [3,−1, 7, 7, 3] − [0, 1, 2, 0, 0]

to this ortogonal complement. Denote the ortogonal projection of u

as pu and choose v = (3,−4, 2, 4,−2). Obviously pu = a · v for

some a ∈ R and it holds

⟨ u− pu, v ⟩ = 0, tj. ⟨ u, v ⟩ − a ⟨ v, v ⟩ = 0.

Computing gives 49 − a · 49 = 0. Therefore pu = 1 · v = v and the

distance between planes σ1 and σ2 is equal

||pu || = √
32 + (−4)2 + 22 + 42 + (−2)2 = 7.

Method of computing distance using ortogonal complement of

sum of vector spaces has proven to be �faster way to the solution�.

With no doubt, it will be the same for planes ϱ1 a ϱ2. The second

method however reveals points where the distance can bemeasure (pair
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these n − 1 vectors into the �rst n − 1 arguments of the n�linear

map de�ned by the volume determinant as above, thenwe are given

one argument left, i.e. a linear form on V . Since we have the scalar

product at disposal, each linear form corresponds to exactly one

vector. We call this vector v ∈ V the cross product of vectors

u1, . . . , un−1, i.e. the following holds for each vector w ∈ V
⟨v,w⟩ = [u1, . . . , un−1, w].

We denote the cross product by v = u1 × . . .× un−1.

If the coordinates of our vectors in an orthonormal basis are

v = (y1, . . . , yn)
T , w = (x1, . . . , xn)

T and uj = (u1j , . . . unj )
T ,

then our de�nition can be expressed as

y1x1 + · · · + ynxn =

∣∣∣∣∣∣∣
u11 . . . u1(n−1) x1
...

...
...

un1 . . . un(n−1) xn.

∣∣∣∣∣∣∣
We see from here that the vector v is given uniquely and its coor-

dinates are calculated by the formal expansion of this determinant

along the last column. At the same time, the following properties

of the cross product are direct consequences of the de�nition:

Theorem. For the cross product v = u1 × . . .× un−1 we have

(1) v ∈ ⟨u1, . . . , un−1⟩⊥
(2) v is nonzero if and only if the vectors u1, . . . , un−1 are linearly

independent,

(3) the length ∥v∥ of the cross product is equal to the absolute

value of the volume of parallelepiped P(0; u1, . . . , un−1),

(4) (u1, . . . , un−1, v) is an agreeing basis of the oriented eu-

clidean space V .

Proof. The �rst claim follows directly from the de�ning for-

mula for v since substituting an arbitrary vec-

tor uj for w we get the scalar product v · uj
on the left and the determinant with two equal

columns on the right.

The rank of the matrix with n − 1 columns uj is given by

the maximal size of a non-zero minor. The minors which de�ne

coordinates of the cross product are of degree n − 1 and thus the

claim (2) is proved.

If the vectors u1, . . . , un−1 are dependent, then also (3) holds.

Therefore, let us consider that the vectors are independent, let v

be their cross product, and let us choose an orthonormal basis

(e1, . . . , en−1) of the space ⟨u1, . . . , un−1⟩. It follows from what

we have proved that there exists a multiple (1/α)v, 0 ̸= α ∈ R,
such that (e1, . . . , ek, (1/α)v) is an orthonormal basis of the whole
space V . The coordinates of our vectors in this basis are

uj = (u1j , . . . , u(n−1)j , 0)T , v = (0, . . . , 0, α)T .

So the outer product [u1, . . . , un−1, v] is equal (see the de�nition
of cross product)

[u1, . . . , un−1, v] =

∣∣∣∣∣∣∣∣∣
u11 . . . u1(n−1) 0
...

...
...

u(n−1)1 . . . u(n−1)(n−1) 0
0 . . . 0 α

∣∣∣∣∣∣∣∣∣
= ⟨v, v⟩ = α2.

Expanding the determinant along the last column we get

α2 = αVolP(0; u1, . . . , in−1).
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of points in which the planes are the closest). Let's �nd such points in

the case of planes ϱ1, ϱ2. Denote

u1 = (1, 0,−1, 0, 0) , u2 = (0, 1, 0, 0,−1) ,

v1 = (1, 1, 1, 0, 1) , v2 = (0,−2, 0, 0, 3) .

Points X1 ∈ ϱ1, X2 ∈ ϱ2, which are �the closest� (as commented

above), are

X1 = [7, 2, 7,−1, 1] + t1u1 + s1u2,

X2 = [2, 4, 7,−4, 2] + t2v1 + s2v2,

so

X1 −X2 = [7, 2, 7,−1, 1] − [2, 4, 7,−4, 2]

+t1u1 + s1u2 − t2v1 − s2v2

= (5,−2, 0, 3,−1)+ t1u1 + s1u2 − t2v1 − s2v2.

Dot products

⟨X1 −X2, u1 ⟩ = 0, ⟨X1 −X2, u2 ⟩ = 0,

⟨X1 −X2, v1 ⟩ = 0, ⟨X1 −X2, v2 ⟩ = 0

then lead to linear equation system

2t1 = −5,
2s1 + 5s2 = 1,

−4t2 − s2 = −2,
−5s1 − t2 − 13s2 = −1

with only solution t1 = −5/2, s1 = 41/2, t2 = 5/2, s2 = −8. We

obtained

X1 = [7, 2, 7,−1, 1] − 5
2
u1 + 41

2
u2 =

[
9
2
,

45
2
,

19
2
,−1,−39

2

]
,

X2 = [2, 4, 7,−4, 2] + 5
2
v1 − 8v2 =

[
9
2
,

45
2
,

19
2
,−4,−39

2

]
.

Now we can easily see that the distance between points X1, X2 (and,

at the same time, distance between planes ϱ1, ϱ2) je ||X1 − X2 || =
|| (0, 0, 0, 3, 0) || = 3. □

4.35. Find intersection of plane passing through point

A = [1, 2, 3, 4] ∈ R4 and ortogonal to plane

ϱ : [1, 0, 1, 0] + (1, 2,−1,−2)s + (1, 0, 0, 1)t, s, t ∈ R.

Solution. First, let's �nd plane ortogonal to ϱ. Its direction will be

ortogonal to direction of ϱ, for vectors (a, b, c, d) within its direction

we get linear equation system

(a, b, c, d) · (1, 2,−1,−2) = 0 ≡ a + 2b − c − 2d = 0

(a, b, c, d) · (1, 0, 0, 1) = 0 ≡ a + d = 0.
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Both the remaining two claims from the proposition follow From

here. □

4.25. A�ne and euclidean properties. Now we can have a think

about which properties are related to the a�ne structure of the

space and for which properties we really need the scalar product in

the di�erence space.

It is obvious that all euclidean transformations, i.e. bijective

a�ne maps between euclidean spaces, which preserve the

distance between points preserve also all objects we have

studied. I.e. next to the distances they preserve also un-

oriented angles, unoriented volumes, angle between sub-

spaces etc. If we want them to preserve also oriented angles, cross

products, volumes, then we must assume in addition that our trans-

formations preserve the orientation too.

We may formulate our problem also as follows: Which con-

cepts of euclidean geometry are preserved under a�ne transfor-

mations?

First let us remind that an a�ne transformation on a n�

dimensional spaceA is uniquely de�ned by mapping n+ 1 points

in a general position, i.e. by mapping one n�dimensional simplex.

In the plane, it means to choose the image of one (nondegenerate)

triangle, which may be an arbitrary (nondegenerate) triangle. The

preserved properties will be the properties related to subspaces in

particular, i.e. the properties of the type "a line passing through a

point" or "a plane contains a line" etc. At the same time, the col-

inearity of vectors is preserved, and for every two colinear vectors,

the ratio of their lengths is preserved (independently on the scalar

product de�ning the length). Similarly, we have already seen that

the ratio of volumes of two n�dimensional parallelepipeds is pre-

served under transformations (since the determinant of the corre-

sponding matrix changes about the same multiple).

These a�ne properties can be used smartly in the plane to

prove geometric claims. For instance, to prove the fact that the

medians of a triangle intersect in a single point and in one third

of their lengths, it is su�cient to verify this only in the case of an

isosceles right-angled triangle or only in the case of an equilateral

triangle, and then this property holds for all triangles. Think this

argumentation over!

2. Geometry of quadratic forms

After straight lines, the simplest objects in the analytic geom-

etry of plane are so called conic sections. They

are given by quadratic equations in cartesian

coordinates, and by coe�cients we recognize

that the conic is a circle, ellipse, parabola or

hyperbola, potentially it may be also a pair of lines or a point (the

degenerate cases).

Wewill see that our tools enable us to classify e�ectively these

objects in all �nite dimensions and to work with them. It is also

obvious that we cannot distinguish a circle from an ellipse in a�ne

geometry, therefore we begin in the euclidean geometry.

4.26. Quadrics in En. In analogywith equations of conic sections
in plane, we start with objects in euclidean point spaces which are

de�ned in a given orthonormal basis by quadratic equations, we

talk about quadrics.
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Solution is two-dimensional vector space ⟨(0, 1, 2, 0), (−1, 0,−3, 1)⟩.
Plane τ ortogonal to ϱ passing through A has parametric equation

τ : [1, 2, 3, 4] + (0, 1, 2, 0)u+ (−1, 0,−3, 1)v, u, v ∈ R.

We can obtain intersection of planes from both parametric equations.

We get linear equation system

1 + s + t = 1 − v

2s = 2 + u

1 − s = 3 + 2u− 3v

−2s + t = 4 + v,

which has only solution (it must be so as matrix columns are linearly

independent) s = −8/19, t = 34/19, u = −54/19, v = −26/19.
Inputting parameter values s and t into parametric form of plane ϱ, we

obtain sought intersection [45/19,−16/19, 11/19, 18/19] (needless
to say, we get the same solution by inputting the values into τ ). □

4.36. Find a line passing through point [1, 2] ∈ R2 so that angle

between this line and line

p : [0, 1] + t (1, 1)

is 30◦.

Solution. Angle between two lines is angle between their direction

vectors. It is su�cient to �nd direction vector v of the line. One way

to do so is to rotate direction vector of p by 30◦. Rotation matrix for
the angle 30◦ is(

cos 30◦ − sin 30◦
sin 30◦ cos 30◦

)
=
(√

3
2 − 1

2
1
2

√
3

2

)
.

Sought vector v is therefore

v =
(√

3
2 − 1

2
1
2

√
3

2

)(
1
1

)
=
(√

3
2 − 1

2√
3

2 + 1
2

)
.

We could perform the backward rotation as well. The line (one of two

possible) has parametric equation

[1, 2] +
(√

3
2

− 1
2
,

√
3

2
+ 1

2

)
t.

□

4.37. Determine cosα, where α is angle between two adjacent faces

of regular octohedron (octohedron has eight equilateral triangles as

faces).

Solution. Octohedron is symetric, therefore it does not matter which

two faces we choose. Further, without loss of generality, asume octo-

hedron of edge length 1 and place it into standard Cartesian coordinate
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Let us choose a �xed cartesian coordinate system in En (i.e.

a point and an orthonormal basis of the di�erence

space), and let us consider a general quadratic equa-

tion for the coordinates (x1, . . . , xn)
T of a point A ∈

En

(4.4)

n∑
i,j=1

aijxixj +
n∑
i=1

2aixi + a = 0,

where we may assume the symmetry aij = aji without loss of

generality. This equation can be written as

f (u)+ g(u)+ a = 0

for a quadratic form f (i.e. the restriction of a symmetric bilinear

form F to pairs of equal arguments), a linear form g, and a scalar

a ∈ R. Farther, let us assume that at least one coe�cient aij is

nonzero (the equation is linear and describes an euclidean subspace

otherwise).

Let us notice that every euclidean (ar a�ne) coordinate trans-

formation transforms the equation (4.4) into the same form with a

quadratic, linear and constant part.

4.27. Quadratic forms. Let us begin our discussion of equation

(4.4) with its quadratic part, i.e. bilinear symmetric form F : Rn×
Rn → R. Similarly, we may think of a general symmetric bilinear
form on an arbitrary vector space.

For an arbitrary basis on this vector space, the value f (x) on

vector x = x1e1 + · · · + xnen is given by the equation

f (x) = F(x, x) =
∑
i,j

xixjF(ei, ej ) = xT · A · x

where A = (aij ) is a symmetric matrix with elements aij =
F(ei, ej ). We call such maps f quadratic forms, and the formula

from above for the value of the form in terms of the chosen coordi-

nates is called the analytic formula for the form.

In general, by a quadratic formwemean the restriction f (x) of

a symmetric bilinear form F(x, y) to arguments of the type (x, x).

Evidently, we can reconstruct the whole bilinear form F from the

values f (x) since

f (x + y) = F(x + y, x + y) = f (x)+ f (y)+ 2F(x, y).

If we change the basis ei to a di�erent basis e
′
1, . . . , e

′
n, we get

di�erent coordinates x = S · x′ for the same vector (here S is the

corresponding transformation matrix), and so

f (x) = (S · x′ )T · A · (S · x′ ) = (x′ )T · (ST · A · S) · x′ .
Now let us assume again that our vector space is equipped with a

scalar product. Then the previous computation can be formulated

as follows. The matrix of bilinear form F , which is the same as

the matrix of f , transforms under a change of coordinates in such

a way that for orthogonal changes it coincides with the transforma-

tion of a matrix of a linear map (indeed, then we have S−1 = ST ).

We can interpret this result also as the following observation:

Proposition. Let V be a real vector space with a scalar product.

Then formula

φ 7→ F, F (u, u) = ⟨φ(u), u⟩
de�nes a bijection between symmetric linear maps and quadratic

forms on V .
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system R3 so that its centroid lies in [0, 0, 0]. Its vertices then are lo-
cated in points A = [

√
2

2 , 0, 0], B = [0,
√

2
2 , 0], C = [−

√
2

2 , 0, 0],
D = [0,−

√
2

2 , 0], E = [0, 0,−
√

2
2 ] a F = [0, 0,

√
2

2 ].
Wewill compute angle between facesCDF andBCF . We have to

�nd vectors ortogonal to their intersection and lying within respective

faces, which means ortogonal to CF . They are altitudes from D and

F to edge CF in triangles CDF and BCF respectively. Altitudes in

equilateral triangle are the same segments as medians, so they are SD

and SB, where S is midpoint ofCF . Because we know coordinates of

points C and F , the point S has coordinates [−
√

2
4 , 0,

√
2

4 ] and vectors
are SD = (

√
2

4 ,−
√

2
2 ,−

√
2

4 ) a SB = (
√

2
4 ,

√
2

2 ,−
√

2
4 ). Together

cosα = (
√

2
4 ,−

√
2

2 ,−
√

2
4 ) · (

√
2

4 ,
√

2
2 ,−

√
2

4 )

∥(
√

2
4 ,−

√
2

2 ,−
√

2
4 )∥∥(

√
2

4 ,
√

2
2 ,−

√
2

4 )∥
= −1

3
.

Therefore α
.= 132◦. □

4.38. In Euclidean space R5 determine angle φ between sub-

spaces U , V , where

(a) U : [3, 5, 1, 7, 2] + t (1, 0, 2,−2, 1) , t ∈ R,
V : [0, 1, 0, 0, 0] + s (2, 0,−2, 1,−1) , s ∈ R;

(b) U : [4, 1, 1, 0, 1] + t (2, 0, 0, 2, 1) , t ∈ R,
V : x1 + x2 + x3 + x5 = 7;

(c) U : 2x1 − x2 + 2x3 + x5 = 3,
V : x1 + 2x2 + 2x3 + x5 = −1;

(d) U : [0, 1, 1, 0, 0] + t (0, 0, 0, 1,−1) , t ∈ R,
V : [1, 0, 1, 1, 1] + r (1,−1, 2, 1, 0)+ s (0, 1, 3, 2, 0)

+ p (1, 0, 0, 1, 0)+ q (1, 3, 1, 0, 0) ,
r, s, p, q ∈ R;

(e) U : [0, 2, 5, 0, 0] + t (2, 1, 3, 5, 3)+ s (0, 3, 1, 4,−2)
+ r (1, 2, 4, 0, 3) , t, s, r ∈ R,

V : [0, 0, 0, 0, 0] + p (−1, 1, 1,−5, 0)
+ q (1, 5, 1, 13,−4) , p, q ∈ R;

(f) U : [1, 1, 1, 1, 1] + t (1, 0, 1, 1, 1)+ s (1, 0, 0, 1, 1) , t, s ∈
R,
V : [1, 1, 1, 1, 1] + p (1, 1, 1, 1, 1)+ q (1, 1, 0, 1, 1)

+ r (1, 1, 0, 1, 0) ,
p, q, r ∈ R.

Solution. First, recall that angle between a�ne subspaces is the same

as the angle between vector spaces associated to them, and therefore

we omit transposition caused by point addition.

Case (a). Since U a V are one-dimensional spaces, angle φ ∈
[0, π/2] is given by formula



CHAPTER 4. ANALYTIC GEOMETRY

Proof. Indeed, each bilinear form with a �xed second argu-

ment becomes a linear form αu( ) = F( , u), and in

the presence of a scalar product, it must be given by for-

mula α(u)(v) = v · w for a suitable vector w. We set

φ(u) = w. One show directly from the coordinate expres-

sion displayed above that φ is a linear map with matrix A. Hence

it is selfadjoint.

On the other hand, each symmetric map φ de�nes a symmetric

bilinear form F by formula F(u, v) = ⟨φ(u), v⟩ = ⟨u, φ(v)⟩, and
thus also a quadratic form by restriction. □

We get immediately the following consequence of this propo-

sition. For each quadratic form f there exists an orthonormal basis

of the di�erence space in which f has a diagonal matrix (and the

values on the diagonal are determined uniquely up to their order).

Due to the identi�cation of quadratic forms with linear maps,

we can also de�ne correctly the rank of the quadratic form as the

rank of its matrix in any basis (i.e. the rank is equal to the dimen-

sion of the image of the corresponding map φ).

4.28. Classi�cation of quadrics. Let us come back to our equa-

tion (4.4). Our results on quadratic forms enable us to rewrite this

equation as follows

n∑
i=1

λix
2
i +

n∑
i=1

bixi + b = 0.

Hence we may assume directly that the quadric is given in

this form. In the next step, we do completing the squares for the

coordinates xi with λi ̸= 0, which "absorbs" the squares together
with the linear terms in the same variable (so called Lagrange al-

gorithm, will be discussed in detail later). So we are left only with

linear terms corresponding to variables for which the coe�cient at

the quadratic term was zero, and we get

n∑
i=1

λi(xi − pi)
2 +

n∑
j satisfying λj = 0

bjxj + c = 0.

This corresponds to a translation of the origin about the vector with

coordinates pi and to such a choice of basis of the di�erence space

that we get the desired diagonal form in the quadratic part. In the

identi�cation of quadratic forms with linear maps derived above,

it means that φ is diagonal on the orthogonal complement of its

kernel. If we are left with some linear terms, we may adjust the

orthonormal basis of the di�erence space for the kernel of φ such

that the corresponding linear form is a multiple of the �rst term of

the dual basis. Hence we can already reach the �nal formula

k∑
i=1

λiy
2
i + byk+1 + c = 0,

where k is the rank of matrix of quadratic form f . If b ̸= 0, we
can make the constant c in the equation to be zero by a next change

of the origin.

Hence we see that the linear term may (but does not have to)

appear only in the case that the rank of f is less than n, c ∈ Rmay

be nonzero only if b = 0. The resulting equations are called the

canonical analytic formulas for quadrics.
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cosφ = | (1,0,2,−2,1)·(2,0,−2,1,−1) |
|| (1,0,2,−2,1) ||·|| (2,0,−2,1,−1) || = 5√

10·√10
.

Therefore cosφ = 1/2 and φ = π/3.
Case (b). We know direction vector (2, 0, 0, 2, 1) of subspace U

and normal vector (1, 1, 1, 0, 1) of subspace V . Angle between

them ψ = π/3 can be easily derived from the formula

cosψ = (2,0,0,2,1)·(1,1,1,0,1)
|| (2,0,0,2,1) ||·|| (1,1,1,0,1) || = 3

3·2 .

Now we have to realise that φ = π/2 − ψ = π/6 (because φ is

complement to ψ).

Case (c). Hyperplanes U and V are de�ned by normal vectors

u = (2,−1, 2, 0, 1) and v = (1, 2, 2, 0, 1). Obviously angle φ is

equal to angle between direction vectors u a v. Therefore (see (a))

cosφ = | (2,−1,2,0,1)·(1,2,2,0,1) |
|| (2,−1,2,0,1) ||·|| (1,2,2,0,1) || = 1

2 , tj. φ = π
3 .

Case (d). Denote

u = (0, 0, 0, 1,−1) , v1 = (1,−1, 2, 1, 0) ,

v2 = (0, 1, 3, 2, 0) , v3 = (1, 0, 0, 1, 0) , v4 = (1, 3, 1, 0, 0)

and denote ortogonal projection of u into vector subspace of V (sub-

space generated by v1, v2, v3, v4) by pu. If we knew pu, from the for-

mula

(4.2) cosφ = ||pu ||
|| u ||

would φ ∈ [0, π/2]. We know that

pu = av1 + bv2 + cv3 + dv4 for somea, b, c, d ∈ R

and that

⟨pu − u, v1 ⟩ = 0, ⟨pu − u, v2 ⟩ = 0,

⟨pu − u, v3 ⟩ = 0, ⟨pu − u, v4 ⟩ = 0.

Substituting for pu we get linear equation system

7a + 7b + 2c = 1,
7a + 14b + 2c + 6d = 2,
2a + 2b + 2c + d = 1,

6b + c + 11d = 0.
Solution is (a, b, c, d) = (−8/19, 7/19, 13/19,−5/19), a tak

pu = − 8
19
v1 + 7

19
v2 + 13

19
v3 − 5

19
v4 = (0, 0, 0, 1, 0) ,

cosφ = || (0, 0, 0, 1, 0) ||
|| (0, 0, 0, 1,−1) || = 1√

2
=

√
2

2
.

Hence φ = π/4.
Case (e). Let's determine intersection of vector subspaces associ-

ated with given a�ne subspaces. Vector (x1, x2, x3, x4, x5) is in vector

subspace of U , if and only if

(x1, x2, x3, x4, x5) =
t (2, 1, 3, 5, 3)+ s (0, 3, 1, 4,−2)+ r (1, 2, 4, 0, 3)
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4.29. The case of E2. As an example of the previous procedure,

let us go through the whole discussion in the simplest

case of a nontrivial dimension, i.e. dimension two.

The original equation has the form

a11x
2 + a22y

2 + 2a12xy + a1x + a2y + a = 0.

By a suitable choice of a basis of di�erence space and the subse-

quent completing the squares we reach the form (we use the same

notation x, y for the new coordinates):

a11x
2 + a22y

2 + a1x + a2y + a = 0

where ai may be nonzero only in the case that aii is zero. By the

last step of the general procedure, i.e. in dimension n = 2 only

by a choice of a translation, we reach exactly one of the following

equations:

0 = x2 /a2 + y2 /b2 + 1 empty set

0 = x2 /a2 + y2 /b2 − 1 ellipse

0 = x2 /a2 − y2 /b2 − 1 hyperbola

0 = x2 /a2 − 2py parabola

0 = x2 /a2 + y2 /b2 point

0 = x2 /a2 − y2 /b2 2 concurrent lines

0 = x2 − a2 2 parallel lines

0 = x2 2 identical lines

0 = x2 + a2 empty set

The origin of cartesian coordinates is the center of the studied

conic, the found orthonormal basis of the di�erence space gives

the direction of semiaxes, the �nal coe�cients a, b then give the

lengths of semiaxes in nondegenerate directions.

4.30. A�ne point of view. In the previous two paragraphs, we

have been searching for essential properties and stan-

dardized analytical descriptions of objects de�ned in

euclidean spaces by quadratic equations. Wewanted

to get the simplest equations which may be reached by suitable

choice of coordinates. A geometric formulation of our result is

that for two di�erent objects � quadrics, given in di�erent carte-

sian coordinates in general, there exists an euclidean transforma-

tion on En (i.e. an a�ne bijective map preserving lengths) if and

only if the above algorithm leads to the same analytic formulas, up

to the order of coordinates. Moreover, we can obtain directly by

our procedure the cartesian coordinates in which our objects are

given by the resulting canonical formulas, and hence also the ex-

plicit expression of the corresponding coordinate transformation

(we know that it is always a composition of a translation, rotation

and re�ection with respect to a hyperplane).

Of course, we may ask to what extend we can do the same in

a�ne spaces, where we can choose any coordinate system. For ex-

ample, in the plane it means that we cannot distinguish the circle

from the ellipse, but we distinguish from the hyperbola and also be-

tween all other types of conics. In particular, all hyperbolas merge

into one etc.

We show on quadratic forms the main di�erence in the proce-

dure, and we postpone the next discussion of this issue to the third

part of this chapter.

Let us consider a quadratic form f on a vector space V and its

analytic formula f (u) = xT Ax with respect to a chosen basis on
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for some t, s, r ∈ R, and, at the same time, (x1, x2, x3, x4, x5) ∈ V if

and only if

(x1, x2, x3, x4, x5) = p (−1, 1, 1,−5, 0)+ q (1, 5, 1, 13,−4)

for some p, q ∈ R. Let's �nd such t, s, r, p, q ∈ R, so that

t (2, 1, 3, 5, 3)+ s (0, 3, 1, 4,−2)+ r (1, 2, 4, 0, 3)

= p (−1, 1, 1,−5, 0)+ q (1, 5, 1, 13,−4).

It is a homogeneous linear equation system. We will solve it in matrix

form (order of variables is t, s, r, p, q)
2 0 1 1 −1
1 3 2 −1 −5
3 1 4 −1 −1
5 4 0 5 −13
3 −2 3 0 4

 ∼ · · · ∼


1 3 2 −1 −5
0 2 1 −1 −3
0 0 1 −1 1
0 0 0 0 0
0 0 0 0 0

 .
It has showed that vectors de�ning V are linear combination of U 's

vectors. That means V is subset of U , and hence φ = 0.
Case (f). Again we will �nd an intersection of U and V . Again

we will search for numbers t, s, p, q, r ∈ R such that

t (1, 0, 1, 1, 1)+ s (1, 0, 0, 1, 1) =
p (1, 1, 1, 1, 1)+ q (1, 1, 0, 1, 1)+ r (1, 1, 0, 1, 0) .

The solution is (t, s, p, q, r) = (−a, a,−a, a, 0), a ∈ R. Intersection
Z(U) ∩ Z(V ) of vector spaces U and V contains exactly vectors

(0, 0,−a, 0, 0) = −a (1, 0, 1, 1, 1)+ a (1, 0, 0, 1, 1)

= −a (1, 1, 1, 1, 1)+ a (1, 1, 0, 1, 1)+ 0 (1, 1, 0, 1, 0) ,

where a ∈ R, i.e. Z(U) ∩ Z(V ) is generated by (0, 0, 1, 0, 0) and
its ortogonal complement (Z(U)∩Z(V ))⊥ is obviously generated by

vectors

(1, 0, 0, 0, 0) , (0, 1, 0, 0, 0) , (0, 0, 0, 1, 0) , (0, 0, 0, 0, 1) .

We get

Z(U) ∩ Z(V ) ̸= {0}, Z(U) ∩ Z(V ) ̸= Z(U),

Z(U) ∩ Z(V ) ̸= Z(V ).

Angle φ is de�ned as angle between subspaces

Z(U) ∩ (Z(U) ∩ Z(V ))⊥ a Z(V ) ∩ (Z(U) ∩ Z(V ))⊥.
It can be further seen that

Z(U) ∩ (Z(U) ∩ Z(V ))⊥ = ⟨ (1, 0, 0, 1, 1) ⟩ ,
Z(V ) ∩ (Z(U) ∩ Z(V ))⊥ = ⟨ (1, 1, 0, 1, 1) , (1, 1, 0, 1, 0) ⟩ .

It is enough to express Z(U) as linear combination of vectors

(0, 0, 1, 0, 0) , (1, 0, 0, 1, 1)

and subspace Z(V ) by vectors

(0, 0, 1, 0, 0) , (1, 1, 0, 1, 1) , (1, 1, 0, 1, 0) .
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V . Then for vector u = x1u1 + · · · + xnun we also write the form

f as

f (x1, . . . , xn) =
∑
ij

aijxixj ,

We have already shown in the previous paragraphs with the help of

the scalar product that A is diagonal for a suitable choice of basis,

i.e. that F(ui, uj ) = 0 for i ̸= j holds for a suitable symmetric

form F . Each such basis is called the polar basis of the quadratic

form f . Obviously, wemay always choose a scalar product for such

purpose. Nevertheless, we are going to prove this statement with-

out use of scalar product, and so we get much simpler algorithm for

�nding a polar basis among all other basis. At the same time, we

get know the relevant information about a�ne properties of qua-

dratic forms. The following proposition is in literature known as

Lagrange algorithm.

Theorem. Let V be a real vector space of dimension n, f : V →
R a quadratic form. Then there exist a polar basis for f on V .

Proof. (1) LetA be the matrix of f in basis u = (u1, . . . , un)

on V , and let us assume a11 ̸= 0. Then we may write

f (x1, . . . , xn) = a11x
2
1 + 2a12x1x2 + · · · + a22x

2
2 + . . .

= a−1
11 (a11x1 + a12x2 + · · · + a1nxn)

2

+ terms not containing x1.

Hence we transform the coordinates (i.e. we change the basis) such

that in new coordinates we have

x′1 = a11x1 + a12x2 + · · · + a1nxn, x
′
2 = x2, . . . , x

′
n = xn.

It corresponds to the new basis (as an exercise, compute the trans-

formation matrix)

v1 = a−1
11 u1, v2 = u2 − a−1

11 a12u1, . . . , vn = un − a−1
11 a1nu1

and so, as we may expect, in the new basis the corresponding sym-

metric bilinear form satis�es g(v1, vi) = 0 for all i > 0 (com-

pute!). Thus f has the form a−1
11 x

′
1

2 + h in the new coordinates,

where h is a quadratic form independent on the variable x1.

Due to technical reasons, it is mostly better to choose v1 =
u1 in the new basis. Then we have the expression f = f1 + h,

where f1 depend only on x′1, while x′1 does not appear in h, but

g(v1, v1) = a11.

(2) Let us assume that after doing the step (1), we get for h a

matrix (of rank less about one) with a nonzero coe�cient at x′22.

Then we may repeat exactly the same procedure and we get the

expression f = f1 + f2 + h, where h contains only the variables

with index greater than two. We may proceed in this way as long

until we get a diagonal form after n− 1 steps or in a step, say i-th

step, the element aii is zero.

(3) If the last possibility happens, but in the same time there

exists some other element ajj ̸= 0 with j > i, then it su�ces to

switch the i�th and the j�th vector of the basis and to continue

according the the previous procedure.

(4) Let us assume now that we come to the situation ajj = 0
for all j ≥ i. If there is no element ajk ̸= 0 with j ≥ i, k ≥ i, then

we are done since we have got a diagonal matrix. If ajk ̸= 0, then
we use transformation vj = uj + uk + we keep the other vector of

basis constant (i.e. x′k = xk−xj , the other remain constant). Then
h(vj , vj ) = h(uj , uj )+ h(uk, uk)+ 2h(uk, uj ) = 2ajk ̸= 0 and

we can continue according to (1). □
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Since dimension of Z(U) ∩ (Z(U) ∩ Z(V ))⊥ is 1, we can use for-

mula (∥4.2∥), where u = (1, 0, 0, 1, 1) and pu is ortogonal projection
of u into Z(V ) ∩ (Z(U) ∩ Z(V ))⊥. Then

pu = a (1, 1, 0, 1, 1)+ b (1, 1, 0, 1, 0)

and

⟨pu − u, (1, 1, 0, 1, 1) ⟩ = 0, ⟨pu − u, (1, 1, 0, 1, 0) ⟩ = 0,

which leads to linear equation system

4a + 3b = 3,
3a + 3b = 2

with only solution a = 1, b = −1/3. We have computed

pu = ( 2
3 ,

2
3 , 0, 2

3 , 1
)

and from (∥4.2∥) it follows that
cosφ = || (2/3,2/3,0,2/3,1) ||

|| (1,0,0,1,1) || =
√

7
3 , tj. φ

.= 0, 49 (≈ 28 ◦) .

□

C. Geometry of quadratic forms

4.39. Determine polar basis of form f : R3 → R, f (x1, x2, x3) =
3x2

1 + 2x1x2 + x2
2 + 4x2x3 + 6x2

3 .

Solution. Its matrix is

A =
3 1 0

1 1 2
0 2 6

 .
According to step (1) of Lagrange algorithm (see Theorem 4.30), we

perform following operations

f (x1, x2, x3) = 1
3
(3x1 + x2)

2 + 2
3
x2

2 + 4x2x3 + 6x2
3

= 1
3
y2

1 + 3
2
(
2
3
y2 + 2y3)

2

= 1
3
z2

1 + 3
2
z2

2

and we see that the form has rank 2 and matrix changing basis to polar
basis w is obtained by combination of following transformations:

z3 = y3 = x3, z2 = 2
3
y2 + 2y3 = 2

3
x2 + 2x3, z1 = y1 = 3x1 + x2,

so the change of basis matrix is

T =
3 1 0

0 2
3 2

0 0 1

 .
We computed polar coordinates, expressed them in standard basis

and wrote them as rows of the matrix (see that columns of this ma-

trix are vectors of standard basis in polar basis). Polar basis vector

coordinates are the columns of matrix T −1.
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4.31. A�ne classi�cation of quadratic forms. We can improve

the Lagrange algorithm for computing polar basis by

multiplying the vectors from basis by a scalar such

that the coe�cients at squares of variables in the cor-

responding analytic formula for our formwill be only

scalars 1, −1 and 0. Moreover, the following law of inertia says

that the number of one's and minus one's does not depend on our

choices in the course of the algorithm. These numbers are called

the signature of a quadratic form. As before, we get a complete de-

scription of quadratic forms in the sense that two such forms may

be transformed each one into the other by an a�ne transformation

if and only if they have the same signature.

Theorem. For each nonzero quadratic form of rank r on a real

vector space V there exists a natural number 0 ≤ p ≤ r and r

independent linear forms φ1, . . . , φr ∈ V ∗ such that
f (u) = (φ1(u))

2 +· · ·+ (φp(u))2 − (φp+1(u))
2 −· · ·− (φr(u))2.

Otherwise put, there exists a polar basis, in which f has analytic

formula

f (x1, . . . , xn) = x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

r .

The number p of positive diagonal coe�cients in the matrix of

given quadratic form (and thus the number r − p of negative coef-

�cients) does not depend on the choice of polar basis.

Two symmetric matrices A, B of dimension n are matrices of

the same quadratic form in di�erent bases if and only if they have

the same rank and the same number of positive coe�cients in the

polar basis.

Proof. By the Lagrange algorithm we obtain

f (x1, . . . , xn) = λ1x
2
1 +· · ·+λrx2

r , λi ̸= 0, in a basis on V . let us
assumemoreover that exactly the �rst p coe�cients λi are positive.

Then the transformation y1 = √
λ1x1, . . . , yp = √

λpxp, yp+1 =√−λp+1xp+1, . . . , yr = √−λrxr , yr+1 = xr+1 , . . . , yn = xn
yields the desired formula. The forms φi are exactly the forms

from dual basis in V ∗ to the polar basis that we obtained. We

must prove yet that p does not depend on our procedure. Let us

assume that we managed to �nd a formula for the same form f in

the polar bases u, v, i.e.

f (x1, . . . , xn) = x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

r

f (y1, . . . , yn) = y2
1 + · · · + y2

q − y2
q+1 − · · · − y2

r

and let us denote the subspace generated by �rst p vectors of the

�rst basis byP = ⟨u1, . . . , up⟩, and similarlyQ = ⟨vq+1 , . . . , vn⟩.
Then for each u ∈ P we have f (u) > 0 while forv ∈ Q we have

f (v) ≤ 0. Hence necessarily P ∩ Q = {0} holds, and therefore

dimP + dimQ ≤ n. From here we conclude p + (n − q) ≤ n,

i.e. p ≤ q. However, we get also q ≤ p by the opposite choice of

subspaces.

Thus p is independent on the choice of the polar basis. But

then for two matrices with the same rank and the same number

of positive coe�cients in the diagonal form of the corresponding

quadratic form, we get the same analytic formulas. □
While we discussed symmetric maps we talked about de�nite

and semide�nite maps. The same discussion has an obvious mean-

ing also for symmetric bilinear forms and quadratic forms. A qua-

dratic form f on a real vector space V is called

(1) positive de�nite if f (u) > 0 for all vectors u ̸= 0,
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T −1 =
 1

3
−1
2 1

0 3
2 −3

0 0 1

 ,
polar basis is therefore (( 1

3 , 0, 0), (− 1
2 ,

3
2 , 0), (1,−3, 1)). □

4.40. Determine polar basis of form f : R3 → R3. f (x1, x2, x3) =
2x1x3 + x2

2 .

Solution. Matrix of the form is

A =
0 0 1

0 1 0
1 0 0

 .
We can switch the order of variables: y1 = x2, y2 = x1, y3 = x3.

It is then trivial to apply step (1) of Lagrange algorithm (there are

no common terms), however for the next step, case (4) sets in. We

introduce transformation z1 = y1, z2 = y2, z3 = y3 − y2. Pak

f (x1, x2, x3) = z2
1 + 2z2(z3 + z2) = z2

1 + 1
2
(2z2 + z3)

2 − 1
2
z2

3.

Together we get z1 = y1 = x2, z2 = y2 = x1, z3 = y3 − y2 = x3 − x1.

Matrix T for change to polar basis is

T =
 0 1 0

1 0 0
−1 0 1

 and T −1 =
0 1 0

1 0 0
0 1 1

 ,
polar basis is therefore ((0, 1, 0), (1, 0, 1) (0, 1, 1)). □

4.41. Find polar basis of quadratic form f : R3 → R, which is in

standard basis de�ned as

f (x1, x2, x3) = x1x2 + x1x3.

Solution. By application of Lagrange algorithm we get:

f (x1, x2, x3) = 2x1x2 + x2x3

we perform substitution according to step (4) of the algorithm y2 = x2 − x1, y1 = x1, y3 = x3

= 2x1(x1 + y2)+ (x1 + y2)x3 = 2x2
1 + 2x1y2 + x1x3 + y2x3 =

= 1
2
(2x1 + y2 + 1

2
x3)

2 − 1
2
y2

2 − 1
8
x2

3 + y2x3 =
substitution y1 = 2x1 + y2 + 1

2x3

= 1
2
y2

1 − 1
2
y2

2 − 1
8
x2

3 + y2x3 = 1
2
y2

1 − 2(
1
2
y2 − 1

2
x3)

2 + 3
8
x2

3 =
substitution y3 = 1

2y2 − 1
2x3

= 1
2
y2

1 − 2y2
3 + 3

8
x2

3 .

Within coordinates y1, y3, x3 we can see that the quadratic form has

a diagonal shape, which means that basis associated with those coor-

dinates is polar basis of the form. If we want to express the basis, we

need to get matrix which changes basis from polar to standard. By def-

inition of change of basis matrix, its columns are polar basis vectors.
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(2) positive semide�nite if f (u) ≥ 0 for all vectors u ∈ V ,
(3) negative de�nite if f (u) < 0 for all vectors u ̸= 0,
(4) negative semide�nite if f (u) ≤ 0 for all vectors u ∈ V ,
(5) inde�nite if f (u) > 0 and f (v) < 0 for two vectors u, v ∈ V .
We use the same names also for symmetric matrices corresponding

to quadratic forms. By a signature of a symmetric matrix we mean

the signature of the corresponding quadratic form.

4.32. Theorem (Sylvester criterion). A symmetric real matrixA is

positive de�nite if and only if all its leading principal minors are

positive.

A symmetric real matrix A is negative de�nite if and only if

(−1)i |Ai | > 0 for all leading principal submatrices Ai .

Proof. We must analyse in detail the form of the transforma-

tions used in the Lagrange algorithm for constructing

the polar basis. The transformation used in the �rst

step of this algorithm always have an upper triangu-

lar matrix T and if we use the technical modi�cation

mentioned in the proof of proposition 4.30 moreover, the matrix

has one's on the diagonal:

T =
1 − a12

a11
. . . − an2

a11
0 1 . . . 0
...

. . .
...

 .
Such matrix of the transformation from basis u to basis v has sev-

eral nice properties. In particular, its leading principal submatrices

Tk formed by �rst k rows and columns are the transformation ma-

trices of a subspace Pk = ⟨u1, . . . , uk⟩ from basis (u1, . . . , uk)

to basis (v1 . . . , vk). The leading principal submatrices Ak of the

matrix A of form f are matrices of restrictions of the form f to

Pk . Therefore, the matrices Ak and A
′
k of restrictions to Pk in ba-

sis u and v respectively satisfy Ak = T Tk A
′
k(Tk)

−1, where T is the

transformation matrix from u to v. The inverse matrix to an upper

triangular matrix with one's on the diagonal is an upper triangular

matrix with one's on the diagonal again. Hence we may similarly

express A′ in terms of A. Thus the determinants of matrices Ak
and A′

k are equal by Cauchy formula. So we proved a useful state-

ment:

Let f be a quadratic form on V , dimV = n, and let u be

a basis of V such that we never need the items (3) and (4) from

the Lagrange algorithm while �nding the polar basis. Then as the

result we get analytic formula

f (x1, . . . , xn) = λ1x
2
1 + λ2x

2
2 + · · · + λrx

2
r

where r is the rank of form f , λ1, . . . , λr ̸= 0 and for leading

principal submatrices of the (former) matrix A of quadratic form

f we have |Ak| = λ1λ2 . . . λk , k ≤ r.

In our procedure, each sequential transformation makes zeros

under the diagonal in next column. From here it is obvious that

if the leading principal minors are nonzero then the next diagonal

term in A is nonzero. By this consideration we proved so called

Jacobi theorem:

Corollary. Let f be a quadratic form of rank r on a vector space

V with matrix A in basis u. There is no need of other steps in La-

grange algorithm than completing squares if and only if the leading

principal submatrices of A satisfy |A1| ̸= 0, . . . , |Ar | ̸= 0. Then
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We get change of basis matrix by either expressing the old variables

(x1, x2, x3) by new variables (y1, y3, x3), or equivalently expressing

the new ones by the old ones (which is easier), we however need to

compute inverse matrix in the latter case.

We have y1 = 2x1 + y2 + 1
2x3 = 2x1 + (x2 − x1) + 1

2x3 and

y3 = 1
2y2 − 1

2x3 = − 1
2x1 + 1

2x3 − 1
2x3. Matrix changing basis from

polar basis to standard basis is

T =
 2 1 1

2− 1
2

1
2 − 1

2
0 0 1

 .
Inverse matrix is

T −1

 1
3 − 2

3 − 1
2

1
3

4
3

1
2

0 0 1

 .
One of polar bases of the given quadratic forms is

hence for example basis (see the columns of matrix

{(1/3, 1/3, 0), (−2/3, 4/3, 0), (−1/2, 1/2, 1)}. □

4.42. Determine the type of conic section de�ned by

3x2
1 − 3x1x2 + x2 − 1 = 0.

Solution. We complete the squares:

3x2
1 − 3x1x2 + x2 − 1 = 1

3
(3x1 − 3

2
x2)

2 − 3
4
x2

2 + x2 − 1 =

= 1
3
y2

1 − 4
3
(
3
4
x2 − 1

2
)2 + 1

3
− 1 =

= 1
2
y2

1 − 4
3
y2

2 − 2
3
.

According to list 4.29, the given conic section is hyperbola. □

4.43. By completing the squares express quadric

−x2 + 3y2 + z2 + 6xy − 4z = 0

in such way that one can determine its type from it.

Solution. We move all terms containing x to −x2 and complete the

square. We get equation

−(x − 3y)2 + 9y2 + 3y2 + z2 − 4z = 0.

There are no �unwanted� terms containing y , so we repeat the proce-

dure for z, which gives us

−(x − 3y)2 + 12y2 + (z− 2)2 − 4 = 0.

Now we can conclude that there is a transformation of variables that

leads to equation (we can divide by 4 �rst)

−x̄2 + ȳ2 + z̄2 − 1 = 0.

□
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there exists a polar basis (which we get by the above algorithm), in

which f has analytic formula

f (x1, . . . , xn) = |A1|x2
1 + |A2|

|A1|x
2
2 + · · · + |Ar |

|Ar−1 |x
2
r .

Hence if all leading principal minors are positive, then f is

positive de�nite by Jacobi theorem.

On the other hand, let us consider that the form f is posi-

tive de�nite. Then for a suitable regular matrix P we have A =
P TEP = P T P . And so |A| = |P |2 > 0. Let u be a chosen

basis in which the form f has matrix A. The restrictions of f to

subspaces Vk = ⟨u1, . . . , uk⟩ are positive de�nite forms fk again,
and the corresponding matrices in bases u1, . . . , uk are the leading

principal submatricesAk . Thus |Ak| > 0 according to the previous
part of the proof.

The claim about negative de�nite forms follows by observing

the fact that A is positive de�nite if and only if −A is negative

de�nite. □

3. Projective geometry

In many elementary texts on analytic geometry, the authors

�nish with the a�ne and euclidean objects described

above. The a�ne and euclidean geometries are su�-

cient for many practical problems, but not for all prob-

lems.

For instance in processing an image from a camera, angles are

not preserved and parallel lines may (but does not have to) inter-

sect. The next reason for �nding a more general framework for

geometric problems and considerations is to deal only with simple

numerical operations likematrixmultiplication. Moreover, it is dif-

�cult to distinguish very small angles from zero angles, and thus it

is preferable to have tools which do not need such distinguishing.

The basic idea of projective geometry is to extend a�ne spaces

by points in in�nity such that it allows us an easy work with linear

objects like points, lines, planes, projections, etc.

4.33. Projective extension of a�ne plane. We begin with the

simplest interesting case, the geometry in a plane. If we imagine

the points in planeA2 as the plane z = 1 inR3, then each point P

in our a�ne plane is represented by a vector u = (x, y, 1) ∈ R3,

and so it is represented also by a one�dimensional subspace ⟨u⟩ ⊂
R3. On the other hand, almost each one�dimensional subspace

in R3 intersects our plane in exactly one point P , and the vectors

of such subspace are given by coordinates (x, y, z) uniquely up to

a common scalar multiple. Only the subspaces corresponding to

vectors (x, y, 0) will not have any intersection with our plane.
Projective plane

De�nition. Projective plane P2 is the set of all one�dimensional

subspaces in R3. Homogeneous coordinates of point P = (x :
y : z) in the projective plane are triples of real numbers given up
to a common scalar multiple, while at least one of them must be

nonzero. The straight line in projective plane is de�ned as the set

of one�dimensional subspaces (i.e. points in P2) which generate a

two�dimensional subspace (i.e. a plane) in R3.
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We can tell the type of the conic section without transforming its

equation to the form listed in 4.29. As we know, we can express every

conic section as

a11x
2 + 2a12xy + a22y

2 + 2a13x + 2a23y + a33 = 0.

Determinants 1 = detA =
∣∣∣∣∣∣
a11 a12 a13
a12 a22 a23
a13 a32 a33

∣∣∣∣∣∣ and δ =∣∣∣∣a11 a12
a12 a22

∣∣∣∣
are so called invariants of conic section which means that they are not

changed by Euclidian transformation (rotation and translation). Fur-

thermore, di�erent types of conic sections have di�erent signs of those

determinants.

• 1 ̸= 0 non-degenerate conic sections:

ellipse for δ > 0, hyperbola for δ < 0 and parabola for δ = 0
Furthermore, for real ellipse (not imaginary), (a11+a22)1 <

0 must hold.

• 1 = 0 degenerate conic sections, lines

We can easily check that signs (or zero-value) of the determinants are

really invariant to coordinate transformation. Denote X =
xy

1

 and

A is a matrix of quadratic form. Then the corresponding conic section

has equation XTAX = 0. We get the standard form by rotation and

translation, i.e. by transformation to new coordinates x′ , y′ satisfying

x = x′ cosα − y′ sinα + c1

y = x′ sinα + y′ cosα + c2,

or, in matrix form, for new coordinates X′ =
x′
y′
1

 holds

(4.3) X =
xy

1

 =
cosα − sinα c1

sinα cosα c2
0 0 1

x′
y′
1

 = MX′.

InputtingX = MX′ into the conic section equation we get equation in
new coordinates

XTAX = 0

(MX′)TA(MX′) = 0

X′TMT A MX′ = 0.

Denote by A′ matrix of the quadratic form in new coordinates. Then

A′ = MT AM, where matrix M =
cosα − sinα c1

sinα cosα c2
0 0 1

 has unit

determinant, so

detA′ = detMT detA detM = detA = 1.
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In order to have a concrete example, let us look at two parallel

lines in a�ne plane R2

L1 : y − x − 1 = 0, L2 : y − x + 1 = 0.

If we see the points of lines L1 and L2 as �nite points in projective

space P2, their homogeneous coordinates (x : y : z) obviously
satisfy equations

L1 : y − x − z = 0, L2 : y − x + z = 0.

It is easy to see that the intersection L1 ∩ L2 is the point (−1 : 1 :
0) ∈ P2 in this context, i.e. the point of in�nity corresponding to

the common direction vector of the lines,

4.34. A�ne coordinates in projective plane. On the contrary if

we begin with the projective plane and if we want to see

the a�ne plane as its "�nite" part, then instead of plane

z = 1 we may take an other plane σ in R3 which does

not pass through origin 0 ∈ R3. Then the �nite points

will be those one�dimensional subspaces which have a nonzero

intersection with the plane σ .

Let us proceed farther in our example of two parallel lines

from the previous paragraph, and let us see what their equations

look like in coordinates in a�ne plane given by y = 1. To get

them, it su�ces to substitute y = 1 into the previous equations:

L′
1 : 1 − x − z = 0, L′

2 : 1 − x + z = 0

Now the "in�nite" points of our former a�ne plane are given by

z = 0, and we see that our lines L′
1 and L′

2 intersects in point

(1, 1, 0). This corresponds to the geometric vision that two parallel
lines L1, L2 in a�ne plane intersect in in�nity, in point (1 : 1 : 0)
precisely.

4.35. Projective spaces and transformations. One can general-

ize in a natural way our procedure from the a�ne plane

to each �nite dimension.

Choosing an arbitrary a�ne hyperplane An in

vector spaceRn+1 which does not pass through origin

we may identify the points P ∈ An with one�dimensional sub-

spaces generated by these points. The remaining one�dimensional

subspaces ful�l a hyperplane parallel toAn, and we call them in�-

nite points in the projective extension Pn of a�ne plane An.

Obviously the set of in�nite points in Pn is always a projec-
tive space of dimension one less. An a�ne straight line has only

one in�nite point in its projective extension (both ends of the line

"intersect" in in�nity and thus the projective line looks like a cir-

cle), the projective plane has a projective line of in�nite points, the

three�dimensional projective space has a projective plane of in�-

nite points etc.

More generally, we de�ne the projectivization of a vector

space: for an arbitrary vector space V of dimension n+1we de�ne

P(V ) = {P ⊂ V ; P ⊂ V , dimV = 1}.
Choosing a basis u in V we get so called homogeneous coordinates

on P(V ) such that for a P ∈ P(V ) we use its arbitrary nonzero

vector u ∈ V and the coordinates of this vector in basis u. The

points of the projective space P(V ) are called geometric points,

while their generators in V are called arithmetic representatives.

In the chosen projective coordinates, we can �x one of them to

be one (i.e. we exclude all points of the projective extension which

have this coordinate equal to zero), and so we get an embedding
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Necessarily, also determinant A33, which is algebraic complement of

a33 is invariant to coordination transformation, because for rotation

only detA′ = detMT detA detM holds. In this case matrix M =cosα − sinα 0
sinα cosα 0

0 0 1

 and detA′
33 = detA33 = δ. For translation

onlyM =
1 0 c1

0 1 c2
0 0 1

 and this subdeterminant remains unchanged.

4.44. Determine type of conic section 2x2 −2xy+3y2 −x+y−1 = 0.

Solution. Determinant 1 =
∣∣∣∣∣∣

2 −1 − 1
2−1 3 1

2− 1
2

1
2 −1

∣∣∣∣∣∣ = − 23
4 ̸= 0 hence it

is non-degenerate conic section. Moreover δ = 5 > 0, therefore it is
ellipse. Furthermore (a11 + a22)1 = (2 + 3) · (− 23

4 ) < 0, so it is real
ellipse. □

4.45. Determine type of conic section x2 −4xy−5y2 +2x+4y+3 =
0.

Solution. Determinant 1 =
∣∣∣∣∣∣

1 −2 1
−2 −5 2
1 2 3

∣∣∣∣∣∣ = −34 ̸= 0,

furthermore δ =
∣∣∣∣ 1 −2
−2 −5

∣∣∣∣ = −9 < 0, it is therefore hyperbola. □

4.46. Determine equation and type of conic section passing through

points

[−2,−4], [8,−4], [0,−2] , [0,−6] , [6,−2] .

Solution. We will input coordinates of the points into general conic

section equation

a11x
2 + a22y

2 + 2a12xy + a1x + a2y + a = 0

We get linear equation system

4a11 + 16a22 + 16a12 − 2a1 − 4a2 + a = 0,
64a11 + 16a22 − 64a12 + 8a1 − 4a2 + a = 0,

4a22 − 2a2 + a = 0,
36a22 − 6a2 + a = 0,

36a11 + 4a22 − 24a12 + 6a1 − 2a2 + a = 0.

In matrix form we perform operations
4 16 16 −2 −4 1

64 16 −64 8 −4 1
0 4 0 0 −2 1
0 36 0 0 −6 1

36 4 −24 6 −2 1

 ∼ · · ·
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of n�dimensional a�ne space An ⊂ P(V ). It is precisely the

construction which we used in our example on projective plane.

4.36. Perspective projection. The advantages of projective ge-

ometry shows up nicely in the case of perspective pro-

jection R3 → R2. Let us imagine that an observer

sitting in the origin observes "one half of the world",

i.e. the points (X, Y, Z) ∈ R3 with Z > 0, and sees
the image "projected" on the screen given by plane Z = f > 0.

Thus a point (X, Y, Z) in the "real world" projects to a point

(x, y) on the screen as follows:

x = f
X

Z
, y = f

Y

Z
.

It is not only a nonlinear formula but also the accuracy of calcula-

tions will be problematic in the case that Z is small.

Extending this transformation to a map P3 → P2 we get (X :
Y : Z : W) 7→ (x : y : z) = (−fX : −f Y : Z), i.e. a map
described by simple linear formula

xy
z

 =
f 0 0 0

0 f 0 0
0 0 1 0

 ·


X

Y

Z

W


This simple expression de�nes the perspective projection for

�nite points inR3 ⊂ P3 which we substitute as points withW = 1.
In this way we eliminated problems with points whose image runs

to in�nity. Indeed, if the Z�coordinate of a real point is close to

zero, then the value of the third homogeneous coordinate of the

image is close to zero, i.e. it corresponds to a point close to in�nity.

4.37. A�ne and projective transformations. Obviously, each

injective linear map φ : V1 → V2 between vector spaces

maps one�dimensional subspaces to one�dimensional sub-

spaces. Therefore, we get a map on projectivizations T :
P(V1) → P(V2). Such maps are called projective maps,

in literature one uses also the notion collineation if this map is in-

vertible.

Otherwise put, the projective map is a map between projective

spaces such that in each system of homogeneous coordinates on

domain and image it is given by multiplication by a matrix. More

generally if our auxiliary linear map is not injective, then we de�ne

the projective map only outside of its kernel, i.e. on points whose

homogeneous coordinates do not map to zero.

Since injective maps V → V of a vector space to itself are

invertible, all projective maps of projective space Pn to itself are

invertible too. They are also called regular collineations or pro-

jective transformations. In homogeneous coordinates, they corre-

spond to invertible matrices of dimension n+1. Two suchmatrices
de�ne the same projective transformation if and only if they di�er

by a constant multiple.

If we choose the �rst coordinate as the one whose vanishing

de�nes in�nite points, then the transformations preserving in�nite

points are given by matrices whose �rst row vanishes up to its �rst

element. If we want to switch to a�ne coordinates of �nite points,

i.e we �x the �rst coordinate to be one, the �rst element in the �rst

row must be also equal to one. Hence the matrices of collineations
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∼


4 16 16 −2 −4 1
0 4 0 0 −2 1
0 0 64 −8 12 −9
0 0 0 24 −36 27
0 0 0 0 3 −2

 ∼ · · ·

∼


48 0 0 0 0 −1
0 12 0 0 0 −1
0 0 64 0 0 0
0 0 0 24 0 3
0 0 0 0 3 −2

 .
We can choose value of a. If we choose a = 48, we get

a11 = 1, a22 = 4, a12 = 0, a1 = −6, a2 = 32.

Conic section has equation

x2 + 4y2 − 6x + 32y + 48 = 0.

We will complete x2 − 6x, 4y2 + 32y to squares, which gives us

(x − 3)2 + 4(y + 4)2 − 25 = 0,

or rather
(x − 3)2

52
+ (y + 4)2( 5

2

)2 − 1 = 0.

We can see it is an ellipse with center in [3,−4]. □

4.47. Other characteristics of conic sections. Let's take a further

look into some terms related to conic sections. Axis of conic section

is a line of re�ection symmetry for conic section. From canonical

form of conic section in polar basis (4.29) it can be derived that an

ellipse has two axes (x = 0 a y = 0), a parabola has one axis (x =
0) a hyperbola has two axes (x = 0 a y = 0). Intersection of axis

and conic section itself is called conic section vertex. Numbers a, b

from canonical form of conic section (which express distance between

vertices and origin) are called semi-axes length. In the case of ellipse

and hyperbola, the axes intersect in the origin. This point is a point of

central symmetry for the conic section. This point is called center of

conic section. Besides vertices and centers there are other interesting

points lying on axis of conic section. For ellipse we have ellipse fociE,

F characterized by property |EX| + |FX| = 2a for arbitrary X lying

on ellipse. Following example shows that such points E a F really

exist.

4.48. Existence of foci. For ellipse with lengths of semi-axes a > b

are points E = [−e, 0] and F = [e, 0], where e = √
a2 − b2 its foci

(in polar coordinates).

Solution. Consider pointsX = [x, y], which satisfy property |EX|+
|FX| = 2a and we show that these are exactly ellipse points.
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preserving �nite points of our a�ne space have the form:
1 0 · · · 0
b1 a11 · · · a1n
...

...

bn an1 · · · ann


where b = (b1, . . . , bn)

T ∈ Rn and A = (aij ) is an invert-

ible matrix of dimension n. The action of such matrix on vector

(1, x1, . . . , xn) is exactly a general a�ne transformation, where b

is the translation and A its linear part. Thus the a�ne maps are ex-

actly those collineations which preserve the hyperplane of in�nity

points.

4.38. Determining collineations. In order to de�ne an a�ne

map, it is necessary and su�cient to de�ne an im-

age of the a�ne frame. In the above description of

a�ne transformations as special cases of projective

maps it corresponds to a suitable choice of an image

of a suitable arithmetic basis of the vector space V .

But it does not hold in general that the image of an arithmetic

basis of V determines the collineation uniquely. We show the core

of the problem on a simple example of a�ne plane. If we choose

four points A, B, C, D in the plane such that each three of them

are in a general position (i.e. no three of them lie on a line), then

we may choose their images in the collineation as follows:

Let us choose arbitrarily their four images A′, B′ , C′ ,D′ with
the same property, and let us choose their homogeneous coordi-

nates u, v, w, z, u′, v′, w′, z′ v R3. Obviously the vectors z and z′
can be written as linear combinations

z = c1u+ c2v + c3w, z′ = c′1u′ + c′2v′ + c′3w′,
where all six coe�cients must be nonzero, otherwise there exist

three of our points which are not in general position.

Now we choose new arithmetic representatives ũ = c1u, ṽ =
c2v and w̃ = c3w of points A, B and C respectively, and similarly

ũ′ = c1u
′, ṽ′ = c2v

′ and w̃′ = c3w
′ for points A′, B′ a C′ . This

choice de�nes an unique linear map φ which maps successively

φ(ũ) = ũ′, φ(v′) = ṽ′, φ(w̃) = w̃′.
But at the same time we have

φ(z) = φ(ũ+ ṽ + w̃) = ũ′ + ṽ′ + w̃′ = z′

and so indeed the constructed collineation maps the points such as

we have chosen in advance. The linear map φ is given uniquely

by our construction, thus the collineation is given uniquely by our

choice.

Our argumentation holds also in the case when some of the

chosen points are in�nite (i.e. one or two). The same phenomenon

can be explained even more easily on regular collineations of a

projective line, these are de�ned by pairwise di�erent images of

three pairwise di�erent points.

The procedure which we used obviously works in an arbitrary

dimension n. Then we say that n+2 points are in general position

if no n+ 1 of them lie in the same hyperplane. We also call these

points linearly independent, forming a geometric basis of projec-

tive space.

Theorem. A regular collineation on n�dimensional projective

space is uniquely determined by linearly independent images of

n+ 2 linearly independent points.
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Coordinate-wise, this equation looks like√
(x + e)2 + y2 +

√
(x − e)2 + y2 = 2a

By raising to a power and performing some operations we get

(a2 − e2)x2 + a2y2 = a2(a2 − e2).

Substituting e2 = a2 − b2 and dividing by a2b2 we get

x2

a2
+ y2

b2
= 1.

□

Remark. Number e from the previous example is called eccentricity

of an ellipse. Similarly, hyperbola foci are points E, F , which satisfy

||EX| − |FX|| = 2a for arbitrary X on hyperbola. You can check

that there are two points satisfying this condition [−e, 0] and [e, 0] (in
polar basis), where e = √

a2 + b2. Parabola focus is a point F of

coordinates F = [0, p2 ] and it is characterized by a fact that distance
between this point and arbitraryX on parabola is equal to the distance

between X and line y = −p

2 .

4.49. Find foci of ellipse x2 + 2y2 = 2.

Solution. We can see from the equation that semi-axes lengths are a =
1 and b = 1√

2
. We easily compute (see ∥4.48∥): e = √

a2 − b2 = 1,
foci coordinates then are [−1, 0] a [1, 0]. □
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Proof. The proof is exactly the same as in dimension two. We

recommend to write it in a detail as an exercise. □

4.39. Cross-ratio. Let us remind that a�ne maps preserve ra-

tios of lengths of line segments on each line. Tech-

nically, we de�ned this ratio as for three points A, B

and C ̸= B, C = rA + sB as λ = (C;A,B) = − s
r
.

But it is obvious that for example for central projection

the ratios are not preserved. Moreover, even the relative position

of points on a line does not need to be preserved. On contrary

we know from above that we may determine uniquely a projective

transformation by choosing arbitrarily images of three pairwise dif-

ferent points on a projective line. But one can show relatively easily

that the ratio of such ratios for two distinct points C is preserved:

Let us consider four distinct points A,B, C, D in projective

space with arithmetic coordinates x, y, w, z respectively which lie

on a projective line. Since these four vectors lie in the subspace

generated by ⟨x, y⟩, we may write w and z as linear combinations

w = t1x + s1y, z = t2x + s2y

and we de�ne so called cross-ratio of four points (A,B,C,D) as

ρ = s1

t1

t2

s2
.

The de�nition is correct since although the vectors x and y are

determined up to a scalar multiple, these multiples cancel out in

our de�nition.

Similarly, it is obvious from our de�nition that each projective

transformation preserves cross-ratios. Indeed, if it is given in our

arithmetic coordinates by a matrix A, we get images A ·w = t1A ·
x+ t2A · y and similarly for Az, and therefore the four images will
have the same cross-ratio.

Let us discuss the characterization of projective transforma-

tions yet. It holds again that they are exactly those maps which

preserve cross-ratios. But this is not very practical characteriza-

tion since it contains implicitly also the claim that these maps must

map projective lines to projective lines.

But one can prove much stronger statement which says that a

map of arbitrarily small open area in a�ne space Rn (e.g. a ball
without boundary) into the same a�ne space which maps lines to

lines is actually a restriction of a uniquely determined projective

transformation of the projective extension PRn+1 of the former

a�ne spaceRn. And thus these transformations evidently preserve
also cross-ratios.

4.40. Duality. The projective hyperplanes in n�dimensional pro-

jective space P(V ) are de�ned as the projectivizations of
n�dimensional vector subspaces i vector space V . Hence

in homogeneous coordinates they are de�ned as kernels of

linear forms α ∈ V ∗ which are determined again up to a

scalar multiple.

Thus in a chosen arithmetic basis a projective hyperplane is

given by a row vector α = (α0, . . . , αn). But in the same time

the forms α are given uniquely, up to a scalar multiple. There-

fore, each hyperplane in V is identi�ed with exactly one geometric

point in the projectivization of the dual spaceP(V ∗). We call such

space the dual projective space andwe talk about a duality between

points and hyperplanes.
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4.50. Prove that product of distances between ellipse foci and its ar-

bitrary tangent is constant and tell the value of this constant.

Solution. Consider polar basis. Ellipse matrix has diagonal shape

diag( 1
a2 ,

1
b2 ,−1) and tangent equation in X=[x0, y0] is x0

a2 x + y0
b2 y = 1.

Distance between E,F= [∓e, 0] and this line is equal

1 ± e x0
a2√

x2
0
a4 + y2

0
b4

and its product

1 − e2 x
2
0
a4

x2
0
a4 + y2

0
b4

If we substitute e2 = a2 − b2 and
y2

0
b2 = 1 − x2

0
a2 (point X is lying on

ellipse), we will �nd out that the previous term is equal to b2. □

4.51. What are the lengths of semi-axes, when the sum of their

lengths equals distance between foci equals 1.

Solution. We solve system

a + b = 1
2e = 2

√
a2 − b2 = 1

and �nd solution a = 5
8 , b = 3

8 . □

4.52. For what slopes k are lines passing through [−4, 2] secant and
tangent lines of ellipse de�ned by

x2

9
+ y2

4
= 1

Solution. Direction vector of the line is (1, k) and its parametric equa-
tions then are x = −4+t, y = 2+kt. Intersection with ellipse satis�es

(−4 + t)2

9
+ (2 + kt)2

4
= 1

This quadratic equation has discriminant equal to

D = −k
9
(7k + 16)

Which means that for k ∈ (− 16
7 , 0) there are two solutions (line is

secant) and for k = − 16
7 and k = 0 only one solution (line is tangent).

□

4.53. Find line tangent to ellipse 3x2 +7y2 = 30, so that its distance
from the center of the ellipse is 3.

Solution. Center of ellipse is in the coordinate system origin and for

distance d between line ax+by+c = 0 and originwe have d = |c|√
a2+b2

.

Tangent then satis�es a2 + b2 = c2

9 . Equation of tangent passing
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On forms, the linear map de�ning a given collineation acts by

the multiplication of row vectors from right by the same matrix

α = (α0, . . . , αn) 7→ α · A,
i.e. the matrix of dual maps isAT . But the dual map maps forms in

the opposite direction, from the "target space" to the "initial one",

and therefore we need the inverse map to collineation f in order to

study the e�ect of regular collineations on points and their dual hy-

perplanes. The inverse is given by matrix A−1. Hence the matrix

for the action of corresponding collineation on forms is (AT )−1.

Since the inverse matrix is equal to the algebraically adjoint ma-

trix A∗
alg, up to the multiplication by the inverse of determinant,

see equation (2.2) on page 91, we can work directly with the pro-

jective transformation of spaceP(V ∗) given by matrix (A∗
alg)

T (or

without transposing if we multiply row vectors from right).

It is easy to see from de�nitions that the projective point

X belongs to hyperplane α if their arithmetic coordinates satisfy

α · x = 0. Obviously, it still holds after acting with an arbitrary

collineation since

(α · A−1) · (A · x) = α · x = 0.

4.41. Fixed points, centers and axes. Let us consider a regular

collineation f given in an arithmetic basis of projec-

tive space P(V ) by a matrix A.
By the �xed point of collineation f we mean a

point A which is mapped on itself, i.e. f (A) = A,

by the �xed hyperplane of collineation f we mean a hyperplane α

which is mapped on itself, i.e. f (α) ⊂ α.

Hence we see directly from the de�nition that the arithmetic

representatives of �xed points are exactly eigenvectors of matrix

A.

In the geometry of plane, we met many types of collineations:

re�ection through a point, re�ection across a line, translation, ho-

mothety etc. Perhaps we remember also some types of projections,

e.g. the projection of a plane inR3 to another from a center S ∈ R3.

Let us note that there appeared also �xed lines next to �xed

points in all cases of such a�ne maps. For example, the re�ection

through a point preserves also all lines passing through this point,

in the case of the translation the in�nite points behave similarly.

Now we discuss this phenomenon in an arbitrary dimension.

First we de�ne a classical notion related to the incidence of points

and hyperplanes.

A bunch of hyperplanes passing through point A ∈ P(V ) is
the set of all hyperplanes which contain pointA. It is obvious from

the de�nition that for each point A the corresponding bunch of hy-

perplanes itself is a hyperplane in the dual spaceP(V ∗) (it is given
by one homogeneous linear equation in arithmetic coordinates).

For a collineation f : P(V ) → P(V ) we call a point S ∈
P(V ) the center of collineation f if all hyperplanes in the bunch

determined by S are �xed hyperplanes. A hyperplane α is called

the axis of collineation f if all its points are �xed points.

It follows directly from the de�nition that the axis of a

collineation is the center of the dual collineation, while the bunch

of hyperplanes de�ning the center of collineation is the axis of the

dual collineation.

Since the matrices of a collineation on the former and the dual

space di�er only by the transposition, their eigenvalues coincide

(eigenvectors are column respectively row vectors corresponding
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through point [xT , yT ] is 3xxT + 7yyT − 30 = 0. For coordinates

of touch point we have

(3xT )2 + (7yT )2 = 100
3x2

T + 7y2
T = 30

Its solution is xT = ±
√

55
6 , yT = ±

√
5
14 . Considering symmetry of

ellipse, we get four solutions ±3
√

55
6 x ± 7

√
5
14y − 30 = 0. □

4.54. Hyperbola x2 − y2 = 2 is given. Find equation of hyperbola

having the same foci and passing through point [−2, 3].

Solution. Eccentricity of given hyperbola is e = √
2 + 2 = 2. Equa-

tion of wanted hyperbola will be x2

a2 − y2

b2 = 1 and its eccentricity will

satisfy e2 = a2 + b2 = 4. Condition of point [−2, 3] lying on hyper-
bola gives 4

a2 − 9
b2 = 1. Respective solutions are a2 = 1, b2 = 3.

Sought hyperbola is x2 − y2

3 = 1. □

4.55. Determine equations of hyperbola 4x2 − 9y2 = 1 tangents,

which are perpendicular to line x − 2y + 7 = 0.

Solution. All lines perpendicular to given line have equation 2x+y+
c = 0 for some c. So the line should have exactly one intersection with
given hyperbola, so equation 4x2 − 9(−2x− c)2 = 1 should have one

solution. That happens for D = (36c)2 − 4.32.(9c2 + 1) = 0. Hence
c = ± 2

√
2

3 . □

4.56. Projective approach to conic section. The term of projective

space gives us ability to approach the conic section from new perspec-

tive (compare with 4.42). We can understand conic section in E2 de-

�ned by quadratic form

f (x, y) = a11x
2 + 2a12xy + a22y

2 + 2a13x + 2a23y + a33

as set of points in projective plane P2 with homogenous coordinates

(x : y : z), which are zero points of homogenous quadratic form

f (x, y, z) = a11x
2 + 2a12xy + a22y

2 + 2a13xz+ 2a23yz+ a33z
2.

Or rather f (v) = vTAv, where v is column vector in coordinates

(x, y, z) and matrix A is symmetric matrix (aij ). By Theorem 4.31

there exists a basis, in which this quadratic form has one of the follow-

ing equation

f (x, y, z) = x2 + y2 + z2, f (x, y, z) = x2 + y2 − z2.

In the former case there is only solution off (x, y, z) = 0 and therefore
the original form does not represent any real conic section. The second

quadratic form represents a cone in R3. We get the corresponding

conic section by moving back to inhomogeneous coordinates. That

means intersecting the cone with plane which had equation z = 1 in

the original basis. We immediately get the conic section classi�cation
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to the same eigenvalues). For example in the pojective plane (and

due to the same reason in each real projective space of even di-

mension) each collineation has at least one �xed point since the

characteristic polynomials of corresponding linear maps are of odd

degree and so they have at least one real root.

Instead of discussing a general theory, we will illustrate now

shortly its usefulness on several results for projective planes. .

Proposition. A projective transformation di�erent from the iden-

tity has either exactly one center and exactly one axis or it does

not have center neither axis.

Proof. Let us consider collineation f on PR3 and let us as-

sume that it has two distinct centersA andB. Let us denote by ℓ the

line given by these two centers, and let us choose a point X in pro-

jective plane outside of ℓ. If p and q are the lines passing through

pairs of points (A,X) respectively (B,X), then also f (p) = p and

f (q) = q and in particular also point X is �xed. But this means

that all points of the plane outside of ℓ are �xed. Hence each line

di�erent from ℓ has all points out of ℓ �xed and thus also its inter-

section with ℓ is �xed. It means that f is identity mapping and so

we proved that every projective transformation di�erent from the

identity may have at most one center. The same consideration for

the dual projective plane gives the result about at most one axis.

If f has a center A, then all lines passing through A are �xed

and correspond therefore to a two�dimensional subspace of row

eigenvectors of matrix corresponding to transformation f . There-

fore, there exists a two�dimensional subspace of column eigenvec-

tors to the same eigenvalue, and this one represents exactly the

line of �xed points, hence the axis. The same consideration in the

reversed order proves the opposite statement � if a projective trans-

formation of plane has an axis, then it has also a center. □

For practical problems it is useful to work with complex pro-

jective extensions also in the case of a real plane. Then the geomet-

ric behaviour can be easily read o� the potential existence of real

or imaginary centers and axes.

4.42. Projective classi�cation of quadrics. In the end of this sec-

tion we come back to conics and quadrics. A quadric

Q in n�dimensional a�ne spaceRn is de�ned by gen-
eral quadratic equation (4.4), see page 228. Viewing

a�ne space Rn as a�ne coordinates in projective space PRn+1

we may aim to describe the setQ by homogeneous coordinates in

projective space. The formula in these coordinates should contain

only terms of second order since only a homogeneous formula is

independent of the choice of the multiple of homogeneous coor-

dinates (x0, x1, . . . , xn) of a point. Hence we are searching for a

homogeneous formula whose restriction to a�ne coordinates, i.e.

substitution x0 = 1, gives the original formula (4.4).
But this is especially easy, we simply add enough x0 to all

terms � no one to quadratic terms, one to linear terms and x2
0 to

the constant term in the original a�ne equation forQ.

So we get a well de�ned quadratic form f on vector space

Rn+1 whose zero set de�nes correctly so called projective quadric

Q̄.

The intersection of "cone" Q̃ ⊂ Rn+1 of the zero set of this

form with a�ne plane x0 = 1 is the original quadric Q whose

points are called proper points of the quadric, while the other points

Q̄ \Q in the projective extension are the in�nite points.
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from 4.29., which corresponds to intersecting cone inR3 with di�erent

planes. Non-degenerate sections are depicted. Degenerate sections are

those which passes the vertex of the cone.

We de�ne following useful terms for conic section in projective

plane :

Points P, Q∈ P2 corresponding to one-dimensional subspaces

⟨p⟩, ⟨q⟩ (generated by vectors p, q ∈ R3) are called polar conjugated

with respect to conic section f , if F(p, q) = 0, or rather pTAq = 0
holds.

Point P= ⟨p⟩ is called singular point of conic section f , when

it is polar conjugated with respect to f with all points of the plane,

so F(p, x) = 0 ∀x ∈ P2 . In other words, Ap = 0. Hence the

matrix A of conic section does not have maximal rank and therefore

does de�ne degenerate conic section. Non-degenerate conic sections

do not contain singular points.

We call the set of all points X= ⟨x⟩ polar conjugatedwithP = ⟨p⟩
polar of point P with respect to conic section f . It is therefore set of

point for which F(p, x) = pTAx = 0. Because polar is given by

linear combination of coordinates, it is always (in non-singular case)

a line. The following part explains geometric interpretation of polar.

4.57. Polar characterization. Consider non-degenerate conic sec-

tion f . Polar of point P ∈ f with respect to f is tangent to f with the

touch point P . Polar of point P /∈ f is line de�ned by touch points of

tangents to f passing through P .

Solution. We will �rst consider P∈ f and show by contradiction that

polar has exactly one common point with the conic section (the touch

point). Suppose that polar of P , de�ned by F(p, x) = 0, intersects f
in Q= ⟨q⟩ ̸=P. Then obviouslyF(p, q) = 0 and f (q) = F(q, q) = 0.
For arbitrary point X = ⟨x⟩ lying on P and Q we then have x =
αp + βq for some α, β ∈ R. Because of bilinearity and symmetry of
F we get

f (x) = F(x, x) = α2F(p, p)+ 2αβF(p, q)+ β2F(q, q) = 0
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The classi�cation of real or complex projective quadrics, up

to projective transformations, is a problem which we have already

managed � it is all about �nding the canonical polar basis, see

paragraph 4.29. From this classi�cation, which is given by signa-

ture of the form in real case and only by rank in complex case,

we can deduce relatively easily also the classi�cation of a�ne

quadrics. We show the core of the procedure on the case of conics

in a�ne and projective plane.

The projective classi�cation gives the following possibilities,

described by homogeneous coordinates (x : y : z) in projective

plane PR3:

• imaginary regular conic given by x2 + y2 + z2 = 0
• real regular conic given by x2 + y2 − z2 = 0
• pair of imaginary lines given by x2 + y2 = 0
• pair of real lines given by x2 − y2 = 0
• one double line x2 = 0.

We consider this classi�cation as real, i.e. the classi�cation of qua-

dratic forms is given not only by its rank but also by its signature.

Nevertheless, the points of quadric are considered also in the com-

plex extension. In this way we should understand the stated names,

e.g. the imaginary conic does not have any real points.

4.43. A�ne classi�cation of quadrics. For a�ne classi�cation

we must restrict the projective transformations to those which pre-

serve the line of in�nite points. We can realize this also by an

opposite procedure � for a �xed projective type of conic Q, i.e.

its cone Q̃ ⊂ R3, we are choosing di�erent a�ne planes α ⊂ R3

which do not pass through origin, and we observe how the set of

points Q̃ ∩ α, which are proper points of Q in a�ne coordinates

realized by plane α, is changing.

Hence in the case of a regular conic we have a true cone Q̃

given by equation z2 = x2 + y2 and as planes α we may take the

tangent planes to unite sphere for instance. If we begin with plane

z = 1, the intersection consists only from �nite points forming a

unite circleQ. By a successive sloping of α we get more and more

stretched ellipse until we get such slope that α is parallel with one

of lines of the cone. In that moment there appears one (double)

in�nite point of our conic whose �nite points still form one con-

nected component, and so we get parabola. The continuation in

sloping gives rise to two in�nite points and the set of �nite points

is no more connected, and so we get the last regular quadric in the

a�ne classi�cation, a hyperbola.

We can take the advice from the introduced method which en-

able us to continue the classi�cation in higher dimensions. In par-

ticular, let us notice that the intersection of our conic with the pro-

jective line of in�nite points is always a quadric in dimension one

less, i.e. in our case it is either an empty set or a double point or two

points as types of quadrics on a projective line. Next we found out

that we found an a�ne transformation transforming one of possi-

ble realizations of a �xed projective type to another one only if the

corresponding quadrics in the in�nite line were projectively equiv-

alent. In this way, it is possible to continue the classi�cation of

quadrics in dimension three and farther.
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which means that every point X of line is lying on conic section f .

However, when the conic section contains a line, it has to be degen-

erate, which is contradiction. As well, we can see that in the case of

degenerate conic section, the polar is line of conic section itself.

Claim for P /∈ f follows from the corollary of symmetry of bilin-

ear form F . When point Q lies on polar of P , then point P lies on

polar ofQ.

□
Using polar conjugates we can �nd axes and center of conic sec-

tions without need of Lagrange algorithm.

Consider conic section matrix as a block matrix

A =
(
Ā a

aT α

)
,

where Ā = (aij ) for i, j = 1, 2, a is vector (a13, a23) and α = a33.

That means the conic section is de�ned by equation

uT Āu+ 2aT u+ α = 0

for vector u = (x, y). Now we show that

4.58. Axes of conic section are polars of points at in�nity determined

by eigenvectors of matrix Ā.

Solution. Because of symmetry of Ā, in the basis of its eigenvectors,

it has diagonal shape D =
(
λ 0
0 µ

)
, where λ,µ ∈ R and this basis is

ortogonal. Denote byU matrix changing basis to eigenbasis (columns

are eigenvectors), then the conic section matrix in eigenbasis is(
UT 0
0 1

)(
Ā a

aT α

)(
U 0
0 1

)
=
(
D UT a

aTU α

)
So in this basis we have canonical form de�ned by vector UT a (up to

translation). Speci�cally, denote by vλ, vµ eigenvectors and we have

λ(x + aT vλ

λ
)2 + µ(y + aT vµ

µ
)2 = (aT vλ)

2

λ
+ (aT vµ)

2

µ
− α.

It means that eigenvectors are direction vectors of the conic section

axes (so called main directions) and axes equations in this basis are

x = − aT vλ
λ

and y = − aT vµ

µ
. Axes coordinates uλ and uµ in standard

basis satisfy vTλ uλ = − aT vλ
λ

and vTµuµ = − aT vµ

µ
, because vTλ (λuλ +
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a) = 0 and vTµ (µuµ + a) = 0. These equations are equivalent to

equations vTλ (Āuλ + a) = 0 a vTµ (Āuµ + a) = 0 which are polar

equations of points de�ned by vectors vλ a vµ. □

4.59. Remark. Corollary of the previous claim is a fact that center of

the conic section is polar conjugated with all points at in�nity. Center

s coordinates then satisfy equation Ās + a = 0.
If det(A) ̸= 0, then equation Ās+a = 0 for center coordinates has

exactly one solution for δ = det(Ā) ̸= 0 and no solutions for δ = 0.
That means that, regarding non-degenerate conic sections, ellipse and

hyperbola have exactly one center and parabola does not have any (its

center is point at in�nity).

4.60. Prove that angle between tangent to parabola (with arbitrary

touch point) and parabola axis is the same as angle between the tangent

and line connecting focus and the touch point.

Solution. Polar (i.e. tangent) of point X=[x0, y0] to parabola de�ned
by canonical equation in polar basis is line satisfying

(x0, y0, 1)

1 0 0
0 0 −p
0 −p 0

xy
1

 = x0x − py − py0 = 0

Cosine of angle between tangent and parabola axis (x = 0) is given
by dot product of corresponding unit direction vectors. Unit direction

vector of the tangent is 1√
p2+x2

0

(p, x0) and therefore for cosine we have

1√
p2 + x2

0

(p, x0).(0, 1) = x0√
p2 + x2

0

Nowwe show that cosine of angle between tangent and line connecting

focus F=[0, p2 ] and touch point X is equal. Unit direction vector of the

connecting line is

1√
x2

0 + (y0 − p

2 )
2
(x0, y0 − p

2
).

For cosine of angle we have

1√
p2 + x2

0

1√
x2

0 + (y0 − p

2 )
2
(x0y0 + px0

2
)

Substituting y0 = x2
0

2p we get x0√
p2+x2

0

.

This example shows that lightrays striking parallel with axis of

parabolic mirrow are re�ecting to the focus and, vice versa, lightrays

going through focus re�ect in direction parallel with axis of parabola.

This is the principle of many devices such as parabolic re�ector. □
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4.61. Find equation of tangent in P=[1, 1] to the conic section

4x2 + 5y2 − 8xy + 2y − 3 = 0

Solution. By projecting we get conic section de�ned by quadratic

form (x, y, z)A(x, y, z)T with matrix

A =
 4 −4 0

−4 5 1
0 1 −3


Using previous theorem, tanget is polar of P, which has homogenenous

coordinates (1 : 1 : 1). It is given by equation (1, 1, 1)A(x, y, z)T =
0, which in this case gives

2y − 2z = 0

Moving back to inhomogeneous coordinates we get tangent equation

y = 1.

□

4.62. Find coordinates of intersection of y axis and conic section

de�ned by

5x2 + 2xy + y2 − 8x = 0

Solution. y axis, i.e. line x = 0, is polar of sought point P with

homogeneous coordinates ⟨p⟩ = (p1 : p2 : p3). That meansthat

equation x = 0 is equivalent to polar equation F(p, v) = pTAv = 0,
where v = (x, y, z)T . This is satis�ed whenAp = (α, 0, 0)T for some
α ∈ R. This condition gives us for conic section matrix

A =
 5 1 −4

1 1 0
−4 0 0


equation system

5p1 + p2 − 4p3 = αj

p1 + p2 = 0
−4p1 = 0

We can �nd point P coordinates by inverse matrix, p = A−1(α, 0, 0)T ,
or solve the system directly by backward substitution. In this case we

can easily obtain solution p = (0, 0,− 1
4α). So y axis touches the

conic section in the origin. □
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4.63. Find a touch point of line x = 2 with conic section from the

previous exercise.

Solution. Line has equation x − 2z = 0 in projective extension and

therefore we get condition Ap = (α, 0,−2α) for touch point P, which
gives us

5p1 + p2 − 4p3 = α

p1 + p2 = 0
−4p1 = −2α

Its solution is p = ( 1
2α,− 1

2α,
1
4α). These homogeneous coordinates

are equivalent to (2,−2, 1) and hence the touch point has coordinates
[2,−2]. □

4.64. Find equations of tangents passing through P= [3, 4] to tan-

gent de�ned by

2x2 − 4xy + y2 − 2x + 6y − 3 = 0

Solution. Suppose that the touch point has homogeneous coordinates

given by multiple of vector t = (t1, t2, t3). Condition of T lying on

conic section is tT At = 0, which gives

2t21 − 4t1t2 + t22 − 2t1t3 + 6t2t3 − 3t23 = 0

Condition of P lying on polar of T is pTAt = 0, where p = (3, 4, 1)
are homogeneous coordinates of point P. In this case, the equation

gives us

(3, 4, 1)

 2 −2 −1
−2 1 3
−1 3 −3

t1t2
t3

 = −3t1 + t2 + 6t3 = 0

Now we can input t2 = 3t1 − 6t3 to the previous quadratic equation.

Then

−t21 + 4t1t3 − 3t23 = 0

Because for t3 = 0 equation is not satis�ed, we can move to inhomo-

geneous coordinates ( t1
t3
, t2
t3
, 1), for which we get

−( t1
t3
)2 + 4( t1

t3
)− 3 = 0 a t2

t3
= 3( t1

t3
)− 6,

tj. t1
t3

= 1 a t2
t3

= −3, nebo t1
t3

= 3 a t2
t3

= 3. So the touch points

have homogeneous coordinates (1 : −3 : 1) and (3 : 3 : 1). Tangent
equations are polars of those points 7x−2y−13 = 0 and x = −3. □

4.65. Find equation of tangent passing through origin to the circle

x2 + y2 − 10x − 4y + 25 = 0

Solution. Touch point (t1 : t2 : t3) satis�es

(0, 0, 1)

 1 0 −5
0 1 −2

−5 −2 25

t1t2
t3

 = −5t1 − 2t2 + 25 = 0
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>From here we derive for example t2 and substitute in circle equation,

which (t1 : t2 : t3) has to satisfy as well. We get quadratic equation

29t21 − 250t1 + 525 = 0, which has solutions t1 = 5 and t1 = 105
29 . We

compute coordinate t2 and get touch points [5, 0] and [ 105
29 ,

100
29 ]. The

tangents are polars of those points with equations y = 0 a 20x−21y =
0. □

4.66. Find tangents equations to circle x2 +y2 = 5which are parallel
with 2x + y + 2 = 0.

Solution. In projective extension, these tangets intersect in point at

in�nity satisfying 2x + y + z = 0, so in point with homogeneous

coordinates (1 : −2 : 0). They are tangents from this point to the

circle. We can use the same method as in previous exercise. Conic

section matrix is diagonal with the diagonal (1, 1,−5) and therefore

the touch point (t1 : t2 : t3) of the tangents satisfy t1 − 2t2 = 0.
Substituting into circle equation we get 5t22 = 5. Since that t2 = ±1
and touch points are [2, 1] and [−2,−1]. □

Tangent touching the conic section at in�nity is called conic sec-

tion asymptote. Number of asymptotes of conic section is equal to

number of intersections between conic section and line at in�nity,

which means that ellipse does not have any real asymptote, parabola

has one (which is however line at in�nity) and hyperbola two of them.

4.67. Find points at in�nity and asymptotes of conic section de�ned

by

4x2 − 8xy + 3y2 − 2y − 5 = 0

Solution. First, we rewrite the conic section in homogeneous coordi-

nates.

4x2 − 8xy + 3y2 − 2yz− 5z2 = 0

Points at in�nity are then points determined by homogeneous coordi-

nates (x : y : 0) satisfying this equation, which means

4x2 − 8xy + 3y2 = 0.

For fraction x
y
we get two solutions: x

y
= − 1

2 and x
y

= − 3
2 . Conic

section is therefore hyperbola with points at in�nity P= (−1 : 2 : 0) a
Q= (−3 : 2 : 0). Asymptoty jsou potom pol��ry bod�� P a Q, tj.

(−1, 2, 0)

 4 −4 0
−4 3 −1
0 −1 −5

xy
1

 = −12x + 10y − 2 = 0

a

(−3, 2, 0)

 4 −4 0
−4 3 −1
0 −1 −5

xy
1

 = −20x + 18y − 2 = 0

□
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You can �nd further exercises on conic sections on the page 250.

4.68. Harmonic cross-ratio. If cross-ratio of four points lying on

line equal to −1, we talk about harmonic quadruple. Let ABCD be

a quadrilateral. Denote by K intersection of lines AB and CD, by

M intersection of lines AD and BC. Further let L, N be intersection

of KM and AC, BD respectively. Show that points K, L, M, N are

harmonic quadruple. ⃝
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D. Further exercise on this chapter

4.69. Find parametric equation of intersection of planes in R3:

σ : 2x + 3y − z+ 1 = 0 a ρ : x − 2y + 5 = 0.

⃝
4.70. Find common perpendicular of skew lines

p : [1, 1, 1] + t (2, 1, 0), q : [2, 2, 0] + t (1, 1, 1).

⃝
4.71. Jarda is standing in [−1, 1, 0] and has a stick of length 4. Can he simultaneously touch lines p
and q, where

p : [0,−1, 0] + t (1, 2, 1),

q : [3, 4, 8] + s(2, 1, 3)?

⃝ (Stick has to pass through [−1, 1, 0].)

4.72. Cube ABCDEFGH is given. Let point T lie on edge BF , |BT | = 1
4 |BF |. Compute cosine

of angle between ATC and BDE. ⃝
4.73. Cube ABCDEFGH is given. Let point T lie on edge AE, |AT | = 1

4 |AE| and S is midpoint

of AD. Compute cosine of angle between BDT and SCH . ⃝
4.74. Cube ABCDEFGH is given. Let point T lie on edge BF , |BT | = 1

3 |BF |. Compute cosine
of angle between ATC and BDE. ⃝

4.75. Determine tangent to ellipse x2

16 + y2

9 = 1 parallel with line x + y − 7 = 0.

Solution. Lines parallel with given line intersect this line in point at in�nity (1 : −1 : 0). We

construct tangents to given ellipse passing through this point. Touch point T= (t1 : t2 : t3) lies on
its polar and therefore satis�es t1

16 − t2
9 = 0, so t2 = 9

16 t1. Substituting in ellipse equation we get

t1 = ± 16
5 . Touch points of sought tangents are [ 16

5 ,
9
5 ] and [− 16

5 ,− 9
5 ]. Tangents are polars of those

points. These have equations x + y = 5 and x + y = −5. □

4.76. Determine points at in�nity and asymptotes of conic section

2x2 + 4xy + 2y2 − y + 1 = 0

Solution. Equation of points at in�nity 2x2 + 4xy + 2y2 = 0 or rather 2(x + y)2 = 0 has solution
x
= − y. The only point at in�nity therefore is (1 : −1 : 0) (conic section is a parabola). Asymptote is
a polar of this point, speci�cally line at in�nity z = 0. □

4.77. Prove that product of distances between arbitrary point on a hyperbola and its asymptotes is

consant and tell the value of this constant.

Solution. Denote the point lying on hyperbola as P . Asymptote equation of hyperbola in canonical

form is bx ± ay = 0. Their normals are (b,±a) and from here we determine projections P1, P2 of

point P to asymptotes. For distance between point P and asymptotes we get |PP1,2| = |aq±bp|√
a2+b2

. The

product is therefore equal a
2q2 −b2p2

a2+b2 = a2b2

a2+b2 , because P lies on hyperbola. □
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4.78. Compute angle between asymptotes of hyperbola 3x2 − y2 = 3.

Solution. For cosine of angle between asymptotes of hyperbola in canonical form we get cosα =
b2−a2

b2+a2 . In our case the angle is equal 60◦. □

4.79. Compute centers of conic sections

(a) 9x2 + 6xy − 2y − 2 = 0
(b) x2 + 2xy + y2 + 2x + y + 2 = 0
(c) x2 − 4xy + 4y2 + 2x − 4y − 3 = 0
(d) (x−α)2

a2 + (y−β)2
b2 = 1

Solution. (a) System Ās + a = 0 for computing proper centers is

9s1 + 3s2 = 0
3s1 − 2 = 0

and, solving it, we obtain center [ 2
3 ,−2].

(b) In this case we have

s1 + s2 + 1 = 0
s1 + s2 + 1

2 = 0

and therefore there is no proper center (conic section is a parabola). Moving to homogeneous coordi-

nates we can obtain center at in�nity (1 : −1 : 0).
(c) Coordinates of center in this case satisfy

s1 − 2s2 + 1 = 0
−2s1 + 4s2 − 2 = 0

and the solution is whole line of centers. It is so because the conic section is degenerated to pair of

parallel lines.

(d) From equations for center computation we immediately get that center is (α, β). Coordinates

of center therefore gives translation of coordinate system origin to the frame in which the ellipse has

basic form.

□

4.80. Tell the equations of axes of conic section 6xy + 8y2 + 4y + 2x − 13 = 0.

Solution. Main directions of the conic section (axes direction vectors) are eigenvectors of matrix(
0 3
3 8

)
. Characteristic equation has form λ2 − 8λ− 9 = 0 and eigenvalues are therefore λ1 = −1,

λ2 = 9. Corresponding eigenvectors are then (3,−1) and (1,−3). Axes are polars of points at in�nity
de�ned by those directions. For (3,−1) we get axis equation −3x + y + 1 = 0 and for (1,−3) axis
−9x − 21y − 5 = 0. □

4.81. Determine equations of axes of conic section 4x2 + 4xy + y2 + 2x + 6y + 5 = 0.

Solution. Eigenvalues of matrix

(
4 2
2 1

)
are λ1 = 0, λ2 = 5 and corresponding eigenvectors are

(−1, 2) and (2, 1). We get axes 5 = 0 and 2x + y + 1 = 0. The former axis is obviously satis�ed for
no point. Hence there is only on axis (the conic section is a parabola). □

4.82. Equation

x2 + 3xy − y2 + x + y + 1 = 0.
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de�nes a conic section. Tell its center, axes, asymptotes and foci.
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Exercise solution

4.9. 2, 3, 4, 6, 7, 8. Try to �nd planes positions which correspond to each of those numbers on your own.
4.28. For normal vector (a, b, c) of such planes we have a+b = 0 (ortogonal top) and by choosing a = −b = 1

(vector (0, 0, 1) does not satisfy the conditions, so by certain multiplication we can get a = −b = 1) we then

get, using the angle condition,

∣∣∣∣ c√
3
√

2+c2

∣∣∣∣ = 1
2 , alltogether, the sought equations are x − y ± √

6 − 1 = 0.

4.33. (−1, 3, 2).
4.69. Line (2t, t, 7t)+ [−5, 0,−9].
4.70. [3, 2, 1][8/3, 8/3, 2/3].

4.71. Transversal [1, 1, 1][−3, 1,−1] of length
√

20, stick is not long enough.

4.72. 2
√

6
9

4.73.
√

3
6 .

4.74.
√

3√
11



In this chapter, we begin to develop tools that will allow us

to model dependencies which are neither linear, nor discrete. We

can often meet this need when we have a system developing in

time and we try to describe it not only at several moments, but

"continuously", i. e. for all possible points in time. Sometimes

this is an intent (this concerns, for instance, physical models of

classical mechanics), whereas other times it may be an appropriate

approach to discrete models (in economics, chemistry, or biology,

for example).

The key concept is that of a function. The larger class of func-

tions we admit, the more di�cult it will be to develop the necessary

tools for our work. On the other hand, if there are only few types

of functions available, it may happen that we will not be able to

model some real situations at all. The objective of the following

two chapters is thus to explicitly introduce several types of elemen-

tary functions, to implicitly describe far more functions, and to

build the standard tools for the work with them. This is called dif-

ferential and integral calculus of one variable. While, so far, we

have mainly focused on the part of mathematics called algebra,

now we will approach the so-called mathematical analysis.

1. Polynomial interpolation

In the previous chapters, we often worked with sequences of

real or complex numbers, i. e. with scalar functions N → K or

Z → K, where K is a given set of numbers. We also worked with

sequences of vectors over real or complex numbers

Let us remind the discussion from the paragraph 1.4, where we

thought about how to deal with scalar functions. There is nothing

to add to this discussion and we would like (to start o�) to work

with functionsR → R (real-valued functions of a real variable), or

R → C (complex-valued functions of a real variable), or functions

Q → Q (rational-valued functions of a rational variable) and so on.

Our conclusions can usually be extended to the cases concerning

vector values over the considered scalars, but we will mostly talk

only about the cases of real and complex numbers.

Let us begin with the easiest functions which we can assign

explicitly by �nitely many algebraic operations with scalars.

5.1. Polynomials. We can add and multiply scalars, and these op-

erations satisfy a number of properties which we

enumerated in the paragraphs 1.1 and 1.3. If we ad-

mit any �nite number of these operations, leaving

one of the variables as an unknown and �xing the other scalars, we

get the so-called polynomial functions:

CHAPTER 5

Establishing the ZOO

which functions do we need for our models?

� a thorough menagerie

A. Polynomial interpolation

At the beginning of this chapter, we will try to approximate func-

tions by polynomials. Suppose we have incomplete information about

an unknown function, namely the values it takes at several points, or

the values of its �rst or second derivatives at those points as well. We

will try to �nd a polynomial (of the least degree possible) satisfying

these dependencies.

5.1. Find a polynomial P satisfying the following conditions:

P(2) = 1, P (3) = 0, P (4) = −1, P (5) = 6.

Solution. First, let us solve this task by creating a system of four linear

equations in four variables. Suppose the polynomial is of the form

a3x
3 + a2x

2 + a1x1 + a0. We know there is exactly one polynomial of

degree less than four and satisfying the given conditions.

a0 + 2a1 + 4a2 + 8a3 = 1

a0 + 3a1 + 9a2 + 27a3 = 0

a0 + 4a1 + 16a2 + 64a3 = −1

a0 + 5a1 + 25a2 + 125a3 = 6.
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Polynomials

A polynomial over a ring of scalars K is a mapping f : K →
K given by the expression

f (x) = anx
n + an−1x

n−1 + · · · + a1x + a0,

where ai , i = 0, . . . , n, are �xed scalars, multiplication is indi-

cated by mere concatenation of symbols, and "+" denotes addition.

If an ̸= 0, we say that the the polynomial f has degree n. The de-

gree of the zero polynomial is unde�ned. The scalars ai are called

coe�cients of the polynomial f .

The polynomials of degree zero are exactly the non-zero con-

stant mappings. In algebra, polynomials are more often de�ned

as formal expressions of the aforementioned form of f (x), i. e. a

polynomial is de�ned to be a sequence a0, a1, . . . of coe�cients

such that only �nitely many of them are non-zero. However, we

will show shortly that these approaches are equivalent.

It is easy to verify that the polynomials over a given ring of

scalars form a ring as well. The multiplication and addition of

polynomials are given by the operations in the original ring K by

the values of the polynomials, i. e.

(f · g)(x) = f (x) · g(x), (f + g)(x) = f (x)+ g(x),

where the operations on the left-hand side are interpreted in the

ring of polynomials whereas the operations on the right-hand side

are the ones of the ring of scalars.

5.2. Euclidean division of polynomials. As we have already

mentioned, we will work exclusively with the scalar �elds Q, R,
or C. In all these �elds, the following statement holds:
Proposition (Euclidean division of polynomials). For any two

polynomials f of degree n and g of degree m, there is exactly one

pair of polynomials q, r such that f = q · g + r and the degree of

the polynomial r is less than m or r = 0.

Proof. Let us begin with the uniqueness. Suppose we have

two expressions of the polynomial f in terms of the poly-

nomials q, q′ , r, and r′ , i. e. we have

f = q · g + r = q′ · g + r′ .
Subtraction gives 0 = (q − q′ ) · g + (r − r′ ).

If q = q′ , then r = r′ as well. And if q ̸= q′ , then the term
of the highest degree in (q − q′ ) · g cannot be compensated by

r − r′ , which leads to a contradiction. We have thus proved the

uniqueness of the result of the division, supposing it exists.

It remains to prove that the polynomial f can always be ex-

pressed in the wanted form. If m > n, we can immediately set

f = 0 · g+ f . Therefore, let us suppose that n ≥ m and prove the

proposition by induction on the degree of the polynomial f .

If f is of degree zero, then the statement is trivial. Let us

thus suppose that the statement holds for all polynomials f of

degree less than n > 0 and consider the expression h(x) =
f (x) − an

bm
xn−mg(x). Either h(x) is the zero polynomial and we

have got what we have been looking for, or it is a polynomial of

a lower degree and as such can be written in the desired form as

h(x) = q · g + r whence

f (x) = h(x)+ an

bm
xn−mg(x) = (q + an

bm
xn−m )g(x)+ r

and we are done. □
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Each equation arose from one of the given conditions.

Another option is to construct the required polynomial from the

fundamental Lagrange polynomials.

(see 5.4):

P(x) = 1 · (x − 3)(x − 4)(x − 5)
(2 − 3)(2 − 4)(2 − 5)

+ 0 · (. . . )+

= (−1) · (x − 2)(x − 3)(x − 5)
(4 − 2)(4 − 3)(4 − 5)

+ 6 · (x − 2)(x − 3)(x − 4)
(5 − 2)(5 − 3)(5 − 4)

=

= 4
3
z3 − 12z2 + 101

3
z− 29.

The coe�cients of the polynomial form, of course, the solution of the

aforementioned system of linear equations. □

5.2. Find a polynomial P satisfying the following conditions:

P(1 + i) = i, P (2) = 1, P (3) = −i.

5.3. For pairwise distinct points x0, . . . , xn ∈ R, consider the ele-
mentary Lagrange polynomials (5.4)

li(x) := (x−x0)···
(
x−xi−1

)(
x−xi+1

)···(x−xn)
(xi−x0)···

(
xi−xi−1

)(
xi−xi+1

)···(xi−xn) , x ∈ R, i = 0, . . . , n.

Prove that
n∑
i=0
li(x) = 1 for all x ∈ R.

Solution. Apparently,
n∑
i=0
li (x0) = 1 + 0 + · · · + 0 = 1,

n∑
i=0
li (x1) = 0 + 1 + · · · + 0 = 1,

...
n∑
i=0
li (xn) = 0 + 0 + · · · + 1 = 1.

This means that the polynomial
∑n

i=0 li(x) of degree not greater

than n takes the value 1 at the n+ 1 points x0, . . . , xn. However, there

is exactly one such polynomial, namely the constant polynomial y ≡ 1.
□

5.4. Find a polynomial P satisfying the following conditions:

P(1) = 0, P ′(1) = 1, P (2) = 3, P ′(2) = 3.

Solution. Once again, we will provide two methods of �nding the

polynomial.

The given conditions give rise to four linear equations for the co-

e�cients of the wanted polynomial. So if we look for a polynomial



CHAPTER 5. ESTABLISHING THE ZOO

If the value f (b) equals zero for some element b ∈ K, then we
must have r = 0 in the quotient f (x) = q(x)(x − b)+ r because

otherwise we could not achieve f (b) = q(b) · 0 + r, where the

degree of r is zero. We say that b is a root of the polynomial f .

The degree of q is then exactly n − 1. If q also has a root, we

can continue and in no more than n steps we arrive at a constant

polynomial. Thus we have proved that the number of roots of any

non-zero polynomial over the �eld K is at most the degree of the

polynomial. Hence we can easily derive the following observation:

Corollary. If K is an in�nite �eld, then the polynomials f and g

are equal as mappings if and only if they equal as sequences of

coe�cients.

Proof. Suppose that f = g, i. e. f − g = 0, as a mapping.
Therefore, the polynomial (f − g)(x) has in�nitely many roots,

which is possible only if it is the zero polynomial. □

Let us realize that of course, this statement does not hold with

�nite �elds. A simple non-example is the polynomial x2 + x over

Z2 which represents a constant zero mapping.

5.3. Interpolation polynomial. It is often useful to give an easily

computable expression for a function which is given

by the values it takes at some given points x0, . . . , xn.

If the values were all zeros, we can immediately �nd

a polynomial of degree n+ 1, namely

f (x) = (x − x0)(x − x1) . . . (x − xn),

which takes zero at these points and only at them. However, there

are more polynomials which takes zero at the given points, for in-

stance the zero polynomial, which is the only such polynomial in

the vector space of polynomials of degree at most n. The general

situation is analogous:

Interpolation polynomials

Let K be an in�nite �eld of scalars. An interpolation poly-

nomial f for the set of (pairwise distinct) points x0, . . . , xn ∈ K
and the given values y0, . . . , yn ∈ K is the zero polynomial or

a polynomial of degree at most n such that f (xi) = yi for all

i = 0, 1, . . . , n.

Theorem. For every set of n + 1 (pairwise distinct) points

x0, . . . , xn ∈ K and the given values y0, . . . , yn ∈ K, there is

exactly one interpolation polynomial f .

Proof. Let us begin with the easier part, i. e. the uniqueness.

If f and g are interpolation polynomials with

the same de�ning values, then their di�erence

is a polynomial of degree n which has at least

n+ 1 roots, and thus f − g = 0.
It remains to prove the existence. Let us label the coe�cients

of the polynomial f of degree n:

f = anx
n + · · · + a1x + a0.
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of degree less than four, we get the same number of equations and

unknown coe�cients (let us say P(x) = a3x
3 + a2x

2 + a1x + a0):

P(1) = (a3 + a2 + a1 + a0 = 0,

P ′(1) = 3a3 + 2a2 + a1 = 1,

P (2) = 8a3 + 4a2 + 2a1 + a0 = 3,

P ′(2) = 12a3 + 4a2 + a1 = 3.

By solving this system, we obtain the polynomial P(x) = −2x3 +
10x2 − 13x + 5.
Another solution. We will use fundamental Hermite polynomials:

h1
1(x) =

(
1 − 2

0 + (−1)
(x − 1)

)
(2 − x)2 = (2x − 1)(x − 2)2,

h1
2(x) = (5 − 2x)(x − 1)2,

h2
1(x) = (x − 1)(x − 2)2,

h2
2(x) = (x − 2)(x − 1)2.

Altogether,

P(x) = 0·h1
1(x)+3·h1

2(x)+1·h2
1(x)+3·h2

2(x) = −2x3 +10x2 −13x+5.

□

5.5. Using Lagrange interpolation, approximate cos2 1. Use the val-
ues the function takes at the points π4 ,

π
3 , and

π
2 .

Solution. First, we determine the mentioned values: cos2(π4 ) = 1/2,
cos2(π3 ) = 1/4, cos2(π2 ) = 0. Then, we determine the elementary

Lagrange polynomials, calculating their values at the given point.

l0(1) = (1 − π
3 )(1 − π

2 )

(π4 − π
3 )(

π
4 − π

2 )
= 8

(π − 3)(π − 2)
π2

,

l1(1) = (1 − π
4 )(1 − π

2 )

(π3 − π
4 )(

π
3 − π

2 )
= −9

(π − 4)(π − 2)
π2

,

l2(1) = (1 − π
4 )(1 − π

3 )

(π2 − π
4 )(

π
2 − π

3 )
= 2

(π − 4)(π − 3)
π2

.

Altogether,

P(1) = 1
2

· 8
(π − 3)(π − 2)

π2
− 1

4
· 9
(π − 4)(π − 2)

π2
+ 0 =

= (5π − 12)(π − 2)
4π2

.= 0.288913.

We may notice we did not need to calculate the third elementary poly-

nomial. The actual value is cos2 1 .= 0.291927. □
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Substituting the wanted values leads to a system of n+1 equations
for the same number of unknown coe�cients ai

a0 + x0a1 + · · · + (x0)
nan = y0

...

a0 + xna1 + · · · + (xn)
nan = yn.

The existence of a solution of this system can easily be shown

by straight construction of the polynomial by the so-called La-

grange polynomials for the given points x0, . . . , xn, see the next

paragraph.

However, we will now �nish the proof using only our basic

knowledge from linear algebra. This system of linear equations has

a unique solution if the determinant of its matrix is an invertible

scalar, i. e. a non-zero scalar (see 3.1 and 2.23). It is the so-called

Vandermonde determinant, which was discussed in the exercise

∥2.24∥ on page 87.

Since we have veri�ed that for zero right-hand sides, there is

exactly one solution, we know that this determinant must be non-

zero.

And since polynomials equal as mappings i� they equal as

sequences of coe�cients, the theorem is proved. □

5.4. Applications of interpolations. At �rst sight, it may seem

that real or rational polynomials, i. e. polynomial

functions R → R or Q → Q, form a very nice class

of functions of one variable. We can lay them through

any set of given values. Moreover, they are easily ex-

pressible, so their value at any point can be calculated without di�-

culties. However, we encounter a number of problems when trying

to put them in practice.

The �rst of the problems is to quickly �nd the polynomial

which we will lay through the given data since solving the afore-

mentioned system of linear equations generally requires time pro-

portional to the cubed number of given points, which is unaccept-

able for larger data. Another problem is slow computation of the

value of a polynomial of a relatively high degree at a given point.

Both of these problems can be partially bypassed by selecting a

more convenient expression of the interpolation polynomial (i. e.

we choose a basis of the corresponding vector space of all polyno-

mials of degree at most k which is better than the standard basis

1, x, x2 , . . . , xn ).

We will demonstrate this on one exercise:
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5.6. Joe needs to calculate values of the sine function with a calcula-

tor capable of basic arithmetic operations only. As he remembers the

sine's values at the points 0, π6 ,
π
4 ,

π
3 ,

π
2 and knows that π ,

√
2, and√

3 are approximately 3.1416, 1.4142, and 1.7321, respectively, he de-
cided to use interpolation. Help him build an approximate formula,

using all of the given values.

Solution. We will construct the elementary Lagrange polynomials:

l0(x) = (x − π
6 )(x − π

4 )(x − π
3 )(x − π

2 )

(0 − π
6 )(0 − π

4 )(0 − π
3 )(0 − π

2 )
.= 1.4783x4 − 5.8052x3 + 8.1057x2 − 4.7746x + 1,

l1(x) = (x − 0)(x − π
4 )(x − π

3 )(x − π
2 )

(π6 − 0)(π6 − π
4 )(

π
6 − π

3 )(
π
6 − π

2 )
.= −13.3046x4 + 45.2808x3 − 49.2419x2 + 17.1887x,

l2(x) = (x − 0)(x − π
6 )(x − π

3 )(x − π
2 )

(π4 − 0)(π4 − π
6 )(

π
4 − π

3 )(
π
4 − π

2 )
.= 23.6526x4 − 74.3070x3 + 71.3298x2 − 20.3718x,

l3(x) = (x − 0)(x − π
6 )(x − π

4 )(x − π
2 )

(π3 − 0)(π3 − π
6 )(

π
3 − π

4 )(
π
3 − π

2 )
.= −13.3046x4 + 38.3146x3 − 32.8279x2 + 8.5943x,

l4(x) = (x − 0)(x − π
6 )(x − π

4 )(x − π
3 )

(π2 − 0)(π2 − π
6 )(

π
2 − π

4 )(
π
2 − π

3 )
.= 1.4783x4 − 3.4831x3 + 2.6343x2 − 0.6366x.

Then, the value of the interpolation polynomial is

P(x) = 0 · 0(x)+ 1
2
l1(x)+

√
2

2
l2(x)+

√
3

2
l3(x)+ l4(x)

.=
.= 0.0288x4 − 0.2043x3 + 0.0214x2 + 0.9956x.

□
Additional questions: Can Joe use this formula to calculate the sine's

values at the interval [π2 , π ]? If not, what should he do?
What would the approximate formulae look like if he used not all �ve

knots, but only the three nearest ones for each point?

5.7. The day after, Joe needed to calculate the binary logarithm of 25.

(Actually, he needed the natural logarithm of 25, but since

he knows that ln 2 is approximately 0.6931, the binary one

will do.) So he took the points 16 and 32 (with values 4 and

5, respectively) and constructed the interpolation polynomial (line).

P(x) = 1
16x + 3, hence P(25) = 73

16 = 4.5625. Then, he added

the point 8 (with value 3) in order to arrive at a more accurate result.
In this case, the interpolation polynomial equals P(x) = − 1

384x
2 +

3
16x + 5

3 , which gives P(25) .= 4.7266. Joe wanted to obtain an even
more accurate number, so he added two more points, namely 2 and 4
(with values 1 and 2, respectively). How shocked he was when he got
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Lagrange interpolation polynomials

Lagrange interpolation polynomial can easily be expressed in

terms of the so-called elementary Lagrange polynomials ℓi of de-

gree n with the properties

ℓi(xj ) =
{

1 i = j

0 i ̸= j
.

Apparently, these polynomials must be (up to a constant) equal to

the expressions (x−x0) . . . (x−xi−1)(x−xi+1) . . . (x−xn), and
so

ℓi(x) =
∏
j̸=i (x − xj )∏
j̸=i (xi − xj )

.

The wanted Lagrange interpolation polynomial is then given by

f (x) = y0ℓ0(x)+ y1ℓ1(x)+ · · · + ynℓn(x).

The usage of Lagrange polynomials is especially e�cient if

we are working with di�erent values yi for the same set of values

xi because in this case, the elementary polynomials ℓi are already

prepared.

One of the disadvantages of this expression is great sensitivity

to inaccuracies in calculation when the di�erences of the given

values xi are small since one divides by these di�erences.

Another disadvantage is miserable stability of the values of

real or rational polynomials as the variable grows. We will soon

develop tools for an exact description of the functions' behavior,

but even without them, it is clear that according to the sign of the

coe�cient of the term with highest degree, the polynomial's value

will rapidly approach plus or minus in�nity as x increases. How-

ever, the mentioned sign is even not stable under small changes of

the de�ning values. This is illustrated by the following two pic-

tures, displaying eleven values of the function sin(x) with small

random changes of the values. There is the approximated function,

the circles are gently moved values and the uniquely determined

interpolation polynomial. While the approximation is quite good

inside the interval, it is tremendous at the margins.

-4
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4

1

2
0

-1

0

-2

-2 -4
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2

4

1

2
0

-1

0
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-2

There is a rich theory about the interpolation polynomials, in-

terested readers are advised to look at the special literature.

5.5. Note. The numerical instability caused by the closeness of

(some) of the points xi is clearly seen on the system of equations

from the proof of the Theorem 5.3. When solving a system of linear

equations, the instability is closely related to the magnitude of the

258

the result P(25) .= 5.892, which is apparently wrong as the binary

logarithm is an increasing function. Can you explain the origin of this

error?

Solution. Joe asked Google and learned that the interpolation error

can be expressed as

f (x)− Pn(x) = (x − x0)(x − x1) . . . (x − xn)

(n+ 1)!
f (n+1)(ξ),

where the point ξ is not known, but lies in the interval given by the

least and greatest knots. The term in the fraction's numerator causes

the accuracy to deteriorate by adding farther knots. □

5.8. A week later, Joe needed to approximate
√

7. He got the idea of
reversing the problem and using the inverse interpolation, ie. to inter-

change the roles of arguments (function inputs) and values (function

outputs) and to approximate the value of an appropriate function at the

point 0. Describe his procedure.

Solution. The function x2 − 7 takes 0 at
√

7. Joe took the points

x0 = 2, x1 = 2.5, and x2 = 3, with the function values −3, −0.75,
and 2, respectively. Then he interchanged their roles, thus obtaining

the elementary Lagrange polynomials

l0(x) = (x + 0.75)(x − 2)
(−3 + 0.75)(−3 − 2)

= 4
45
x2 − 1

9
x − 2

15
,

l1(x) = −16
99
x2 − 16

99
x + 32

33
,

l2(x) = 6
55
x2 + 3

11
x + 9

55
.

For
√

7, he got the approximate value 2 · l0(0)+2.5 · l1(0)+3 · l2(0) =
437
165

.= 2.6485.
Additional questions: Joe made a mistake while constructing one of

the elementary polynomials, try to �nd it. Does this mistake a�ect the

resulting value?

How could we make use of the value of the derivative at the point 2.5?
□

5.9. Find a natural spline S which satis�es

S(−1) = 0, S(0) = 1, S(1) = 0.

Solution. The wanted spline consists of two cubic polynomials, let us

denote them S1 for the interval [−1, 0] and S2 for the interval [0, 1].
The word "natural" requires that the second derivatives of S1 and S2

be zero at the points−1 and 1, respectively. Thanks to the given value
at 0, we know that the absolute coe�cients of both the polynomials

are 1. By symmetry, the common value of the �rst derivative at the

point 0 is 0. So we can set S1(x) = ax3 + bx2 + 1 and S2(x) = cx3 +
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determinant of the corresponding matrix, i. e. the Vandermonde

determinant, in our case. This can easily be calculated:

Lemma. For any sequence of pairwise distinct scalars

x0, . . . , xn ∈ K, it holds that

V (x0, . . . , xn) =
n∏

i>k=0

(xi − xk).

Proof. We will proof this statement by induction on the num-

ber of the points xi . Apparently, it holds for n = 1 (and the prob-

lem is completely uninteresting for n = 0). Let us suppose that the
result is correct for n− 1, i. e.

V (x0, . . . , xn−1) =
n−1∏
i>k=0

(xi − xk).

Now let us consider the values x0, . . . , xn−1 to be �xed and let us

vary the value of xn. Expanding the determinant by the last row

(see ??), we obtain the wanted determinant as the polynomial

(5.1) V (x0, . . . , xn) = (xn)
nV (x0, . . . , xn−1)− (xn)

n−1 · · · .
This is a polynomial of degree n since we know that its coe�cient

at (xn)
n is non-zero, by the induction hypothesis. Apparently, it

will take zero at any point xn = xi for i < n because in that

case, the original determinant contains two identical rows. Our

polynomial is thus divisible by the expression

(xn − x0)(xn − x1) · · · (xn − xn−1),

which itself is of degree n. Hence it follows that the whole Vander-

monde determinant (as a polynomial in the variable xn) must, up

to a multiplicative constant, equal this expression, i. e.

V (x0, . . . , xn) = c · (xn − x0)(xn − x1) · · · (xn − xn−1).

Confronting the coe�cients at the highest exponent in (5.1) with

this expression yields

c = V (x0, . . . , xn−1),

which �nishes the proof of this lemma. □

Again, we can see that the determinant will be very small if

the distances of the points xi are such.

5.6. Derivatives of polynomials. We have found out that the val-

ues of the polynomials rapidly tend to in�nite values

as the input variable grows (see the pictures as well).

Therefore, it is apparent that polynomials are unable

to describe periodic events (such as the values of the

trigonometric functions). One could say that we will achieve much

better results, at least between the points xi , if we look not only at

the function values, but also at the rate of increase of the function

at those points.

For this purpose, we introduce (only intuitively, for the time

being) the concept of a derivative for polynomials. Again, we can

work with real, complex or rational polynomials. The rate of in-

crease of a real-valued polynomial f (x) at a point x ∈ R is well

expressed by

(5.2)
f (x +1x)− f (x)

1x
,

and since we can calculate (over an arbitrary ring)

(x+1x)k = xk +kxk−11x+· · ·+ (k
l

)
xl (1x)k−l +· · ·+ (1x)k,
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dx2 + 1, where a, b, c, d are unknown real parameters. Confronting

these forms with the conditions S1(−1) = 0, S1"(−1) = 0, S2(1) = 0,
and S2"(1) = 0 yields the following system of four linear equations in

the mentioned parameters.

−a + b + 1 = 0,

−6a + 2b = 0,

c + d + 1 = 0,

6c + 2d = 0.

Having solved that, we get S1(x) = − 1
2x

3 − 3
2x

2 + 1, S2(x) =
1
2x

3 − 3
2x

2 + 1. Altogether,

S(x) =
{− 1

2x
3 − 3

2x
2 + 1 pro x ∈ [−1, 0],

1
2x

3 − 3
2x

2 + 1 pro x ∈ [0, 1].

□

5.10. Find a natural spline S which satis�es

S(−1) = 0, S(0) = 1, S(1) = 0, S′ (−1) = 1, S′ (1) = 1.

Solution. Our spline di�ers from the previous one only in the values

of the derivatives at the points−1 and 1. Similarly to the previous task,
we get that the parts S1 and S2 of our spline have the forms S1(x) =
ax3 + bx2 + 1 and S2(x) = cx3 + dx2 + 1, respectively, where a, b, c,
d are unknown real parameters. Confronting this with the conditions

S1(−1) = 0, S′
1(−1) = 1, S2(1) = 0, and S′

2(1) = 1 yields the system

−a + b + 1 = 0,

3a − 2b = 1,

c + d + 1 = 0,

3c + 2d = 1,

having the solution a = −1, b = −2, c = 3, d = −4. Hence, the
wanted spline is the function

S(x) =
{−x3 − 2x2 + 1 pro x ∈ [−1, 0],

3x3 − 4x2 + 1 pro x ∈ [0, 1].

□

5.11. Find a polynomial of degree two or less such that its values at

the points

x0 = −1, x1 = 1, x2 = 2

are

y0 = 1, y1 = −3, y2 = 4,

respectively. ⃝
5.12. Construct the Lagrange interpolation polynomial for
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we get, for the polynomial f (x) = anx
n + · · · + a0, the above

quotient in the form

f (x+1x)−f (x)
1x

=an nx
n−11x+· · ·+(1x)k

1x
+· · ·+a1

1x

1x

= nanx
n−1 + (n− 1)an−1x

n−2 + · · · + a1 +1x(. . . )

where the expression in parentheses is polynomially dependent on

1x. Clearly, for the values 1x very close to zero, we get a value

arbitrarily close to the following expression:

Derivatives of polynomials

The derivative of a polynomial f (x) = anx
n + · · · + a0 with

respect to the variable x is the polynomial

f ′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + · · · + a1.

>From the de�nition, it is clear that it is just the value f ′(x0)

of the derivative which gives us a good approximation of the poly-

nomial's behavior near the point x0. To be more precise, the lines

y = f (x0 +1x)− f (x0)

1x
(x − x0)+ f (x0),

i. e. the secant lines of the graph of the polynomial going through

the points [x0, f (x0)] and [x0 +1x, f (x0 +1x)] approach, as1x
decreases, to the line

y = f ′(x0)(x − x0)+ f (x0),

which must be the tangent to the graph of the polynomial f . We

talk about linear approximation of the polynomial f by its tangent

line.

The derivative of polynomials is a linear mapping which as-

signs to polynomials of degree at most n polynomials of degree at

most n− 1.
Iterating this procedure, we obtain the second derivative f ′′,

the third derivative f (3), and generally after k-tuple iteration, the

polynomial f (k) of degree n − k. Thus the (n + 1)-st derivative
is the zero polynomial. This linear mapping is an example of the

so-called cyclic nilpotent mappings, which are more thoroughly

examined in the paragraph 3.32 on nilpotent mappings.

5.7. Hermite's interpolation problem. Again, let us consider

m+1 pairwise distinct real numbers x0, . . . , xm, i. e.

xi ̸= xj for all i ̸= j . We will want to lay polynomi-

als through given values, but we will now determine

not only the values at those points, but also the �rst

derivatives. That it, we set yi a y
′
i for all i. We are looking for a

polynomial f which will satisfy these conditions on the values and

derivatives.
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xi −2 −1 1 2
yi 1 −1 −1 1 .

Then �nd any polynomial of degree greater than three which satis�es

the conditions in the table. ⃝
5.13. Find a polynomial p(x) = ax3 + bx2 + cx + d which satis�es

p(0) = 1, p(1) = 0, p(2) = 1, p(3) = 10.

⃝
5.14. Construct a polynomial p of degree three or less which satis�es

p(0) = 2, p(1) = 3, p(2) = 12, p(5) = 147.

⃝
5.15. Let the values y0, . . . , yn ∈ R at pairwise distinct points

x0, . . . , xn ∈ R, respectively, be given. How many polynomials of

degree exactly n + 1 and taking the given values at the given points

are there? ⃝
5.16. Determine the Hermite interpolation polynomials P , Q satisfy-

ing

P (−1) = −11, P (1) = 1, P ′ (−1) = 12, P ′ (1) = 4;
Q(−1) = −9, Q (1) = −1, Q′ (−1) = 10, Q′ (1) = 2.

⃝
5.17. Replace the function f with a Hermite polynomial, knowing that

xi −1 1 2
f (xi) 4 −4 −8
f ′(xi) 8 −8 11

.

⃝
5.18. Without calculation, determine the Hermite interpolation poly-

nomial if the following is given:

x0 = 0, x1 = 2, x2 = 1,

y0 = 0, y1 = 4, y2 = 1,

y′
0 = 0, y′

1 = 4, y′
2 = 2.

⃝
5.19. Find a polynomial of degree three or less taking the value y = 4
at the point x = 1 and y = 9 at x = 2, having its derivative equal to
−2 at x = 0 and to 1 at x = 1. Then �nd a polynomial of degree three
or less taking the value y = 6 at both the points x = 1 and x = −1
and having its derivative equal to 2 at both these points. ⃝
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Analogously as in the case of interpolating the values only, we

obtain the following system of 2(m + 1) equations for the coe�-

cients of the polynomial f (x) = anx
n + · · · + a0:

a0 + x0a1 + · · · + (x0)
nan = y0

...

a0 + xma1 + · · · + (xm)
nan = ym

a1 + 2x0a2 + · · · + n(x0)
n−1an = y′0

...

a1 + 2xma2 + · · · + n(xm)
n−1an = y′m.

Again, we could verify that the choice n = 2m+1 makes the deter-
minant of this system non-zero, and thus there will be exactly one

solution. However, similarly to Lagrange polynomial, our polyno-

mial f can be constructed straightaway. We just create a set of

polynomials with values 0 or 1 (at both the derivatives and the

values) in order to express the desired values as their linear com-

bination. Verifying the following de�nition and proposition is left

to the reader:

Hermite's interpolation polynomial

Hermite's interpolation polynomial is de�ned by fundamental

Hermite's polynomials:

h1
i (x) =

[
1 − ℓ′′(xi)

ℓ′(xi)
(x − xi)

]
(ℓi(x))

2

h2
i (x) = (x − xi) (ℓi(x))

2 ,

where ℓ(x) = ∏n
i=1(x − xi). These polynomials satisfy:

h1
i (xj ) = δ

j
i =

{
1 for i = j

0 for i ̸= j

(h1
i )

′(xj ) = 0

h2
i (xj ) = 0

(h2
i )

′(xj ) = δ
j
i

and so Hermite's interpolation polynomial is given by the expres-

sion

f (x) =
k∑
i=1

(
yih

1
i (xi)+ y′ih2

i (xi)
)
.

5.8. Examples of Hermite's polynomials. The simplest case is

the one of prescribing the value and the derivative at one point.

This fully determines a polynomial of degree one

f (x) = f (x0)+ f ′(x0)(x − x0),

i. e. exactly the equation of the straight line given by the value

and slope at the point x0. When we set the values and the deriva-

tives at two points, i. e. y0 = f (x0), y
′
0 = f ′(x0), y1 = f (x1),

y′1 = f ′(x1) for two distinct points xi , we still obtain an easily

computable problem.

Let us look at it in a simple case when x0 = 0, x1 = 1. Then
the matrix of the system and its inverse will be

A =


0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

 , A−1 =


2 −2 1 1

−3 3 −2 −1
0 0 1 0
1 0 0 0

 .
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5.20. How many polynomials satisfying the following conditions are

there? The degree is four or less, the values at x0 = 5 and x1 = 55
are y0 = 55 and y1 = 5, respectively, and both the �rst and second

derivatives at the point x0 are zero. ⃝

5.21. Find any polynomial P satisfying

P(0) = 6, P (1) = 4, P (2) = 4, P ′(2) = 1.

⃝

5.22. Construct the natural cubic interpolation spline for the values

y0 = 1, y1 = 0, y2 = 1 at the points x0 = −1, x1 = 0, x2 = 1,
respectively. ⃝

5.23. Construct the natural cubic interpolation spline for the function

f (x) = | x |, x ∈ [−1, 1] ,

selecting the points x0 = −1, x1 = 0, x2 = 1. ⃝

5.24. Construct the natural cubic interpolation spline for the points

x0 = −3, x1 = 0, x2 = 3

and the values y0 = −3, y1 = 0, y2 = 3. ⃝

5.25. Without calculation, construct the natural cubic interpolation

spline for the points x0 = −1, x1 = 0 a x2 = 2 and the value

y0 = y1 = y2 = 1 at these points. ⃝

5.26. Construct the complete (i. e., the derivatives at the marginal

points are given) cubic interpolation spline for the points

x0 = −3, x1 = −2, x2 = −1

and the values

y0 = 0, y1 = 1, y2 = 2, y′
0 = 1, y′

2 = 1.

⃝

5.27. Construct the natural cubic interpolation spline for the function

y = 1
1+x2 ,

selecting the points

x0 = 0, x1 = 1, x2 = 3.

⃝
More problems concerning polynomial interpolation can be found

at 315.



CHAPTER 5. ESTABLISHING THE ZOO

The multiplication A · (y0, y1, y
′
0, y

′
1)
T gives the vector

(a3, a2, a1, a0)
T of coe�cients of the polynomial f , i. e.

f (x) = (2y0 − 2y1 + y′0 + y′1)x3

+ (−3y0 + 3y1 − 2y′0 − y′1)x2 + y′0x + y0.

5.9. Spline interpolation. Similarly, we can prescribe any �nite

number of derivatives at the particular points and a

convenient choice for the upper bound on the degree

of the wanted polynomial leads to a unique interpo-

lation. We will not delay ourselves with details here.

Unfortunately, these interpolations do not solve the problems men-

tioned already in connection with the simple interpolation of val-

ues � complexity of the computations and instability. However, the

usage of derivatives allows us to improve our methods:

As we have seen in the pictures demonstrating the instability

of the interpolation by a single polynomial of su�ciently large de-

gree, small local changes of the values dramatically a�ected the

overall changes of the behavior of the resulting polynomial. Thus

we may try to use small polynomial pieces of low degrees which

we, however, must be able to link to one another properly.

The simplest case is to link each pair of adjacent points with

a polynomial of degree at most one. This is also the most frequent

way of displaying data. From the view of derivatives, this means

that they will be constant on each of the segments and then will

change in a leap.

A bit more sophisticated method is to prescribe the value and

the derivative at each point, i. e. we will have four values for two

points, which uniquely determines Hermite's polynomial of degree

three, see above. This polynomial can then be used for all the val-

ues of the input variable between the marginal points x0 < x1.

We talk about the interval [x0, x1]. Such a piecewise polynomial

approximation has the property that the �rst derivatives will be

compatible.

However, in practice, mere compatibility of the �rst deriva-

tives is insu�cient (for instance, with railway tracks), and further-

more, the values of the �rst derivatives are not always at our dis-

posal. Thus we get the idea of making use of the values at the

given points, and on the other hand to require equality of the �rst

and second derivatives between the adjacent pieces of the cubic

polynomials. This conditions yield the same number of equations

and unknowns, and so the problem will be similarly solvable:

Cubic splines

Let x0 < x1 < · · · < xn be real values at which the required

values y0, . . . , yn are given. A cubic interpolation spline for this

assignment is a function S : R → R which satis�es the following

conditions:

• the restriction of S on the interval [xi−1, xi] is a polynomial
Si of degree at most three i = 1, . . . , n

• Si(xi−1) = yi−1 and Si(xi) = yi for all i = 1, . . . n,
• S′

i(xi) = S′
i+1(xi) for all i = 1, . . . , n− 1,

• S′′
i (xi) = S′′

i+1(xi) for all i = 1, . . . , n− 1.

The cubic spline1 for n+ 1 points consists of n cubic polyno-

mials, i. e. we have 4n free parameters (the �rst condition from the

1The name comes from the meaning of a ruler used to draw smooth curves

between points.
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B. Topology of the complex numbers and their subsets

5.28. Find limit, isolated, boundary, and interior points of the sets

N, Q, X = {x ∈ R; 0 ≤ x < 1} in R.

Solution. The set N. For any n ∈ N, we have that

O1 (n) ∩ N = (n− 1, n+ 1) ∩ N = {n}.
Hence, there is a neighborhood of n ∈ N inRwhich contains only one

natural number (the number n), therefore every point n ∈ N is isolated.

There are thus no interior points (an isolated point cannot be interior).

A point a ∈ R is a limit point of A if and only if every neighborhood

of a contains in�nitely many points of A. However, the set

O1 (a) ∩ N = (a − 1, a + 1) ∩ N, where a ∈ R,

is �nite, hence N has no limit points. By �niteness of this set, we have

that

δb := inf
n∈N

| b − n | = inf
n∈O1(b)∩N

| b − n | > 0 for b ∈ R∖ N.

Therefore,Oδb (b)∩N = ∅, so no b ∈ R∖N is a boundary point ofN.
We also know that every point which is not an interior point of a given

set is necessarily its boundary point. The set of N's boundary points
thus contains N, and so it equals N.

The set Q. The rational numbers are a dense subset of the real

numbers. This means that for every real number, there is a sequence

of rational numbers converging to it. (We can, for instance, imagine

the decimal representation of a real number and the corresponding se-

quence whose i-th term will be the representation truncated to the �rst

i decimal digits. Furthermore, we can suppose that the terms of this se-

quence are pairwise distinct, for example by deliberately changing the

last digit, or by taking the representation with recurring nines rather

than zeros, ie. 0.999 . . . for the integer 1 and so on). The set of Q's
limit points is thus the wholeR and every point x ∈ R∖Q is a bound-

ary point. Especially, we get that any δ-neighborhood

Oδ

(
p

q

)
=
(
p

q
− δ,

p

q
+ δ

)
, where p, q ∈ Z, q ̸= 0,

of a rational number p/q contains in�nitely many rational numbers,

hence there are no isolated points. The number
√

2/10n is rational for
no n ∈ N. Supposing the contrary (again, p, q ∈ Z, q ̸= 0)√

2
10n

= p

q
, ie.

√
2 = 10n p

q
,

we arrive at an immediate contradiction as we know that the num-

ber
√

2 is not rational. Every neighborhood of a rational number p/q

thus contains in�nitely many real numbers p/q + √
2/10n (n ∈ N)
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de�nition). The other conditions then yield 2n+ (n−1)+ (n−1)
more equalities, i. e. two parameters remain free. In practice,

we often prescribe the values of the derivatives at the marginal

points explicitly (the so-called complete spline), or assume they

equal zero (this case is called a natural spline).

Unfortunately, the computation of the whole spline is not as

easy aswith the independent computations of Hermite's cubic poly-

nomials because the data mingle between adjacent intervals. How-

ever, with an appropriate order, one can obtain a matrix of the sys-

tem such that all of its non-zero elements appear on three diagonals

only. These matrices are nice enough to be solved in time propor-

tional to the number of points, using a suitable numerical method.

For comparison, let us look at interpolation of the same data as in

the case of the Lagrange polynomial, now using splines:

0
-4 0

-0,5

2

-1

1

-2 4

x

0,5

0
-4

-0,5

x

2

-1

1

0

0,5

4-2

2. Real number and limit processes

It is important to have a su�ciently large stock of functions

with which we can express all usual dependencies. However, at the

same time, the choice of the functions must be carefully restricted

so that we would be able to build some universal and e�cient tools

for the work with them.

Actually, the �rst problem we have to solve is how to de�ne

the values of the functions at all. After all, all we can get with a �-

nite number of multiplication and addition is polynomial functions

and e�cient manipulation can be done with rational numbers only.

However, we cannot do with rational numbers even when looking

for roots of quadratic polynomials as, for instance,
√

2 is not a ra-

tional number.

Thus our �rst step will be a thorough introducing of the so-

called limit process, i. e. we will de�ne precisely what it means

that some values approach a certain value.

We can also notice that an important property of polynomials

is their "continuous" dependency of their values on the input vari-

able. Intuitively said, if we change x a little bit, the value of f (x)

also changes a bit only. On the other hand, this behavior is not

possessed by piecewise constant functions f : R → R near the

sudden "jumps". For instance, the so-called Heaviside's function

f (x) =


0 for all x < 0,
1/2 for x = 0,
1 for all x > 0

has this type of "discontinuity" for x = 0.
Let us formalize these intuitive statements.
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which are not rational (Q, as a �eld, is closed under subtraction).

Therefore, every point p/q ∈ Q is boundary as well, and there are

no interior points of the set Q.
The set X = [0, 1). Let a ∈ [0, 1) be an arbitrary number. Ap-

parently, the sequences {a + 1
n
}∞n=1, {1 − 1

n
}∞n=1 converge to a and 1,

respectively. So we have easily shown that the set of X's limit points

contains the interval [0, 1]. There are no other limit points: for any

b /∈ [0, 1] there is δ > 0 such that Oδ (b) ∩ [0, 1] = ∅ (for b < 0 it

su�ces to take δ = −b, and for b > 1 we can choose δ = b − 1).
Since every point of the interval [0, 1) is a limit point, there are no iso-
lated points. For a ∈ (0, 1), let δa be the less one of the two positive
numbers a, 1 − a. Considering

Oδa (a) = (a − δa, a + δa) ⊆ (0, 1), a ∈ (0, 1),

we see that every point of the interval (0, 1) is an interior point of X.
For every δ ∈ (0, 1), we have that

Oδ (0) ∩ [0, 1) = (−δ, δ) ∩ [0, 1) = [0, δ),

Oδ (1) ∩ [0, 1) = (1 − δ, 1 + δ) ∩ [0, 1) = (1 − δ, 1),

so every δ-neighborhood of the point 0 contains some points of the

interval [0, 1) and some points of the interval (−δ, 0), and every

δ-neighborhood of 1 has a non-empty intersection with the intervals

[0, 1), [1, 1 + δ). Therefore, 0 and 1 are boundary points. Altogether,

we have found that the set of X's interior points is the interval (0, 1)
and the set of X's boundary points is the two-element set {0, 1}, as
we know that no point can be both interior and boundary and that a

boundary point must be an interior or limit point. □

5.29. Determine the suprema and in�ma of the following sets in R:

A = (−3, 0]∪(1, π)∪{6}; B =
{
(−1)n

n2
; n ∈ N

}
; C = (−9, 9)∩Q.

⃝
5.30. Find supA and infA for

A =
{
n+ (−1)n

n
; n ∈ N

}
⊂ R.

⃝
5.31. The following sets are given:

N = {1, 2, . . . , n, . . . }, M =
{
−1
n
; n ∈ N

}
,

J = (0, 2] ∪ [3, 5] ∖ {4}.
Determine infN, supM, infJ and supJ in R. ⃝
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5.10. Real numbers. So far, we have made do with algebraic

properties of real numbers which claimed that R is a �eld.

However, we have also used the relation of the standard (to-

tal) order of the real numbers, denoted "≤" (see the para-

graph 1.38). The properties (axioms) of the real numbers,

including the connections between the relations and other opera-

tions, are enumerated in the following table. The bars indicate

how the axioms gradually guarantee that the real numbers form an

abelian (commutative) group with respect to addition, that R \ {0}
is an abelian group with respect to multiplication, that R is a �eld,

that the set R together with the operations +, · and the order re-

lation is a so-called ordered �eld. Finally, the last axiom can be

perceived as claiming that R is "su�ciently dense", i. e. there

are no points missing between any points (like, for instance,
√

2 is

missing in the rational numbers).

Axioms of the real numbers

(R1) (a + b)+ c = a + (b + c), for all a, b, c ∈ R
(R2) a + b = b + a, for all a, b ∈ R
(R3) there is an element 0 ∈ R such that for all a ∈ R, a+0 =

a

(R4) for all a ∈ R, there is an additive inverse (−a) ∈ R such

that a + (−a) = 0
(R5) (a · b) · c = a · (b · c), for all a, b, c ∈ R
(R6) a · b = b · a for all a, b ∈ R
(R7) there is an element 1 ∈ R, 1 ̸= 0, such that for all a ∈ R,

1 · a = a

(R8) for all a ∈ R, a ̸= 0, there is a multiplicative inverse
a−1 ∈ R such that a · a−1 = 1

(R9) a · (b + c) = a · b + a · c, for all a, b, c ∈ R
(R10) the relation ≤ is a total order, i. e. re�exive, antisym-

metric, transitive, and total on R
(R11) for all a, b, c ∈ R, a ≤ b implies a + c ≤ b + c

(R12) for all a, b ∈ R, a > 0 and b > 0 implies a · b > 0
(R13) every non-empty set A ⊂ R which has an upper bound

has a least upper bound.

The conception of a least upper bound (also called supremum)

must be thoroughly introduced. It makes sense for any partially

ordered set, i. e. a set with a (not necessarily total) ordering rela-

tion. We will also meet it later in algebraic contexts. Let us remind

that at the general level, an ordering relation is any binary relation

on a set which is re�exive, antisymmetric, and transitive; see the

paragraph 1.38.

Supremum and infimum

De�nition. Let us consider a subset A ⊂ B in a partially ordered

set B. An upper bound of the set A is any element b ∈ B such

that b ≥ a holds for all a ∈ A. Dually, we de�ne the concept of a
lower bound of the set A as an element b ∈ B such that b ≤ a for

all a ∈ A.
The least upper bound of the set A, if it exists, is called its

supremum and denoted by supA. Dually, the greatest lower bound,
if it exists, is called an in�mum; we write infA.

The last axiom of our table of properties of the real numbers

thus claims that for every non-empty set A of real numbers, it is

true that if there is a number a which is greater than or equal to all
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5.32. Find a setM ⊂ R which does not have an in�mum in R but has

a supremum there. Similarly, �nd a set N ⊂ R which does not have a

supremum in R but has an in�mum there. ⃝
5.33. Find a subset X of the set R such that supX ≤ infX. ⃝
5.34. Find sets A,B,C ⊆ R such that

A∩B = ∅, A∩C = ∅, B∩C = ∅, supA = infB = infC = supC.

⃝

5.35. Mark the following sets in the complex plane:

i) {z ∈ C| |z− 1| = |z+ 1|},
ii) {z ∈ C| 1 ≤ |z− i| ≤ 2},
iii) {z ∈ C| Re(z2) = 1},
iv) {z ∈ C| Re( 1

z
) < 1

2}.

Solution.

• the imaginary axis,

• annulus around i,

• the hyperbola a2 − b2 = 1,
• exterior of the unit disc centered at 1.

□

C. Limits

In the subsequent exercises, we will deal with calculating limits

of sequences, that is what the sequences "look like at in�nity". Then,

if we were to determine the n-th term of a given sequence for a very

large n, the limit of the sequence (supposing it exists) can approxi-

mate it very well. We devote much space to computation of limits of

sequences (and limits of functions) in this exercise column, that is why

they begin earlier (and end later) than in the part concerning theory.

Let us begin with limits of sequences. The needful de�nitions can

be found at page. 266.
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numbers x ∈ A, then there is a least number with this property. For
instance, the choice A = {x ∈ Q, x2 < 2} gives us the supremum
supA = √

2.
An immediate consequence of this axiom is also the existence

of in�ma for any non-empty set of real numbers bounded from be-

low. (It su�ces to realize that changing the sign of all the numbers

interchanges suprema and in�ma).

For the formal construction of our theory, we need to know

whether the properties we demand from the real numbers are re-

alizable, i. e. whether there is such a set R with the operations

and ordering relation which satisfy the thirteen axioms. So far, we

have constructed correctly only the rational numbers, which form

an ordered �eld, i. e. satisfy the axioms (R1) � (R12), which can

easily be veri�ed.

Actually, the real numbers can not only be constructed, but the

construction is, up to isomorphism, unique. However, for our need,

we will do with an intuitive idea of the real line. We will focus on

the existence and uniqueness later on.

5.11. The complex plane. Let us remind that the complex num-

bers are given as pairs of real numbers. We usually

write them as z = re z + i im z. Therefore, the plane

C = R2 is a good image of the complex numbers.

With addition and multiplication, the complex num-

bers satisfy the axioms (R1)�(R9) and thus form a �eld. There is,

however, no natural ordering de�ned on them which would satisfy

the axioms (R10)�R(13). Nevertheless, we will work with them as

we have already seen that extending some scalars to the complex

numbers is highly advantageous for calculations, and sometimes

even necessary.

There is an important operation on the complex numbers, the

so-called conjugation. It is the re�ection symmetry with respect to

the line of real numbers, i. e. changing the sign of the imaginary

part. We denote it by a bar over the number z ∈ C:

z̄ = re z− i im z.

Since for z = x + iy,

z · z̄ = (x + iy)(x − iy) = x2 + y2 ,

this value expresses the squared distance of the complex numbers

from the origin (zero). The square root of this non-negative real

number is called the absolute value of the complex number z; we

write

(5.3) |z|2 = z · z̄.
The absolute value is also de�ned on any ordered �eld of

scalars K, we just de�ne the absolute value |a| as follows:

|a| =
{
a if a ≥ 0
−a if a < 0.

Of course, it is true that for any numbers a, b ∈ K,

(5.4) |a + b| ≤ |a| + |b|.
This property is called the triangle inequality. It also holds for the

absolute value of the complex numbers, which was de�ned above.

Especially for the �eld of rational numbers and the �eld of

real numbers, which are sub�elds of the complex numbers, both

de�nitions of the absolute value coincide.
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5.36. Calculate the following limits of sequences:

i) lim
n→∞

2n2+3n+1
n+1 ,

ii) lim
n→∞

2n2+3n+1
3n2+n+1 ,

iii) lim
n→∞

n+1
2n2+3n+1 ,

iv) limn→−∞ 2n−2−n

2n+2−n ,

v) lim
n→∞

√
4n2+n
n

,

vi) lim
n→∞

√
4n2 + n− 2n.

Solution.

i) lim
n→∞

2n2+3n+1
n+1 = lim

n→∞
2n+3+ 1

n

1+ 1
n

= ∞.

ii) lim
n→∞

2n2+3n+1
3n2+n+1 = lim

n→∞
2+ 3

n
+ 1

n2

3+ 1
n
+ 1

n2
= 2

3 .

iii) lim
n→∞

n+1
2n2+3n+1 = lim

n→∞
1+ 1

n

2n+3+ 1
n

= 1
∞ = 0.

iv)

lim
n→−∞

2n − 2−n

2n + 2−n = lim
n→−∞

2n

2−n − 1
2n

2−n + 1
= −1

v) By the squeeze theorem (5.21): ∀n ∈ N :
√

4n2

n
<

√
4n2+n
n

<√
4n2+n+ 1

16
n

. Then lim
n→∞

√
4n2

n
= lim

n→∞
2n
n

= 2, lim
n→∞

√
4n2+n+ 1

16
n

=
lim
n→∞

2n+ 1
4

n
= 2. So lim

n→∞

√
4n2+n
n

= 2 as well.

vi)

lim
n→∞

√
4n2 + n− 2n = lim

n→∞
(
√

4n2 + n− 2n)(
√

4n2 + n+ 2n)√
4n2 + n+ 2n

= lim
n→∞

n√
4n2 + n+ 2n

=

= lim
n→∞

1√
4n2+n
n

+ 2
= 1

4
.

□

5.37. Let c ∈ R+ (a positive real number). We will show that

lim
n→∞

n
√
c = 1.

Solution. First, let us consider c > 1. The function n
√
c is decreasing

(in n), yet all its values are greater than 1, hence the sequence n
√
c has

a limit, and this limit is equal to the in�mum of the sequence's terms.

Let us suppose, for a while, that thus limit is greater than 1, that is 1+ε
for some ε > 0. Then by the de�nition of a limit, all the sequence's

terms will eventually (from some indexm on) be less than 1 + ε+ ε2

4 ,

especially m
√
c < 1 + ε + eps2

4 . But then we have that

2m
√
c =

√
m
√
c <

√
1 + ε + ε2

4
= 1 + ε

2
< 1 + ε,
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5.12. Convergence of a sequence. In the following paragraphs,

we will work with one of the number sets K of ratio-

nal, real, or complex numbers. The absolute value

thus must be understood in the corresponding con-

text, and we should also bear inmind that the triangle

inequality holds in all these cases.

We would like to formalize the notion of a sequence of num-

bers approaching a limit. Therefore, the key object of our interest

will be sequences of numbers ai , where the index i usually goes

throughout the natural numbers. We will denote the sequences ei-

ther loosely as a0, a1, . . . , or as in�nite vectors (a0, a1, . . . ), or

(similarly to the matrix notation) as (ai)
∞
i=1.

Cauchy sequences

Let us consider a sequence (a0, a1, . . . ) of elements ofK such

that for any �xed positive number ε > 0, it holds for all but �nitely
many terms ai of the sequence that for all but �nitely many terms

aj ,

|ai − aj | < ε.

In other words, for any �xed ε > 0, there is an index N such that

the above inequality holds for all i, j > N ; i. e. the elements of

the sequence are eventually arbitrarily close to each other. Such a

sequence is called a Cauchy sequence.

Intuitively, we feel that either all but �nitely many of the se-

quence's terms are equal (then |ai − aj | = 0 will hold from some

indexN on), or they "approach" some value. This is easily imagin-

able in the complex plane: choosing an arbitrarily small disc (with

radius equal to ε), then, supposing we have a Cauchy sequence, it

must be possible to put it into the complex plane in such a way

that it covers all but �nitely many of the elements of the in�nite

sequence ai . We can imagine that the disc gradually shrinks to a

single value a; see the picture.

If such a value a ∈ K exists for a Cauchy sequence, we would

expect the sequence to have the property of convergence:

Convergent sequences

We say that a sequence (ai)
∞
i=0 converges to a value a i� for

any positive real number ε,

|ai − a| < ε

holds for all but �nitely many indeces i (the set of those i for which

the inequality does not hold may depend on ε). The number a is

called the limit of the sequence (ai)
∞
i=0.

If a sequence ai ∈ K, i = 0, 1, . . . , converges to a ∈ K, then
for any �xed positive ε, we know that |ai − a| < ε for all i greater

than a certainN ∈ N. However, by the triangle inequality, we then
get that for all pairs of indeces i, j ≥ N , it is true that

|ai − aj | = |ai − aN + aN − aj | < |ai − aN | + |aN − aj | < 2ε.

Thus we have proved:

Lemma. Every converging sequence is a Cauchy sequence.
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which contradicts our assumption that 1 + ε is the in�mum of the con-

sidered sequence.

The theorem is trivial for c = 1, and for a number c ∈ (0, 1) it
follows from the above, if we invoke the theorem for the number 1/c.

□

5.38. Determine

lim
n→∞

n
√
n.

Solution. Apparently, we have n
√
n ≥ 1, n ∈ N. So we can set

n
√
n = 1 + an for certain numbers an ≥ 0, n ∈ N.

By the binomial theorem we get that

n = (1 + an)
n = 1 +

(
n

1

)
an +

(
n

2

)
a2
n + · · · + ann, n ≥ 2 (n ∈ N).

Hence we have the bound (all the numbers an are non-negative)

n ≥
(
n

2

)
a2
n = n (n− 1)

2
a2
n, n ≥ 2 (n ∈ N),

which leads to

0 ≤ an ≤
√

2
n− 1

, n ≥ 2 (n ∈ N).

By the squeeze theorem,

0 = lim
n→∞ 0 ≤ lim

n→∞ an ≤ lim
n→∞

√
2

n− 1
= 0.

Thus we have obtained the result

lim
n→∞

n
√
n = lim

n→∞ (1 + an) = 1 + 0 = 1.

We can notice that by further application of the squeeze theorem, we

get

1 = lim
n→∞ 1 ≤ lim

n→∞
n
√
c ≤ lim

n→∞
n
√
n = 1

for every real number c ≥ 1. □

5.39. Calculate the limit

lim
n→∞

(√
2 · 4

√
2 · 8

√
2 · · · 2n√

2
)
.

Solution. To determine the limit, it is su�cient to express the terms

in the form

2
1
2 · 2

1
4 · 2

1
8 · · · 2

1
2n = 2

1
2 + 1

4 + 1
8 +···+ 1

2n .

Thus we get

lim
n→∞

(√
2 · 4

√
2 · 8

√
2 · · · 2n√

2
)

= lim
n→∞ 2

1
2 + 1

4 + 1
8 +···+ 1

2n

= 2
lim

n→∞
(

1
2 + 1

4 + 1
8 +···+ 1

2n

)
= 2

∞∑
n=1

1
2n

.
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However, in the �eld of rational numbers, it can easily happen

that the corresponding value a does not exist even for a Cauchy

sequence. For instance, the number
√

2 can be approached by ra-

tional numbers ai with arbitrary accuracy, thereby obtaining a se-

quence converging to
√

2, but the limit is not rational.
Ordered �elds of scalars in which every Cauchy sequence is

converging are called complete. The following theorem proposes

that the axiom (R13) guarantees that the real numbers are such a

�eld:

Theorem. Every Cauchy sequence of real numbers ai converges

to a real value a ∈ R.

Proof. The terms of anyCauchy sequence form a bounded set

since any choice of ε bounds all but �nitely many of

them. Let us de�ne B as the set of those real num-

bers x for which x < aj holds for all but �nitely

many terms aj of the sequence.

Apparently, B has an upper bound, and thus has a supremum

as well, by (R13). Let us de�ne a = supB. Now, having �xed

some ε > 0, we choose N so that |ai − aj | < ε for all i, j ≥ N .

Especially, aj > aN − ε and aj < aN + ε for all indeces j > N ,

and so aN − ε belongs to B, while aN + ε does not. Altogether,

we get that |a − aN | ≤ ε, and thus

|a − aj | ≤ |a − aN | + |aN − aj | ≤ 2ε

for all j > N . However, this means that a is the limit of the con-

sidered sequence. □

Corollary. Every Cauchy sequence of complex numbers zi con-

verges to a complex number z.

Proof. Let uswrite zi = ai+i bi . Since |ai−aj |2 ≤ |zi−zj |2
and similarly for the values bi , both sequences of real numbers ai
and bi are Cauchy sequences. They converge to a and b, respec-

tively, and we can easily verify that z = a + i b is the limit of the

sequence zi . □

5.13. Remark. The previous discussion gives us a method for

de�ning the real numbers. We proceed similarly

to building the integers from the natural numbers

(adding all additive inverses) and building the ratio-

nal numbers from the integers (adding all multiplica-

tive inverses of non-zero numbers). This time, we "complete" the

rational numbers by all limits of Cauchy sequences.

It suggests itself to introduce a suitable equivalence relation on

the set of all Cauchy sequences of rational numbers so that Cauchy

sequences (ai)
∞
i=0 and (bi)

∞
i=0 are equivalent i� the distances |ai−

bi | converge to zero (this is the same as the condition that merging
these sequences into a single sequence�for instance, the terms of

the �rst sequence will become the odd terms of the resulting one

and the terms of the second sequence will be the even ones�yields

a Cauchy sequence as well). We will not verify that this relation is

an equivalence in detail, neither will we de�ne the operations and

the ordering relation, nor will we prove that all of the axioms will

indeed hold. Nevertheless, it is not di�cult. Nor is proving the

fact that the axioms (R1)�(R13) de�ne the real numbers uniquely

up to isomorphism (a bijective mapping preserving the algebraic

operations as well as the ordering). We will return to this notes

later.
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By the well-known formula for the sum of geometric series,

∞∑
n=1

(
1
2

)n
=

1
2

1 − 1
2

= 1,

whence it follows that

lim
n→∞

(√
2 · 4

√
2 · 8

√
2 · · · 2n√

2
)

= 21 = 2.

□

5.40. Determine

lim
n→∞

(
1
n2

+ 2
n2

+ · · · + n− 2
n2

+ n− 1
n2

)
.

⃝
5.41. Calculate

lim
n→∞

√
n3 − 11n2 + 2 + 5

√
n7 − 2n5 − n3 − n+ sin2 n

2 − 3
√

5n4 + 2n3 + 5
.

⃝
5.42. Determine the limit

lim
n→∞

n! + (n− 2)! − (n− 4)!
n50 + n! − (n− 1)!

.

⃝
5.43. Find two sequences (let use denote their terms by xn and yn (n ∈
N), respectively) having in�nite limits and such that

lim
n→∞(xn + yn) = 1, lim

n→∞
(
xn y

2
n

) = +∞.

⃝
5.44. Determine the limit points of the sequence given by

an = (−1)n 2n√
4n2 + 5n+ 3

, n ∈ N.

⃝
5.45. Calculate

lim sup
n→∞

an and lim inf
n→∞ an

if

an = n2 + 4n− 5
n2 + 9

sin2 nπ

4
, n ∈ N.

⃝
5.46. Determine

lim inf
n→∞

(
(−1)n

(
1 + 1

n

)n
+ sin

nπ

4

)
.

⃝
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5.14. Closed sets. Four our further work with the real or com-

plex numbers, we will need to thoroughly un-

derstand the notions of closeness, boundedness,

convergence, and so on. For any subset A of

points in K, we will be interested not only of the points belonging
to a ∈ A, but also in the ones which can be approached by limits

of sequences.

Limit points of a set

Let us consider a set A of points belonging to K. A point

x ∈ K is called a limit point of the set A i� there is a sequence

a0, a1, . . . of elements of A such that all its terms di�er from x,

yet its limit is x.

The limit points of a subset A of rational, real, or complex

numbers are those numbers x which can be approached by such

sequences of numbers lying in A which do not contain the point

x itself. Let us notice that a limit point of a set may or may not

belong to it.

For every non-empty set A ⊂ K and a �xed point x ∈ K,
the set of all distances |x − a|, a ∈ A, is a set of real numbers

bounded from below, and so it has an in�mum d(x,A), which is

called the distance of the point x from the set A. Let us notice that

d(x,A) = 0 if and only if x ∈ A or x is a limit point of A. (We

suggest that the reader prove this in detail from the de�nitions.)

Closed sets

The closure Ā of a set A ⊂ K is the set of those points which

have zero distance from A (note that the distance from the empty

set of points is unde�ned, therefore ∅̄ = ∅).
A closed subset in K is such a set which coincides with its

closure. Thus these are exactly those sets which contain all of its

limit points as well. There is a typical example of a closed set: a

closed interval

[a, b] = {x ∈ R, a ≤ x ≤ b}
of real numbers, where a and b are �xed real numbers.

If either of the boundary values of the interval is missing, we

write a = −∞ (minus in�nity) and similarly b = +∞. Such

closed intervals are denoted by (−∞, b], [a,∞), and (−∞,∞).

The closed sets are exactly those which contain all they can

"converge to". A closed set may be formed by a sequence of real

numbers without a limit point or a sequence with a �nite number

of limit points together with these points. The unit disc (including

its boundary circle) in the complex plane is another example of a

closed set.

We can easily verify that any intersection and any �nite union

of closed set is again a closed set. Indeed, if all of the points of

some sequence belong to the considered intersection of closed sets,

then they belong to each of the sets, and so do all the limit points.

However, if we wanted to say the same about an arbitrary union,

we would get in trouble: singleton sets are closed, but a sequence

of points created from them may not be. On the other hand, if we

restrict our attention to �nite unions and consider a limit point of

some sequence lying in this union, then the limit point must also

be the limit point of any subsequence, especially the one lying in

only one of the united sets. As this set is assumed to be closed, the

limit point lies in it, and thus it lies in the whole union.
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5.47. Now let us proceed with limits of functions. The de�nition can

be found at page 272.

Determine

(a)

lim
x→π/3

sin x;
(b)

lim
x→2

x2 + x − 6
x2 − 3x + 2

;
(c)

lim
x→+∞

(
arccos

1
x + 1

)3

;
(d)

lim
x→−∞ arctg

1
x
, lim

x→−∞ arctg x4 , lim
x→−∞ arctg (sin x) .

Solution. Exercise (a). Let us remind that a function f is, by de�ni-

tion, continuous at a given point x i� the limit of f at x is equal to the

function value f (x). However, we know that the function y = sin x is
continuous at every real number. Thus we get that

lim
x→π/3

sin x = sin
π

3
=

√
3

2
.

Exercise (b). The immediate substitution x = 2 leads to both zero
numerator and zero denominator. Despite that, the problem can be

solved very easily. The reduction

lim
x→2

x2 + x − 6
x2 − 3x + 2

= lim
x→2

(x − 2) (x + 3)
(x − 2) (x − 1)

= lim
x→2

x + 3
x − 1

= 2 + 3
2 − 1

= 5

leads to the correct result (thanks to continuity of the obtained at func-

tion at the point x0 = 2). Let us realize that the limit of a function can
be calculated from the function values in an arbitrarily small deleted

neighborhood of a given point x0 and that the limit does not depend on

the function value at the point. We can thus make use of multiplying

or reducing by factors which do not change the function values in an

arbitrarily selected deleted neighborhood of the point x0.

Exercise (c). By moving the limit inwards twice, the original limit

transforms to (
arccos

(
lim

x→+∞
1

x + 1

))3

.

It can easily be shown that

lim
x→+∞

1
x + 1

= 0.

As the function y = arccos x is continuous at the point 0 and takes the

value π/2 there, and the function y = x3 is continuous at π/2, we get
that

lim
x→+∞

(
arccos

1
x + 1

)3

=
(
arccos

(
lim

x→+∞
1

x + 1

))3

=
(π

2

)3
.
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5.15. Open sets. There is another useful type of subsets of the

real numbers: open intervals

(a, b) = {x ∈ R; a < x < b},
where, again, a and b are �xed real numbers or in�nite values±∞.

It is an open set, in the following sense:

Open sets and neighborhoods of points

An open set in K is a set whose complement is a closed set.

A neighborhood of a point a ∈ K is any open set O which

contains a. If the neighborhood is de�ned as

Oδ(a) = {x ∈ K, |x − a| < δ}
for some positive number δ, then we call it the δ-neighborhood of

the point a.

Let us notice that for any set A, a ∈ K is a limit point of A

if and only if every neighborhood of a contains at least one more

point b ∈ A, b ̸= a.

Lemma. A set A ⊂ K of numbers is open if and only if with every

point a ∈ A, an entire neighborhood of a belongs to A.
Proof. Let A be an open set and a ∈ A. If there were no

neighborhood of the point a inside A, there would be a sequence

an /∈ A, |a − an| ≤ 1/n. But then the point a ∈ A is a limit point

of the set K \ A, which is impossible since the complement of A
is closed.

Now let us suppose that every a ∈ A has an entire neighbor-

hood of its lying in A. This naturally prevents a limit point b of

the set K \A to lie in A. Thus the set K \A is closed, and so A is

open. □

From this lemma, it immediately follows that any union of

open sets results in an open set, and further than any �nite inter-

section of open sets is also an open set.

In the case of the real numbers, the δ�neighborhood of a point

a is the open interval of length 2δ, centered at a. In the complex

plane, it is the disc of radius δ, also centered at a.

5.16. Bounded and compact number sets. The closed and open

sets are the basic concepts of topology. Without going

into deeper connections, we have just made ourselves

familiar with the topology of the real line and the topol-

ogy of the complex plane. The following concepts will

be extremely useful:

Bounded and compact sets

A set A of rational, real, or complex numbers is called

bounded i� there is a positive real number r such that |z| ≤ r

for all numbers z ∈ A. Otherwise, the set is called unbounded.
A set which is both bounded and closed is called compact.

Closed bounded intervals of real numbers are a typical exam-

ple of compact sets.

Let us add further topological concepts that will allow us to

express e�ciently:

An interior point of a setA of real or complex numbers is such

a point that one of its neighborhoods is contained in A.

A boundary point of a set A is such a point that all its neigh-

borhoods are disjoint with neither A, nor its complementK \A. A
boundary point of the set A may or may not belong to it.
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Exercise (d). The function y = arctg x has properties which are

"useful when calculating limits" � it is continuous and injective (in-

creasing) on the whole domain. These properties always (with no fur-

ther conditions or limitations) allow to move the examined limit into

the argument of such a function. Therefore, let us consider

arctg

(
lim

x→−∞
1
x

)
, arctg

(
lim

x→−∞ x
4
)
, arctg

(
lim

x→−∞ sin x
)
.

Apparently,

lim
x→−∞

1
x

= 0, lim
x→−∞ x

4 = +∞
and the limit limx→−∞ sin x does not exist, which implies

lim
x→−∞ arctg

1
x

= arctg 0 = 0, lim
x→−∞ arctg x4 = lim

y→+∞ arctg y = π

2
and the last limit does not exist, either. □

5.48. Determine the limit

lim
x→0

1 − cos x
x2 sin(x2 )

.

Solution.

lim
x→0

1 − cos x
x2 sin(x2 )

= lim
x→0

2 sin2 ( x
2

)
x2 sin(x2 )

=

= lim
x→0

1
2 sin2 ( x

2

)(
x
2

)2 sin(x2 )
=

= 1
2

(
lim
x→0

sin
(
x
2

)
x
2

)2

· lim
x→0

1
sin2(x2 )

= 1
2

· ∞ = ∞.

The previous calculation must be considered "from the back".

Since the limits on the right-hand side exist (no matter whether �nite

or in�nite) and the expression 1
2 · ∞ is meaningful (see the note after

theorem 5.22), the original limit exists as well. If we split the original

limit into the product

lim
x→0

(1 − cos x) · lim
x→0

1
x2 sin(x2 )

,

we would get the 0 · ∞ type, which is an indeterminate form, but this

tells us nothing about existence of the original limit. □

5.49. Determine the following limits:

i) limx→2
x−2√
x2−4

, ii) limx→0
sin(sin x)

x
,

iii) limx→0
sin2 x
x
, iv) limx→0 e

1
x .

Solution.

i) lim
x→2

x − 2√
x2 − 4

= lim
x→2

x − 2√
(x − 2)(x + 2)

= lim
x→2

√
x − 2√
x + 2

= 0
4

= 0.

ii) lim
x→2

x − 2√
x2 − 4

(5.27)= lim
y→0

sin y
y

= 1,
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An open cover of a set A is such a system of open sets Ui ,

i ∈ I , that its union contains the whole of A.
An isolated point of a set A is a point a ∈ A such that there is

a neighborhood N of a satisfying N ∩ A = {a}.

5.17. Theorem. All subsets A of the real numbers satisfy:

(1) a non-empty set A is open i� it is a union of countably (or

�nitely) many open intervals,

(2) every point a ∈ A is either interior or boundary,

(3) every boundary point ofA is either an isolated or a limit point

of A,

(4) A is compact i� every in�nite sequence contained in it has a

subsequence converging to a point in A,

(5) A is compact i� each of its open covers contains a �nite sub-

cover.

Proof. (1) Apparently every open set is some union of neigh-

borhoods of its points, i. e. of open intervals. So

the question that remains is whether it su�ces to take

countably many of them. Thus we may try to select

intervals which will be as "great" as possible. We will

consider points a, b ∈ A to be related i� the whole open interval

(min{a, b},max{a, b}) is contained in A. Clearly, this relation is

an equivalence (the open interval (a, a) is the empty set, which is

contained in any set; symmetry and transitivity are apparent). The

classes of this equivalence relation are intervals which are pairwise

disjoint. Each of these intervals surely contains a rational num-

ber, and the obtained rational numbers are also pairwise distinct.

However, there are only countably many rational numbers, so the

statement is proved.

(2) It follows immediately from the de�nitions that no point

can be both interior and boundary. Let a ∈ A be a point that is

not interior. Then there is a sequence of points ai /∈ A with a as

its limit point. At the same time, a belongs to each of its neighbor-

hoods. Thus a is boundary.

(3) Suppose that a ∈ A is boundary but not isolated. Then,

similarly to the reasoning from the previous paragraph, there are

points ai , this time inside A, whose limit point is a.

(4) Suppose that A is a compact set, i. e. both closed and

bounded. Let us consider an in�nite sequence of points ai ∈ A.

This set surely has both a supremum b and an in�mum a (we could

have taken any upper and lower bounds of the set A as well). Now

let us cut the interval [a, b] into halves: [a, 1
2 (b − a)] and [ 1

2 (b −
a), b]. At least one of them contains in�nitely many of the terms

ai . We will select this half and one of the terms contained in it;
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where we made use of the fact that lim
x→0

sin x = 0.

iii) lim
x→0

sin2 x

x
= lim

x→0
sin x · lim

x→0

sin x
x

= 0 · 1 = 0,

again, the original limit exists because both the right-hand side limits

exist and their product is well-de�ned.

iv) One must be cautious when calculating this limit. Both one-sided

limits exist, but are di�erent, which implies that the examined limit

does not exist:

lim
x→0+

e
1
x = elimx→0+

1
x = e∞ = ∞,

lim
x→0−

e
1
x = elimx→0−

1
x = e−∞ = 0.

□

5.50. Calculate

(a) limx→2
x+2
(x−2)6 , (b) limx→2

x+2
(x−2)5 ,

(c) limx→+∞
(
2 + 1

x

) 1
x , (d) limx→+∞ x−x .

Solution.

In this exercise, wewill be concerned with so-called indeterminate

forms. We recommend perceiving indeterminate

forms as a helping concept which is only to facili-

tate the �rst approach to limit calculations because

the obtained indeterminate form only means that one "has found out

nothing". We know the limit of a sum is the sum of the limits, the

limit of a product is the product of the limits, and the limit of a quo-

tient is the quotient of the limits, supposing the particular limits exist

and do not lead to one of the following expressions∞−∞, 0 ·∞, 0/0,
∞/∞, which are called indeterminate forms. For completeness, let us

add that these rules can be combined and that an expression containing

an indeterminate form is itself considered an indeterminate form. For

instance, the forms

−∞ + ∞ = ∞ − ∞, −∞
3+∞ = −∞

∞ ,
0

(−∞)3+∞ = 0 · (∞ − ∞)−1

are all indeterminate, but the forms

−∞ − ∞,
0

3 + ∞ ,
0

(−∞)3 − ∞
can be called "determinate" (one can immediately determine the limit

� they correspond to the values −∞, 0, 0, respectively).
In exercise (a), the quotient of the numerator and the denominator

gives us 4/0. Expressions containing division by zero are inappropri-
ate (later, we should be able to avoid them). Yet it leads to the result,

it is not an indeterminate form. We may notice that the denominator



CHAPTER 5. ESTABLISHING THE ZOO

then we cut the selected interval into halves. Again, we select such

a half which contains in�nitely many of the sequence's terms and

select one of those points. By this procedure, we obtain a Cauchy

sequence (you can prove this by yourselves; all you need is careful

manipulation with some bound, similarly as above). However, we

know that Cauchy sequences have limit points or are constant up

to �nitely many exceptions. Thus there is a subsequence with the

wanted limit. >From the fact that A is closed, it follows that the

obtained point lies in A.

Now the other direction: if every in�nite subset of A has a

limit point in A, then all limit points are in A, and so A is closed.

If A were not bounded, we would be able to �nd an increasing or

decreasing sequence such that the di�erences of adjacent numbers

would be at least 1, for instance. However, such a sequence of

points in A cannot have a limit point at all.

(5) First, let us focus on the easier implication, i. e. let us

suppose that every open cover contains a �nite one and

prove that A is both closed and bounded. Apparently, A

can be covered by a countable union of intervals In =
(n− 2, n+ 2), n ∈ Z, and any choice of a �nite subcover

of them witnesses that A is bounded.

Now let us suppose that a ∈ R \ A is the limit point of a

sequence ai ∈ A, and further, let us assume that |a − an| < 1
n

(otherwise we can select a subsequence satisfying this property).

The sets

Jn = R \ [a − 1
n
, a + 1

n
]

for all n ∈ N, n > 0, are unions of two open intervals and they

also cover our set A. Since it is possible to choose a �nite cover

of A, the point a is inside the complement R \A, including one of
its neighborhoods, and thus it is not a limit point. Therefore, all of

A's limit points must again lie in A. Hence A is closed as well.

The proof of the other implication is based upon the proper-

ties and existence of suprema. Let us suppose that A is compact

and that an open cover C of A is given. >From the previous, it is

apparent that A has a greatest element and a least element, which

equal b = supA and a = infA, respectively. Let us mark the "ex-
treme" set for which we can choose a �nite cover from C, i. e. let
us de�ne the set

B = {x ∈ [a, b], there is a �nite subcover [a, x] ∩ A}.
Apparently, a ∈ B, so it is a non-empty set bounded from above.

Therefore, it has a supremum c. Our task is to prove that, actually,

c = b.

The reasoning may be a bit chaotic unless we draw a picture

of the situation. However, the essence is simple: We know that

a ≤ c ≤ b. Let us thus suppose, for a while, that c < b. Since

R \ A is open, for c /∈ A, there is a neighborhood of the point c

contained in [a, b] and, at the same time, disjoint withA. However,
this would eliminate the possibility of c = supB.

So there remains the case c ∈ A, and there is a neighborhood
O of the point c in the open cover C. Let us choose points p <

c < q in O. Again, there will be a �nite cover for [a, q] ∩ A. But
this means that q > c lies in B, which is impossible. The original

choice of c < b led to a contradiction, which proves the desired

equality b = c. Now, with the help of a neighborhood of b lying

in C, we can �nd in C a �nite cover for the whole of A. □
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approaches zero from the right (for x ̸= 2 we have that (x − 2)6 > 0).
We write this as 4/ + 0. Thus the numerator and denominator are

both positive in some deleted neighborhood of the point x0 = 2 and

one can say that the denominator, at the limit point, is "in�nitely times

less" than the numerator, that is

lim
x→2

x + 2
(x − 2)6

= +∞,

which corresponds to setting 4/ + 0 = +∞ (similarly, we can set

4/− 0 = −∞).

When calculating the limit of (b), one can proceed analogously.

Since the numbers have the same sign, we get that

lim
x→2+

x + 2
(x − 2)5

= +∞ ̸= −∞ = lim
x→2−

x + 2
(x − 2)5

,

so the examined limit does not exist. We can write 4/±0 (or, more gen-
erally, a/± 0, a ̸= 0, a ∈ R∗), which is a "determinate form". When

thoroughly distinguishing the symbols +0 and −0 from ±0, a/ ± 0
for a ̸= 0 always means the limit in question does not exist.

Exercises (c), (d). If f (x) > 0 for all considered x ∈ R, then

f (x)g(x) = eln
(
f (x)g(x)

)
= eg(x)·ln f (x).

Making use of the fact that the exponential function is continuous and

injective on the whole of its domain (R), we can replace the limit

lim
x→x0

f (x)g(x)

with

e
lim

x→x0
(g(x)·ln f (x))

.

Let us remind that either of these limits exists if and only if the other

one exists. Further,

lim
x→x0

(g(x) · ln f (x)) = a ∈ R H⇒ lim
x→x0

f (x)g(x) = ea,

lim
x→x0

(g(x) · ln f (x)) = +∞ H⇒ lim
x→x0

f (x)g(x) = +∞,

lim
x→x0

(g(x) · ln f (x)) = −∞ H⇒ lim
x→x0

f (x)g(x) = 0.

Thus we can write

lim
x→x0

f (x)g(x) = e
lim

x→x0
g(x)· lim

x→x0
ln f (x)

,

if both limits on the right-hand side exist and do not lead to the indeter-

minate form 0 · ∞. It is not di�cult to realize that this indeterminate

form can only be obtained in three cases, corresponding to the remain-

ing indeterminate forms 00, ∞0, 1∞, when we have, respectively, that

lim
x→x0

f (x) = 0 and lim
x→x0

g(x) = 0,

lim
x→x0

f (x) = +∞ and lim
x→x0

g(x) = 0,

lim
x→x0

f (x) = 1 and lim
x→x0

g(x) = ±∞.
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5.18. Limits of functions and sequences. For the discussion of

limits, it is advantageous to extend the set R of real

numbers by the two in�nite values ±∞ as we have

done when de�ning intervals.

A neighborhood of in�nity is any interval (a,∞). Similarly,

any interval (−∞, a) is a neighborhood of −∞. Further, we will

extend the concept of a limit point so that∞ is a limit point of a set

A ⊂ R i� every neighborhood of ∞ has a non-empty intersection

with it, i. e. if the set A is unbounded from above. Similarly for

−∞. We talk about in�nite limit points, sometimes also called

improper limit points of the set A.

"Calculations with infinities"

We also introduce rules for calculation with the formally

added values ±∞ and arbitrary "�nite" numbers a ∈ R:

a + ∞ = ∞
a − ∞ = −∞
a · ∞ = ∞, if a > 0
a · ∞ = −∞, if a < 0

a · (−∞) = −∞, if a > 0
a · (−∞) = ∞, if a < 0

a

±∞ = 0, for all a ̸= 0.

The following de�nition covers many cases of limit processes

and needs to be thoroughly understood. We will go through the

particular cases in detail presently.

Real and complex limits

De�nition. Let us consider a subset A ⊂ R and a real-valued

function f : A → R or a complex-valued function

f : A → C, de�ned on A. Further, let us consider
a limit point x0 of the set A (i. e. a real number or

±∞).

We sat that f has limit a ∈ R (or a complex limit a ∈ C) at
the point x0 and write

lim
x→x0

f (x) = a

i� for every neighborhoodO(a) of the point a, there is a neighbor-
hoodO(x0) of the point x0 such that for all x ∈ A∩ (O(x0)\{x0}),
it holds that f (x) ∈ O(a).

In the case of a real-valued function, a = ±∞ can also be the

limit. Such a limit is called in�nite or improper. In the other case,

i. e. a ∈ R, we say the limit is �nite or proper.

It is important to notice that the value of f at x0 has no occur-

rence in the de�nition, and the function f may even not be de�ned

at this limit point (and in the case of an improper limit point, it

cannot, of course)! We often talk about a deleted neighborhood

O(x) \ {x} of those points where we are interested in the function
values.

For now, we will not de�ne improper limits of complex func-

tions.

5.19. The most often cases of domains. Our de�nition of a limit

covers several very dissimilar situations:
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In other cases, knowledge (and existence) of the limits

lim
x→x0

f (x), lim
x→x0

g(x)

allows us to determine the result (having de�ned some more expres-

sions)

lim
x→x0

f (x)g(x) =
(

lim
x→x0

f (x)

) lim
x→x0

g(x)

.

Since

lim
x→+∞

(
2 + 1

x

)
= 2, lim

x→+∞
1
x

= 0, lim
x→+∞ x = +∞,

we have that

lim
x→+∞

(
2 + 1

x

) 1
x

= 20 = 1,

lim
x→+∞ x

−x = lim
x→+∞

(
1
x

)x
= 0

or

lim
x→+∞ x

−x = lim
x→+∞

(
xx
)−1 = 0.

The last result can be expressed as 0∞ = 0 or ∞∞ = ∞, ∞−1 = 0
(let us emphasize that these are not indeterminate forms).

Although we have laid great emphasis on the reader to prefer rea-

soning about the limit behavior of functions to mindless labeling of

the forms as determinate and indeterminate, it is, we hope, clear now

why we will focus on the indeterminate ones. □

5.51. Calculate

lim
x→+∞

sin x + πx2

2 cos x − 1 − x2
;

lim
x→+∞

3x+1 + x5 − 4x
3x + 2x + x2

;

lim
x→+∞

4x − 8x6 − 2x − 167

3x − 45x − √
11πx+12

;

lim
x→+∞

√
x − sin3 x + x arctg x√

1 + 2x + x2
.

Solution. Having reduced the �rst fraction by the polynomial x2 , we

get

lim
x→+∞

sin x + πx2

2 cos x − 1 − x2
= lim

x→+∞

sin x
x2 + π

2 cos x−1
x2 − 1

.

Boundedness of the expressions

| sin x | ≤ 1, | 2 cos x − 1 | ≤ 3 pro x ∈ R

and x2 → +∞ for x → +∞ give us the result

lim
x→+∞

sin x
x2 + π

2 cos x−1
x2 − 1

= 0 + π

0 − 1
= −π.
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(1) Limits of sequences. If A = N, i. e. the function f

is de�ned for the natural numbers only, we talk about limits of

sequences of real or complex numbers. In this case, the only limit

point of the domain is ∞, and we often write the values (terms) of

the sequence as f (n) = an and the limit in the form

lim
n→∞ an = a.

According to the de�nition, this means that for any neighborhood

O(a) of the limit value a, there is an index N ∈ N such that

an ∈ O(a) for all n ≥ N . Actually, we have only reformulated

the de�nition of convergence of a sequence (see 5.12). We have

only added the possibility of in�nite limits. We also say that the

sequence an converges to a.

We can easily see from our de�nition for complex numbers

that a sequence of complex values has limit a if and only if the real

parts of ai converge to re a and the imaginary parts converge to

im a.

(2) Limits of functions at an interior point of an interval.

If f is de�ned on the intervalA = (a, b) and x0 is an interior point

of this interval, we talk about the limit of a function at an interior

point of its domain. Usually, we write

lim
x→x0

f (x) = a.

Let us examine why it is important to require f (x) ∈ O(a) only
for the points x ̸= x0 in this case as well. As an example, let us

consider the function f : R → R

f (x) =
{

0 if x ̸= 0
1 if x = 0.

Apparently, the limit at zero is well-de�ned, and in accordance

with our expectations, limx→0 f (x) = 0 even though the value

f (0) = 1 does not belong into small neighborhoods of the limit

point 0.
(3) One-sided limits. If A = [a, b] is a bounded interval and

x0 = a or x0 = b, we talk about a one-sided limit of the function

f at the point x0: from the left and from the right, respectively.

If the point x0 is an interior point of the domain of f , we can,

in order to determine the limit, consider the domain restricted to

[x0, b] or [a, x0]. The resulting limits are also called a right-sided
limit and left-sided limit, respectively, of the function f at the point

x0. We denote them by limx→x+
0
f (x) and limx→x−

0
f (x), respec-

tively. As an example, we can consider the one-sided limits at

x0 = 0 for Heaviside's function h from the beginning of this part.

Apparently,

lim
x→0+ h(x) = 1, lim

x→0− h(x) = 0.

However, the limit limx→0 f (x) does not exist.

It follows from out de�nitions that the limit at an interior point

of the domain of an arbitrary function f exists if and only if both

one-sided limits exist and are equal.

5.20. Further examples of limits. (1) The limit of a complex

function f : A → C exists if and only if the limits of both the

real part and the imaginary part exist. In this case, we have

lim
x→x0

f (x) = lim
x→x0

(re f (x))+ i lim
x→x0

(im f (x)).

The proof is straightforward and makes direct use of the de�nition

of distances are neighborhoods of the points in the complex plane.
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In the last argumentation, we actually used the squeeze theorem and

the notation c/∞ = 0 which is valid for any c ∈ R (or bounded/∞ =
0, where "bounded" denotes a bounded function).

This procedure can be generalized. Any limit of the form

lim
x→x0

f1(x)+ f2(x)+ · · · + fm(x)

g1(x)+ g2(x)+ · · · + gn(x)
,

where

lim
x→x0

fi(x)

f1(x)
= 0, i ∈ {2, . . . , m},

lim
x→x0

gi(x)

g1(x)
= 0, i ∈ {2, . . . , n},

satis�es

lim
x→x0

f1(x)+ f2(x)+ · · · + fm(x)

g1(x)+ g2(x)+ · · · + gn(x)
= lim

x→x0

f1(x)

g1(x)
,

supposing the limit on the right-hand side exists. It is advantageous to

realize (the third limit can be determined, for example, by l'Hospital's

rule, with which we will make ourselves familiar later)

lim
x→+∞

c

xα
= 0, lim

x→+∞
xα

xβ
= 0, lim

x→+∞
xβ

ax
= 0, lim

x→+∞
ax

bx
= 0

for

c ∈ R, 0 < α < β, 1 < a < b.

Hence we immediately have that

lim
x→+∞

3x+1 + x5 − 4x
3x + 2x + x2

= lim
x→+∞

3 · 3x

3x
= 3;

lim
x→+∞

4x − 8x6 − 2x − 167

3x − 45x − √
11πx+12

= lim
x→+∞

4x

−√
11π12 · πx = −∞.

If we realize that

lim
x→+∞ arctg x = π

2
≥ 1,

we will also obtain that

lim
x→+∞

√
x − sin3 x + x arctg x√

1 + 2x + x2
= lim

x→+∞
x arctg x√

x2
= lim

x→+∞ arctg x

= π

2
.

□

5.52. Determine the limits

lim
n→∞

(
1

1 · 2
+ 1

2 · 3
+ 1

3 · 4
+ · · · + 1

(n− 1) · n
)

;

lim
n→∞

(
1√
n2 + 1

+ 1√
n2 + 2

+ · · · + 1√
n2 + n

)
.

Solution. Since for every natural number k ≥ 2 it holds that (what we

do here is called partial fraction decomposition � we will present it in

detail in the chapter concerning integration of rational functions)

1
(k − 1) k

= 1
k − 1

− 1
k
,
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Indeed, the membership into a δ�neighborhood of a complex value

z is guaranteed by the real (1/
√

2)δ�neighborhoods of the real and
the imaginary parts of z. Hence the proposition follows immedi-

ately.

(2) Let f be a real or complex polynomial. Then for every

point x ∈ R, it holds that

lim
x→x0

f (x) = f (x0).

Really, if f (x) = anx
n + · · · + a0, then the identity (x0 + δ)k =

xk0 + kδxk−1
0 + · · · + δk , substituted for k = 0, . . . , n, gives that

choosing a su�ciently small δ makes the values arbitrarily close

to f (x0).

(3) Now, let us consider the following, quite awful, function

de�ned on the whole real line

f (x) =
{

1 if x ∈ Q
0 if x /∈ Q.

It is apparent straight from the de�nition that this function has an

(even one-sided) limit at no point of its domain.

(4) The following function is even trickier than the previous

one. Let f : R → R be the function de�ned as follows:2

f (x) =
{ 1

q
if x = p

q
∈ Q, p, q relatively prime

0 if x /∈ Q.

Choosing any point x, no matter whether rational or irrational,

and a huge natural number m, then x will belong to

exactly one of the intervals ( n
m
, n+1
m
) for some n (if

x = p
q
, we consider only coprime m > q). We set

δk to be the minimum of the distances of the point x

from the edges of these intervals for the considered m less than k.

Of course, it always holds that δk <
1
k
.

Now, let us consider some ε > 0 and k such that 1
k
< ε. Then

for all y in the deleted δ�neighborhood of the point x, we have

either f (y) = 0 (if it is an irrational value) or f (y) < 1
r
for r > k

(if it is a rational value). In either case, we get that |f (y)| < ε.

Therefore, this function's limit is zero at all real points x. How-

ever, only at the irrational points, this limit equals the function

value.

5.21. Theorem (The squeeze theorem). Let f , g, h be three real-

valued functions with the same domain A and such

that there is a deleted neighborhood of a limit point

x0 ∈ R of the domain where

f (x) ≤ g(x) ≤ h(x).

Then, supposing there are limits

lim
x→x0

f (x) = f0, lim
x→x0

h(x) = h0

and f0 = h0, the limit

lim
x→x0

g(x) = g0

exists as well and it satis�es g0 = f0 = h0.

2This function is called Thomae function after a German mathematician J.

Thomae, 1840�1921.
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we get that

lim
n→∞

(
1

1 · 2
+ 1

2 · 3
+ 1

3 · 4
+ · · · + 1

(n− 1) · n
)

=

lim
n→∞

(
1
1

− 1
2

+ 1
2

− 1
3

+ 1
3

− 1
4

+ · · · + 1
n− 1

− 1
n

)
=

lim
n→∞

(
1 − 1

n

)
= 1.

Let us remark that this limit is quite important: it determines the

sum of one of the so-called telescoping series (with which Johann I

Bernoulli (1667�1748) worked).

To determine the second limit, we invoke the squeeze theorem.

The bounds

1√
n2 + 1

+· · ·+ 1√
n2 + n

≥ 1√
n2 + n

+· · ·+ 1√
n2 + n

= n√
n2 + n

,

1√
n2 + 1

+· · ·+ 1√
n2 + n

≤ 1√
n2 + 1

+· · ·+ 1√
n2 + 1

= n√
n2 + 1

for n ∈ N give that

lim
n→∞

n√
n2 + n

≤ lim
n→∞

(
1√
n2 + 1

+ · · · + 1√
n2 + n

)
≤ lim

n→∞
n√
n2 + 1

.

Since

lim
n→∞

n√
n2 + n

= lim
n→∞

n√
n2

= 1, lim
n→∞

n√
n2 + 1

= lim
n→∞

n√
n2

= 1,

we also have that

lim
n→∞

(
1√
n2 + 1

+ 1√
n2 + 2

+ · · · + 1√
n2 + n

)
= 1.

□

5.53. Calculate

(a)

lim
x→0

√
1 + x − √

1 − x

x
;

(b)

lim
x→π/4

cos x − sin x
cos (2x)

;
(c)

lim
x→+∞

3√
x4
(

3
√
x2 + 2x + 3 − 3

√
x2 + 2x + 2

)
.

Solution. We will calculate the wanted limits using the method of

multiplying both the numerator and the denominator by a suitable ex-

pression. The �rst fraction can be conveniently extended by
√

1 + x + √
1 − x
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Proof. From the assumptions of the theorem, it follows that

for any ε > 0, there is a neighborhoodO(x0) of the point x0 ∈ A ⊂
R in which both f (x) and h(x) lie in the interval (f0−ε, f0+ε), for
all x ̸= x0. >From the condition f (x) ≤ g(x) ≤ h(x), it follows

that g(x) ∈ (f0 − ε, f0 + ε) as well, so limx→x0 g(x) = f0.

The presented reasoning can be gently modi�ed for in�nite

limit values or for limits at in�nite points x0. It would be a good

idea to think it through thoroughly! □

We can notice that this theorem allows us to calculate the limit

for all types discussed above, i. e. limits of sequences, limits of

functions at interior points, one-sided limits, and so on.

5.22. Theorem. Let A ⊂ R be the domain of real or complex

functions f and g, let x0 be a limit point of A and let the limits

lim
x→x0

f (x) = a ∈ K, lim
x→x0

g(x) = b ∈ K

exist. Then:

(1) the limit a is unique,

(2) the limit of the sum f + g exists and satis�es

lim
x→x0

(f (x)+ g(x)) = a + b,

(3) the limit of the product f · g exists and satis�es
lim
x→x0

(f (x) · g(x)) = a · b,
(4) supposing b ̸= 0, the limit of the quotient f/g exists and sat-

is�es

lim
x→x0

f (x)

g(x)
= a

b
.

Proof. (1) Let us suppose that a and a′ are two values of the
limit limx→x0 f (x). If a ̸= a′, then there are dis-

joint neighborhoods O(a) and O(a′). However, for
su�ciently small neighborhoods of x0, the values of

f should lie in both the neighborhoods, which is a contradiction.

Thus a = a′.
(2) Let us choose some neighborhood of a + b, for instance

O2ε(a+b). For a su�ciently small neighborhood of x0 and x ̸= x0,

both f (x) and g(x)will lie in ε�neighborhoods of the points a and

b. Hence their sum will lie in the 2ε�neighborhood of the value

a + b. The proposition is proved.

(3) Similarly to the above paragraph: we take Oε2(ab). For

su�ciently small neighborhoods of x0, the values of both f and
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and making use of the well-known formula (a − b) (a + b) = a2 −b2.

Thus we obtain

lim
x→0

√
1 + x − √

1 − x

x
= lim

x→0

(1 + x)− (1 − x)

x
(√

1 + x + √
1 − x

)
= lim

x→0

2√
1 + x + √

1 − x
= 2√

1 + √
1

= 1.

Similarly we can calculate

lim
x→π/4

cos x − sin x
cos (2x)

= lim
x→π/4

(cos x + sin x) (cos x − sin x)
(cos x + sin x) cos (2x)

= lim
x→π/4

cos2 x − sin2 x

(cos x + sin x) cos (2x)

= lim
x→π/4

1
cos x + sin x

= 1
√

2
2 +

√
2

2

=
√

2
2
.

The reduction was made thanks to the identity

cos (2x) = cos2 x − sin2 x, x ∈ R.

As for the last limit, to make use of the formula

(a − b)
(
a2 + ab + b2) = a3 − b3,

we need the expression

3
√(
x2 + 2x + 3

)2+ 3
√
x2 + 2x + 3· 3

√
x2 + 2x + 2+ 3

√(
x2 + 2x + 2

)2
,

which corresponds to a2 + ab + b2, so we choose

a = 3
√
x2 + 2x + 3, b = 3

√
x2 + 2x + 2.

By this extension, we transform the original limit to for some polyno-

mials P ,Q. Let us emphasize that this really holds for all n ∈ N. For
n = 1, one must realize that we set

(1
2

) = 0 and that the polynomialsP ,
Q may be constant zeros. So we get

(1 + 2nx)n = 1 + 2n2x + 2n3 (n− 1) x2 + P (x) x3 , x ∈ R,

(1 + nx)2n = 1 + 2n2x + n3 (2n− 1) x2 +Q(x) x3 , x ∈ R.

Mere substitution and simple rearrangements give us

lim
x→0

(1 + 2nx)n − (1 + nx)2n

x2
=

lim
x→0

(
2n3 (n− 1)− n3 (2n− 1)

)
x2 + (P (x)−Q(x)) x3

x2
=

lim
x→0

(−n3 + (P (x)−Q(x)) x
) = −n3 + 0 = −n3.

□
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g will hit ε�neighborhoods of the values a and b. Therefore, their

product will lie in the required ε2�neighborhood.

(4) This is left as an exercise for the reader. □

Remark. If we look thoroughly at the presented proofs, we see that

the statement of the theorem can be extended even to some in�nite

values of the limits of real-valued functions: Firstly, it must be the

case that at least one of the limits is �nite or that both limits share

the same sign. Then it holds that the limit of the sum is the sum

of the limits, with the conventions from 5.18. However, the case

"∞ − ∞" is excluded.

In the second case, one of the limits may be in�nite, then the

other one must be non-zero. Then, again, the limit of the product

is the product of the limits. Now, the case "0 · (±∞)" is excluded.

In the case of a quotient, we may have a ∈ R and b = ±∞,

then the resulting limit will be zero; or a = ±∞ and b ∈ R,
then it will be ±∞ according to the signs of the numerator and the

denominator. The case "∞
∞" is excluded.

Let us emphasize that our theorem also covers, as a special

case, the corresponding statements about the convergence of se-

quences as well as about one-sided limits of functions de�ned on

an interval.

For reasoning about limits, the following corollary of the def-

initions may be technically useful. It connects limits of sequences

and of functions in general.

5.23. Corollary. Let us consider a real or complex function f de-

�ned on a setA ⊂ R and a limit point x0 of the setA. The function

f has limit y at the point x0 if and only if for every sequence of

points xn ∈ A converging to, but di�erent from x0, the sequence

of the values f (xn) has limit y.

Proof. First, let us suppose that the limit of f at x0 is y. Then

for any neighborhood U of the point y, there must be a neighbor-

hood V of the point x0 such that for all x ∈ V ∩ A, x ̸= x0, we

have f (x) ∈ U . For every sequence xn → x0 of points di�erent

from x0, the terms xn will lie in V for all n greater than a suitable

N . Therefore, the sequences of values f (xn) will converge to y as

well.

Now, let us suppose that the function f does not converge to y

at x → x0. Then for some neighborhood U of the value y, there is

a sequence of points xm ̸= x0 inAwhich are closer to x0 than 1/m,
and yet the value f (xm) does not belong to U . This way, we have

constructed a sequence of points lying in A and di�erent from x0
for which the values f (xn) do not converge to y, thereby �nishing

the proof. □
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5.54. Calculate

lim
x→π/4

(tan x) tan (2x) .

Solution. Limits of the type 1±∞ (like the examined one) can be cal-

culated using the formula

lim
x→x0

f (x)g(x) = e
lim

x→x0
((f (x)−1)g(x))

,

supposing the limit on the right-hand side exists and f (x) ̸= 1 for all x
of some deleted neighborhood of the point x0 ∈ R. Therefore, let us
determine

lim
x→π/4

(tan x − 1) tan (2x) = lim
x→π/4

(
sin x
cos x

− 1
)

sin (2x)
cos (2x)

= lim
x→π/4

sin x − cos x
cos x

· 2 sin x cos x
cos2 x − sin2 x

= lim
x→π/4

−2 sin x
cos x + sin x

= −2
√

2
2√

2
2 +

√
2

2

= −1.

Hence we have that

lim
x→π/4

(tan x) tan (2x) = 1
e
.

Let us remark that the used formula holds more generally for

"the type 1whatever", that is with no further conditions on the

limit limx→x0 g(x) which even need not exist. □

5.55. Show that

lim
x→0

sin x
x

= 1.

Solution. Let us consider the unit circle (especially its quarter lying

in the �rst quadrant) and its point [cos x, sin x], x ∈ (0, π/2). The

length of the arc between the points [cos x, sin x] and [1, 0] is equal
to x. So we apparently have

sin x < x, x ∈
(

0,
π

2

)
.

The value tan x is then the distance between the points [1, sin x/ cos x]
and [1, 0]. We can see that (feel free to draw a picture)

x < tan x, x ∈
(

0,
π

2

)
.

This inequality also follows from the fact that the area of the triangle

with vertices [0, 0], [1, 0], [1, tan x] is greater than the area of the con-
sidered circular sector. Altogether, we have obtained that

sin x < x <
sin x
cos x

, x ∈
(

0,
π

2

)
,

that is

1 <
x

sin x
<

1
cos x

, x ∈
(

0,
π

2

)
,

1 >
sin x
x

> cos x, x ∈
(

0,
π

2

)
.
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Now, we have prepared tools for a correct formulation of the

property of continuity, with which we have dealt when talking

about polynomials.

Continuity of functions

De�nition. Let f be a real or complex function de�ned on an in-

terval A ⊂ R. We say that f is continuous at a point

x0 ∈ A i�

lim
x→x0

f (x) = f (x0).

The function f is said to be continuous on the set A i� it is contin-

uous at every point x0 ∈ A.

Let us notice that for the boundary points of the intervalA, the

de�nition says that value of f equals the value of the one-sided

limit there. We say that the function is right-continuous or left-

continuous at such a point. We have also seen that every polyno-

mial is a continuous function on the wholeR, see 5.20(2). Further,
we have met a function which is continuous at irrational real num-

bers only although it has limits at all rational points as well, see

5.20(4).

From the previous theorem 5.22 about limit properties, many

of the following propositions immediately follow.

5.24. Theorem. Let f and g be (real or complex) functions de�ned

on an interval A and continuous at a point x0 ∈ A. Then
(1) the sum f + g is continuous at x0
(2) the product f · g is continuous at x0
(3) if g(x0) ̸= 0, then the quotient f/g is well-de�ned on some

neighborhood of x0 and is continuous at x0.

(4) if a continuous function h is de�ned on an neighborhood of the

value f (x0) of the real-valued function f , then the composite

function h ◦ f is de�ned on an neighborhood of the point x0
and is at x0.

Proof. The statements (1) and (2) are apparent. We need to

supplement the proof of (3). If g(x0) ̸= 0, then
the entire ε�neighborhood of the number g(x0)

does not contain zero for a su�ciently small

ε > 0. >From the continuity of g, it follows

that on a su�ciently small δ�neighborhood of the point x0, g will

be non-zero and the quotient f/g is thus well-de�ned there. How-

ever, then it will be continuous at x0 by the previous theorem.

(4) Let us choose a neighborhood O of the value h(f (x0)).

>From the continuity of h, there is a neighborhoodO′ of the point
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Invoking the squeeze theorem, we get the inequalities

1 = lim
x→0+

1 ≥ lim
x→0+

sin x
x

≥ lim
x→0+

cos x = cos 0 = 1.

Thus we have proved that

lim
x→0+

sin x
x

= 1.

The function y = (sin x)/x de�ned for x ̸= 0 is even, whence it

follows that

lim
x→0−

sin x
x

= lim
x→0+

sin x
x

= 1.

Since both one-sided limits exist and have the same value, the exam-

ined limit exists as well and satis�es

lim
x→0

sin x
x

= lim
x→0±

sin x
x

= 1.

Let us remark that at �rst sight, one could say the limit can be calcu-

lated using l'Hospital's rule. However, then one would have to know

the sine's derivative at zero which, actually, is the limit in question.

Thus we may not invoke l'Hospital's rule in this case. □

5.56. Determine the limits

lim
n→∞

(
n

n+ 1

)n
, lim

n→∞

(
1 + 1

n2

)n
, lim

n→∞

(
1 − 1

n

)n2

;

lim
x→0

sin2 x

x
, lim

x→0

x

sin2 x
, lim

x→0

arcsin x

x
;

lim
x→0

3 tan2 x

5 x2
, lim

x→0

sin (3x)
sin (5x)

, lim
x→0

tan (3x)
sin (5x)

;

lim
x→0

e5x − e2x

x
, lim

x→0

e5x − e−x

sin (2x)
.

Solution. When calculating these limits, we will use our knowledge

of the following limits (a ∈ R):

lim
n→∞

(
1 + a

n

)n = ea; lim
x→0

sin x
x

= 1; lim
x→0

ex − 1
x

= 1.

Thus we know that

e−1 = lim
n→∞

(
1 − 1

n

)n
= lim

n→∞

(
n− 1
n

)n
.

The substitution m = n− 1 gives us

lim
n→∞

(
n− 1
n

)n
= lim

m→∞

(
m

m+ 1

)m+1

= lim
m→∞

(
m

m+ 1

)m
· lim
m→∞

m

m+ 1
.

Altogether, we have

e−1 = lim
m→∞

(
m

m+ 1

)m
· lim
m→∞

m

m+ 1
.
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f (x0) which is mapped into O by h. The continuous function f

maps some su�ciently small neighborhood of the point x0 into

the neighborhood O′. However, this is the de�nition property of

continuity, which �nishes the proof. □

Now we can quite easily derive some basic connections be-

tween continuous mappings and the topology of the real numbers:

5.25. Theorem. Let f : R → R be a continuous function. Then

(1) the inverse image f−1(U) of every open set U is an open set,

(2) the inverse image f−1(W) of every closed set W is a closed

set,

(3) the image f (K) of every compact set K is a compact set,

(4) f has both a maximum and a minimum on every compact set

K.

Proof. (1) Let us consider a point x0 ∈ f−1(U). There is a

neighborhood O of the value f (x0) which is contained in

U since U is open. However, then there is a neighborhood

O′ of the point x0 which is mapped intoO and thus belongs

to the inverse image. Therefore, every point of the inverse

image is interior, which �nishes the proof.

(2) Let us consider a limit point x0 of the inverse image

f−1(W) and a sequence xi , f (xi) ∈ W , which converges to it.

>From the continuity of f , it apparently follows that f (xi) con-

verges to f (x0), and sinceW is closed, it must be that f (x0) ∈ W .

Clearly, all limit points of the inverse image of the set W are con-

tained inW .

(3) Let us choose any open cover of f (K). The inverse images

of the particular intervals are unions of open intervals and thus

create a cover of the set K. We can select a �nite cover from it,

so it su�ces to take �nitely many of the corresponding images to

cover the original set f (K).

(4) Since the image of a compact set is again a compact set, the

imagemust be bounded and it must contain both the supremum and

the in�mum. Hence it follows that thesemust also be themaximum

and the minimum, respectively. □

5.26. Corollary. Let f : R → R be continuous. Then

(1) the image of every interval is again an interval,

(2) f takes all the values between the maximal and the minimal

one on the closed interval [a, b].3

Proof. (1) First, let us consider an open interval A and sup-

pose there is a point y ∈ R such that f (A) contains points less

than y as well as points greater than y, but y /∈ f (A). This means
that for open sets B1 = (−∞, y) and B2 = (y,∞), their inverse

images A1 = f−1(B1) ⊂ A and A2 = f−1(B2) ⊂ A cover A.

Again, these sets are open, disjoint, and have a non-empty inter-

section with A. Thus there must be a point x ∈ A which does not

lie in A1 but is a limit point of this set. At the same time, it must

lie in A2, which is impossible for two disjoint open sets.

Thus we have proved that if there is a point y which does not

belong to the image of the interval, then either all of the values

must be above y or all must be below. Hence it follows that the

image is again an interval. Let us notice that the marginal points

of this interval may or may not lie in the image.

3This theorem is (especially in Czech literature) called Bolzano's theorem.

Bernard Bolzano worked in Prague at the beginning of the 19th century.
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Clearly, the second limit is equal to 1. Changing the variables (replac-
ing n with m), we can write the result

e−1 = lim
n→∞

(
n

n+ 1

)n
.

Further, it holds that

lim
n→∞

(
1 + 1

n2

)n
= lim

n→∞

(
1 + 1

n2

) n2
n

= lim
n→∞

((
1 + 1

n2

)n2) 1
n

= e0 = 1

and

lim
n→∞

(
1 − 1

n

)n2

= lim
n→∞

((
1 − 1

n

)n)n
= 0.

Let us point out that the �rst result follows from the limits

lim
n→∞

(
1 + 1

n2

)n2

= lim
m→∞

(
1 + 1

m

)m
= e, lim

n→∞
1
n

= 0

and the second one from

lim
n→∞

(
1 − 1

n

)n
= e−1, lim

n→∞ n = +∞,

where we set e−∞ = 0 (this is a notation for limx→−∞ ex = 0, which
is a determinate form).

We can easily get that

lim
x→0

sin2 x

x
= lim

x→0
sin x · lim

x→0

sin x
x

= 0 · 1 = 0.

Apparently,

lim
x→0

x

sin x
= 1−1 = 1

and the limit

lim
x→0

1
sin x

does not exist (we write 1/± 0). If we used the rule for the limit of a
product to determine the limit

lim
x→0

x

sin2 x

, we would obtain 1 · 1/± 0 = 1/± 0. This means that the limit does
not exist (this, again, is a determinate form). For the calculation of

lim
x→0

arcsin x

x
,

we will make use of the identity x = sin (arcsin x) which holds for any
x ∈ (−1, 1), that is in some neighborhood of the point 0. Substituting
y = arcsin x, we get

lim
x→0

arcsin x

x
= lim

x→0

arcsin x

sin (arcsin x)
= lim

y→0

y

sin y
= 1.

Let us remark that y → 0 follows from substituting x = 0 into y =
arcsin x and from continuity of this function at 0 (this also guarantees

that such a substitution can be made).
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If the domain interval A contains one of its limit points, then

the continuous function must map it to a limit point or an interior

point of the image of the interior of A. This veri�es the statement.

(2) This statement immediately follows from the previous one

as the image of a closed bounded interval (i. e. a compact set) must

be a closed interval again. □

We will �nish our introductory discussion by some more the-

orems which are useful tools for calculating limits.

5.27. Theorem (About the limit of a composite function). Let f ,

g : R → R be functions and limx→a f (x) = b.

(1) If the function g is continuous at the point b, then

lim
x→a

g (f (x)) = g
(

lim
x→a

f (x)
)

= g(b).

(2) If the limit limy→b g(y) exists and f (x) ̸= b holds for all x

from some deleted neighborhood of the point a, then

lim
x→a

g (f (x)) = lim
y→b

g(y).

Proof. The �rst proposition can be proved similarly to

5.24(4). From the continuity of g at the point b, it follows that for

any neighborhood V of the value g(b), we can �nd a su�ciently

small neighborhood U of the point b whose values of g lies in V .

However, if f has limit b at the point a, then f will hit U by all

its values for some su�ciently small deleted neighborhood of the

point a, which veri�es the �rst statement.

Even if we cannot use the continuity of g at the point b, the pre-

vious reasoningwill hold as well if we ensure that su�ciently small

neighborhoods of the point a are mapped into a deleted neighbor-

hood of the point b by the function f . □

5.28. Who is in the ZOO. We have begun to build our menagerie

of functions with polynomials and functions which

can be created from them "by parts". At the same

time, we have derived many properties for a huge

class of continuous functions. However, we do not

havemany practicallymanageable examples at our disposal (except

for the polynomials). As another example, we will concentrate on

the quotients of polynomials.

Let f and g be two polynomials which can take complex val-

ues aswell (i. e. we admit expressions anx
n+· · ·+a0 with complex

coe�cients ai ∈ C, but we allow to substitute real values only for

the variable x).

The function h : R \ {x ∈ R, g(x) = 0} → C,

h(x) = f (x)

g(x)

is well-de�ned at all real points x except for the roots of the poly-

nomial g. Such functions are called rational functions. From the

theorem 5.24, it follows that rational functions are continuous at

all points of their domains. At the points where they are unde�ned,

they can have

• a �nite limit, supposing the point is a common root of both

f and g and the multiplicity in f is at least as great as in g

(in this case, extending the function's domain by this point

and de�ning it to take the value of the limit there makes the

functions continuous at the point as well),

• an in�nite limit, supposing the one-sided in�nite limits are

equal,
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We can immediately see that

lim
x→0

3 tan2 x

5 x2
= lim

x→0

(
3
5

· sin x
x

· sin x
x

· 1
cos2 x

)
= 3

5
· lim
x→0

sin x
x

· lim
x→0

sin x
x

· lim
x→0

1
cos2 x

=

= 3
5

· 1 · 1 · 1 = 3
5
.

By appropriate extension and substitution, we get

lim
x→0

sin (3x)
sin (5x)

= lim
x→0

(
sin (3x)

3x
· 5x

sin (5x)
· 3

5

)
= lim

x→0

sin (3x)
3x

· lim
x→0

5x
sin (5x)

· 3
5

= lim
y→0

sin y
y

· lim
z→0

z

sin z
· 3

5
= 1 · 1 · 3

5
= 3

5
.

Thanks to the previous result, it can easily be calculated that

lim
x→0

tan (3x)
sin (5x)

= lim
x→0

(
sin (3x)
sin (5x)

· 1
cos (3x)

)
= lim

x→0

sin (3x)
sin (5x)

· lim
x→0

1
cos (3x)

= 3
5

· 1 = 3
5
.

Similarly, we can determine

lim
x→0

e5x − e2x

x
= lim

x→0

(
e2x e

(5−2)x − 1
(5 − 2)x

(5 − 2)
)

= lim
x→0

e2x · lim
x→0

e3x − 1
3x

· 3

= e0 · lim
y→0

ey − 1
y

· 3 = 1 · 1 · 3 = 3

and also

lim
x→0

e5x − e−x

sin (2x)
= lim

x→0

(
e5x − 1
sin (2x)

− e−x − 1
sin (2x)

)
=

lim
x→0

(
e5x − 1

5x
· 2x

sin (2x)
· 5

2
− e−x − 1

−x · 2x
sin (2x)

·
(

−1
2

))
=

lim
x→0

e5x − 1
5x

· lim
x→0

2x
sin (2x)

· 5
2

− lim
x→0

e−x − 1
−x · lim

x→0

2x
sin (2x)

·
(

−1
2

)
=

lim
u→0

eu − 1
u

· lim
z→0

z

sin z
· 5

2
− lim

v→0

ev − 1
v

· lim
z→0

z

sin z
·
(

−1
2

)
=

5
2

+ 1
2

= 3.

□

5.57. Calculate the limits

lim
x→0

1 − cos (2x)
x sin x

; lim
x→0

1 − cos x
x2

.

Solution. We will utilize the fact that

lim
x→0

sin x
x

= 1.
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• di�erent one-sided in�nite limits.

This situation is illustratively caught by the picture, which

shows the values of the function

h(x) = (x − 0.05a)(x − 2 − 0.2a)(x − 5)
x(x − 2)(x − 4)

for a = 0 (the left-hand picture thus displays the rational function

(x − 5)/(x − 4)) and for a = 5/3.

y

x

6

5

4

2

4
0

-2

3

-4

-6

210-1

a = 0.

y

x

6

5

4

2

4
0

-2

3

-4

-6

210-1

a = 1.6667

5.29. Power and exponential functions. The polynomials are

created by addition and multiplication of scalars and

the simple power functions x 7→ xn with natural ex-

ponents n = 0, 1, 2, . . . . The sense of the function
x 7→ x−1 , de�ned for all x ̸= 0, is also obvious.

Now, we will extend this de�nition to a general power function xa

with an arbitrary a ∈ R.
We will use the properties of powers and roots, which we will

consider to be a "matter of course". For a negative integer −a, we
thus de�ne

x−a = (xa )−1 = (x−1 )a .

Further, we would surely want the equality bn = x for n ∈ N to

imply that b is the n�th root of x, i. e. b = x
1
n . It is necessary to

verify that such b's always exist for positive real numbers x.

By factoring out y2 − y1 in y
n
2 − yn1 , we can easily see that the

function y 7→ yn is increasing for y > 0. Let us choose a number
x > 0 and consider the set B = {y ∈ R, y > 0, yn ≤ x}. This
is a non-empty set bounded from above, so let us set b = supB.
We already know that a power function with a natural exponent n

is continuous, so we can easily verify that bn = x. Indeed, surely

bn ≤ x, and if the inequality were strict, we would �nd a number

y such that bn < yn < x, which would imply that b < y, which

contradicts the de�nition of a supremum.

Thus we have the power function correctly de�ned for all ra-

tional numbers a = p
q
, xa = (xp )

1
q = (x

1
q )p.

Eventually, we can notice that for the values a ∈ R and x > 1,
xa is strictly increasing for rational a's. Therefore, we de�ne

xa = sup{xy , y ∈ Q, y ≤ a}.
For 0 < x < 1, we proceed analogously (one must be careful of

the inequality signs) or we set xa = ( 1
x
)−a . For x = 1, we de�ne

1a = 1 for any a.

Now, we have de�ned the power function x 7→ xa for all x ∈
[0,∞) and a ∈ R. However, we can consider another view of

the construction: For every �xed real number c > 0, there is a

well-de�ned function y 7→ cy on the whole real line. This function

is called an exponential function with base c.
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Then, we get

lim
x→0

1 − cos (2x)
x sin x

= lim
x→0

1 − (
cos2 x − sin2 x

)
x sin x

= lim
x→0

(
1 − cos2 x

) + sin2 x

x sin x

= lim
x→0

2 sin2 x

x sin x
= lim

x→0
2

sin x
x

= 2;
and

lim
x→0

1 − cos x
x2

= lim
x→0

(
1 − cos x

x2
· 1 + cos x

1 + cos x

)
= lim

x→0

1 − cos2 x

x2 (1 + cos x)

= lim
x→0

sin2 x

x2 (1 + cos x)
=
(

lim
x→0

sin x
x

)2

· lim
x→0

1
1 + cos x

= 1
2
.

Let us remark that we could also use the identity

1 − cos (2x) = 2 sin2 x, x ∈ R.

□

D. Continuity of functions

5.58. Let us examine existence of limits and continuity of the func-

tion (x − 1)− sgn x at the points 0 and 1.

Solution. First, let us calculate the one-sided limits at the point 0:

limx→0−(x − 1)− sgn x = limx→0−(x − 1) = −1,
limx→0+(x − 1)− sgn x = limx→0+ 1

x−1 = −1,

whence lim
x→0

(x − 1)− sgn x = −1. However, the function value at 0

equals 1, so the examined function is not continuous at the point 0.
Further, we have that

limx→1−(x − 1)− sgn x = limx→1− 1
x−1 = −∞,

limx→1+(x − 1)− sgn x = limx→1+ 1
x−1 = ∞.

Both one-sided limits at the point 1 exist, yet they di�er, which implies
that the (two-sided) limit of this function at 1 does not exist, and the

function is not continuous here, either. □

5.59. Without invoking the squeeze theorem, prove that the function

R(x) =
{
x, x ∈ { 1

n
; n ∈ N

} ;
0, x ∈ R∖

{ 1
n
; n ∈ N

}
is continuous at the point 0.

Solution. The function R is continuous at the point 0 if and only if

lim
x→0

R(x) = R(0) = 0.

We will show that, by the de�nition of a limit, the examined limit

equals 0. Using the "usual" notation, we have a = 0, x0 = 0. Let

δ > 0 be arbitrary. For any x ∈ (−δ, δ) we have that R(x) = 0,
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The properties which we used when de�ning the power func-

tion and the exponential function f (y) = cy , i. e. c = f (1), can
be summarized in a single inequality for any positive real x and

real y:

f (x + y) = f (x) · f (y)
together with condition of continuity.

Indeed, for y = 0 we get that f (0) = 1, and hence 1 =
f (0) = f (x − x) = f (x) · (f (x))−1 and, eventually, for a natural

number n, apparently f (nx) = (f (x))n. Thuswe have determined

the values xa for all x > 0 and a ∈ Q. The continuity condition

determines the function's values at the remaining points as well.

The exponential function especially satis�es the well-known

formulas

(5.5) ax · ay = ax+y, (ax)y = ax·y .

5.30. Logarithmic functions. We have just seen that the expo-

nential function f (x) = ax is increasing for a > 1 and decreasing

for 0 < a < 1. Thus in both cases, there is a function f−1(x) in-

verse to it. This function is called a logarithmic function with base

a. We write lna(x), and lna(ax) = x is the de�ning property.

The equalities (5.5) are thus equivalent to

lna(x · y) = lna(x)+ lna(y), lna(xy ) = y · lna(x).

Logarithmic functions are de�ned only for positive input values

and are, on the whole domain, increasing for base a > 1 and de-

creasing for 0 < a < 1. lna(1) = 0 holds for every a.

We will see presently that there is an extremely important

value of a, the so-called Euler's number e, see the paragraph 5.42.
The function lne(x) is called the natural logarithm and denoted by

ln(x) (i. e. omitting the base e).

3. Derivatives

When we were talking about polynomials, we already dis-

cussed how to describe the rate at which the func-

tion changes at a given point of its domain (see the

paragraph 5.6). Back then, we examined the quo-

tient (5.2), which expressed the slope of the secant line between

the points [x, f (x)] ∈ R2 and [x + 1x, f (x + 1x)] ∈ R2 for a

(small) increase1x of the input variable. This reasoning is correct

for any real or complex function f ; we only have to properly work

with the concept of a limit, instead of "intuitive decreasing" of1x.

We introduce the de�nition of both proper and improper

derivatives, i. e. we admit in�nite values of the derivatives as

well. We can notice that, unlike in the case of a mere limit of a

function, now the function must be de�ned at the point x0 at which

we consider the derivative.
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or R(x) = x, hence (in both cases) we get R(x) ∈ (−δ, δ). In

other words, having chosen any δ-neighborhood (−δ, δ) of the point a,
we can take the δ-neighborhood (−δ, δ) of the point x0 as then for

any x ∈ (−δ, δ) (the considered neighborhood of x0) it holds that

R(x) ∈ (−δ, δ) (here, the interval (−δ, δ) is the neighborhood of a).
This matches the de�nition of a limit (we did not even have to require

x ̸= x0).

The considered function R is called the Riemann function (hence

the name R). In literature, it can be found in many modi�cations. For

instance, the function

f (x) =


1, x ∈ Z;
1
q
, x = p

q
∈ Q for relatively prime p, q ∈ Z a q > 1;

0, x /∈ Q
is also "often" called the Riemann function. □

5.60. By de�ning the values at the points −1 and 1, extend the func-
tion

f (x) = (
x2 − 1

)
sin

2x − 1
x2 − 1

, x ̸= ±1 (x ∈ R)

so that the resulting function is continuous on the whole R.

Solution. The original function is continuous at every point of its do-

main. Thus the extended function will be continuous if and only if we

set

f (−1) := lim
x→−1

((
x2 − 1

)
sin

2x − 1
x2 − 1

)
,

f (1) := lim
x→1

((
x2 − 1

)
sin

2x − 1
x2 − 1

)
.

If either of these limits did not exist (or were in�nite), the function

could not be extended to a continuous one. Clearly we have that∣∣∣∣ sin
2x − 1
x2 − 1

∣∣∣∣ ≤ 1, x ̸= ±1 (x ∈ R),

whence it follows that

− ∣∣ x2 − 1
∣∣ ≤ f (x) ≤ ∣∣ x2 − 1

∣∣ , x ̸= ±1 (x ∈ R).

Since

lim
x→±1

∣∣ x2 − 1
∣∣ = 0,

by the squeeze theorem, we get the result f (±1) := 0. □

5.61. Determine whether the equation e2x −x4 + 3x3 − 6x2 = 5 has

a positive solution.

Solution. Let us consider the function

f (x) := e2x − x4 + 3x3 − 6x2 − 5, x ≥ 0,

for which

f (0) = −4, lim
x→+∞ f (x) = lim

x→+∞ e2x = +∞.
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Derivative of a function of a real variable

5.31. De�nition. Let f be a real or complex function de�ned on

an interval A ⊂ R and x0 ∈ A. If the limit

lim
x→x0

f (x)− f (x0)

x − x0
= a

exists, we say that the function f has derivative a at the point x0.

The value of the derivative is denoted by f ′(x0) or
df
dx
(x0) or a =

d
dx
f (x0).

In accordance with the value of the de�ning limit, the deriva-

tive is also sometimes called proper or improper.

One-sided derivatives (i. e. left-sided derivatives and right-

sided derivatives) are de�ned analogously in terms of the corre-

sponding one-sided limits.

If a function has a derivative at a point x0, we say the function

is di�erentiable at x0. A function which is di�erentiable at every

point of a given interval is said to be di�erentiable on the interval.

Derivatives can be easily manipulated with, but we will have a

lot of work correctly deriving the derivatives even of some already

constructed functions. Therefore, a bit prematurely, we introduce

a table of derivatives of several such functions. In the last column,

you can �nd references to the corresponding paragraph where the

result is proved. We can also notice that even though we are unable

to express inverse functions to some of our functions by elementary

means, we are nonetheless able to calculate their derivatives; see

5.35.

Derivatives of some functions

function domain derivative

polynomials f (x) whole R f ′(x) is again a

polynomial

5.6

cubic splines

h(x)

whole R only the �rst deriva-

tive of h′(x) is con-
tinuous

5.9

rational functions

f (x)/g(x)

whole R ex-

cept for roots

of g

rational functions:
f ′(x)g(x)−f (x)g′(x)

g(x)2

5.34

power functions

f (x) = xa
interval

(0,∞)

f ′(x) = axa−1 ??

exponential func-

tions f (x) = ax ,

a > 0, a ̸= 1

whole R f ′(x) = ln(a) · ax ??

logarithmic

functions

f (x) = lna(x),
a > 0, a ̸= 1

interval

(0,∞)

f ′(x) =
(ln(a))−1 · 1

x

??

From the formulation of the de�nition, we would anticipate

that f ′(x0)will allow us to approximate the function f by a straight

line

y = f (x0)+ f ′(x0)(x − x0).
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>From the fact that f is continuous on the whole domain it thus follows

that it takes on all values y ∈ [−4,+∞). Especially, its graph neces-

sarily intersects the positive semiaxis x, ie. the equation f (x) = 0 has
a solution. □

5.62. At which points x ∈ R is the function

y = cos

(
arctg

(∣∣ 12x21 + 11
∣∣ · ecos(x+2)−x3

−11 − x12

))
+ sin (sin (sin x))

(considering maximum domain) continuous? ⃝
5.63. Determine whether the function

f (x) =



x, x < 0;
0, 0 ≤ x < 1;
x, x = 1;
0, 1 < x < 2;
x, 2 ≤ x ≤ 3;

1
x−3 , x > 3

is continuous; left-continuous; right-continuous at the

points −π, 0, 1, 2, 3, π . ⃝
5.64. Extend the function

f (x) = arctg

(
1 + 5

x2

)
· sin2 x5 , x ∈ R∖ {0}

at x = 0 so that it is continuous at this point. ⃝
5.65. Find all p ∈ R for which the function

f (x) = sin (6x)
3x

, x ∈ R∖ {0}; f (0) = p

is continuous at the origin. ⃝
5.66. Choose a real number a so that the function

h (x) = x4 − 1
x − 1

, x > 1; h (x) = a, x ≤ 1

is continuous on R. ⃝
5.67. Calculate

lim
x→0+

sin8 x

x3
; lim

x→−∞
sin8 x

x3
.

⃝
5.68. Find all possible values of the parameter a ∈ R so that the

inequality

(a − 2)x2 − (a − 2)x + 1 > 0

holds for all real numbers x.

Solution. We can notice that for a = 2, the inequality holds trivially
(there is constant 1 on the left side). For a ̸= 2, the left side is a qua-
dratic function f (x) in the variable x, and further f (0) = 1. Thanks to
the function f (x) being continuous, the inequality f (x) > 0 will hold
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This is the meaning of the following lemma, which says that

replacing the constant coe�cient f ′(x0) in the line's

equation with a certain continuous function gives ex-

actly the values of f . The di�erence between the val-

uesψ(x) and the valueψ(x0) on a neighborhood of x0
then says how much the slopes of the secant lines and the tangent

line at the point x0 di�er.

Lemma. A real or complex function f (x) has a �nite derivative

at x0 if and only if there is a neighborhoodO(x0) and a functionψ

which is continuous at x0 and such that for all x ∈ O(x0), it holds

that

f (x) = f (x0)+ ψ(x)(x − x0).

Furthermore, then ψ(x0) = f ′(x0), and f itself is continuous at

the point x0.

Proof. First, let us suppose that f ′(x0) is a �nite derivative.

If ψ is to exist, it is surely of the form

ψ(x) = (f (x)− f (x0))/(x − x0)

for all x ∈ O \ {x0}. On the other hand, we de�ne the value at the
point x0 as f

′(x0). Surely, then

lim
x→x0

ψ(x) = f ′(x0) = ψ(x0)

as desired.

And if such a functionψ exists, the same procedure calculates

its limit at x0. Thus the derivative f
′(x0) exists as well and equals

ψ(x0).

>From the expression of f in terms of continuous functions,

it is apparent the f itself is continuous at the point x0. □
5.32. Geometrical meaning of the derivative. The previous

lemma can be illustrated geometrically, thereby

getting another view at the derivative. It says that

it can be determined whether the derivative exists

from the graph of the function y = f (x), i. e. the corresponding

curve with coordinates x and y: the derivative exists if and only if

the slope of the secant line going through the points [x0, f (x0)]
and [x, f (x)] changes continuously. If so, the limit value of this
slope is the value of the derivative.

Functions increasing and decreasing at a point

Corollary. If a real-valued function f has derivative f ′(x0) > 0
at a point x0 ∈ R, then there is a neighborhood O(x0) such that

f (x) > f (x0) for all points x ∈ O(x0), x > x0, and f (x) <

f (x0) holds for all x ∈ O(x0), x < x0.
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for all real x if and only if there is no solution to the equation f (x) = 0
inR (the whole of the graph of the function f will then be "above" the

x-axis). This will occur if and only if the discriminant of the quadratic

equation (a − 2)x2 − (a − 2)x + 1 = 0 (in x) will be negative. Thus

we get the following necessary and su�cient condition:

D = (a − 2)2 − 4(a − 2) = (a − 2)(a − 6) < 0.

This is true for a ∈ (2, 6). Altogether, the inequality holds for all real
x i� a ∈ [2, 6). □

5.69. In R, solve the equation

2x + 3x + 4x + 5x + 6x = 5.

⃝
Solution. The function on the left side is a sum of �ve increasing

functions on R, so it must be increasing as well. For x = 0, its value
is 5, which is thus the only solution of the equation. □

5.70. In R, solve the equation

2x + 3x + 6x = 1.

⃝

5.71. Determine whether the polynomial

x37 + 5x21 − 4x9 + 5x4 − 2x − 3

has a real root in the interval (−1, 1). ⃝

E. Derivatives

First of all, let us show that the derivatives enlisted in the table

of paragraph 5.31 are correct. We will derive them right from the

de�nition of a derivative.

5.72. >From the de�nition, (see 5.31) �nd the derivatives of the func-

tions xn (x is the variable, n is a constant positive integer),
√
x, sin x.

Solution. First, let us remark that by substituting h for x − x0 in the

de�nition of a derivative, we get

lim
x→x0

f (x)− f (x0)

x − x0
= lim

h→0

f (x0 + h)− f (x0)

h
.

In the following calculations, we will work with the latter expression

of the limit.
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On the other hand, if the derivative satis�es f ′(x0) < 0, then
there is a neighborhood O(x0) such that f (x) < f (x0) for all

points x ∈ O(x0), x > x0, and f (x) > f (x0) for all x ∈ O(x0),

x < x0.

Proof. Let us consider the former case. By the previous

lemma, we have f (x) = f (x0) + ψ(x)(x − x0) and ψ(x0) > 0.
However, since ψ is continuous at the point x0, there must exist a

neighborhood O(x0) on which it holds that ψ(x) > 0. Then with
increasing x > x0, the value f (x) > f (x0) increases as well, and

analogously for x < x0.

The latter case (with a negative derivative) can be proved sim-

ilarly. □

The functions that, for all points x of some neighborhood of a

point x0, satisfy f (x) > f (x0) if x > x0 and f (x) < f (x0) if x <

x0 are called increasing at the point x0. If the function is increasing

at all points of a given interval, then it is said to be increasing on the

interval. Of course, functions which are increasing on an interval

satisfy f (b) > f (a) for all a < b from this interval.

Dually, a function is said to be decreasing at a point x0 i�

there is a neighborhood of the point x0 such that f (x) < f (x0)

if x > x0 and f (x) > f (x0) if x < x0 for all points x of the

neighborhood. It is decreasing on an interval i� it is decreasing at

every point of the interval.

Thus our corollary says that a function having a non-zero �nite

derivative at a point is either increasing or decreasing at that point,

according to the sign of the derivative.

As an illustration of a simple usage of the connection between

the derivatives and the properties of being an increasing (or de-

creasing) function, we can consider existence of inverses to poly-

nomials. Since hardly any polynomials are exclusively increasing

or decreasing functions, we cannot anticipate that there would be

globally de�ned inverse functions to them. On the other hand, the

inverse exists to every restriction of f to an interval between ad-

jacent roots of the derivative f ′, i. e. where the derivative of the
polynomial is non-zero and keeps the sign. These inverse func-

tions will never be polynomials, except for the case of polynomials

of degree one, when the equation

y = ax + b

gives that

x = 1
a
(y − b).

Similarly with a polynomial of degree two, the equation

y = ax2 + bx + c

leads to the formula

x = −b ±√
b2 − 4a(c − y)

2a
,

and thus the inverse (given by the above formula) exists only for

those x which lie in either of the intervals (−∞,− b
2a ), (− b

2a ,∞).

For the work with inverse functions to polynomials, we thus

cannot do with the functions we have at our disposal now, so we

obtain new additions to our menagerie.
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(xn )′ = lim
h→0

(x + h)n − xn

h
= lim

h→0

(
n

1

)
xn−1h+ (

n

2

)
xn−2h2 + · · · + hn

h

= nxn−1 + lim
h→0

((
n

2

)
xn−2h+

(
n

3

)
xn−3h2 + · · · + hn−1

)
= nxn−1 ,

(
√
x)′ = lim

h→0

√
x + h− √

x

h
= lim

h→0

(
√
x + h− √

x)(
√
x + h+ √

x)

h(
√
x + h+ √

x)

= lim
h→0

h

h(
√
x + h+ √

x)
= lim

h→0

1√
x + h+ √

x

= 1
2
√
x
,

(sin x)′ = lim
h→0

sin(x + h)− sin x
h

= lim
h→0

sin x cosh+ cos x sinh− sin x
h

= lim
h→0

cos x sinh
h

+ lim
h→0

sin x(cosh− 1)
h

= cos x · lim
h→0

sinh
h

− lim
h→0

2(sin h
2 )

2

h

= cos x · 1 + lim
t→0

sin t
sin t
t

= cos x.

□

5.73. Di�erentiate:

i) x sin x,
ii) sin x

x
,

iii) ln(x + √
x2 − a2), a ̸= 0, |x| ≥ |a|,

iv) arctan
(

x√
1−x2

)
, |x| ≤ 1,

v) xx .

Solution. (i) By the formula for the derivative of a product (the Leib-

niz rule, see 5.33) we get

(x sin x)′ = x′ · sin x + x · (sin x)′ = sin x + x cos x.

(ii) By the formula for the derivative of a quotient (5.34), we have

that
sin x
x

= (sin x)′ · x − sin x · x′

x2
= x cos x − sin x

x2
.

(iii) This time, we will use the formula for the derivative of func-

tion composition (the chain rule, see 5.33). Setting h(x) = ln(x),
f (x) = x + √

x2 − a2, we obtain

ln(x +
√
x2 − a2)′ = h(f (x))′ = h(f (x)) · f ′(x) = (x + √

x2 − a2)′

x + √
x2 − a2

= 1 + x

x2−a2

x + √
x2 − a2

,
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5.33. Formulae for calculation of derivatives. Now, we will in-

troduce several basic facts about the calculation of

derivatives. They will talk about how much the dif-

ferentiation is compatible with the algebraic opera-

tions of addition and multiplication of real or com-

plex functions. The last formula then allows us to e�ciently deter-

mine the derivatives of composite functions. It is also called the

"chain rule".

Intuitively, they can be understood very easily if we imagine

that the derivative of a function y = f (x) is the quotient of the

rates of increase of the output variable y and the input variable x:

f ′ = 1y

1x
.

Of course, for y = h(x) = f (x)+ g(x), the increase in y is given

by the sum of the increases of f and g, and the increase of the input

variable is still the same. Therefore, the derivative of a sum is the

sum of the derivatives.

In the case of a product, we have to be a bit more careful. For

y = f (x)g(x), the increase is

1y = f (x +1x)g(x +1x)− f (x)g(x)

= f (x+1x)(g(x+1x)−g(x))+ (f (x+1x)− f (x))g(x)

Now, if we make the increase 1x small, we actually calculate the

limit of a sum of products, which, as we know, can be calculated

as the sum of the products of the limits. Thus we can expect that

the derivative of a product fg is given by the expression fg′+f ′g,
which is called Leibniz rule.

The derivative of a composite function is even more interest-

ing: Let us consider a function

g = h ◦ f,
where the domain of the function z = h(y) contains the codomain

of the function y = f (x). Again, by writing out the increases, we

obtain that

g′ = 1z

1x
= 1z

1y

1y

1x
.

Thus we may expect that the formula will be of the form

(h ◦ f )′(x) = h′(f (x))f ′(x).

Now we will provide correct formulations together with

proofs:

Rules for differentiation

Theorem. Let f and g be real or complex functions de�ned on a

neighborhood of a point x0 ∈ R and having �nite derivatives at

this point. Then

(1) for every real or complex number c, the function x 7→ c ·f (x)
has a derivative at the point x0 and

(cf )′(x0) = c(f ′(x0)),

(2) the function f + g has a derivative at the point x0 and

(f + g)′(x0) = f ′(x0)+ g′(x0),

(3) the function f · g has a derivative at the point x0 and

(f · g)′(x0) = f ′(x0)g(x0)+ f (x0)g
′(x0).
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where we used the chain rule once again when di�erentiating√
x2 − a2.

(iv) Again, we are looking for the derivative of a composed function:[
arctan

(
x√

1 − x2

)]′
= 1

1 + x2

1−x2

·
(

x√
1 − x2

)′

= 1

1 + x2

1−x2

·
√

1 − x2 + x2√
1−x2

1 − x2

=
√

1 − x2 + x2

√
1 − x2

= 1√
1 − x2

.

(v) First, we transform the function to a function with constant base

(preferably the base e) which we are able to di�erentiate.

(xx )′ = (
(eln x)x

)′ = (ex ln x)′

= (x ln x)′ · ex ln x = (1 + ln x) · xx

□

5.74. Find the derivative of the function y = xsin x , x > 0.

Solution. We have(
xsin x

)′ = (
esin x ln x

)′ = esin x ln x
(
cos x ln x + sin x

x

) =
xsin x

(
cos x ln x + sin x

x

)
.

□

5.75. For positive x, determine the derivative of the function

f (x) = xln x .

⃝
Solution. f ′(x) = 2xln x−1 · ln x.

5.76. For x ∈ (0, π/2), calculate the derivative of the function
y = (sin x)cos x .

⃝
Solution. (sin x)1+cos x

(
cot2 x − ln (sin x)

)
.

We advise the reader to make up some functions and �nd their

derivatives. The results can be veri�ed in a great deal of mathematical

programs. In the following exercise, we will look at the geometrical

meaning of the derivative at a given point, namely that it determines

the slope of the tangent line to the function graph at the given point

(see 5.32).



CHAPTER 5. ESTABLISHING THE ZOO

(4) Further, if h is a function de�ned on a neighborhood of the

image y0 = f (x0) and having a derivative at the point y0, the

composite function h ◦ f also has a derivative at the point x0
and

(h ◦ f )′(x0) = h′(f (x0)) · f ′(x0).

Proof. (1) and (2): A straightforward application of the theo-

rem about sums and products of function limits yields the result.

(3) We will rewrite the quotient of the increases (which we

have already mentioned), in the following way:

(fg)(x)− (fg)(x0)

x − x0
= f (x)

g(x)− g(x0)

x − x0
+f (x)− f (x0)

x − x0
g(x0).

The limit of this expression for x → x0 gives the wanted result

because f is continuous at the point x0.

(4) By the lemma 5.31, there are functions ψ and φ which are

continuous at the points x0 and y0 = f (x0) and they further satisfy

h(y) = h(y0)+ φ(y)(y − y0), f (x) = f (x0)+ ψ(x)(x − x0)

on some neighborhoods of x0 and y0. They also satisfy ψ(x0) =
f ′(x0) and φ(y0) = h′(y0). Then, it holds that

h(f (x))− h(f (x0)) = φ(f (x))(f (x)− f (x0))

= φ(f (x))ψ(x)(x − x0)

for x from the neighborhood of the point x0. However, the prod-

uct φ(f (x))ψ(x) is a function which is continuous at x0 and its

value at the point x0 is just the desired derivative of the composite

function, again by the lemma 5.31. □

Derivative of a quotient

5.34. Corollary. Let f and g be real-valued functions which have

�nite derivatives at a point x0 and g(x0) ̸= 0. Then the function

h(x) = f (x)(g(x))−1 satis�es

h′(x0) =
(
f

g

)′
(x0) = f ′(x0)g(x0)− f (x0)g

′(x0)

(g(x0))2
.

Proof. First, we will proof the special case when h(x) = x−1 .

From the de�nition of a derivative, we immediately get that

h′(x) = lim
1x→0

1
x+1x − 1

x

1x
= lim
1x→0

x − x −1x

1x(x2 + x1x)

= lim
1x→0

−1
x2 + x1x

and from the formulae for manipulations with limit, it follows that

h′(x0) = −x−2 .

Now, the chain rule says that

(g−1)′ = −g−2 · g′,

and, eventually, by the product rule, we obtain

(f/g)′ = (f · g−1)′ = f ′g−1 − fg−2g′ = f ′g − gf ′

g2 .

□
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5.77. Using di�erential, approximate arccotg 1, 02.

Solution. The di�erential of the function f having continuous deriv-

ative at the point x0 is equal to

f ′ (x0) dx = f ′ (x0) (x − x0) .

The equation of the tangent to f 's graph at the point [x0, f (x0)] is then

y − f (x0) = f ′ (x0) (x − x0) .

Hence we can see that the di�erential is the growth on the tangent line.

However, the values on the tangent approximate those of f , supposing

the di�erence x−x0 is "small". Thus we obtain the following formula

for approximating the function value by its di�erential:

f (x) ≈ f (x0)+ f ′ (x0) (x − x0) .

So, setting

f (x) := arccotg x, x0 := 1,

we get

arccotg 1, 02 ≈ arccotg 1 + −1
1+12 (1, 02 − 1) = π

4 − 0, 01.

Eventually, let us remark that the point x0 is of course selected so that

the expression x − x0 is as close to zero as possible, yet we must be

able to calculate the values of f and f ′ at the point. □

5.78. Using di�erential, approximate arcsin 0, 497. ⃝
Solution. π6 − 2√

3
0, 003.

5.79. Using di�erential, approximate

a := arctg 1, 02; b := 3
√

70.

⃝
Solution. a ≈ π

4 + 0, 01; b ≈ 4, 125.

5.80. Using di�erential, approximate

(a) sin
( 29π

180

)
;

(b) sin
( 46π

180

)
.

⃝
Solution. (a) 1

2 −
√

3π
360 ; (b)

√
2

2 +
√

2π
360 .

5.81. Determine the parameter c ∈ R so that the tangent line to the

graph of the function ln(c·x)√
x

at the point [1, 0] goes through the point

[2, 2].

Solution.

>From the statement of the problem it follows that the tangent's

slope is 2−0
2−1 = 2. The slope is determined by the derivative at the



CHAPTER 5. ESTABLISHING THE ZOO

5.35. Derivatives of inverse functions. In the paragraph 1.36,

while talking about relations and mappings in gen-

eral, we have de�ned the concept of an inverse func-

tion. If the inverse function f−1 to a given function

f : R → R exists (do not confuse this notation with

the function x 7→ (f (x))−1), then it is uniquely determined by

either of the following identities

f−1 ◦ f = idR, f ◦ f−1 = idR,

and the other one then holds as well. If f is de�ned on a setA ⊂ R
and f (A) = B, the existence of f−1 is conditioned by the same

statements with identity mappings idA and idB , respectively, on
the right-hand sides. As we can see from the picture, the graph of

the inverse function is obtained simply by interchanging the axes

of the input and output variables.

If we knew that the inverse y = f−1(x) of a di�erentiable

function x = f (y) is also di�erentiable, then the chain rule would

immediately yield

1 = (id)′(x) = (f ◦ f−1)′(x) = f ′(y) · (f−1)′(x),

so we obtain the formula (apparently, f ′(y) must be non-zero in

this case)

Derivative of an inverse function

(5.6) (f−1)′(x) = 1
f ′(y)

.

This corresponds to the intuitive idea that for y = f (x), the

value of f ′ is approximately 1y
1x

while for x = f−1(y) it is approx-

imately (f−1)′(y) = 1x
1y

. And this indeed is the way how we can

calculate the derivatives of inverse functions:

Theorem. If f is a real-valued function di�erentiable at a point

x0 and such that f ′(x0) ̸= 0, then there is a function f−1 de�ned

on some neighborhood of the point and such that (5.6) holds.
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given point, thus we get the condition

2 − ln(cx)
2
√
x

∣∣∣∣
x=1

= 2, that is 2 − ln(c) = 4,

hence c = 1
e2 . Yet for c = 1

e2 , the function
ln(c·x)√

x
takes the value −2 at

the point 1. Therefore, there is no such c. □

5.82. Determine whether there is a point in the interval (0, 4) such that
the tangent line at this point to the polynomial x (x − 4)5 is parallel to
the x-axis. ⃝
Solution.Yes, there is.

5.83. Let p ∈ (0,+∞). Write the equation of the tangent to the

parabola 2py = x2 at a general point [x0, ?]. ⃝
Solution. y = x0

p
x − x2

0
2p .

5.84. Find the equation of the normal line to the graph of the function

y = 1 − e
x
2 , x ∈ R at the point where the graph intersects the x-axis.

⃝
Solution. y = 2x.

5.85. Find the equations of the tangent and normal lines to the curve

y = (x + 1) 3
√

3 − x, x ∈ R

at the point [−1, 0]. ⃝
Solution. y = 3

√
4 (x + 1); y = − 3√2

2 (x + 1).

5.86. Let the function

y = ln
(
2x3+4x2−x)

1+x , x ∈ ( 1
2 ,+∞)

be given. Determine the equations of the tangent and normal lines to

the graph of this function at the point [1, ?]. ⃝
Solution. y − ln 5

2 = ( 13
10 − ln 5

4

)
(x − 1); y − ln 5

2 = 20
5 ln 5−26(x − 1).

5.87. At which points is the tangent to the parabola

y = 2 + x − x2 , x ∈ R

parallel to the x-axis? ⃝
Solution.

[ 1
2 , 2 1

4

]
.

5.88. Determine the equations of the tangent line t and the normal line

n to the graph of the function

y = √
x2 − 3x + 11, x ∈ R

at the point [2, ?]. Further, determine all points at which the tangent

is parallel to the x-axis. ⃝
Solution. t : y = x

6 + 8
3 ; n : y = −6x + 15;

[
3
2 ,

√( 3
2

)2 − 3 3
2 + 11

]
.

5.89. What is the angle between the x-axis and the graph of the func-

tion y = ln x? (We mean the angle between the tangent line and the
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Proof. First, let us realize that the request that the derivative

at x0 be non-zero means that our function f is either

increasing or decreasing on some neighborhood of the

point; see the corollary 5.32. Thus there exists an in-

verse function de�ned on some neighborhood. Since a

continuous function maps a closed bounded interval onto a closed

interval; the image f (U) of any open set U contained in the do-

main of f is open as well. Then, by the de�nition of continuity,

the inverse function is continuous, too.

To prove our proposition, it now su�ces to carefully read

through the proof of the fourth statement of the theorem 5.33. We

only choose f for h and f−1 for f , and we know that the compos-

ite function is di�erentiable instead of supposing existence of the

derivatives of both the functions (and we know that the compos-

ite is the identity function): Indeed, by the lemma 5.31, there is a

function ψ continuous at the point y0 such that

f (y)− f (y0) = φ(y)(y − y0),

on some neighborhood of y0. Further, it satis�es φ(y0) = f ′(y0).

However, then the substitution y = f−1(x) gives that

x − x0 = φ(f−1(x))(f−1(x)− f−1(x0)),

for all x lying in some neighborhoodO(x0) of the point x0. Further,

we have f−1(x0) = y0, and since f is either strictly increasing or

strictly decreasing, we get that φ(f−1(x)) ̸= 0 for all x ∈ O(x0) \
{x0}. Thus we can write

f−1(x)− f−1(x0)

x − x0
= 1
φ(f−1(x))

̸= 0,

for all x ∈ O(x0) \ {x0}. The right-hand side of this expression is
continuous at the point x0 and the limit equals

1
φ(f−1(x0))

= 1
f ′(y0)

.

Therefore, the limit of the left-hand side exists as well and equals

the expression, i. e.

(f−1)′(x0) = 1
f ′(y0)

exists. □

5.36. Derivatives of power, exponential, and logarithmic func-

tions. As an illustrating example of calculating the derivative of

an inverse function, we will determine (lne)
′. We will use the for-

mula (ex)′ = ex although we have not proved it yet. From the

de�nition of the natural logarithm,

eln x = x,

so we can easily calculate:

(5.7) (ln)′(y) = (ln)′(ex) = 1
(ex)′

= 1
ex

= 1
y
.

The formula

(5.8) (xa )′ = axa−1

for di�erentiating a general power function can also be derived us-

ing the derivatives of exponential and logarithmic functions:

(xa )′ = (ea ln x)′ = ea ln x(a ln x)′ = axa−1 .
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positive x-axis in the "positive sense of rotation", ie. counterclock-

wise.) ⃝
Solution.π/4.

5.90. Determine the equations of the tangent and normal line to the

curve given by the equation

x3 + y3 − 2xy = 0

at the point [1, 1]. ⃝
Solution. y = 2 − x; y = x.

5.91. Prove the following:
x

1+x < ln (1 + x) < x for all x > 0.

⃝
Solution.The inequalities follow, for instance, from the mean

value theorem (attributed to Lagrange) applied to the function

y = ln (1 + t) , t ∈ [0, x].

F. Extremal problems

The simple observation 5.32 about the geometrical meaning of

the derivative also tells us that a di�erentiable real-valued function of

a real variable can have extremes only at the points where its deriva-

tive is zero. We can utilize this mere fact when solving miscellaneous

practical problems.

5.92. Consider the parabola y = x2 . Determine the x-coordinate xA
of the parabola's point which is nearest to the point A = [1, 2].

Solution. It is not di�cult to realize that there is a unique solution to

this problem and that we are actually looking for the absoluteminimum

of the function

f (x) = √
(x − 1)2 + (x2 − 2)2, x ∈ R.

Apparently, the function f takes the least value at the same point where

the function

g(x) = (x − 1)2 + (x2 − 2)2, x ∈ R

does. Since

g′(x) = 4x3 − 6x − 2, x ∈ R,

by solving the equation 0 = 2x3 − 3x − 1, we �rst get the stationary
point x = −1 and after dividing the polynomial 2x3 − 3x − 1 by the

polynomial x + 1, we then obtain the remaining two stationary points
1−√

3
2 and 1+√

3
2 .

As the function g is a polynomial (di�erentiable on the whole domain),

from the geometrical sense of the problem, we get



CHAPTER 5. ESTABLISHING THE ZOO

Now, let us focus on the derivative of the exponential function

f (x) = ax . If the derivative of ax exists at all points x, it will

surely hold that

f ′(x) = lim
1x→0

ax+1x − ax

1x
= ax lim

1x→0

a1x − 1
1x

= f ′(0)ax .

On the other hand, if the derivative at zero exists, then this formula

guarantees the existence of the derivative at any point of the do-

main and also determines its value. At the same time, we veri�ed

the validity of the formula for the one-sided derivatives.

Unfortunately, it will take us some time to verify (see 5.43, ∥i∥,
and 6.43) that the derivatives of exponential functions indeed exist.

We will also see that there is an especially important base e, the
so-called Euler's number, for which the derivative at zero equals

one. What we can do now is to notice that the exponential functions

are special in the way that their derivatives are proportional (with

a constant coe�cient) to their values:

(ax)′ = (eln(a)x)′ = ln(a)(eln(a)x) = ln(a) · ax .
5.37. Mean value theorems. Before we continue our journey of

building new functions, we will derive several sim-

ple statements about the derivatives. The meaning

of all of them is intuitively clear from the pictures

and the proofs only follow the visual imagination.

Theorem. Let a function f : R → R be continuous on a closed

bounded interval [a, b] and di�erentiable inside this interval. If

f (a) = f (b), then there is a number c ∈ (a, b) such that f ′(c) =
0.

Proof. Since the function f is continuous on the closed in-

terval (i. e. on a compact set), it reaches both a maximum and

a minimum there. If the maximum and the minimum shared the

value f (a) = f (b), it would mean that the function f is constant,

and thus its derivative is zero at all points of the interval (a, b).

Therefore, let us suppose that at least one of the maximum and the

minimum is di�erent and let it occur at an interior point c. Then

it is impossible to have f ′(c) ̸= 0 because then the function f

would be either increasing or decreasing at the point c (see 5.32)

and so it would take both lower and higher values than f (c) at a

neighborhood of the point c. □

The above theorem is called Rolle's theorem.It immediately

implies the following corollary, known as Lagrange's mean value

theorem.

5.38. Theorem. Let a function f : R → R be continuous on an

interval [a, b] and di�erentiable at all points inside this interval.
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xA = 1+√
3

2 .

□

5.93. Consider an isosceles triangle with base length b and height

(above the base) h. Inscribe the rectangle having the greatest possible

area into it (one of the rectangle's sides will lie on the triangle's base).

Determine the area S of this rectangle.

Solution. To solve this problem, it su�ces to consider the problem of

inscribing the largest rectangle into a right triangle with legs of lengths

b/2 and h so that two of the rectangle's sides lie on the legs of the

triangle. Thus we reduce the problem to maximizing the function

f (x) = x
(
h− 2hx

b

)
on the interval I = [0, b/2]. Since we have that

f ′(x) = h− 4hx
b

for all x ∈ I
and further

f (0) = f
(
b
2

) = 0, f (x) ≥ 0, x ∈ I,
the function f must take the greatest value on I at its only stationary

point x0 = b/4. Thus the sides of the wanted rectangle are b/2 long

(twice x0: considering the original problem) and h/2 (which can be ob-
tained by substituting b/4 for x into the expression h−2hx/b). Hence
we get S = hb/4. □

5.94. Among rectangles such that two of their vertices lie on the

x-axis and the other two have positive y-coordinates and lie on the

parabola y = 8 − 2x2 , �nd the one which has the greatest area.

Solution. The base of the largest rectangle is 4/
√

3 long, the rectan-

gle's height is then 16/3. This result can be obtained by �nding the

absolute maximum of the function

S(x) = 2x
(
8 − 2x2

)
on the interval I = [0, 2]. Since this function is non-negative on I ,

takes zero at I 's boundary points, is di�erentiable on the whole of I

and its derivative is zero at a unique point of I , namely x = 2/
√

3, it
has the maximum there. □

5.95. Let the ellipse 3x2 + y2 = 2 be given. Write the equation of

its tangent line which forms the smallest triangle possible in the �rst

quadrant and determine the triangle's area.

Solution. The line corresponding to the equation ax + by + c = 0
intersects the axes at the points [− c

a
, 0], [0,− c

b
] and the area of the

triangle whose vertices are these two points and the origin is S =
c2

2ab . The line which touches the ellipse at [xT , yT ] has the equation
3xxT + yyT − 2 = 0. The area of the triangle corresponding to it is
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Then there is a number c ∈ (a, b) such that
f ′(c) = f (b)− f (a)

b − a
.

Proof. The proof is a simple record of the geometrical mean-

ing of the theorem: The secant line between the

points [a, f (a)] and [b, f (b)] has a tangent line

which is parallel to it (have a look at the picture).

The equation of our secant line is

y = g(x) = f (a)+ f (b)− f (a)

b − a
(x − a).

The di�erence h(x) = f (x)− g(x) determines the distance of the
graph and the secant line (in the values of y). Surely h(a) = h(b)

and

h′(x) = f ′(x)− f (b)− f (a)

b − a
.

By the previous theorem, there is a point c at which h′(c) = 0. □

The mean value theorem can also be written in the form:

(5.9) f (b) = f (a)+ f ′(c)(b − a).

In the case of a parametrically given curve in the plane, i. e.

a pair of functions y = f (t), x = g(t), the same result about

existence of a tangent line parallel to the secant line going through

the marginal points is described by the so-called Cauchy's mean

value theorem:

Corollary. Let functions y = f (t) and x = g(t) be continuous on

an interval [a, b] and di�erentiable inside this interval, and further
let g′(t) ̸= 0 for all t ∈ (a, b). Then there is a point c ∈ (a, b)

such that
f (b)− f (a)

g(b)− g(a)
= f ′(c)
g′(c)

.

Proof. Again, we rely on Rolle's theorem. Thus we set

h(t) = (f (b)− f (a))g(t)− (g(b)− g(a))f (t).

Now h(a) = f (b)g(a)−f (a)g(b), h(b) = f (b)g(a)−f (a)g(b),
so there is a number c ∈ (a, b) such that h′(c) = 0. Since g′(c) ̸=
0 we get just the desired formula. □

A reasoning similar to the one in the above proof leads to a

supremely useful tool for calculating limits of quotients of func-

tions. The theorem is known as l'Hospital's rule:
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thus S = 2
3xT yT

. Further, in the �rst quadrant, we have that xT , yT >

0. To minimize this area means to maximize the product xT yT =
xT

√
2 − 3x2

T , which is (in the �rst quadrant) the same as to maximize

(xT yT )
2 = x2

T (2 − 3x2
T ) = −3(x2

T − 1
3)

2 + 1
3 . Hence, the wanted

minimum is at xT = 1√
3
. The tangent's equation is

√
3x + y = 2 and

the triangle's area is Smin = 2
√

3
9 . □

5.96. At the time t = 0, the three pointsP ,Q,R beganmoving in the

plane as follows: The point P is moving from the point [−2, 1] in the
direction (3, 1) at the constant speed

√
10 m/s, the pointQ is moving

from [0, 0] in the direction (−1, 1)with the constant acceleration 2
√

2
m/s2 (beginning at zero speed) and the point R is going from [0, 1] in
the direction (1, 0) at the constant speed 2 m/s. At which time will the

area of the triangle PQR be minimal?

Solution. The equations of the points P ,Q, R in time are

P : [−2, 1] + (3, 1)t,

Q : [0, 0] + (−1, 1)t2 ,

R : [0, 1] + (2, 0)t.

The area of the triangle PQR is determined, for instance, by half the

absolute value of the determinant whose rows are the coordinates of

the vectors PQ andQR (see 1.34). So we minimize the determinant:∣∣∣∣ −2 + t t

−t2 − 2t −1 + t2

∣∣∣∣ = 2t3 − t + 2.

The derivative is 6t2 − 1, so the extrema occur at t = ± 1√
6
. Thanks to

considering non-negative time only, we are interested in t = 1√
6
. The

second derivative of the considered function is positive at this point,

thus the function has a local minimum there. Further, its value at this

point is positive and less than the value at the point 0 (the boundary

point of the interval where we are looking for the extremum), so this

point is the wanted global minimum. □

5.97. At 9 o'clock in the morning, the old wolf left his den D and

as a part of his everyday warm-up, he began running

counterclockwise around his favorite stump S at the

constant speed 4 kph (not very quick, is he), keeping

the constant distance of 1 km from it. At the same time, Little Red

Riding Hood set out from her house H straight to her Grandma's cot-

tage C at the constant speed 4 kph. When will they be closest to each

other and what will their distance be at that time? The coordinates (in

kilometers) are: D = [2, 3], S = [2, 2], H = [0, 0], C = [5, 5].

Solution. The wolf is moving along a unit circle, so his angular speed

equals his absolute speed and his position in time can be described by
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5.39. Theorem. Let us suppose that f and g are functions di�eren-

tiable on some neighborhood of a point x0 ∈ R, yet not necessarily
at the point x0 itself. Moreover, let the limits

lim
x→x0

f (x) = 0, lim
x→x0

g(x) = 0

exist. If the limit

lim
x→x0

f ′(x)
g′(x)

exists, then the limit

lim
x→x0

f (x)

g(x)

exists as well and these two limits are equal.

Proof. Without loss of generality, we can assume that both

the functions f and g take zero at the point x0.

Again, we can illustrate the statement by a picture.

Let us consider the points [g(x), f (x)] ∈ R2

parametrized by the variable x. The quotient of the values then

corresponds to the slope of the secant line between the points

[0, 0] and [f (x), g(x)]. At the same time, we know that the

quotient of the derivatives corresponds to the slope of the secant

line at the given point. Thus we want to derive that the limit of the

slopes of the secant lines exists from the fact that the limit of the

slopes of the tangent lines exists.

Technically, we can make use of the mean value theorem in a

parametric form. First of all, let us realize that the existence of the

expression f ′(x)/g′(x) on some neighborhood of the point x0 (ex-

cluding x0 itself) is implicitly assumed; thus especially for points

c su�ciently close to x0, we will have g
′(c) ̸= 0.4 Thanks to the

mean value theorem, we have now that

lim
x→x0

f (x)

g(x)
= lim
x→x0

f (x)− f (x0)

g(x)− g(x0)
= lim
x→x0

f ′(cx)
g′(cx)

,

where cx is a number lying between x0 and x, dependent on x.

From existence of the limit

lim
x→x0

f ′(x)
g′(x)

,

it follows that this value will be shared by the limit of any sequence

created by substituting the values x = xn approaching x0 into

4This is not always necessary for the existence of the limit in a general sense.

Nevertheless, for the statement of l'Hospital's rule, it is. A thorough discussion can

be found (googled) in the popular article `R. P. Boas, Counterexamples to L'Hospi-

tal's Rule, The American Mathematical Monthly, October 1986, Volume 93, Num-

ber 8, pp. 644�645.'
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the following parametric equations:

x(t) = 2 − cos(4t), y(t) = 2 − sin(4t),

Little Red Riding Hood is then moving along the line

x(t) = 2
√

2t, y(t) = 2
√

2t.

Let us �nd the extrema of the (squared) distance ρ of their paths in

time:

ρ(t) = [2 − cos(4t)− 2
√

2t]2 + [2 − sin(4t)− 2
√

2t]2,

ρ′ (t) =16(cos(4t)− sin(4t))(
√

2t − 1)+ 32t+
+ 4

√
2(cos(4t)+ sin(4t))− 16

√
2.

It is impossible to solve the equation ρ′ (t) = 0 algebraically, we can

only �nd the solution numerically (using some computational soft-

ware). Apparently, there will be in�nitely many extrema: every round,

the wolf's direction is at some moment parallel to that of Little Red

Riding Hood, so their distance is decreasing for some period; how-

ever, Little Red Riding Hood is moving away from the wolf's favorite

stump around which he is moving. We �nd out that the �rst local min-

imum occurs at t
.= 0.31, and then at t .= 0.97, when the distance of

our heroes will be approximately 5 meters. Clearly this is the global

maximum as well.

The situation when we cannot solve a given problem explicitly is

quite common in practice and the use of numerical methods is of great

importance. □

5.98. Halley's problem, 1686. A basketball player is standing in

front of a basket, at distance l from its rimwhich is at height h

from the throwing point. Determine the minimal initial speed

v0 which the player must give to the ball in order to score, and

the angle φ corresponding to this v0. See the picture.

Solution. Once again, we will omit units of measurement: we can

assume that distances are given inmeters, times in seconds (and speeds

in meters per second then). Suppose the player throws the ball at time

t = 0 and it goes through the rim at time t0 > 0. We will express the

ball's position (while �ying) by the points [x(t), y(t)] for t ∈ [0, t0],
and we require that x(0) = 0, y(0) = 0, x(t0) = l, y(t0) = h.

Apparently,

x′ (t) = v0 cosφ, y′ (t) = v0 sinφ − gt

for t ∈ (0, t0), where g is the gravity of Earth, since the values x′ (t)
and y′ (t) are, respectively, the horizontal and vertical speed of the ball.
By integrating these equations, we get

x(t) = v0t cosφ + c1, y(t) = v0t sinφ − 1
2 gt

2 + c2
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f ′(x)/g′(x). Especially, we can substitute any sequence cxn for

xn → x0, and thus the limit

lim
x→x0

f ′(cx)
g′(cx)

will exist, and the last two limits will be equal. Thus we have

proved that the wanted limit exists and also has the same value. □

>From the proof of the theorem, it is apparent that it holds for

one-sided limits as well.

5.40. Corollaries. L'Hospital's rule can easily be extended for

limits at the improper points±∞ and for the case of in�nite values

of the limits. If, for instance, we have

lim
x→∞ f (x) = 0, lim

x→∞ g(x) = 0,

then limx→0+ f (1/x) = 0 and limx→0+ g(1/x) = 0.
At the same time, from existence of the limit of the quotient

of the derivatives at in�nity, we get

lim
x→0+

(f (1/x))′

(g(1/x))′
= lim
x→0+

f ′(1/x)(−1/x2 )

g′(1/x)(−1/x2 )

= lim
x→0+

f ′(1/x)
g′(1/x)

= lim
x→∞

f ′(x)
g′(x)

.

Applying the previous theorem, we get that the limit

lim
x→∞

f (x)

g(x)
= lim
x→0+

f (1/x)
g(1/x)

= lim
x→∞

f ′(x)
g′(x)

will exist in this case as well.

The limit calculation is even simpler in the case when

lim
x→x0

f (x) = ±∞, lim
x→x0

g(x) = ±∞.

Then it su�ces to write

lim
x→x0

f (x)

g(x)
= lim
x→x0

1/g(x)
1/f (x)

,

which is already the case of usage of l'Hospital's rule from the

previous theorem. It can be proved that l'Hospital's rule holds in

the same form for in�nite limits as well:

Theorem. Let f and g be functions di�erentiable on some neigh-

borhood of a point x0 ∈ R, yet not necessarily at the point x0 itself.

Further, let the limits limx→x0 f (x) = ±∞ and limx→x0 g(x) =
±∞ exist. If the limit

lim
x→x0

f ′(x)
g′(x)

exists, then the limit

lim
x→x0

f (x)

g(x)

exists as well and they equal each other.

Proof. Once again, we can apply the mean value theorem.

The key step is to express the quotient in a form where the deriva-

tive arises:

f (x)

g(x)
= f (x)

f (x)− f (y)
· f (x)− f (y)

g(x)− g(y)
· g(x)− g(y)

g(x)
,

where y is �xed, from a selected neighborhood of x0 and x is ap-

proaching x0. Since the limits of f and g at x0 are in�nite, we can

surely assume that the di�erences of the values of both functions

at x and y, having �xed y, are non-zero.
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for t ∈ (0, t0) and c1, c2 ∈ R. From the initial conditions

lim
t→0+

x(t) = x(0) = 0, lim
t→0+

y(t) = y(0) = 0,

it follows that c1 = c2 = 0. Substituting the remaining conditions

lim
t→t0−

x(t) = x(t0) = l, lim
t→t0−

y(t) = y(t0) = h

then gives

l = v0t0 cosφ, h = v0t0 sinφ − 1
2 gt

2
0 .

According to the �rst equation, we have that

(5.1) t0 = l

v0 cosφ
,

and thus we get only one equation

(5.2) h = l tanφ − gl2

2v2
0 cos2 φ

,

where v0 ∈ (0,+∞), φ ∈ (0, π/2).
Let us remind that our task is to determine the minimal v0 and the

corresponding φ which satis�es this equation. To be more comprehen-

sible, we want to �nd the minimal value of v0 for which there is an

angle φ satisfying (∥5.2∥). Since
1

cos2 φ
= cos2 φ+sin2 φ

cos2 φ
= 1 + tan2 φ, φ ∈ (0, π2 ) ,

the equation (∥5.2∥) can be written in the form
h− l tanφ + gl2

2v2
0

(
1 + tan2 φ

) = 0,

i. e.

tan2 φ − 2v2
0
gl

tanφ + 2hv2
0

gl2
+ 1 = 0.

>From the last equation (quadratic equation in p = tanφ), it follows

that

tanφ =
2v2

0
gl

±
√

4v4
0

g2 l2
−4

(
2hv2

0
gl2

+1
)

2 ,

i. e.

(5.3) tanφ = v2
0

gl
±
√
v4

0 − 2hv2
0g − g2l2

gl
.

Therefore, the angle φ satisfying (∥5.2∥) exists if and only if
v4

0 − 2gh v2
0 − g2l2 ≥ 0.

Once again, a suitable substitution (this time q = v2
0) allows us to

reduce the left side to a quadratic expression and subsequently to get(
v2

0 − g
[
h+ √

h2 + l2
]) (

v2
0 − g

[
h− √

h2 + l2
])

≥ 0.

As h <
√
h2 + l2 , it must be that

v2
0 ≥ g

[
h+ √

h2 + l2
]
, i. e. v0 ≥

√
g
[
h+ √

h2 + l2
]
.

The least value

(5.4) v0 =
√
g
[
h+

√
h2 + l2

]
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Using the mean value theorem, we can replace the fraction in

the middle with the quotient of the derivatives at an appropriate

point c between x and y, and the expression of the examined limit

thus gets the form

f (x)

g(x)
= 1 − g(y)

g(x)

1 − f (y)
f (x)

· f
′(c)
g′(c)

,

where c depends on both x and y. Having �xed y and x approach-

ing x0, the former fraction apparently converges to one. If we si-

multaneously move y towards x0, the latter fraction will get arbi-

trarily close to the limit value of the quotient of the derivatives. □

5.41. Use cases. Making suitable modi�cations of the examined

expressions, one can also apply l'Hospital's rule on forms of the

types ∞ − ∞, 1∞, 0 · ∞, and so on. One often simply rearranges

the expressions or uses some smooth function, for instance the ex-

ponential one.

For an illustration of such a procedure, we will show the con-

nection between the arithmetic and geometric means of n non-

negative values xi . The arithmetic mean

M1 (x1, . . . , xn) = x1 + · · · + xn

n

is a special case of the so-called power mean with exponent r, also

known as generalized mean:

Mr (x1, . . . , xn) =
(
xr1 + · · · + xrn

n

) 1
r

.

The special valueM−1 is called harmonic mean. Now, let us calcu-

late the limit value ofMr for r approaching zero. For this purpose,

we will determine the limit by l'Hospital's rule (it it an expression

of the form 0/0 and we di�erentiate with respect to r, while xi are

constant parameters).

The following calculation, in which we apply the chain rule

and our knowledge of the derivative of the power function, must be

read from the back. Existence of the last limit implies the existence

of the last-but-one, and so on.

lim
r→0

ln(Mr (x1, . . . , xn)) = lim
r→0

ln( 1
n
(xr1 + · · · + xrn))

r

= lim
r→0

xr
1 ln x1+···+xr

n ln xn
n

xr
1+···+xr

n

n

= ln x1 + · · · + ln xn
n

= ln n
√
x1 · · · · · xn.

Hence we can immediately see that

lim
r→0

Mr (x1, . . . , xn) = n
√
x1 . . . xn,

which is a value known as geometric mean.

4. Power series

5.42. The calculation of ex . Besides addition and multiplication,
we can also manipulate with limits of sequences.

Thus it might be a good idea to approximate non-

polynomial functions by sequences of values that can

be calculated.
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is then matched (see (∥5.3∥)) by
(5.5)

tanφ = v2
0

gl
= h+ √

h2 + l2

l
, i. e. φ = arctg

h+ √
h2 + l2

l
.

The previous calculation was based upon the conditions x(t0) = l,

y(t0) = h only. However, these only talk about the position of the

ball at the time t0, but the ball could get through the rim from below.

Therefore, let us add the condition y′ (t0) < 0 which says that the ball

was falling at the time, and let us prove that it holds for v0 from (∥5.4∥)
and φ from (∥5.5∥).

Let us remind that we have (see (∥5.1∥), (∥5.2∥))
t0 = l

v0 cos φ , v2
0 = gl2

2(l tan φ−h) cos2 φ
.

Using this, from

y′ (t0) = lim
t→t0−

y′ (t) = v0 sinφ − gt0 < 0

we get
gl2

2(l tan φ−h) cos2 φ
= v2

0 < v0 · gt0
sin φ = gl

sin φ cos φ ,

i. e. the equality

l sinφ cosφ < 2(l tanφ − h) cos2 φ,

from which we can easily see that
2h
l
< tanφ.

By confrontation with (∥5.5∥), we get that the last inequality really

holds because

tanφ = h+
√
h2+l2
l

> h+√
h2

l
= 2h

l
.

Thus we have shown that for the initial speed from (∥5.4∥), the player
is able to score.

During the free throw, supposing the player lets the ball go at the

height of 2 m, we have

h = 1.05 m, l = 4.225 m, g = 9.806 65 m · s−2,

and so the minimal initial speed of the ball is

v0 =
√

9.806 65
[
1.05 +√

(1.05)2 + (4.225)2
]
m·s−1 .= 7.28 m·s−1.

The corresponding angle is then

φ = arctg
v2

0
9.806 65·4.225

.= 0.907 rad ≈ 52 ◦.

Let us think for a while about the obtained value of the angle φ for

the initial speed v0. According to the picture, we have

2β + (π − α) = π and α + γ = π
2 ,

whence it follows that

β = α
2 = π

4 − γ

2 .

So it holds that

φ = π
2 − β = π

4 + γ

2 = 1
2

(
π
2 + γ

) = 1
2

(
π
2 + arctg h

l

)
.
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Having a looking at the function ex , we actually look for a

function whose rate of increase equals the function's value at every

point. This can be imagined as a splendid interest rate equal to the

current value. If we apply the interest rate per year once a month,

once a day, once an hour, and so on, we will get the following

values for the yield x of the deposit:

(
1 + x

12

)12
,

(
1 + x

365

)365
,

(
1 + x

8760

)8760
, . . .

Therefore, we could deem that

ex = lim
n→∞

(
1 + x

n

)n
.

At the same time, we can imagine that the �ner we apply the inter-

est, the higher the yield will be. So the sequence on the right-hand

side should be an increasing one.

Let us, in detail, examine the sequence of numbers

an =
(

1 + 1
n

)n
.

The so-called Bernoulli's inequality will come in handy:

Lemma. For every real number b ≥ −1, b ̸= 0, and a natural

number n ≥ 2, it is true that (1 + b)n > 1 + nb.

Proof. For n = 2, we get

(1 + b)2 = 1 + 2b + b2 > 1 + 2b.

From now on, we proceed by induction on n, supposing b > −1.
Let us assume that the proposition holds for some k ≥ 2 and let us

calculate:

(1 + b)k+1 = (1 + b)k(1 + b) > (1 + kb)(1 + b)

= 1 + (k + 1)b + kb2 > 1 + (k + 1)b

The statement is, of course, true for b = −1 as well. □

Now we can bound the quotient of adjacent terms an of out

sequence

an

an−1
= (1 + 1

n
)n

(1 + 1
n−1 )

n−1
= (n2 − 1)nn
n2n(n− 1)

=
(

1 − 1
n2

)n
n

n− 1

> (1 − 1
n
)
n

n− 1
= 1.

Thus we have proved that our sequence is indeed increasing.

The following, very similar, calculation (applying Bernoulli's

inequality once again) veri�es that the sequence of numbers

bn =
(

1 + 1
n

)n+1

=
(

1 + 1
n

)(
1 + 1

n

)n
is decreasing. Surely bn > an.

bn

bn+1
= n

n+ 1

(
n+1
n
n+2
n+1

)n+2

= n

n+ 1

(
n2 + 2n+ 1
n2 + 2n

)n+2

= n

n+ 1

(
1 + 1

n(n+ 2)

)n+2

≥ n

n+ 1

(
1 + n+ 2

n(n+ 2)

)n+2

= 1.

Thus the sequence an is increasing and bounded from above, so

the set of its terms has a supremum which equals the limit of the
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We have obtained that the elevation angle corresponding to the throw

with minimal energy is the arithmetic mean of the right angle and the

angle at which the rim is seen (from the ball's position).

The problem of �nding the minimal speed of the thrown ball was

actually solved by Edmond Halley as early as in 1686, when he deter-

mined the minimal amount of gunpowder necessary for a cannonball

to hit a target which lies at greater height (beyond a rampart, for in-

stance). Halley proved (the so-called Halley's calibration rule) that to

hit a target at the point [l, h] (shooting from [0, 0]) one needs the same
minimal amount of gunpowder as when hitting a horizontal target at

distance h + √
h2 + l2 (at the angle φ = 45 ◦). Halley also demon-

strated that the value of φ is stable with regard to small di�erence of

the amount of used gunpowder and insigni�cant errors in estimating

the target's distance. □

5.99. Abullet is shot at angle φ from a point at height h above ground

at initial speed v0. It will fall on the ground at distanceR from

the point of shot (see the picture). Determine the angle φ for

which the value of R is maximal.

Solution. We will express the bullet's position in time by the points

[x(t), y(t)]. We assume that it was shot at time t = 0 from the point

[0, 0] and it will fall on the ground at the point [R,−h] at certain time
t = t0, i. e. x(0) = 0, y(0) = 0, x(t0) = R, y(t0) = −h. Similarly to
Halley's problem, we will consider the equations

x′ (t) = v0 cosφ, y′ (t) = v0 sinφ − gt, t ∈ (0, t0)
for the horizontal and vertical speeds of the bullet, where g is the grav-

ity of Earth.

We can continue as when solving the previous problem: by inte-

grating these equations (taking x(0) = y(0) = 0 into consideration),

we get

x(t) = v0t cosφ, y(t) = v0t sinφ − 1
2 gt

2 , t ∈ (0, t0),
and from the conditions limt→t0− x(t) = x(t0) = R, limt→t0− y(t) =
y(t0) = −h, we then have that
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sequence. At the same time, we can see that this value is also the

limit of the decreasing sequence bn because

lim
n→∞ bn = lim

n→∞(1 + 1
n
)an = lim

n→∞ an.

This limit determines one of the most important numbers in

mathematics (besides the numbers 0, 1, and π), the so-called Eu-

ler's number e. We thus have

e = lim
n→∞

(
1 + 1

n

)n
.

5.43. Power series for ex . The exponential function has been de-
�ned as the only continuous function satisfying f (1) = e
and f (x+y) = f (x)·f (y). The base e is now expressed

as the limit of the sequence an, thus necessarily

ex = lim
n→∞(an)

x .

For the sake of simplicity, let us �x a positive number x. If we

replace n with n/x in the values an from the previous paragraph,

we again arrive at the same limit. (Think this out in detail!) Hence

e = lim
n→∞

(
1 + x

n

) n
x
, ex = lim

n→∞
(

1 + x

n

)n
.

Let us denote the n-th term of this sequence as un(x) = (1 +
x/n)n and express it by the binomial theorem:

(5.10)

un(x) = 1 + n
x

n
+ n(n− 1)x2

2!n2 + · · · + n!xn

n!nn

= 1 + x + x2

2!

(
1 − 1

n

)
+ x3

3!

(
1 − 1

n

)(
1 − 2

n

)
+ . . .

+ xn

n!

(
1 − 1

n

)(
1 − 2

n

)
. . .

(
1 − n− 1

n

)
.

Since all the expressions in the parentheses are less than one,

we also get that

un(x) < vn(x) =
n∑
j=0

1
j !
xj .

Let us have a look at the formal in�nite sum

(5.11)

∞∑
j=0

cj =
∞∑
j=0

1
j !
xj .

We can see that vn(x) is just the sum of the �rst n terms of this

formal in�nite expression.

The quotient of adjacent terms in the series is cj+1 /cj =
x/(n + 1). Thus for every �xed x, there is a number N ∈ N such

that cj+1 /cj < 1/2 for all j ≥ N . However, so great indeces j

satisfy cj+1 <
1
2cj < 2−(j−N+1) cN . This means that the parial

sums of the �rst n terms of our formal sum are bounded from above

by the sums

vn <

N−1∑
j=0

1
j !
xj + 1

N !
xN

n−N∑
j=0

1
2j
.
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R = v0t0 cosφ, −h = v0t0 sinφ − 1
2 gt

2
0 .

From the �rst equation, it follows that

t0 = R
v0 cos φ ,

so we can express the previous two equations by the single equation

(5.6) − h = R tanφ − gR2

2v2
0 cos2 φ

,

where φ ∈ (0, π/2).
UnlikewithHalley's problem, the value of v0 is given andR is vari-

able (dependent on φ). So, actually, there is a function R = R(φ) (in

variable φ) whichmust satisfy (∥5.6∥) (it is determined by the equation
(∥5.6∥)). Thus, this function is given implicitly. The equation (∥5.6∥)
can be written as (R is substituted by R(φ))

R(φ) tanφ · 2v2
0 cos2 φ − gR2(φ) + h · 2v2

0 cos2 φ = 0.

Using the relation

2 tanφ cos2 φ = sin 2φ,

we can transform (∥5.6∥) into the form
(5.7) R(φ)v2

0 sin 2φ − gR2(φ)+ 2hv2
0 cos2 φ = 0.

Di�erentiating with respect to φ now gives

R′(φ)v2
0 sin 2φ + 2R(φ)v2

0 cos 2φ − 2gR(φ)R′(φ)−
2hv2

0 (2 cosφ sinφ) = 0,

i. e.

R′(φ)
[
v2

0 sin 2φ − 2gR(φ)
] = −2R(φ)v2

0 cos 2φ + 2hv2
0 sin 2φ.

Thus we have calculated that

R′(φ) = 2v2
0 [h sin 2φ−R(φ) cos 2φ]
v2

0 sin 2φ−2gR(φ)
, φ ∈ (0, π2 ) .

It su�ces to verify that v2
0 sin 2φ−2gR(φ) ̸= 0 for every φ ∈ (0, π/2).

Let us suppose the contrary and substitute

R = v2
0 sin 2φ

2g = v2
0 sin φ cos φ

g

into (∥5.6∥), obtaining
−h = v2

0 sin φ cos φ
g

tanφ − gv4
0 sin2 φ cos2 φ

2g2v2
0 cos2 φ

.

Simple rearrangements lead to

−h = v2
0 sin2 φ

2g ,

which cannot happen (the left side is surely negative while the right

one is positive).

So we were able to determine R′(φ) for all φ ∈ (0, π/2). What is

more, we can immediately see that this derivative is zero if and only if

h sin 2φ = R(φ) cos 2φ, i. e. R(φ) = h tan 2φ.

Since the function R must have a maximum on the interval (0, π/2)
(according to the physical meaning of the problem, for φ → 0+ and
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Since for every q, it holds that (1−q)(1+q+· · · +qk ) = 1−qk+1 ,

we can also bound the values vn:

vn <

N−1∑
j=0

1
j !
xj + 2

N !
xN (1 − 2−n+N−1 )

The limit of the expressions on the right-hand side for n approach-

ing in�nity surely exists, and so the limit of the increasing sequence

vn exists as well.

Now, let us examine the sequence of numbers un, whose limit

is ex . We will consider n > N for some �xed N (very great) and

choose a �xed number k < N (quite small). Then for su�ciently

large N , we can approximate the sum of the �rst k terms in the

expression of uN in (5.10) by vk with arbitrary precision. Since this

part of the sum of uN is strictly less than uN itself, the sequence

un must converge to the same limit as the sequence vn. Thus we

have proved

The power series for ex

Theorem. The exponential function is, for every number x ∈ R,
expressed as the limit of the partial sums in the expression

ex = 1 + x + 1
2!
x2 + · · · + 1

n!
xn + · · · =

∞∑
n=0

1
n!
xn .

5.44. Number series. When deriving the previous important the-

orems about the function ex , we have acciden-
tally worked with several extraordinarily useful

concepts and tools. Now, we will formulate

them in general:

Infinite number series

De�nition. An in�nite series of numbers is an expression

∞∑
n=0

an = a0 + a1 + a2 + · · · + ak + . . . ,

where the an's are real or complex numbers. The sequence of par-

tial sums is given by the terms sk = ∑k
n=0 an, and we say that the

series converges and equals s i� the limit

s = lim
k→∞ sn

of the partial sums exists and is �nite.

If the sequence of partial sums has an improper limit, we say

that the series diverges to∞ or−∞. If the limit of the partial sums

does not exist, we sometimes say that the series oscillates.

For the sequence of partial sums sn to be converging, it is nec-

essary and su�cient that it is a Cauchy sequence, i. e.

|sm − sn| = |an+1 + · · · + am|
must be arbitrarily small for su�ciently great m > n. Since

|an+1| + · · · + |am| > |an+1 + · · · + am|,
the convergence of the series

∑∞
k=0 |an| implies the convergence

of the series
∑∞
k=0 an.
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for φ → π/2− the value of R decreases) and is di�erentiable at ev-

ery point of this interval, it has its maximum at the point where its

derivative is zero. This means that R(φ) can be maximal only if

(5.8) R (φ) = h tan 2φ.

Let us thus substitute (∥5.8∥) into (∥5.7∥). We obtain

h tan 2φ v2
0 sin 2φ − gh2 tan2 2φ + 2hv2

0 cos2 φ = 0.

This equation can be transformed to

tan 2φ v2
0 sin 2φ + 2v2

0 cos2 φ = gh tan2 2φ,

v2
0

sin2 2φ
cos 2φ + v2

0 (cos 2φ + 1) = gh
sin2 2φ
cos2 2φ ,

v2
0 sin2 2φ + v2

0 cos2 2φ + v2
0 cos 2φ = gh

sin2 2φ
cos 2φ ,

v2
0 + v2

0 cos 2φ = gh
1−cos2 2φ

cos 2φ ,

v2
0 (1 + cos 2φ) = gh (1−cos 2φ)(1+cos 2φ)

cos 2φ ,

v2
0 cos 2φ = gh (1 − cos 2φ) ,(
v2

0 + gh
)

cos 2φ = gh,

cos 2φ = gh

v2
0+gh .

However, by this we have uniquely determined the point

φ0 = 1
2 arccos

gh

v2
0+gh ,

at which R is highest. Since

sin 2φ0 = √
1 − cos2 2φ0 =

√
1 − g2h2(

v2
0+gh)2 =

√
v4

0+2ghv2
0

v2
0+gh ,

the function value

R (φ0) = h tan 2φ0 = h

√
v4
0+2ghv2

0
v2
0+gh

gh

v2
0+gh

=
√
v4

0+2ghv2
0

g
= v0

g

√
v2

0 + 2gh.

Let, for instance, javelin thrower Barbora �potáková give a javelin

the speed v0 = 27.778 m/s
.= 100 km/h at the height h = 1.8 m (with

g = 9.806 65 m · s−2). Then the javelin can �y up to the distance

R (φ0) = 27.778
9.806 65

√
27.7782 + 2 · 9.806 65 · 1.8 m

.= 80.46 m.

This distance was achieved for

φ0 = 1
2 arccos

9.806 65·1.8
27.7782+9.806 65·1.8

.= 0.774 2 rad ≈ 44.36 ◦.

However, the world record of Barbora �potáková does not even ap-

proach 80 m although the impact of other phenomena (air resistance,

for example) can be neglected. Still we must not forget that from 1

April 1999, the center of gravity of the women's javelin was moved to-

wards its tip upon the decision of IAAF (International Association of

Athletics Federation). This reduced the �ight distance by around 10 %.

The original record (with "correctly balanced" javelin) was 80.00 m.



CHAPTER 5. ESTABLISHING THE ZOO

Absolutely convergent series

We say that a series
∑∞
k=0 an is absolutely convergent i� the

series
∑∞
n=0 |an| converges.

The absolute convergence has been introduced because it can

often be much easily veri�ed. Moreover, the follow-

ing theorem shows that all simple algebraic opera-

tions behave "very well" in the case of series that con-

verge absolutely.

5.45. Theorem. Let S = ∑∞
n=0 an and T = ∑∞

n=0 bn be two

absolutely convergent series. Then

(1) their sum converges absolutely to the sum

S + T =
∞∑
n=0

an +
∞∑
n=0

bn =
∞∑
n=0

(an + bn),

(2) their di�erence converges absolutely to the di�erence

S − T =
∞∑
n=0

an −
∞∑
n=0

bn =
∞∑
n=0

(an − bn),

(3) their product converges absolutely to the product

S · T =
( ∞∑
n=0

an

)
·
( ∞∑
n=0

bn

)
=

∞∑
n=0

(
n∑
k=0

an−kbk

)
.

Proof. Both the �rst and the second statements are a straight-

forward consequence of the corresponding properties of limits.

The third statement requires our attention. Let us write

cn =
n∑
k=0

an−kbk.

From the assumptions and the rule for the limit of a product, we

get (
k∑
n=0

an

)
·
(

k∑
n=0

bn

)
→
( ∞∑
n=0

an

)
·
( ∞∑
n=0

bn

)
.

Thus it su�ces to prove that

0 = lim
k→∞

((
k∑
n=0

an

)
·
(

k∑
n=0

bn

)
−

k∑
n=0

ck

)
.

Let us confront the expressions(
k∑
n=0

an

)
·
(

k∑
n=0

bn

)
=

∑
0≤i,j≤k

aibj ,

cn =
∑
i+j=n

0≤i,j≤k

aibj ,

k∑
n=0

cn =
∑
i+j≤k

0≤i,j≤k

aibj .

Thus we get the bound∣∣∣∣
(

k∑
n=0

an

)
·
(

k∑
n=0

bn

)
−

k∑
n=0

cn

∣∣∣∣ =
∣∣∣∣ ∑
i+j>k

0≤i,j≤k

aibj

∣∣∣∣ ≤
∑
i+j>k

0≤i,j≤k

|aibj |.

To bound the last expression, we can use a simple trick: If the sum

of the indeces is to be greater than k, then at least one of themmust

be greater than k/2. Surely we will not lower the expression if we
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The performed reasoning and the obtained result can be applied

to other athletic disciplines and sports. In golf, for instance, h is close

to 0, and thus it is just the angle

φ0 = lim
h→0+

1
2 arccos

gh

v2
0+gh = 1

2 arccos 0 = π
4 rad = 45 ◦

at which the ball falls at the greatest distance

R (φ0) = lim
h→0+

v0
g

√
v2

0 + 2gh = v2
0
g
.

Let us realize that our calculation cannot be used for h = 0 (φ0 =
π/4) since then we would get the unde�ned expression tan (π/2) for
the distance R. However, we have solved the problem for any h >

0, and therefore we could get a helping hand form the corresponding

one-sided limit. □
Further miscellaneous problems concerning extrema of functions

of a real variable can be found at 320

G. L'Hospital's rule

5.100. Verify that the limit

(a)

lim
x→0

sin (2x) − 2 sin x
2ex − x2 − 2x − 2

is of the type
0
0
;

(b)

lim
x→0+

ln x
cot x

is of the type
∞
∞;

(c)

lim
x→1+

(
x

x − 1
− 1

ln x

)
is of the type ∞ − ∞;

(d)

lim
x→1+ (

ln (x − 1) · ln x) is of the type 0 · ∞;
(e)

lim
x→0+

(cot x)
1

ln x is of the type ∞0;
(f)

lim
x→0

(
sin x
x

) 1
x2

is of the type 1∞;



CHAPTER 5. ESTABLISHING THE ZOO

add more terms into it, i. e. we will take all as in the product and

remove only those whose indeces are both at most k/2.∑
i+j>k

0≤i,j≤k

|aibj | ≤
∑

0≤i,j≤k
|aibj | −

∑
0≤i,j≤k/2

|aibj |.

However, both the expressions of the di�erence are the partial sums

for the product S ·T . Therefore, they share the same limit and their
di�erence goes to zero. □

The following theorem states some conditions that will help

us verify the convergence of series.

5.46. Theorem. Let S = ∑∞
n=0 an be an in�nite series of real or

complex numbers.

(1) If the series S converges, then limn→∞ an = 0.
(2) Let us suppose that the limit of the quotients of adjacent terms

of the series exists and

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = q.

Then the series S converges absolutely for |q| < 1 and does

not converge for |q| > 1. We know nothing in the case of

|q| = 1: the series may or may not converge.
(3) If the limit

lim
n→∞

n
√|an| = q

exists, then the series converges absolutely for q < 1 while it

does not converge for q > 1. Again, in the case of q = 1, the
series may or may not converge.

Proof. (1) We know that the existence and the potential value

of the limit of a sequence of complex numbers is

given by the limits of the real parts and the imagi-

nary parts. Thus it su�ces to prove the �rst propo-

sition for sequences of real numbers. If limn→∞ an does not exist

or is non-zero, then for su�ciently small number ε > 0, there are
in�nitely many terms ak with |ak| > ε. So there must be either

in�nitely many positive terms of in�nitely many negative terms

among them. But then, adding any one of them into the partial

sum, we get that the di�erence of the adjacent terms sn and sn+1 is

at least ε. Thus the sequence of partial sums cannot be a Cauchy

sequence and, therefore, it cannot be converging, either.

(2) Since we want to prove the absolute convergence, we can

assume straightaway that the terms of the series are real numbers

ai > 0. The proof was given for the special value of q = 1/2 when
deriving the value of ex using series. Now, let us consider q <

r < 1 for a real number r. From the existence of the limit of the

quotients, we can deduce that for every j greater than a su�ciently

large N , it holds that

aj+1 < r · aj ≤ r(j−N+1) aN .

But this means that the partial sums sn are, for large n > N ,

bounded from above by the sums

sn <

N∑
j=0

aj + aN

n−N∑
j=0

rj =
N∑
j=0

aj + 1 − rn−N+1

1 − r
.

Since 0 < r < 1, the set of all partial sums is an increasing se-

quence bounded from above, and thus its limits is its supremum.
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(g)

lim
x→1−

(
cos

πx

2

)ln x
is of the type 00.

Then calculate it using l'Hospital's rule.

Solution. We can immediately assert that

(a)

lim
x→0

(sin (2x) − 2 sin x) = 0 − 0 = 0,

lim
x→0

(
2ex − x2 − 2x − 2

) = 2 − 0 − 0 − 2 = 0;
(b)

lim
x→0+

ln x = −∞, lim
x→0+

cot x = +∞;
(c)

lim
x→1+

x

x − 1
= +∞, lim

x→1+
1

ln x
= +∞;

(d)

lim
x→1+

ln x = 0, lim
x→1+

ln (x − 1) = −∞;
(e)

lim
x→0+

cot x = +∞, lim
x→0+

1
ln x

= 0;
(f)

lim
x→0

sin x
x

= 1, lim
x→0

1
x2

= +∞;
(g)

lim
x→1−

cos
πx

2
= 0, lim

x→1−
ln x = 0.

The case (a). Applying l'Hospital's rule transforms the limit

lim
x→0

sin (2x) − 2 sin x
2ex − x2 − 2x − 2

into the limit

lim
x→0

2 cos (2x) − 2 cos x
2ex − 2x − 2

,

which is of the type 0/0. Two more applications of the rule lead to

lim
x→0

−4 sin (2x) + 2 sin x
2ex − 2

and (the above limit is also of the type 0/0)

lim
x→0

−8 cos (2x) + 2 cos x
2ex

= −8 + 2
2

= −3.

Altogether, we have (returning to the original limit)

lim
x→0

sin (2x) − 2 sin x
2ex − x2 − 2x − 2

= −3.

Let us remark that multiple application of l'Hospital's rule in an exer-

cise is quite common.

From now on, we will set the limits of quotients of derivatives ob-

tained by l'Hospital's rule equal the limits of the original quotients.

We can do this if the gained limits on the right sides really exist, i. e.
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In the case q > r > 1, we will use a similar technique. How-
ever, this time, from the existence of the limit of the quotients, we

now deduce that

aj+1 > r · aj ≥ r(j−N+1) aN > 0.

However, this means that the absolute values of the particular terms

of the series do not converge to zero, and thus the series cannot be

converging, by the already proved part of the theorem.

(3) The proof is quite similar to the previous case. From the

existence of the limit q < 1, it follows that for any r, q < r < 1,
there is an N such that for all n > N , n

√|an| < r holds. Exponen-

tiation then gives us |an| < rn , so we, once again, are comparing

this to a geometric series. Thus the proof can be �nished in the

same way as in the case of the ratio test. □

In the proof of both the second and the third statement, we

have used a weaker assumption than the existence of the limit. We

only wanted to know that the examined sequences of non-negative

terms are, from a given index on, either all greater or all less than

a given number.

For this purpose, however, it su�ces to consider, for a given

sequence of terms bn, the supremum of the terms with index higher

than n. These suprema always exist and create a non-increasing

sequence. Its in�mum is then called limes superior of the sequence

and denoted by

lim sup
n→∞

bn.

The advantage is that limes superior always exists. Therefore, we

can reformulate the previous result (without having to change the

proof) in a stronger form:

Corollary. Let S = ∑∞
n=0 an be an in�nite series of real or com-

plex numbers.

(1) If

q = lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ ,
then the series S converges absolutely for q < 1 and does not

converge for q > 1. For q = 1, it may or may not converge.
(2) If

q = lim sup
n→∞

n
√|an|,

the series converges absolutely for q < 1 while it does not

converge for q > 1. For q = 1, it may or may not converge.

5.47. Power series. If we consider not a sequence of numbers an,

but rather a sequence of functions fn(x) shar-

ing the same domain A, we can use the de�ni-

tion of addition of series "pointwise", thereby

obtaining the concept of the series of functions

S(x) =
∞∑
n=0

fn(x).

Convergence of power series

A power series is given by an expression

S(x) =
∞∑
n=0

anx
n .
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actually we will make sure that what we write is senseful only after-

wards.

The case (b). This time, di�erentiation of the numerator and the

denominator gives

lim
x→0+

ln x
cot x

= lim
x→0+

1
x

−1
sin2 x

= lim
x→0+

− sin2 x

x
.

The last limit can be determined easily (we even know it). From

lim
x→0+

− sin x = 0, lim
x→0+

sin x
x

= 1,

the result 0 = 0 · 1 follows. We could also have used l'Hospital's rule

again (now for the expression 0/0), obtaining the result

lim
x→0+

− sin2 x

x
= lim

x→0+
−2 · sin x · cos x

1
= −2 · 0 · 1

1
= 0.

The case (c). By mere transforming to a common denominator:

lim
x→1+

(
x

x − 1
− 1

ln x

)
= lim

x→1+
x ln x − (x − 1)
(x − 1) ln x

we have obtained the type 0/0. We have that

lim
x→1+

x ln x − (x − 1)
(x − 1) ln x

= lim
x→1+

ln x + x
x

− 1
x−1
x

+ ln x
= lim

x→1+
ln x

1 − 1
x

+ ln x
.

We have the quotient 0/0, which (again by l'Hospital's rule) satis�es

lim
x→1+

ln x
1 − 1

x
+ ln x

= lim
x→1+

1
x

1
x2 + 1

x

= 1
1 + 1

= 1
2
.

Returning to the original limit, we write the result

lim
x→1+

(
x

x − 1
− 1

ln x

)
= 1

2
.

The case (d). We transform the assigned expression into the

type ∞/∞ (to be precise, into the type −∞/∞) by creating the frac-

tion

lim
x→1+

ln (x − 1) · ln x = lim
x→1+

ln (x − 1)
1

ln x

.

By l'Hospital's rule,

lim
x→1+

ln (x − 1)
1

ln x

= lim
x→1+

1
x−1

− 1
ln2 x

· 1
x

= lim
x→1+

−x ln2 x

x − 1
.

This indeterminate form (of the type 0/0) can once again be deter-

mined by l'Hospital's rule:

lim
x→1+

−x ln2 x

x − 1
= lim

x→1+
−ln2 x − 2x ln x · 1

x

1
= −0 + 0

1
= 0.
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We say that S(x) has radius of convergence ρ ≥ 0 i� S(x) con-

verges for every x satisfying |x| < ρ and does not converge for

|x| > ρ.

5.48. Properties of power series. Although a signi�cant part of

the proof of the following theorem will have to be postponed un-

til the end of the following chapter, we will formulate the basic

properties of the power series right now:

Absolute convergence and differentiation

Theorem. Let S(x) = ∑∞
n=0 anx

n be a power series and let the

limit

r = lim
n→∞

n
√|an|

exist. Then the radius of convergence of the series S equals ρ =
r−1 .

The power series S(x) converges absolutely on the whole inter-

val of convergence and is continuous on it (including the marginal

points, supposing it is convergent there). Moreover, the derivative

exists on this interval, and

S′ (x) =
∞∑
n=1

nanx
n−1 .

Proof. To verify the absolute convergence of the series, we

can use the root test from theorem 5.46(3), for every value of x.

We calculate

lim
n→∞

n
√|anxn | = rx,

and the series converges absolutely, or does not converge if this

limit is di�erent from 1. Hence it follows that it indeed converges

for |x| < ρ and diverges for |x| > ρ.

The statements about the continuity and the derivatives will

be proved later in a more general context, see 6.43�6.45. □
Let us also notice that, when proving the convergence, we can

use a stronger form of the root test, and so the radius r of conver-

gence can, for every power series, be described explicitly by

r−1 = lim sup
n→∞

n
√|an|.

5.49. Notes. If the coe�cients of the series increase rapidly, i. e.

an = nn, then r = ∞, i. e. the radius of conver-

gence is zero. Indeed, such a series converges

at a single point, namely x = 0.
Now we will have a look at some examples of convergence of

power series (including the marginal points of the corresponding

interval): Let us consider

S(x) =
∞∑
n=0

xn , T (x) =
∞∑
n=1

1
n
xn .

The former case is a geometric series, which we have already

met. Its sum is, for every x, |x| < 1,

S(x) = 1
1 − x

,

while |x| > 1 guarantees that the series diverges. For x = 1, we
obtain the series 1 + 1 + 1 + . . . , which is apparently divergent.

For x = −1, we get the series 1 − 1 + 1 − . . . , whose partial sums
do not have a limit, i. e. the series oscillates.
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The cases (e), (f), (g). Since

lim
x→0+ (

cot x)
1

ln x = e
lim

x→0+
ln(cot x)

ln x ;

lim
x→0

(
sin x
x

) 1
x2

= e
lim
x→0

ln sin x
x

x2 ;

lim
x→1−

(
cos

πx

2

)ln x = e
lim

x→1−
(
ln x·ln(

cos πx
2

))
,

it su�ces to calculate the limits given in the argument of the expo-

nential function. By l'Hospital's rule and simple rearrangements, we

get

lim
x→0+

ln (cot x)
ln x

[
type

+∞
−∞

]
= 1 lim

x→0+

1
cot x

· −1
sin2 x

1
x

=

lim
x→0+

−x
cos x · sin x

[
type

0
0

]
= lim

x→0+
−1

cos2 x − sin2 x
= −1

1 − 0
= −1;

lim
x→0

ln sin x
x

x2

[
type

0
0

]
= lim

x→0

x
sin x · x cos x−sin x

x2

2x
= lim

x→0

x cos x − sin x
2x2 sin x[

type
0
0

]
= lim

x→0

cos x − x sin x − cos x
4x sin x + 2x2 cos x

= lim
x→0

− sin x
4 sin x + 2x cos x

[
type

0
0

]
= lim

x→0

− cos x
4 cos x + 2 cos x − 2x sin x

= −1
4 + 2 − 0

= −1
6
,

hence

lim
x→0+ (

cot x)
1

ln x = e−1 = 1
e
;

lim
x→0

(
sin x
x

) 1
x2

= e− 1
6 = 1

6
√
e
.

We can proceed similarly when determining the last limit. We have

that

lim
x→1−

)(ln x) · ln
(

cos
πx

2

)
= lim

x→1−
ln
(
cos πx2

)
1

ln x

=
[
type

−∞
−∞ = ∞

∞
]

= lim
x→1−

1
cos πx

2

(− sin πx
2

)
π
2

− 1
ln2 x

· 1
x

= π

2
lim
x→1−

x sin πx
2 · ln2 x

cos πx2
.

Since this form is of the type 0/0, we could continue by using l'Hos-
pital's rule; instead, we will go from

lim
x→1−

x sin πx
2 · ln2 x

cos πx2
over to the product of limits

lim
x→1−

(
x sin

πx

2

)
· lim
x→1−

ln2 x

cos πx2
= 1 · lim

x→1−
ln2 x

cos πx2
.
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The theorem 5.46(2) shows that the radius of convergence of

the latter example is 1 as well because

lim
n→∞

∣∣∣∣ 1
n+1x

n+1

1
n
xn

∣∣∣∣ = x lim
n→∞

∣∣∣∣ n

n+ 1

∣∣∣∣ = x.

For x = 1, we get the series 1 + 1
2 + 1

3 + . . . , which is

divergent: By gradually summing up the 2k−1 adjacent terms

1/2k−1, . . . , 1/(2k − 1) and replacing each of them by 2−k (thus
they total up to 1/2), we can bound the partial sums from below

by the sum of these 1/2's. Since the bound from below diverges to

in�nity, so does the original series.

On the other hand, the series T (−1) = −1 + 1
2 − 1

3 + . . .

converges although it, of course, cannot converge absolutely. This

follows from a more general theorem which will be introduced in

the next chapter.

5.50. Trigonometric functions. With the power series, our so-

ciety of functions increased by a lot of new examples of

smooth functions, i. e. functions which are arbitrarily

many times di�erentiable on the whole of their domains.

Moreover, all of these additions to out menagerie have the

property (similarly to polynomials) that the formula which de�nes

them in fact de�nes a function C → C.
Indeed, our reasoning about the absolute convergence holds

�awlessly for series of complex numbers as well. Therefore, the

power series will be convergent when we replace x with any com-

plex number lying inside the disc with radius r centered at the ori-

gin of the complex plane.

Let us, for a while, play with the most important example, the

exponential function

ex = 1 + x + 1
2
x2 + · · · + 1

n!
xn + . . . .

This power series has in�nite radius of convergence, so it de-

�nes a smooth function for all complex numbers x. Its values are

the limits of values of (complex) polynomials with real coe�cients

and each polynomial is completely determined by �nitely many of

its values. Especially, the values of the power series are completely

determined on the complex domain by their values at real input

values x. Therefore, the complex exponential must also satisfy the

usual formulas which we have already derived for the real values

x. In particular, we have

ex+y = ex · ey,

see (5.5) and the theorem 5.45(3). Let us substitute the values x =
i · t, where i ∈ C is the imaginary unit, t ∈ R arbitrary.

eit = 1 + it − 1
2
t2 − i

1
3!
t3 + 1

4!
t4 + i

1
5!
t5 − . . .

and apparently, the conjugate number to z = eit is the number

z̄ = e−it . Hence

|z|2 = z · z̄ = eit · e−it = e0 = 1

and all the values z = eit lie on the unit circle (centered at the

origin) in the complex plane.

The real and imaginary parts of the points lying on the unit

circle have been described using the trigonometric functions cos θ
and sin θ , where θ is the corresponding angle.
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Only now we apply l'Hospital's rule for

lim
x→1−

ln2 x

cos πx2
=
[
type

0
0

]
= lim

x→1−
2 ln x · 1

x(−π
2

)
sin πx

2

= 0
−π

2

= 0.

Altogether, we have

lim
x→1−

(
ln x · ln

(
cos

πx

2

))
= π

2
· 1 · 0 = 0,

i. e.

lim
x→1−

(
cos

πx

2

)ln x = e0 = 1.

□

5.101. As we have implicitly mentioned, using l'Hospital's rule can

lead to a non-existing limit even though the original limit exists: De-

termine the limit

lim
x→∞

x + sin x
x

Solution. The limit is of the type ∞
∞ , by l'Hospital's rule, we get that

lim
x→∞

x + sin x
x

= lim
x→∞

1 + cos x
1

,

and since the limit limx→∞ cos x does not exist, nor does the limit

limx→∞ 1 + cos x. However, the original limit exists because

x − 1
x

≤ x + sin x
x

≤ x + 1
x

,

and by the squeeze theorem,

1 = lim
x→∞

x + sin x
x

≤ lim
x→∞

x + sin x
x

≤ lim
x→∞

x + 1
x

= 1.

□

5.102. Determine

lim
x→+∞

ln x
x
, lim

x→0+
x ln

1
x
, lim

x→0+
x e

1
x ;

lim
x→0−

x e− 1
x , lim

x→0

e− 1
x2

x100
, lim

x→+∞ (ln x − x) ;

lim
x→+∞

x

x + ln x · cos x
, lim

x→+∞

3
√
x + 1

5
√
x + 3

, lim
x→+∞

x√
x2 + 1

.

Solution. It can easily be shown (for instance, by n-fold use of l'Hos-

pital's rule) that for any n ∈ N, it holds that

lim
x→+∞

xn

ex
= 0, i. e. lim

x→+∞
ex

xn
= +∞.

The squeeze theorem implies the following generalization for real num-

bers a > 0:

lim
x→+∞

xa

ex
= 0, i. e. lim

x→+∞
ex

xa
= +∞.
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Di�erentiating the parametric description of the points of a

circle t 7→ eit , we get the vectors of "velocities" which will be

given by the formula (if we do not believe that the power series

can be di�erentiated term by term yet, we can instead di�erentiate

the real part and the imaginary part separately) t 7→ (
eit )′ = i ·e it ,

so their will keep the unit size. Hence we can deem that the whole

circle will be traversed when the value of the parameter reaches the

length of the circle, i. e. 2π (a thorough de�nition of the length of

a curve needs integral calculus, then we will be able to verify this

statement). This procedure can be used to de�ne the number π ,

sometimes also called Archimedes' constant or Ludolphian num-

ber 5 half the length of the unit circle in the Euclidean plane R2.

Now, we can at least partially convince ourselves by a look at

the least positive roots of the real part of the partial sums of our

series, i. e. the corresponding polynomials. Already with order

ten, we get the number π with accuracy of 5 decimal places.

Thus we obtain the de�nition of trigonometric functions in

terms of the power series:

cos t = re eit = 1 − 1
2
t2 + 1

4!
t4 − 1

6!
t6 +

· · · + (−1)k
1

(2k)!
t2k + . . .

sin t = im eit = t − 1
3!
t3 + 1

5!
t5 − 1

7!
t7 +

· · · + (−1)k
1

(2k + 1)!
t2k+1 + . . .

The following picture illustrates the convergence of the series

for the cosine function. It is the graph of the corresponding polyno-

mial of degree 68. Gradually drawing the partial sums, we can see

that the approximation near zero is very good and hardly changes

at all. As the order increases, the approximation gets better farther

from the origin as well.

5This number describes the ratio of the circumference to the diameter of an

(arbitrary) circle. It was known to Babylonians and Greeks as early as the ancient

times. The term Ludolphian number is derived from the name of German mathe-

matician Ludolph van Ceulen of the 16th century, who produced 35 digits of the

decimal expansion of the number, using the method of inscribed and circumscribed

regular polygons, invented by Archimedes.
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Taking into account that the graphs of the functions y = ex and y =
ln x (the inverse function to y = ex) are symmetric with regard to the

line y = x, we further see that

lim
x→+∞

ln x
x

= 0, i. e. lim
x→+∞

x

ln x
= +∞.

Thus we have obtained the �rst result. That could also be derived

from l'Hospital's rule because

lim
x→+∞

ln x
x

= lim
x→+∞

1
x

1
= lim

x→+∞
1
x

= 0.

Let us point out that l'Hospital's rule can be used to calculate all of the

following �ve limits. However, it is possible to determine these limits

by much simpler means. For instance, the substitution y = 1/x leads
to

lim
x→0+

x ln
1
x

= lim
y→+∞

ln y
y

= 0;

lim
x→0+

x e
1
x = lim

y→+∞
ey

y
= +∞.

Of course, x → 0+ gives y = 1/x → +∞ (we write 1/+ 0 = +∞).

By the substitutions u = −1/x, v = 1/x2 we get that, respec-

tively,

lim
x→0−

x e− 1
x = lim

u→+∞ −eu

u
= −∞;

lim
x→0

e− 1
x2

x100
= lim

v→+∞
v50

ev
= 0,

where x → 0− corresponds to u = −1/x → +∞ (we write −1/ −
0 = +∞) and then x → 0 to v = 1/x2 → +∞ (again 1/+0 = +∞).

We have also clari�ed that

lim
x→+∞ (ln x − x) = lim

x→+∞ −x = −∞.

Potential doubts can be scattered by the limit

lim
x→+∞

ln x − x

ln x
= lim

x→+∞

(
1 − x

ln x

)
= −∞,

which proves that even when decreasing the absolute value of the con-

sidered expression (without changing the sign), the absolute value of

the expression remains unbounded.

We can equally easily determine

lim
x→+∞

x

x + ln x · cos x
= lim

x→+∞
x

x
= 1;

lim
x→+∞

3
√
x + 1

5
√
x + 3

= lim
x→+∞

3
√
x

5
√
x

= +∞;

lim
x→+∞

x√
x2 + 1

= lim
x→+∞

x√
x2

= 1.

We have seen that the l'Hospital's rule may not be the best method for

calculating limits of types 0/0, ∞/∞. The three preceding exercises

illustrate that it even cannot be applied in all cases (for indeterminate
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The well-known formula

eit e−it = sin2 t + cos2 t = 1

follows straight from the de�nition. Further, from the derivative

(eit )′ = i eit we can see that

(sin t)′ = cos t, (cos t)′ = − sin t.

Of course, this result can also be veri�ed by di�erentiating our

series term by term.

Let t0 denote the least positive number for which e−it0 =
− eit0 , i. e. the �rst positive zero point of the function cos t. Ac-
cording to out de�nition of π , we have t0 = 1

2π .

The square of this value is ei2t0 = e−i2t0 = (e−it0)2, and so it
is a zero point of the function sin t. Of course, for any t, it holds
that

ei(4kt0+t) = (eit0)4k · eit = 1 · eit .

Therefore, both trigonometric functions sin and cos are periodic,
with period 2π . Right from our de�nitions, we can see that this is

their prime period.

Nowwe can easily derive all the usual formulae connecting the

trigonometric functions. We will, for illustration, introduce some

of them. First, let us notice that the de�nition says that

cos t = 1
2
(eit + e−it )(5.12)

sin t = 1
2i
(eit − e−it ).(5.13)

Thus the product of these functions can be expressed as

sin t cos t = 1
4i
(eit − e−it )(eit + e−it )

= 1
4i
(ei2t − e−i2t ) = 1

2
sin 2t.

Further, we can utilize our knowledge of derivatives:

cos 2t = (
1
2

sin 2t)′ = (sin t cos t)′ = cos2 t − sin2 t.

The properties of further trigonometric functions

tan t = sin t
cos t

, cot t = (tan t)−1

can easily be derived from their de�nitions and the formulae for

derivatives. The graphs of the functions sine, cosine, tangent, and

cotangent are displayed on the pictures (they are the red one and

the green one on the left, and the red one and the green one on the

right, respectively):
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forms). If we had applied it to the �rst problem, we would have ob-

tained, for x > 0, the quotient

1
1 + cos x

x
− ln x · sin x

= x

x + cos x − x ln x · sin x
,

which is more complicated than the original one. The limit for x →
+∞ does not even exist, so one of the prerequisites of l'Hospital's

rule is not satis�ed. In the second case, any number of multiple uses

of l'Hospital's rule leads to indeterminate forms. For the last problem,

l'Hospital's rule sends us back to the original limit: �rst it gives the

fraction
1
2x

2
√
x2+1

=
√
x2 + 1
x

and then
2x

2
√
x2+1

1
= x√

x2 + 1
.

From here, we can deduce that the limit equals 1 (we are looking for

a non-negative real number a ∈ R such that a = a−1) only if we have

already shown it exists at all. □
Other examples concerning calculation of limits by l'Hospital's

rule can be found at page 331.

H. In�nite series

In�nite series naturally appear in a series (of problems).

5.103. Sierpi«ski carpet. The unit squares is divided into nine equal

squares and the middle one is removed. Each of

the eight remaining squares is again divided into

nine equal subsquares and the middle subsquare

(of each of the eight squares) is removed again. Having applied this

procedure ad in�nitum, determine the area of the resulting �gure.

Solution. In the �rst step, a square having the area of 1/9 is removed.

In the second steps, eight squares (each having the area of 9−2, i. e.

totaling to 8 · 9−2) are removed. Every further iteration removes eight

times more squares than in the previous steps, but the squares are nine

times smaller. The sum of areas of all the removed squares is

1
9 + 8

92 + 82

93 + · · · =
∞∑
n=0

8n

9n+1 .

The area of the remaining �gure (known as Sierpi«ski carpet) thus

equals

1 −
∞∑
n=0

8n

9n+1 = 1 − 1
9

∞∑
n=0

( 8
9

)n = 1 − 1
9 · 1

1− 8
9

= 0.

□
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Cyclometric functions are the functions inverse to trigonomet-

ric functions. Since the trigonometric functions all have period

2π , their inverses can be de�ned only inside one period, and fur-

ther only on the part where the given function is either increasing

or decreasing. The inverse trigonometric functions are

arcsin = sin−1

with domain [−1, 1] and range [−π/2, π/2]. Then

arccos = cos−1

with domain [−1, 1] and range [0, π ], see the left-hand picture.

3

2
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x
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3

2

1

x

0

-1

1050-5-10

The remaining functions are (displayed in the picture on the

right)

arctan = tan−1

with domain R and range (−π/2, π/2), and �nally
arccot = cot−1

with domain R and range (0, π).
The so-called hyperbolic functions are also of great impor-

tance in practice, namely

sinh x = 1
2
(ex − e−x), cosh x = 1

2
(ex + e−x).

The name indicates that they should have something in common

with a hyperbola. A straight calculation gives (the squares cancel

out and only the mixed terms remain)

(cosh x)2 − (sinh x)2 = 2
1
2
(ex e−x) = 1.

The points [cosh t, sinh t] ∈ R2 indeed parametrically describe

a hyperbola in the plane. For hyperbolic functions, one can eas-

ily derive identities similar to the ones for trigonometric functions.

Among many of them, we can easily see from the de�nition (by

substituting into (5.12) and (5.13)) that

cosh x = cos(ix), i sinh x = sin(ix).
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5.104. Koch snow�ake, 1904. Create a "snow�ake" by the follow-

ing procedure: At the beginning, consider an equilateral triangle with

sides of length 1. With each of its three sides, do the following: Cut it

into three equally long parts, build another equilateral triangle above

(i. e. pointing out from, not into, the original triangle) the middle

part and remove the middle part. This transforms the original equi-

lateral triangle into a six-pointed star. Once again, repeat this step ad

in�nitum, thus obtaining the desired snow�ake. Prove that the created

�gure has in�nite perimeter. Then determine its area.

Solution. The perimeter of the original triangle is equal to 3. In each
step, the perimeter increases by one third since three parts of every line

segment are replacedwith four equally long ones. Hence it follows that

the snow�ake's perimeter can be expressed as the limit

dn = 3
( 4

3

)n
and lim

n→∞ dn = +∞.

The �gure's area is apparently increasing during the construction.

To determine it, it thus su�ces to catch the rise between two consecu-

tive steps. The number of the �gure's sides is four times higher every

step (the line segments are divided into thirds and one of them is dou-

bled) and the new sides are three times shorter. The �gure's area thus

grows exactly by the equilateral triangles glued to each side (so there

is the same number of them as of the sides). In the �rst iteration (when

creating the six-pointed star from the original triangle), the area grows

by the three equilateral triangles with sides of length 1/3 (one third

of the original sides' length). Let us denote the area of the original

equilateral triangle by S0. If we realize that shortening an equilateral

triangle's sides three times makes its area decrease nine times, we get

S0 + 3 · S0
9 .

for the area of the six-pointed star. Similarly, in the next step we obtain

the area of the �gure as

S0 + 3 · S0
9 + 4 · 3 · S0

92 .

Now it is easy to deduce that the area of the resulting snow�ake

equals the limit

lim
n→∞

(
S0 + 3 · S0

9 + 4 · 3 · S0
92 + · · · + 4n · 3 · S0

9n+1

) =
S0 lim

n→∞

(
1 + 1

3 + 1
3 · 4

9 + · · · + 1
3 · ( 4

9

)n) =
S0

[
1 + 1

3 lim
n→∞

(
1 + 4

9 + · · · + ( 4
9

)n)] = S0

[
1 + 1

3 lim
n→∞

n∑
k=0

( 4
9

)k] =

S0

[
1 + 1

3

∞∑
k=0

( 4
9

)k] = S0

[
1 + 1

3 · 1
1− 4

9

]
= 8

5 S0.

The snow�ake's area is thus equal to 8/5 of the area of the original

triangle, i. e.

8
5 S0 = 8

5 ·
√

3
4 = 2

√
3

5 .
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5.51. Notes. (1) If a power series S(x) is expressed with the value

of the variable x moved by a constant o�set x0, we

arrive at the function T (x) = S(x − x0). If ρ is the

radius of convergence of S, then T will bewell-de�ned

on the interval (x0 − ρ, x0 + ρ). We say that T is a

power series centered at x0.

The power series can be de�ned in the following way:

S(x) =
∞∑
n=0

an(x − x0)
n,

where x0 is an arbitrary �xed real number. All of our previous

reasonings are still valid, wemust only be aware of the fact that they

relate to the point x0. Especially, such a power series converges on

the interval (x0 − ρ, x0 + ρ), where ρ is its radius of convergence.

Further, it holds that if a power series y = T (x) has its values

in an interval where a power series S(y) is well-de�ned, then the

values of the function S ◦ T are also described by a power series

which can be obtained by formal substitution of y = T (x) for y

into S(y).

(2) As soon as we have power series with a general center at

our disposal, we can calculate the coe�cients of the power series

for inverse functions straightaway. We will not introduce a list of

formulae here, it can easily be obtained in Maple, for instance, by

the procedure "series". For illustration, we will have a look at two

examples:

We have seen that

ex = 1 + x + 1
2
x2 + 1

6
x3 + 1

24
x4 + . . . .

Since e0 = 1, we will search for a power series centered at x = 1
for the inverse function ln x, i. e.

ln x = a0 +a1(x−1)+a2(x−1)2 +a3(x−1)3 +a4(x−1)4 +. . . .
Applying the equality x = eln x , regrouping the coe�cients by the

powers of x and substituting, we get:

x = a0 + a1

(
x + 1

2
x2 + 1

6
x3 + 1

24
x4 + . . .

)
+ a2

(
x + 1

2
x2 + . . .

)2

+ a3

(
x + 1

2
x2 + . . .

)3

+ . . .

= a0 + a1x +
(

1
2
a1 + a2

)
x2 +

(
1
6
a1 + a2 + a3

)
x3

+
(

1
24
a1 +

(
1
4

+ 2
6

)
a2 + 3

2
a3 + a4

)
x4 + . . . .

Confronting the coe�cients at the corresponding powers on both

sides, we get

a0 = 0, a1 = 1, a2 = −1
2
, a3 = 1

3
, a4 = −1

4
, . . .

which indeed corresponds to the valid expression (will be veri�ed

later):

ln x =
∞∑
n=1

(−1)n−1

n
(x − 1)n.

Similarly, we can play with the series

sin t = t − 1
3!
t3 + 1

5!
t5 − 1

7!
t7 + . . .
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Let us notice that this snow�ake is an example of an in�nitely long

curve which encloses a �nite area. □

5.105. Calculate the series

(a)
∞∑
n=1

(
1√
n

− 1√
n+1

)
;

(b)
∞∑
n=0

5
3n ;

(c)
∞∑
n=1

( 3
42n−1 + 2

42n

) ;
(d)

∞∑
n=1

n
3n ;

(e)
∞∑
n=0

1
(3n+1)(3n+4) .

Solution. The case (a). From the de�nition, the series is equal to
∞∑
n=1

(
1√
n

− 1√
n+1

)
=

lim
n→∞

((
1√
1

− 1√
2

)
+
(

1√
2

− 1√
3

)
+ · · · +

(
1√
n

− 1√
n+1

))
=

lim
n→∞

(
1 +

(
− 1√

2
+ 1√

2

)
+ · · · +

(
− 1√

n
+ 1√

n

)
− 1√

n+1

)
= 1.

The case (b). Apparently, this sequence is a quintuple of the stan-

dard geometric series with the common ratio q = 1/3, hence
∞∑
n=0

5
3n = 5

∞∑
n=0

( 1
3

)n = 5 · 1
1− 1

3
= 15

2 .

The case (c). We have that (with the substitution m = n− 1)
∞∑
n=1

( 3
42n−1 + 2

42n

) = 3
4

∞∑
n=1

( 1
42n−2

)+ 2
16

∞∑
n=1

( 1
42n−2

) =( 3
4 + 2

16

) ∞∑
m=0

1
42m = 14

16

∞∑
m=0

( 1
16

)m = 14
16 · 1

1− 1
16

= 14
15 .

The series of linear combinations was expressed as a linear combina-

tion of series (to be more precise, as a sum of series with factoring out

the constants), which is a valid modi�cation supposing the obtained

series are absolutely convergent.

The case (d). From the partial sum

sn = 1
3 + 2

32 + 3
33 + · · · + n

3n , n ∈ N,

we immediately get that
sn
3 = 1

32 + 2
33 + · · · + n−1

3n + n

3n+1 , n ∈ N.

Therefore,

sn − sn
3 = 1

3 + 1
32 + 1

33 + · · · + 1
3n − n

3n+1 , n ∈ N.

Since lim
n→∞

n

3n+1 = 0, we get that
∞∑
n=1

n
3n = lim

n→∞
3
2

(
sn − sn

3

) = 3
2 lim
n→∞

n∑
k=1

1
3k =

3
2

∞∑
k=1

( 1
3

)k = 3
2

(
1

1− 1
3

− 1
)

= 3
4 .

The case (e). It su�ces to use the form (this is the so-called partial

fraction decomposition)
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and the (unknown so far) series for its inverse (note that we are

looking for a series centered at zero again because we have sin 0 =
0)

arcsin t = a0 + a1t + a2t
2 + a3t

3 + a4t
4 + . . . .

Substitution gives

t = a0 + a1

(
t − 1

3!
t3 + 1

5!
t5 + . . .

)
+

a2

(
t − 1

3!
t3 + 1

5!
t5 + . . .

)2

+ . . .

= a0 + a1t + a2t
2 +

(
−1

6
a1 + a3

)
t3+(

−2
6
a2 + a4

)
t4 +

(
1

120
a1 − 3

6
a3 + a5

)
t5 + . . . ,

hence

arcsin t = t + 1
6
t3 + 3

40
t5 + . . . .

(3) We can also notice that if we believed right from the be-

ginning that the function ex can be expressed as a power series

centered at zero and that power series can be di�erentiated term by

term, thenwewould easily obtained the di�erential equation for the

coe�cients an as we know that (xn+1 )′ = (n + 1)xn . Therefore,
from the condition that the exponential function has its derivative

equal to its value at every point, it follows that

an+1 = 1
n+1an, a0 = 1

and hence it is clear that an = 1
n! .
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1
(3n+1)(3n+4) = 1

3 · 1
3n+1 − 1

3 · 1
3n+4 , n ∈ N ∪ {0},

which gives
∞∑
n=0

1
(3n+1)(3n+4) =

lim
n→∞

1
3

(
1 − 1

4 + 1
4 − 1

7 + 1
7 − 1

10 + · · · + 1
3n+1 − 1

3n+4

)
= lim

n→∞
1
3

(
1 − 1

3n+4

) = 1
3 .

□

5.106. Verify that
∞∑
n=1

1
n2 <

∞∑
n=0

1
2n .

Solution. We can immediately see that

1 ≤ 1, 1
22 + 1

32 < 2 · 1
22 = 1

2 ,
1
42 + 1

52 + 1
62 + 1

72 < 4 · 1
42 = 1

4 ,

or, in general:
1

(2n)2
+ · · · + 1

(2n+1−1)2 < 2n · 1
(2n)2

= 1
2n , n ∈ N.

Hence (by comparing the terms of both of the series) we get the wanted

inequality, from which, by the way, it follows that the series
∑∞

n=1
1
n2

converges absolutely.

Eventually, let us specify that
∞∑
n=1

1
n2 = π2

6 < 2 =
∞∑
n=0

1
2n .

□

5.107. Examine convergence of the series
∞∑
n=1

ln n+1
n
.

Solution. Let us try to add up the terms of this series. We have that
∞∑
n=1

ln n+1
n

= lim
n→∞

(
ln 2

1 + ln 3
2 + ln 4

3 + · · · + ln n+1
n

) =
lim
n→∞ ln 2·3·4···(n+1)

1·2·3···n = lim
n→∞ ln (n+ 1) = +∞.

Thus the series diverges to +∞. □

5.108. Prove that the series
∞∑
n=0

arctg n2+2n+3
√
n+4

n+1 ;
∞∑
n=1

3n+1
n3+n2−n

do not converge.

Solution. Since

lim
n→∞ arctg n2+2n+3

√
n+4

n+1 = lim
n→∞ arctg n2

n
= π

2

and

lim
n→∞

3n+1
n3+n2−n = lim

n→∞
3n

n3 = +∞,

the necessary condition lim
n→∞ an = 0 for the series

∑∞
n=n0

an to con-

verge does not hold in either case. □
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5.109. What is the series
∞∑
n=2

1
n√ln n

?

Solution. From the inequalities (consider the graph of the natural log-

arithm)

1 ≤ ln n ≤ n, n ≥ 3, n ∈ N,

it follows that
n
√

1 ≤ n
√

ln n ≤ n
√
n, n ≥ 3, n ∈ N.

By the squeeze theorem,

lim
n→∞

n
√

ln n = 1, i. e. lim
n→∞

1
n√ln n

= 1.

Thus the series does not converge. As its terms are non-negative, it

must diverge to +∞. □

5.110. Determine whether the series

(a)
∞∑
n=0

1
(n+1)·3n ;

(b)
∞∑
n=1

n2+1
n3 ;

(c)
∞∑
n=1

1
n−ln n

converge.

Solution. All of the three enlisted series consist of non-negative terms

only, so the series is either �nite (i. e. converges), or diverges to +∞.

We have that

(a)
∞∑
n=0

1
(n+1)·3n ≤

∞∑
n=0

( 1
3

)n = 1
1− 1

3
< +∞;

(b)
∞∑
n=1

n2+1
n3 ≥

∞∑
n=1

n2

n3 =
∞∑
n=1

1
n

= +∞;

(c)
∞∑
n=1

1
n−ln n ≥

∞∑
n=1

1
n

= +∞.

Hence it follows that the series (a) converges; (b) diverges to +∞; (c)

diverges to +∞. □
More interesting exercises concerning series can be found at page

332.

I. Power series

In the previous chapter, we examined whether it makes sense to

assign a value to a sum of in�nitely many numbers. Now we will turn

our attention to the problem what sense the sum of in�nitely many

functions may have.

5.111. Determine the radius of convergence of the following power

series:

i)
∞∑
n=1

2n

n
xn
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ii)
∞∑
n=1

1
(1+i)n x

n

Solution.

i) From we get that

r = 1

lim sup
n→∞

∣∣∣ an+1
an

∣∣∣ = 1
2
.

Thus the power series converges exactly for the real numbers

x ∈ (− 1
2 ,

1
2) (alternatively, the complex numbers |x| < 1

2 ).

Let us notice that the series diverges for x = 1
2 (it is har-

monic), but on the other hand, it converges for x = − 1
2 (al-

ternating harmonic series). To determine the convergence

for any x lying in the complex plane on the circle of radius 1
2

is a much harder question which goes beyond our lectures.

ii)

r = lim sup
n→∞

∣∣∣∣∣ n

√
1

(1 + i)n

∣∣∣∣∣ = lim sup
n→∞

∣∣∣∣ 1
1 + i

∣∣∣∣ =
√

2
2
,

□

5.112. Determine the radius r of convergence of the power series

(a)
∞∑
n=1

(−1)n+1

n·8n xn ;

(b)
∞∑
n=1

(−4n)n xn ;

(c)
∞∑
n=1

(
1 + 1

n

)n2

xn ;

(d)
∞∑
n=1

n5

(2+(−1)n)n x
n .

Solution. It holds that

(a) lim
n→∞

n
√| an | = lim

n→∞
1

n
√
n·8 = 1

8 ;
(b) lim

n→∞
n
√| an | = lim

n→∞ 4n = +∞;
(c) lim

n→∞
n
√| an | = lim

n→∞
(
1 + 1

n

)n = e;
(d) lim sup

n→∞
n
√| an | = lim sup

n→∞

n√
n5

2+(−1)n = lim sup
n→∞

(
n

√
n

)5

2+(−1)n = 1.

Therefore, the radius of convergence is (a) r = 8, (b) r = 0, (c) r =
1/e, (d) r = 1. □

5.113. Calculate the radius r of convergence of the power series
∞∑
n=1

ein
3√
n3+n·3n

3√
n4+2n3+1·πn

(x − 2)n.

Solution. The radius of convergence of any power series does not

change if we move its center or alter its coe�cients while keeping their

absolute values. Therefore, let us determine the radius of convergence

of the series
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∞∑
n=1

3√
n3+n·3n

3√
n4+2n3+1·πn

xn .

Since

lim
n→∞

n
√
na =

(
lim
n→∞

n
√
n
)a = 1 for a > 0,

we can move to the series
∞∑
n=1

3n

πn x
n

with the same radius of convergence r = π/3. □

5.114. Give an example of a power series centered at the origin

which, on the interval (−3, 3), determines the function
1

x2−x−12 .

Solution. As
1

x2−x−12 = 1
(x−4)(x+3) = 1

7

( 1
x−4 − 1

x+3

)
and

1
x−4 = − 1

4
1− x

4
= − 1

4

(
1 + x

4 + x2

42 + · · · + xn

4n + · · ·
)
,

1
x+3 = 1

3
1−(− x

3
) = 1

3

(
1 − x

3 + x2

32 + · · · + (−x)n
3n + · · ·

)
,

we get

1
x2−x−12 = − 1

28

∞∑
n=0

xn

4n − 1
21

∞∑
n=0

(−x)n
3n =

∞∑
n=0

(
(−1)n+1

21·3n − 1
28·4n

)
xn .

□

5.115. Approximate the number sin 1◦ with error less than 10−10.

Solution. We know that

sin x = x − 1
3! x

3 + 1
5! x

5 − 1
7! x

7 + · · · =
∞∑
n=0

(−1)n

(2n+1)! x
2n+1 , x ∈ R.

Substituting x = π/180 gives us that the partial sums on the right side
will approximate sin 1◦. It remains to determine the su�cient number

of terms to add up in order to provably get the error below 10−10. The

series
π

180 − 1
3!

(
π

180

)3 + 1
5!

(
π

180

)5 − 1
7!

(
π

180

)7 + · · · =
∞∑
n=0

(−1)n

(2n+1)!

(
π

180

)2n+1

is alternating with the property that the sequence of the absolute values

of its terms is decreasing. If we replace any such convergent series with

its partial sum, the error we thus make will be less than the absolute

value of the �rst term not included in the partial sum. (We do not give

a proof of this theorem.) The error of the approximation

sin 1◦ ≈ π
180 − π3

1803·3!

is thus less than
π5

1805·5! < 10−10.

□

5.116. Determine the radius r of convergence of the power series
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∞∑
n=0

22n·n!
(2n)! x

n .

⃝
5.117. Calculate the radius of convergence for

∑∞
n=1 2

√
n xn . ⃝

5.118. Without calculation determine the radius of convergence of the

power series
∞∑
n=1

5
n·3n−1 x

n−1 .

⃝
5.119. Find the domain of convergence of the power series

∞∑
n=1

√
n+1

3
√

n
xn .

⃝
5.120. Determine for which x ∈ R the power series

∞∑
n=1

(−3)n√
n4+2n3+111

(x − 2)n

converges. ⃝
5.121. Is the radius of convergence of the power series

∞∑
n=0

an x
n ,

∞∑
n=1

an−1
n
xn

common to all sequences {an}∞n=0 of real numbers? ⃝
5.122. Decide whether the following implications hold:

(a) If the limit lim
n→∞

3n
√
a2
n exists and is �nite, then the power se-

ries
∞∑
n=1

an(x − x0)
n

converges absolutely at at least two distinct points x.

(b) Conditional convergence of series
∑∞

n=1 an,
∑∞

n=1 bn implies

that the series
∑∞

n=1(6an − 5bn) converges as well.
(c) If a series

∑∞
n=0 an satis�es

lim
n→∞ a

2
n = 0,

then it is convergent.

(d) If a series
∑∞

n=1 a
2
n converges, then the series

∞∑
n=1

an
n

converges absolutely.

⃝
5.123. Approximate cos π

10 with error less than 10−5. ⃝
5.124. For the convergent series
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∞∑
n=0

(−1)n√
n+100 ,

bound the error of its approximation by the partial sum s9 999. ⃝
5.125. Express the function y = ex , de�ned on the whole real line, as

an in�nite polynomial whose terms are of the form an(x − 1)n. Then
express the function y = 2x de�ned on R as an in�nite polynomial

with terms anxn . ⃝
5.126. Find the function f to which, for x ∈ R, the sequence of func-
tions

fn(x) = n2x3

n2x2+1 , n ∈ N.

converges. Is this convergence uniform on R? ⃝
5.127. Does the series

∞∑
n=1

n x

n4+x2 , kde x ∈ R,

converge uniformly on the real line? ⃝
5.128. Approximate

(a) the cosine of ten degrees with accuracy of at least 10−5;

(b) the de�nite integral
∫ 1/2

0
dx

x4+1 with accuracy of at least 10−3.

⃝
5.129. Determine the power series centered at x0 = 0 of the function

f (x) =
x∫
0
et

2
dt, x ∈ R.

⃝
5.130. Using the integral test, �nd the values a > 0 for which the

series
∞∑
n=1

1
na

converges. ⃝
5.131. Determine for which x ∈ R the series

∞∑
i=1

1
2n · n · ln(n)

x3n

converges. ⃝
5.132. Determine all x ∈ R for which the power series

∞∑
i=1

x2n

n2 is con-

vergent. ⃝

Solution. For x ∈ [−1, 1]. □

5.133. For which x ∈ R does the series
∞∑
n=1

ln(n!)
nx
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converge? ⃝
5.134. Determine whether the series

∞∑
n=1

(−1)n−1tan 1
n
√
n

converges absolutely, converges conditionally, diverges to +∞, di-

verges to −∞, or none of the above. (such a series is sometimes said

to be oscillating). ⃝
5.135. Calculate the series

∞∑
n=1

1
n·3n

with the help of an appropriate power series. ⃝
5.136. For x ∈ (−1, 1), add

x − 4x2 + 9x3 − 16x4 + · · ·

⃝
5.137. Supposing | x | < 1, determine the series

(a)
∞∑
n=1

1
2n−1 x

2n−1 ;

(b)
∞∑
n=1

n2xn−1 .

⃝
5.138. Calculate

∞∑
n=1

2n−1
(−2)n−1

using the power series
∞∑
n=0

(−1)n (2n+ 1) x2n

for some x ∈ (−1, 1). ⃝
5.139. For x ∈ R, calculate the series

∞∑
n=0

1
2n·n! x

3n+1 .

⃝

J. Additions into the ZOO

5.140. Determine the maximal subset of R where the function

y = arctg
(
x21 + sin x

) · e
cos

(
5√
x−21+cos x

)
+x−256x3−11

2+x252

can be de�ned. ⃝
Solution.R.

5.141. Write the maximal domain of the function

y = arccos (ln x)√
x2−1

.



CHAPTER 5. ESTABLISHING THE ZOO

313

⃝
Solution. (1, e].

5.142. Determine the domain and the range of the function

y = x−1
2−3x .

Then determine the function inverse to this one. ⃝
Solution.

(−∞, 2
3

) ∪ ( 2
3 ,+∞)

;
(−∞,− 1

3

) ∪ (− 1
3 ,+∞)

; y = 2x+1
3x+1 ,

x ̸= − 1
3 .

5.143. Is the function

(a) y = cos x
x3 ;

(b) y = cos x
x3 + 1;

(c) y = cos x
x4 ;

(d) y = cos x
x4 + 1;

(e) y = sin x + tan x
2 ;

(f) y = ln 1+x
1−x ;

(g) y = sinh x = ex−e−x

2 ;
(h) y = cosh x = ex+e−x

2

with the maximal domain odd? ⃝
Solution. (a) yes; (b) no; (c) no; (d) no; (e) yes; (f) yes; (g) yes; (h) no.

5.144. Is the function

(a) y = cos x
x3 ;

(b) y = cos x
x3 + 1;

(c) y = cos x
x4 ;

(d) y = cos x
x4 + 1;

(e) y = sin x + tan x
2 ;

(f) y = ln 1+x
1−x ;

(g) y = sinh x = ex−e−x

2 ;
(h) y = cosh x = ex+e−x

2

with the maximal domain even? ⃝
5.145. Determine whether the function

(a) y = sin x · ln | x |;
(b) y = arccotg x;

(c) y = x8 − 5
√

3x6 + 3x2 − 6;
(d) y = cos (π − x) ;

(e) y = tan x+x
3+7 cos x

with the maximal domain is odd and whether it is even. ⃝
5.146. Is the function

(a) y = ln (cos x) ;
(b) y = tan (3x) + 2 sin (6x)
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with maximal domain periodic? ⃝
5.147. Draw the graphs of the functions

f (x) = e| x |, x ∈ R; g(x) = ln | x |, x ∈ R∖ {0}.

⃝
5.148. Draw the graph of the function

y = 2−| x |, x ∈ R.

⃝
5.149. The functions

sinh x = ex−e−x

2 , x ∈ R; cosh x = ex+e−x

2 , x ∈ R;
tanh x = sinh x

cosh x
, x ∈ R; coth x = cosh x

sinh x
, x ∈ R∖ {0}

are called hyperbolic functions. Determine the derivatives of these

functions on their domains. ⃝
5.150. At any point x ∈ R, calculate the derivative of the area hyper-
bolic sine (denoted arsinh), the function inverse to the hyperbolic sine

y = sinh x on R. ⃝
Note: The inverse functions to the hyperbolic functions y =

cosh x, x ∈ [0,+∞), y = tanh x, x ∈ R and y = coth x, x ∈
(−∞, 0)∪(0,+∞) are called area hyperbolic functions (y = arsinh x

belongs to them, too). They are denoted arcosh, artanh, arcoth, re-

spectively and are de�ned for x ∈ [1,+∞), x ∈ (−1, 1), and
x ∈ (−∞,−1) ∪ (1,+∞), respectively. Let us add that

(arcosh x)′ = 1√
x2−1

, x > 1,

(artanh x)′ = 1
1−x2 , | x | < 1,

(arcoth x)′ = 1
1−x2 , | x | > 1.

5.151. Calculate:

2 + 1 + 2
2!

+ 1
3!

+ 2
4!

+ 1
5!

+ 2
6!

+ · · ·
⃝

Solution. Confronting the series with the expansions of the functions

sinh and cosh into power series, we get the result

sinh(1)+ 2 cosh(1).

□
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K. Additional exercises to the whole chapter

5.152. Determine a polynomial P(x) of the least degree possible satisfying the conditions P(1) = 1,
P(2) = 28, P(0) = 2, P ′(0) = 1, P ′(1) = 9. ⃝
5.153. Determine a polynomial P(x) of the least degree possible satisfying the conditions P(0) = 0,
P(1) = 4, P(−1) = −2, P ′(0) = 1, P ′(1) = 7. ⃝
5.154. Determine a polynomial P(x) of the least degree possible satisfying the conditions P(0) =
−1, P(1) = −1, P ′(−1) = 10, P ′(0) = −1, P ′(1) = 6. ⃝
5.155. From the de�nition of a limit, prove that

lim
x→0

(
x3 − 2

) = −2.

⃝
5.156. From the de�nition of a limit, determine

lim
x→−1

(1 + x)2 − 3
2

,

i. e. write the δ(ε)-formula as in the previous exercise. ⃝
5.157. From the de�nition of a limit, show that

lim
x→−∞

3 (x − 2)4

2
= +∞.

⃝
5.158. Determine both one-sided limits

lim
x→0+

arctan
1
x
, lim

x→0−
arctan

1
x
.

Knowing the result, decide existence of the limit

lim
x→0

arctan
1
x
.

⃝
5.159. Do the following limits exist?

lim
x→0

sin x
x3

, lim
x→0

5x4 + 1
x

⃝
5.160. Calculate the limit

lim
x→0

tan x − sin x
sin3 x

.

⃝
5.161. Determine

lim
x→π/6

2 sin3 x + 7 sin2 x + 2 sin x − 3
2 sin3 x + 3 sin2 x − 8 sin x + 3

.

⃝
5.162. For any m, n ∈ N, determine

lim
x→1

xm − 1
xn − 1

.

⃝



316

CHAPTER 5. ESTABLISHING THE ZOO

5.163. Calculate

lim
x→+∞

(√
x2 + x − x

)
.

⃝
5.164. Determine

lim
x→+∞

(
x
√

1 + x2 − x2
)
.

⃝
5.165. Calculate

lim
x→0

√
2 − √

1 + cos x
sin2 x

.

⃝
5.166. Determine

lim
x→0

sin (4x)√
x + 1 − 1

.

⃝
5.167. Calculate

lim
x→0−

√
1 + tan x − √

1 − tan x

sin x
.

⃝
5.168. Calculate

lim
x→−∞

2x + √
1 + x2 − x9 − 7x5 + 44x2

3x + 5
√

6x6 + x2 − 18x5 − 592x4
.

⃝
5.169. Let limx→−∞ f (x) = 0. Is it true that limx→−∞(f (x)·g(x)) = 0 for every increasing function
g : R → R? ⃝
5.170. Determine the limit

lim
n→∞

(
n

n+ 5

)2n−1

.

⃝
5.171. Calculate

lim
x→0−

sin x − x

x3
.

⃝
5.172. For x > e, determine the sign of the derivative of the function

f (x) = arctan ln x
−1+ln x .

⃝
Solution. f ′(x) < 0, x > e.

5.173. Determine all local extrema of the function

y = x ln2 x
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de�ned on the interval (0,+∞). ⃝
Solution.The function has a local maximum at the point x1 = e−2 and it has a local minimum at the

point x2 = 1.

5.174. Is there a real number a such that the function y = ax + sin x has a global minimum on the

interval [0, 2π] at the point x0 = 5π/4? ⃝
Solution.There is not: for a = √

2/2, there is only a local extremum at the point.

5.175. Find the absolute minimum of the function

y = e x − ln x, x > 0

on its domain. ⃝
Solution. 2 = e 1

e
− ln 1

e
.

5.176. Determine the maximum value of the function

y = 3
√

3x e−x, x ∈ R.

⃝
Solution. 1

3√e
.

5.177. Find the absolute extrema of the polynomial p(x) = x3 − 3x + 2 on the interval [−3, 2]. ⃝
Solution. 4 = p (−1) = p (2), −16 = p (−3).

5.178. Let a moving object's distance in time be given as follows:

s(t) = −(t − 3)2 + 16, t ∈ [0, 7],

where t is the time in seconds, and the distance is in meters. Determine

(a) the initial (i. e. at the time t = 0 s) speed of the object;
(b) the time and position at which its speed is zero;

(c) its speed and acceleration at the time t = 4 s.

Let us remark that the object's speed is the derivative of its position and acceleration is the derivative

of its speed. ⃝
5.179. From the de�nition of a derivative f ′ of a function f at the point x0, calculate f ′ for f (x) =√
x at any point x0 > 0. ⃝

5.180. Determine whether the derivative of the function

f (x) = x arctan 1
x
, x ∈ R∖ {0}, f (0) = 0

at the point x0 = 0 exists. ⃝
5.181. Does the derivative of the function

y = sin
(
arctan

(∣∣ 12x21 + 11
∣∣ · ecos(x+2)−x3

−11−x12

))
+ sin(sin(sin(sin x))), x ∈ R

at the point x0 = π3 + 3π exist? ⃝
5.182. Determine whether the derivative of the function

f (x) = (
x2 − 1

)
sin 1

x+1 , x ̸= −1 (x ∈ R), f (−1) = 0
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at the point x0 = −1 exists. ⃝
5.183. Give an example of a function f : R → R which is continuous on the whole real axis, but

does not have derivatives at the points x1 = 5, x2 = 9. ⃝
5.184. Find functions f and g which have derivatives at no real point, yet their composition f ◦ g is
di�erentiable at every point of the real line. ⃝
5.185. Using the basic formulae, calculate the derivative of the function

(a) y = (
2 − x2

)
cos x + 2x sin x, x ∈ R;

(b) y = sin (sin x) , x ∈ R;
(c) y = sin

(
ln
(
x3 + 2x

))
, x ∈ (0,+∞);

(d) y = 1+x−x2

1−x+x2 , x ∈ R.

⃝
5.186. By any means, determine the derivative of the function

(a) y =
√
x
√
x

√
x, x ∈ (0,+∞);

(b) y = ln
∣∣tan x

2

∣∣ , x ∈ R∖ {nπ; n ∈ Z}.

⃝
5.187. Write the derivative of the function

y = sin (sin (sin x)) , x ∈ R.

⃝
5.188. For the function

f (x) = arccos 1−x√
2

+ 3
√
x3

having the maximum possible domain, calculate f ′ on the largest subset of R where this derivative

exists. ⃝
5.189. At any point x /∈ {nπ; n ∈ Z}, determine the �rst derivative of the function y = 3

√
sin x. ⃝

5.190.For x ∈ R, di�erentiate

x
√

1 + x2 + ex
(
x2 − 2x + 2

)
.

⃝
5.191. Calculate f ′(1) if

f (x) = (x − 1)(x − 2)2(x − 3)3, x ∈ R.

⃝
5.192. Determine the derivative of the function

y = 3
√

1+x3

1−x3 , | x | ̸= 1 (x ∈ R).
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⃝
5.193. Di�erentiate (with respect to the real variable x)

x ln2
(
x + √

1 + x2
)

− 2
√

1 + x2 ln
(
x + √

1 + x2
)

+ 2x

at all points where the derivative exists. Simplify the obtained expression. ⃝
5.194. Determine f ′ on a maximal set if f (x) = logx e. ⃝
5.195. Express the derivative of the product of four functions[

f (x)g(x)h(x)k(x)
] ′

as a sum of products of their derivatives and themselves, supposing all of these functions are di�er-

entiable. ⃝
5.196. Determine the derivative of the function

y = x3 (x+1)2 3√
x+2

(x+3)2

for x > 0. ⃝

5.197. A highway patrol helicopter is �ying 3 kilometers above a highway at the speed of 120 kph.

Its pilot localizes a car whose straight-line distance from the helicopter is 5 kilometers and which is

approaching it at 160 kph (with regard to the helicopter). Determine the car's speed with regard to a

tin lying on the highway.

Solution. For the sake of simplicity, we will omit units of measurement (distances will be expressed

in kilometers and times in hours, speeds in kph, then). The helicopter's position at time t can be

expressed by the point [y(t), 3], and the car's position by [x(t), 0], then. (We choose the axes so

that the helicopter and the car are moving along the x-axis.) Let us denote by s(t) the straight-line

distance of the car from the helicopter and by t0 the moment mentioned in the problem's statement.

Let us calculate the car's speed with respect to the origin. We can suppose that x(t) > y(t) > 0, then
x′ (t) ≤ 0, y′ (t) ≥ 0 for the considered time moments t since the car is approaching the point [0, 0]
from the right � the value x(t) decreases as t increases, therefore x′ (t) ≤ 0. Similarly we can get that
y′ (t) ≥ 0 and also s′ (t) ≤ 0. Let us add that, for instance, y′ (t) determines the rate of change of the
function y at time t, i. e. the helicopter's speed

We know that

s (t0) = 5, s′ (t0) = −160, y′ (t0) = 120

and that (s(t) is the hypotenuse of the right triangle)

(5.9) (x(t)− y(t)) 2 + 32 = s2 (t).

Hence it follows (x(t) > y(t) > 0) that

(x (t0)− y (t0))
2 + 32 = 52, i. e. x (t0)− y (t0) = 4.

By di�erentiating the identity (∥5.9∥), we get
2 (x(t)− y(t))

(
x′ (t)− y′ (t)

) = 2s(t)s′ (t)

and then for t = t0,

2 · 4
(
x′ (t0)− 120

) = 2 · 5 · (−160), i. e. x′ (t0) = −80.
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We have calculated that the car is approaching the tin at 80 kph. It su�ces to realize with which

units of measurement we worked. Having obtained a negative value is caused by our choice of the

coordinate system. □

5.198. For which a ∈ R is the cubic polynomialP which satis�es the conditionsP(0) = 1, P ′(0) =
1, P(1) = 2a + 2, P ′(1) = 5a + 1, a monotonic function on the whole R?

Solution. >From the conditions P(0) = 1 and P ′(0) = 1 it follows that P(x) = bx3 + cx2 + x + 1
where b, c ∈ R; the two remaining conditions determine two equations for the variables b and c:

b + c + 2 = 2a + 2, 3b + 2c + 1 = 5a + 1 with the unique solution b = c = a. The polynomials

which satisfy the desired conditions are thus of the form P(x) = ax3 + ax2 + x + 1, a ∈ R. The
monotonicity of the polynomial is equivalent to having no local extrema. The extrema can occur only

at those points where the derivative changes sign. Therefore, the polynomial is monotonic if and only

if its derivative keeps the sign on the whole R. The derivative is

P ′(x) = 3ax2 + 2ax + 1

and it will keep the sign i� the discriminant is non-positive. Thus we get the condition

4a2 − 12a ≤ 0

4a(a − 3) ≤ 0,

which is true for a ∈ [0, 3]. However, for a = 0 the polynomial P is monotonic, yet not cubic, Thus

the set of satisfactory numbers a is the interval (0, 3]. □

5.199. Regiomontanus' problem, 1471.

In the museum, there is a painting on the wall. Its lower edge is a meters above ground and its

upper edge bmeters, then (its height thus equals b−a). A tourist is looking at the painting,

her eyes being at height h < a meters above ground. (The reason for the inequality h < a

can, for instance, be to allow more equally tall visitors to view the painting simultaneously

in several rows.) How far from the wall should the tourist stand if she wants to maximize her angle

of view at the painting?
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Solution. Let us denote by x the distance (in meters) of the tourist from the wall and by φ her angle

of view at the painting. Further, let us set (see the picture) the angles α, β ∈ (0, π/2) by
tanα = b−h

x
, tanβ = a−h

x
.

Our task is to maximize φ = α − β. Let us add that for h > b, one can proceed analogously and for

h ∈ [a, b], the angle φ increases as x decreases (φ = π for x = 0 and h ∈ (a, b)).
>From the condition h < a it follows that the angle φ is acute, i. e. φ ∈ (0, π/2). Since the

function y = tan x is increasing on the interval (0, π/2), we can turn our attention to maximizing the
value tanφ. We have that

tanφ = tan (α − β) = tan α−tan β

1+tan α tan β
= b−h

x
− a−h

x

1+ b−h
x

· a−h
x

= x(b−a)
x2+(b−h)(a−h) .

So it su�ces to �nd the global maximum of the function

f (x) = x(b−a)
x2+(b−h)(a−h) , x ∈ [0,+∞).

From the expression

f ′(x) = (b−a)[x2+(b−h)(a−h)]−2x2(b−a)[
x2+(b−h)(a−h)]2 = (b−a)[(b−h)(a−h)−x2][

x2+(b−h)(a−h)]2 , x ∈ (0,+∞),

we can see that

f ′(x) > 0 for x ∈
(

0,
√
(b − h)(a − h)

)
,

f ′(x) < 0 for x ∈
(√
(b − h)(a − h),+∞

)
.

Hence the function f has its global maximum at the point x0 = √
(b − h)(a − h) (let us remind the

inequalities h < a < b).

The point x0 can, of course, be determined by other means. For instance, we can (instead of

looking for the maximum of the positive function f on the interval (0,+∞)) try to �nd the global

minimum of the function
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g(x) = 1
f (x)

= x2+(b−h)(a−h)
x(b−a) = x

b−a + (b−h)(a−h)
x(b−a) , x ∈ (0,+∞)

with the help of the so-called AM-GM inequality (between the arithmetic and geometric means)
y1+y2

2 ≥ √
y1 y2, y1, y2 ≥ 0,

where the equality occurs i� y1 = y2. The choice

y1(x) = x
b−a , y2(x) = (b−h)(a−h)

x(b−a)
then gives

g(x) = y1(x)+ y2(x) ≥ 2
√
y1(x) y2(x) = 2

b−a
√
(b − h) (a − h).

Therefore, if there is a number x > 0 for which y1(x) = y2(x), then the function g has the global

minimum at x. The equation

y1(x) = y2(x), i. e. x
b−a = (b−h)(a−h)

x(b−a) ,

has a unique positive solution x0 = √
(b − h)(a − h).

We have determined the ideal distance of the tourist from the wall in two di�erent ways. The

angle corresponding to x0 is

φ0 = arctan x0(b−a)
x2

0+(b−h)(a−h) = arctan b−a
2

√
(b−h)(a−h) .

When looking at the painting from the ground (being an ant, for instance), we have h = 0, and so

x0 = √
ab, φ0 = arctan b−a

2
√
ab
.

If the painting is 1 meter high and its lower edge is 2 meters above ground (a = 2, b = 3), then the ant
will see the painting at the largest angle φ0

.= 0.201 4 rad ≈ 11.5 ◦ at the distance x0
.= 2.45 meters

from the wall. If this painting is viewed by a man whose eyes are at the height of 1, 8 meters, together
with his son whose eyes are 1 meter above ground, then the father should stand x0

.= 0.49 meters

from the wall and his son x0
.= 1.41 meters, then. We can notice that the father has φ0

.= 0.795 6 rad

≈ 45.6 ◦ whereas his son has φ0
.= 0.339 8 rad ≈ 19.5 ◦. The quotient

0.795 6
0.339 8 ≈ 45.6

19.5
.= 2.3

proves what a strongly better view the father has. □

5.200. Snell's law. Determine the refracted light ray between the point A in a homogeneous space

with speed of light v1 and the point B in a homogeneous space with speed of light v2. See the picture.

Solution. Once again, we will omit units of measurement. We can assume that distances are given

in meters, speeds v1, v2 in meters per second (and time in seconds, then). The ray is determined by

Fermat's principle of least time: of all the paths between the points A and B, the light will go along

the one which can be traversed in the least time. In homogeneous spaces, the ray will be a straight

line (in this case, we will consider its segment). So it su�ces to determine the point R (given by

the value x) where the ray refracts. The distance between the points A and R is
√
h2

1 + x2 , between

points R and B it is
√
h2

2 + (d − x)2 , then. The total time of the transmission of energy between the

points A and B is thus given by the function

T (x) =
√
h2

1+x2

v1
+

√
h2

2+(d−x)2
v2

in the variable x ∈ [0, d]. Let us emphasize that we want to �nd the point x ∈ [0, d] at which the

value T (x) is minimal.

The derivative
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T ′(x) = x

v1

√
h2

1+x2
− d−x

v2

√
h2

2+(d−x)2

is a continuous function on the interval [0, d], so its sign can be easily described by its zero points.

From the equation

T ′(x) = 0, i. e. x

v1

√
h2

1+x2
= d−x

v2

√
h2

2+(d−x)2
,

it follows that
x√

h2
1+x2

d−x√
h2

2+(d−x)2
= v1

v2
.

This expression is useful for us because (see the picture)

sinφ1 = x√
h2

1+x2
, sinφ2 = d−x√

h2
2+(d−x)2

.

Thus there is at most one stationary point; it is determined by

(5.10)
sinφ1

sinφ2
= v1

v2
.

Let us realize that as φ1 ∈ [0, π/2] increases (when x increases), the angle φ2 ∈ [0, π/2] decreases.
The sine is non-negative and increasing on the interval [0, π/2], so the quotient (sinφ1)/(sinφ2) is

increasing with respect to x. Since T ′(0) < 0 and T ′(d) > 0, there is exactly one stationary point x0.

From the inequalities T ′(x) < 0 for x ∈ [0, x0) and T ′(x) > 0 for x ∈ (x0, d], it follows that there is
the global minimum at the stationary point x0.

Let us summarize the preceding: The ray is given by the pointR of refraction (i. e. the value x0),

and the point R is given by the identity (∥5.10∥), which is called Snell's law in physics.

The quotient of v1 and v2 is constant for the given homogeneous spaces and determines an impor-

tant quantity which describes the interface of optical spaces. It is called a refractive index and denoted

by n. Usually, the �rst space is vacuum, i. e. v1 = c, and v2 = v, thus obtaining the (absolute) index

of refraction n = c/v. For vacuum, we get n = 1, of course. This value is also used for air since

its refractive index at the standard conditions (i. e. pressure of 101 325 Pa, temperature of 293 K

and absolute humidity of 0.9 gm−3) is n
.= 1.000272. Other spaces have n > 1 (n = 1.31 for ice,

n = 1.33 for water, n = 1.5 for glass).

However, the refractive index also depends on the wave length of the electromagnetic radiation

in question (for example, for water and light, it ranges from n
.= 1.331 to n

.= 1.344), where the
index ordinarily decreases as the wave length increases. The speed of light in an optical space having

n > 1 depends on its frequency. We talk about the dispersion of light. The dispersion causes rays of

di�erent colors to refract at di�erent angles. (The violet ray refracts the most and the red ray refracts

the least.) This is also the origin of a rainbow. We can further remind the well-known Newton's

experiment with a glass prism from 1666.
Eventually, let us remark that our task always has a solution because we can choose the point R

arbitrarily. If, together with the speeds v1 and v2, the angle φ1 were given as well (our task could then

be to calculate where the ray going from the point A intersects the line y = c for a certain c < 0
when the interface of optical spaces is on the x-axis), then the angle φ2 ∈ (0, π/2) satisfying (∥5.10∥)
might not exist. This corresponds to the total re�ection (there is no refracted light at all). □

5.201. The rainbow. Why is the rainbow circular?
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Solution. In the exercise called Snell's law we clari�ed what is the rainbow caused by.

(It is created by sunlight being refracted while entering a droplet of water.) Now we will

go on with this problem. To be concrete, we will examine how the rays behave when

going through the droplets. (See the picture.) The ray dropping onto a droplet's surface at the pointA

"splits". Some part of the light re�ects (at the angle φi from the normal line) and the other part refracts

inside the droplet at the marked angle φr . The ray, inside the droplet, re�ects o� the droplet's surface

at the point B. Since |OA | = |OB |, the angle of re�ection equals φr . Here as well, of course, some
part of the light refracts out of the droplet. The re�ected ray then meets the droplet's surface again

at the point C and refracts towards the observer at the angle φi from the normal line. Let us add that

we omit the case of the so-called secondary rainbow arc, i. e. when the ray re�ects twice inside the

droplet before refracting out of it.

We will express the angle α := ∡AIC. Since ∡OAI = φi and ∡OAB = φr , we get ∡BAI =
φi − φr . Then

∡BIA = π − (∡ABI)− (∡BAI) = π − (π − φr)− (φi − φr) = 2φr − φi

and further

α = 2 · ∡BIA = 4φr − 2φi .

By Snell's law, we have
sin φi

sin φr
= n,

where n stands for the refractive index for water (as we assume that air's index of refraction equals 1).

Thus we have that

φr = arcsin sin φi

n

whence it follows that

(5.11) α = 4 arcsin
(

sinφi
n

)
− 2φi .

For the rays going out of the droplet, the value α is di�erent. The admissible values of α are

not distributed uniformly. If R is the droplet's radius and y is the distance of the point A from the

horizontal plane going through the center of the droplet, then

(5.12) sinφi = y

R
for y ∈ [0, R].

Of course, we can assume (thanks to the huge distance of the Sun from Earth) that the amount of

energy coming from the Sun for y ∈ [a− δ, a+ δ] is independent of a ∈ [δ, R− δ] but depends only
on the range of the considered values y for su�ciently small δ > 0. It thus makes sense to analyze
the function (see (∥5.11∥) and (∥5.12∥))

α(y) = 4 arcsin y

nR
− 2 arcsin y

R
, y ∈ [0, R].

By selecting the appropriate unit of length (for which R = 1) we can turn to the function

α(x) = 4 arcsin x
n

− 2 arcsin x, x ∈ [0, 1].

Having calculated the derivative

α′(x) = 4

n

√
1− x2

n2

− 2√
1−x2

, x ∈ (0, 1),

we can easily determine that the equation α′(x) = 0 has a unique solution
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x0 =
√

4−n2

3 ∈ (0, 1), if n2 ∈ (1, 4).

Let us set n = 4/3 (which is approximately the refractive index of water). Further,

α′(x) > 0, x ∈ (0, x0), α′(x) < 0, x ∈ (x0, 1).

We have found that at the point

x0 =
√

4−
(

4
3

)2

3 = 2
3

√
5
3
.= 0.86,

the function α has a global maximum

α(x0) = 4 arcsin
√

5
2

√
3

− 2 arcsin 2
√

5
3

√
3
.= 0.734 rad ≈ 42 ◦.

Although it is amazing that the peak of the rainbow cannot be above the level of approximately

42 ◦ with regard to the observer, what is even more amazing are the values

α(0.74) .= 39.4 ◦, α(0.94) .= 39.2 ◦, α(0.8) .= 41.2 ◦, α(0.9) .= 41.5 ◦.

Those imply (the function α is increasing on the interval [0, x0] and decreasing on the interval [x0, 1])
that more than 20 % of the values α lie in the band from around 39 ◦ to around 42 ◦, and 10 % lie in

a band thinner than 1 ◦. Furthermore, if we consider

α(0.84) .= 41.9 ◦, α(0.88) .= 41.9 ◦,

we can see that the rays for which α is close to 42 ◦ have the greatest intensity. Let us emphasize that
this is an instance of the so-called principle of minimum deviation: the highest concentration of the

di�used light happens to be at the rays with minimum deviation since the total angle deviation of the

ray equals the angle δ = π − α.

The droplets from which the rays creating the rainbow for the observer come lie on the surface

of a cone having the central angle equal to 2α(x0). The part of this cone which is above ground then

appears as the rainbow arc to the observer (see the picture). Thus when the sun is setting, the rainbow

has the shape of a semicircle. Let us remark that the rainbow exists only with regard to its observer

� it is not anchored in the space. Eventually, let us add that the circular shape of the rainbow was

examined as early as 1635�1637 by René Descartes. □

5.202. L'Hospital's pulley.

A rope of length r is tied to the ceiling at point A. A pulley is attached to its other end. Another

rope of length l >
√
d2 + r2 , going through the pulley, is tied to the ceiling at point B which

is at distance d from the point A. A weight is attached to this rope. In what position will the

weight stabilize (the system will be in a stationary position)? Omit the mass and the size of

the ropes and the pulley. See the picture.

Solution. The system will be in a stationary position if its potential energy is minimized, i. e. the

distance f (x) of the weight from the ceiling is maximal. However, this means that for r ≥ d,

the pulley only moves under the point B. Further on we will thus suppose that r < d. By the

Pythagorean theorem, the distance of the pulley from the ceiling is
√
r2 − x2 and from the weight

then l −√
(d − x)2 + r2 − x2 , which gives

f (x) = √
r2 − x2 + l −√

(d − x)2 + r2 − x2 .

The state of the system is fully given by the value x ∈ [0, r] (see the picture), so it su�ces to �nd the

global maximum of the function f on the interval [0, r].
First, we calculate the derivative
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f ′(x) = −x√
r2 −x2

− −(d−x)−x√
(d−x)2+r2 −x2 = −x√

r2 −x2
+ d√

(d−x)2+r2 −x2 , x ∈ (0, r).
Exponentiating the equatino f ′(x) = 0 for x ∈ (0, r) leads to

x2

r2 −x2 = d2

(d−x)2+r2 −x2 .

Multiplying both sides by
(
r2 − x2

) (
(d − x)2 + r2 − x2

)
then leads to

2dx3 − (
2d2 + r2

)
x2 + d2 r2 = 0, x ∈ (0, r).

If we notice that one of the roots of the left-hand polynomial is x = d, we can easily transform the

last equation into the form

(x − d)
(
2dx2 − r2x − dr2

) = 0, x ∈ (0, r),
or (we have a formula for the quadratic equation)

2d (x − d)
(
x − r2 +r

√
r2 +8d2

4d

) (
x − r2 −r

√
r2 +8d2

4d

)
= 0, x ∈ (0, r).

Hence we can see that the equation f ′(x) = 0 has at most one solution on the interval (0, r).
(Since r < d and

√
r2 + 8d2 > r, there are surely not two roots of the considered polynomial in x in

the interval (0, r).) It remains to determine whether

x0 = r2 +r
√
r2 +8d2

4d = 1
4 r

[
r
d

+
√(

r
d

)2 + 8
]

∈ (0, r).
Realizing that r, d > 0 and r < d, we get

0 < x0 <
1
4 r
[
1 + √

12 + 8
]

= r.

As the function f ′ is continuous on the interval (0, r), it can change sign only at the point x0. From

the limits

lim
x→0+

f ′(x) = d√
d2 +r2 , lim

x→r− f
′(x) = −∞,

it follows that

f ′(x) > 0, x ∈ (0, x0), f ′(x) < 0, x ∈ (x0, r).

Thus the function f has the global maximum on the interval [0, r] at the point x0. □

5.203. A nameless mail company can only transport parcels whose length does not exceed 108

inches and whose sum of length and maximal perimeter is at most 165 inches. Find the

largest (i. e. having the greatest volume) parcel which can be transported by this company.

Solution. LetM denote the value 165 (inches) and x the parcel's length (in inches as well).

Apparently, the wanted parcel has such a shape that for any t ∈ (0, x), its cross section has a constant
perimeter (the maximal one). We will denote this perimeter by p (in inches, again). We want the

parcel to have the greatest volume so that the cross section of a given perimeter has the greatest area

possible. It is not di�cult to realize that the largest planar �gure of a given perimeter is a disc. Thus

we have derived that the desired parcel has the shape of a cylinder with height equal to x and radius

r = p/2π .
Its volume is

V = πr2x = p2 x
4π ,

and it must be that p + x ≤ M and x ≤ 108. Thus we consider the parcel for which p + x = M. Its

volume is

V (x) = (M−x)2 x
4π = x3−2Mx2+M2 x

4π where x ∈ (0, 108] .

Having calculated the derivative
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V ′(x) = 3x2−4Mx+M2

4π = 3(x−M)
(
x− M

3

)
4π , x ∈ (0, 108) ,

we easily �nd out the the function V is increasing on the interval (0, 55] = (0,M/3] and decreasing
on the interval [55, 108] = [M/3,min {108,M}]. The greatest volume is thus obtained for x = M/3,
where

V
(
M
3

) = M3

27π
.= 0.011 789M3 ≈ 0.867 8 m3.

If the company also required that the parcel have the shape of a rectangular cuboid (or more

generally a right prism of a given number of faces), we can repeat the previous reasoning for a given

cross section of area S without specifying what the cross section looks like. It su�ces to realize that

necessarily S = kp2 for some k > 0 which is determined by the shape of the cross section. (If we

change only the size of the sides of the polygon which is the cross section, then its perimeter will

change by the same ratio. However, its area will change by square of the ratio.) Thus the parcel's

volume is the function

V (x) = Sx = kp2x = k (M − x)2 x, x ∈ (0, 108] .

The constant k does not a�ect the point of the global maximum of the function V , so the maximum

is again at the point x = M/3. For instance, for the largest right prism having a square base, we have

p = M − x = 2M/3, i. e. the length of the square's sides is a = M/6 and the volume is then

V = a2x = M3

62·3
.= 0.009 259M3 ≈ 0.681 6 m3.

For a parcel in the shape of a ball (when x is the diameter), the condition p + x ≤ M can

immediately be expressed as πx + x ≤ M, i. e. x ≤ M/(π + 1) < 108. Thus for x = M/(π + 1),
we get the maximal volume

V = 4
3π
(
x
2

)3 = πM3

6(π+1) 3
.= 0.007 370M3 ≈ 0.542 6 m3.

Similarly, for a parcel in the shape of a cube (when x is the length of the cube's edges), the condition

p + x ≤ M means x ≤ M/5 < 108. Thus for x = M/5 we get the maximal volume

V = x3 = (
M
5

)3 = 0.008M3 ≈ 0.588 9 m3.

Let us add that the length of the edges of the cube which has the same volume as the found cylinder

is

a = M

3 3√π
.= 0.227 595M ≈ 0.953 849 m.

Let us realize its length and perimeter sum to 5a .= 1.138M, i. e. more than the company's limit by

around 14 %. □

5.204. A large military area (further denoted by MA) having the shape of a square and area of

100 km2 is bounded along its perimeter by a narrow path. From the starting point in one corner ofMA,

one can get to the target point inside MA by going 5 km along the path and then 2 km perpendicularly

to it. However, one can also go along the path at 5 kph for any time period and then askew through

the MA at 3 kph. What distance do you have to travel along the path if you want to get there as soon

as possible?

Solution. To travel x km along the path (where x ∈ [0, 5]), we need x/5 hours. Our way through

MA will then be √
22 + (5 − x)2 = √

x2 − 10x + 29

kilometers long and we will cover it in
√
x2 − 10x + 29/3 hours. Altogether, our journey will take
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f (x) = 1
5x + 1

3

√
x2 − 10x + 29

hours (let us remind that x ∈ [0, 5]). The only zero point of the function

f ′(x) = 1
5 + 1

3
x−5√

x2−10x+29

is x = 7/2. Since the derivative f ′ exists at every point of the interval [0, 5] and since

f
( 7

2

) = 23
15 < f (5) = 5

3 < f (0) =
√

29
3 ,

the function f has its absolute minimum at the point x = 7/2 Thus we should go 3.5 km along the

path. □

5.205. You �nd yourself in a boat on a lake at distance d km from the shore. You want to get to a

given place on the shore whose straight-line distance is
√
d2 + l2 from you (see the picture). What

path will you take if you want to be there as soon as possible, supposing you can row at v1 kph and

run along the shore at v2 kph? How long will the journey take?

Solution. The optimal strategy is apparently given by �rst rowing straight to the shore at some point

[0, x] for x ∈ [0, l] and then running along the shore to the target point [0, l] (see the picture), so the
trajectory consists of two line segments (or only one segment, in the case when x = l). The voyage

to the point [0, x] on the shore will take √
d2 +x2

v1
hours

and the �nal run then
l−x
v2

hours.

We want to minimize the total time, i. e. the function

t (x) =
√
d2 +x2

v1
+ l−x

v2

on the interval [0, l]. Further, we can assume that v1 < v2. (Clearly for v1 ≥ v2 the optimal strategy

is to row straight to the target point, which corresponds to x = l.)

First, we calculate the �rst derivative

t′ (x) = x

v1
√
d2 +x2

− 1
v2
, x ∈ (0, l)

and then the second derivative

t′′ (x) = d2

v1

√(
d2 +x2

)3
, x ∈ (0, l).

Further, we solve the equation

t′ (x) = 0, i. e. x√
d2 +x2

= v1
v2
.

Exponentiating this equation gives

x2 =
(
v1
v2

)2 (
d2 + x2

)
.

Simple rearrangements lead to

x2 =
(

v1
v2

)2
d2

1−
(

v1
v2

)2 , i. e. x =
v1
v2
d√

1−
(

v1
v2

)2
.

Let us realize that we consider only x ∈ (0, l). Thus we are interested in whether
v1
v2
d√

1−
(

v1
v2

)2
< l, i. e. v1

v2
< l√

l2+d2
.

If this inequality holds, then also v1 < v2 and the function t′ changes sign only at the point

x0 =
v1
v2
d√

1−
(

v1
v2

)2
∈ (0, l),
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and this change is from negative to positive (consider limx→0+ t′ (x) < 0 and t′′ (x) > 0, x ∈ (0, l)).
This means that in this case, at the point x0 there is the global minimum of the function t on the

interval [0, l]. However, if the inequality (∥5.205∥) is false, then we have t′ (x) < 0 for all x ∈ (0, l)
whence it follows that the global minimum of the function t on [0, l] is at the right-hand marginal

point (the function t is decreasing on its domain). The fastest journey will take (in hours)

t (x0) =
√
d2 + x2

0

v1
+ l − x0

v2
= 1
v1

√√√√√√
d2 +

(
v1
v2

)2
d2

1 −
(
v1
v2

)2 + 1
v2

l − v1
v2
d√

1 −
(
v1
v2

)2

 = d

v1

√
1 −

(
v1
v2

)2
+
l

√
1 −

(
v1
v2

)2 − v1
v2
d

v2

√
1 −

(
v1
v2

)2

=
dv2 + lv1

√
1 −

(
v1
v2

)2 − v2
1
v2
d

v1v2

√
1 −

(
v1
v2

)2
=
dv2

(
1 −

(
v1
v2

)2
)

+ lv1

√
1 −

(
v1
v2

)2

v1v2

√
1 −

(
v1
v2

)2
=
dv2

√
1 −

(
v1
v2

)2 + lv1

v1v2
=
d

√
v2

2 − v2
1

v1v2
+ l

v2

supposing (∥5.205∥), and
t (l) =

√
d2 +l2
v1

hours

if (∥5.205∥) does not hold. □

5.206. A company is looking for a rectangular patch of land with sides of lengths 5a and b. The

company wants to enclose it with a fence and then split it into 5 equal parts (each being a rectangle

with sides a, b) by further fences. For which values of a, b will the area S = 5ab of the patch be

maximal if the total length of the used fences is to equal 2 400 m?

Solution. Let us reformulate the statement of the problem: We want to maximize the product 5ab
while satisfying the condition

(5.13) 6b + 10a = 2 400, a, b > 0.

It can easily be shown that the function

a 7→ 5a 2 400−10a
6

de�ned for a ∈ [0, 240] takes the maximal value at the point a = 120. Hence the result is

a = 120 m, b = 200 m.

Let us add that the mentioned value of b immediately follows from (∥5.13∥). □

5.207. A rectangle is inscribed into an equilateral triangle with sides of length a so that one of its

sides lies on one of the triangle's sides and the other two of the rectangle's vertices lie on the remaining

sides of the triangle. What is the maximum possible area of the rectangle?

5.208. Choose the dimensions of an (open) swimming pool whose volume is 32m3 and whose bottom

has the shape of a square, so that onewould spare the least amount of paint possible to prime its bottom

and walls. ⃝
5.209. Express the number 28 as a sum of two non-negative numbers such that the sum of the �rst

summand squared and the second summand cubed is as small as possible. ⃝
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5.210. With the help of the �rst derivative, �nd the real number a > 0 for which the sum a + 1/a is
minimal. Then solve this problem without using the di�erential calculus. ⃝
5.211. Inscribe a rectangle with the greatest perimeter possible into a semidisc with radius r. Deter-

mine the rectangle's perimeter. ⃝
5.212. Among the rectangles with perimeter 4c, �nd the one having the greatest area (if such one

exists) and determine the lengths of its sides. ⃝
5.213. Find the height h and the radius r of the largest (i. e. having the greatest volume) cone which

�ts into a ball of radius R. ⃝
5.214. From the triangles with a given perimeter p, select the one with the greatest area. ⃝
5.215. On the parabola given by the equation 2x2 − 2y = 9, �nd the points which are closest to the
origin of the coordinate system. ⃝
5.216. Your task is to create a one-liter tin having the "usual" shape of a cylinder so that the minimal

amount of material would be used. Determine the proper ratio between its height h and radius r. ⃝
5.217. Determine the distance of the point [3,−1] ∈ R2 from the parabola y = x2 − x + 1. ⃝
5.218. Determine the distance of the point [−4,−2] ∈ R2 from the parabola y = x2 + x + 1. ⃝
5.219. At the time t = 0, a car left the point A = [5, 0] at the speed of 4 units per second in the

direction (−1, 0). At the same time, another car left the point B = [−2,−1] at the speed of 2 units

per second in the direction (0, 1). When will the cars be closest to each other and what will their

distance be at that moment? ⃝
5.220. At the time t = 0, a car left the point A = [0, 0] at 2 units per second in the direction (1, 0).
At the same time, another car left the point B = [1,−1] at 3 units per second in the direction (0, 1).
When will they be closest to each other and what will the distance be? ⃝
5.221. Determine the maximum possible volume of a cone with surface area 3π cm2 (the surface area

of its base is included as well). The area of a cone is P = πr(r + h), its volume then V = 1
3πr

2h,

where r is the radius of its base and h is its height. ⃝
5.222. A 13 feet long ladder is leaned against a house. Suddenly the base of the ladder slips o� and

the ladder begins to go down (still touching the house at its other end). When the base of the ladder

is 12 feet from the house, it is moving at 5 feet per second from it. At this moment:

(a) What is the speed of the top of the ladder?

(b) What is the rate of change of the triangle delimited by the house, the ladder, and ground?

(c) What is the rate of change of the angle enclosed by the ladder and the ground?

⃝
5.223. Suppose you own an excess of funds without the possibility to invest outside your own factory

which acts at a regulated market with a nearly unlimited demand and a limited access to some key raw

materials, which allows you to produce at most 10 000 products per day. You know that the raw pro�t

p and the expenses e, as functions of a variable x which determines the average number of products

per day, satisfy
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v(x) = 9x, n(x) = x3 − 6x2 + 15x, x ∈ [0, 10].

At what production will you pro�t the most from your factory? ⃝
5.224. Determine

lim
x→0

(
cot x − 1

x

)
.

Solution. If we realize that

lim
x→0+

cot x = +∞, lim
x→0+

1
x

= +∞,

lim
x→0−

cot x = −∞, lim
x→0−

1
x

= −∞,

we can see that both one-sided limits are of the type ∞ − ∞. We can thus consider the (two-sided)

limit.

Wewill write the cotangent function as the ratio of the cosine and the sine and convert the fractions

to a common denominator, i. e.

lim
x→0

(
cot x − 1

x

)
= lim

x→0

x cos x − sin x
x sin x

.

Thus we have obtained an expression of the type 0/0 for which we get (by l'Hospital's rule)

lim
x→0

x cos x − sin x
x sin x

= lim
x→0

cos x − x sin x − cos x
sin x + x cos x

= lim
x→0

−x sin x
sin x + x cos x

.

By one more use of l'Hospital's rule for the type 0/0, we then get

lim
x→0

−x sin x
sin x + x cos x

= lim
x→0

− sin x − x cos x
cos x + cos x − x sin x

= 0 − 0
1 + 1 − 0

= 0.

□

5.225. Determine the limit

lim
x→1− (

1 − x) tan
πx

2
.

⃝
5.226. Calculate

lim
x→ π

2 −

(π
2

− xtan x
)
.

⃝
5.227. Using l'Hospital's rule, determine

lim
x→+∞

((
3

1
x − 2

1
x

)
x
)
.

⃝
5.228. Calculate

lim
x→1

(
1

2 ln x
− 1
x2 − 1

)
.

⃝
5.229. By l'Hospital's rule, calculate the limit

lim
x→+∞

(
cos

2
x

)x2

.

⃝
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5.230. Determine

lim
x→0

(1 − cos x)sin x = . . .

⃝
5.231. Determine the following limits

lim
x→0+

x
α

ln x , lim
x→+∞ x

α
ln x ,

where α ∈ R is arbitrary. ⃝
5.232. By any means, verify that

lim
x→0

ex − 1
x

= 1.

⃝

5.233. By applying the ratio test (also called D'Alembert's criterion; see 5.46), determine whether

the in�nite series

(a)
∞∑
n=1

2n·(n+1)3

3n ;

(b)
∞∑
n=1

6n

n! ;

(c)
∞∑
n=1

nn

n2·n!

converges.

Solution. Since (an ≥ 0 for all n)

(a) lim
n→∞

an+1
an

= lim
n→∞

2n+1·(n+2)3·3n

3n+1·2n·(n+1)3 = lim
n→∞

2(n+2)3

3(n+1)3 = lim
n→∞

2n3

3n3 = 2
3 < 1;

(b) lim
n→∞

an+1
an

= lim
n→∞

(
6n+1

(n+1)! · n!
6n

)
= lim

n→∞
6
n+1 = 0 < 1;

(c) lim
n→∞

an+1
an

= lim
n→∞

(
(n+1)n+1

(n+1)2·(n+1)! · n2·n!
nn

)
= lim

n→∞
n2

(n+1)2 · lim
n→∞

(n+1)n

nn = lim
n→∞

n2

n2 ·
lim
n→∞

(
1 + 1

n

)n = 1 · e > 1,

the series (a) converges; (b) converges; (c) does not converge (it diverges to +∞). □

5.234. By applying the root test (Cauchy's criterion), determine whether the in�nite series

(a)
∞∑
n=1

1
lnn(n+1) ;

(b)
∞∑
n=1

(
n+1
n

)n2

n3·3n ;

(c)
∞∑
n=1

arcsinn 2n
2n

converges.

Solution. Once again we consider series with non-negative terms only, where

(a) lim
n→∞

n
√
an = lim

n→∞
1

ln(n+1) = 0 < 1;

(b) lim
n→∞

n
√
an = lim

n→∞

(
n+1
n

)n

n√
n3·3 = lim

n→∞
(

1+ 1
n

)n

3
(

lim
n→∞

n
√
n
)3 = e

3 < 1;
(c) lim

n→∞
n
√
an = lim

n→∞ arcsin 2n
2n = arcsin 0 = 0 < 1.

This means that all of the examined series converge. □
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5.235. Determine whether the series

(a)
∞∑
n=1
(−1)n ln

(
1 + 1

2n

) ;
(b)

∞∑
n=1

(−2)n
2

n! ;

(c)
∞∑
n=1

(−3)n

(6+(−1)n)n

converges.

Solution. The case (a). By l'Hospital's rule, we have

lim
x→+∞

ln
(

1+ 1
2x

)
1

2x
= lim

x→+∞

1
1+ 1

2x

(
1+ 1

2x

)′

(
1

2x

)′ = lim
x→+∞

1
1+ 1

2x
= 1,

hence

0 < ln
(
1 + 1

2n

) ≤ 2
2n

for all su�ciently large n ∈ N. However, we know that the series
∑∞

n=1
2
2n is convergent. So it must

be that
∞∑
n=1

ln
(
1 + 1

2n

)
< +∞,

i. e. the examined series converges (absolutely).

The case (b). The ratio test gives

lim
n→∞

∣∣∣ an+1
an

∣∣∣ = lim
n→∞

2(n+1)2 ·n!
(n+1)!·2n2 = lim

n→∞
22n+1

n+1 = lim
n→∞

2·4n

n+1 = +∞.

Thus the series does not converge.

The case (c). Now we will use the general version of the root test

lim sup
n→∞

n
√| an | = lim sup

n→∞
3

6+(−1)n = 3
5 < 1,

whence it follows that the series is (absolutely) convergent. □

5.236. By any means, determine whether the following alternating series converge:

(a)
∞∑
n=1
(−1)n n

2+3n−1
(3n−2)2 ;

(b)
∞∑
n=1
(−1)n−1 3n4−3n3+9n−1

(5n3−2)·4n .

Solution. The case (a). Since we have that

lim
n→∞

n2+3n−1
(3n−2)2 = lim

n→∞
n2

9n2 = 1
9 ̸= 0,

it immediately follows that the limit

lim
n→∞(−1)n n

2+3n−1
(3n−2)2

does not exist. Therefore, the series does not converge (a necessary condition for the convergence is

not satis�ed).

The case (b). We have seen that when applying the ratio (or root) test, the polynomials neither in

the numerator nor in the denominator a�ect the value of the examined limit. Let us thus consider the

series
∞∑
n=1
(−1)n−1 1

4n

for which we have

lim
n→∞

∣∣∣ an+1
an

∣∣∣ = 1
4 < 1.

However, this means that the original series is also (absolutely) convergent. □
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5.237. Does the following series converge?
∞∑
n=1
(−1)n+1 arctan 2√

3n

Solution. The sequence
{

2/
√

3n
}
n∈N

is apparently decreasing and the function y = arctan x increas-

ing (on the whole real axis), so the sequence
{
arctan

(
2/

√
3n
)}

n∈N
is decreasing. Thus we have an

alternating series which satis�es that the sequence of the absolute values of its terms is decreasing.

Such an alternating series converges if and only if the sequence of its terms converges to zero (the

so-called Leibniz criterion), and this is satis�ed:

lim
n→∞ arctan 2√

3n
= arctan 0 = 0, i. e. lim

n→∞

(
(−1)n+1arctan 2√

3n

)
= 0.

□

5.238. Determine whether the series

(a)
∞∑
n=1

sin n
n2 ;

(b)
∞∑
n=1

cos(πn)
3√
n2

converges absolutely, converges conditionally, or does not converge at all.

Solution. The case (a). It is easy to show that this series converges absolutely. For instance,
∞∑
n=1

∣∣ sin n
n2

∣∣ ≤
∞∑
n=1

1
n2 <

∞∑
n=0

1
2n = 2,

and the second inequality has already been proven.

The case (b). We can see that cos (πn) = (−1)n, n ∈ N. So we have an alternating series such
that the sequence of the absolute values of its terms is decreasing. Therefore, from the limit

lim
n→∞

1
3√
n2

= 0

it follows that the series is convergent. On the other hand,
∞∑
n=1

∣∣∣ cos(πn)
3√
n2

∣∣∣ =
∞∑
n=1

1
3√
n2

≥
∞∑
n=1

1
n

= +∞.

Thus the series converges conditionally. □

5.239. Calculate the series

(a)
∞∑
n=1

(
1√
n

− 1√
n+1

)
;

(b)
∞∑
n=0

5
3n ;

(c)
∞∑
n=1

( 3
42n−1 + 2

42n

) ;
(d)

∞∑
n=1

n
3n ;

(e)
∞∑
n=0

1
(3n+1)(3n+4) .

Solution. The case (a). By the de�nition,
∞∑
n=1

(
1√
n

− 1√
n+1

)
=

lim
n→∞

((
1√
1

− 1√
2

)
+
(

1√
2

− 1√
3

)
+ · · · +

(
1√
n

− 1√
n+1

))
=

lim
n→∞

(
1 +

(
− 1√

2
+ 1√

2

)
+ · · · +

(
− 1√

n
+ 1√

n

)
− 1√

n+1

)
= 1.
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The case (b). Apparently, this is �ve times the convergent geometric series with the common

ratio q = 1/3, hence
∞∑
n=0

5
3n = 5

∞∑
n=0

( 1
3

)n = 5 · 1
1− 1

3
= 15

2 .

The case (c). We have that (substituting m = n− 1)
∞∑
n=1

( 3
42n−1 + 2

42n

) = 3
4

∞∑
n=1

( 1
42n−2

)+ 2
16

∞∑
n=1

( 1
42n−2

) =( 3
4 + 2

16

) ∞∑
m=0

1
42m = 14

16

∞∑
m=0

( 1
16

)m = 14
16 · 1

1− 1
16

= 14
15 .

The series of linear combinations was expressed as a linear combination of series (to be more precise,

as a sum of series with factoring out the constants), which is a valid modi�cation supposing the

obtained series are absolutely convergent.

The case (d). From the partial sum

sn = 1
3 + 2

32 + 3
33 + · · · + n

3n , n ∈ N,

we immediately obtain that
sn
3 = 1

32 + 2
33 + · · · + n−1

3n + n

3n+1 , n ∈ N.

Thus

sn − sn
3 = 1

3 + 1
32 + 1

33 + · · · + 1
3n − n

3n+1 , n ∈ N.

Since lim
n→∞

n

3n+1 = 0, we get
∞∑
n=1

n
3n = lim

n→∞
3
2

(
sn − sn

3

) = 3
2 lim
n→∞

n∑
k=1

1
3k =

3
2

∞∑
k=1

( 1
3

)k = 3
2

(
1

1− 1
3

− 1
)

= 3
4 .

The case (e). It su�ces to use the form (the so-called partial fraction decomposition)
1

(3n+1)(3n+4) = 1
3 · 1

3n+1 − 1
3 · 1

3n+4 , n ∈ N ∪ {0},
which gives

∞∑
n=0

1
(3n+1)(3n+4) = lim

n→∞
1
3

(
1 − 1

4 + 1
4 − 1

7 + 1
7 − 1

10 + · · · + 1
3n+1 − 1

3n+4

)
= lim

n→∞
1
3

(
1 − 1

3n+4

) = 1
3 .

□

5.240. Verify that
∞∑
n=1

1
n2 <

∞∑
n=0

1
2n .

Solution. We can immediately see that

1 ≤ 1, 1
22 + 1

32 < 2 · 1
22 = 1

2 ,
1
42 + 1

52 + 1
62 + 1

72 < 4 · 1
42 = 1

4 ,

or the general bound
1

(2n)2
+ · · · + 1

(2n+1−1)2 < 2n · 1
(2n)2

= 1
2n , n ∈ N.

Hence (by comparing the terms of both of the series) we get the wanted inequality, from which, by

the way, it follows that the series
∑∞

n=1
1
n2 is absolutely convergent.

Let us specify that
∞∑
n=1

1
n2 = π2

6 < 2 =
∞∑
n=0

1
2n .
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□

5.241. Examine convergence of the series
∞∑
n=1

ln n+1
n
.

Solution. Let us try to add up the terms of this series. We have that
∞∑
n=1

ln n+1
n

= lim
n→∞

(
ln 2

1 + ln 3
2 + ln 4

3 + · · · + ln n+1
n

) =
lim
n→∞ ln 2·3·4···(n+1)

1·2·3···n = lim
n→∞ ln (n+ 1) = +∞.

Thus the series diverges to +∞. □

5.242. Prove that the series
∞∑
n=0

arctan n2+2n+3
√
n+4

n+1 ;
∞∑
n=1

3n+1
n3+n2−n

do not converge.

Solution. Since

lim
n→∞ arctan n2+2n+3

√
n+4

n+1 = lim
n→∞ arctan n2

n
= π

2

and

lim
n→∞

3n+1
n3+n2−n = lim

n→∞
3n

n3 = +∞,

the necessary condition lim
n→∞ an = 0 for the series

∑∞
n=n0

an to converge does not hold. □

5.243. What is the series
∞∑
n=2

1
n√ln n

?

Solution. From the inequalities (consider the graph of the natural logarithm)

1 ≤ ln n ≤ n, n ≥ 3, n ∈ N

it follows that
n
√

1 ≤ n
√

ln n ≤ n
√
n, n ≥ 3, n ∈ N.

By the squeeze theorem (5.21),

lim
n→∞

n
√

ln n = 1, i. e. lim
n→∞

1
n√ln n

= 1.

Thus the series is not convergent. Since all its terms are non-negative, it must diverge to +∞. □

5.244. Find out whether the series

(a)
∞∑
n=0

1
(n+1)·3n ;

(b)
∞∑
n=1

n2+1
n3 ;

(c)
∞∑
n=1

1
n−ln n

converges.

Solution. All of the three enlisted series consist of non-negative terms only, so the series either

converges, or diverges to +∞. We have

(a)
∞∑
n=0

1
(n+1)·3n ≤

∞∑
n=0

( 1
3

)n = 1
1− 1

3
< +∞;

(b)
∞∑
n=1

n2+1
n3 ≥

∞∑
n=1

n2

n3 =
∞∑
n=1

1
n

= +∞;
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(c)
∞∑
n=1

1
n−ln n ≥

∞∑
n=1

1
n

= +∞.

Hence it follows that (a) converges; (b) diverges to +∞; (c) diverges to +∞. □

5.245. Show that the so-called harmonic series

∞∑
n=1

1
n

diverges.

Solution. For any natural number k, the sum of the �rst 2k terms of this series is greater than k/2:

1 + 1
2︸ ︷︷ ︸

> 1
2

+ 1
3

+ 1
4︸ ︷︷ ︸

> 1
4 + 1

4 = 1
2

+ 1
5

+ 1
6

+ 1
7

+ 1
8︸ ︷︷ ︸

> 1
8 + 1

8 + 1
8 + 1

8 = 1
2

+ . . .

as the sum of the terms from 2l + 1 to 2l+1 is always greater than 2l-times (its number) 1/2l (the least
one of them), which sums to 1/2. □

5.246. Determine whether the following series converge, or diverge:

i)
∞∑
n=1

2n

n

ii)
∞∑
n=1

1√
n

iii)
∞∑
n=1

1
n·2100000

iv)
∞∑
n=1

1
(1+i)n

Solution.

i) We will examine the convergence by the ratio test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
2n+1

n+1
2n

n

∣∣∣∣∣ = lim
n→∞

2(n+ 1)
n

= 2 > 1,

so the series diverges.

ii) We will bound the series from below: we know that 1
n

≤ 1√
n
for any natural number n. Thus

the sequence of the partial sums sn of the examined series and the sequence of the partial

sums s′n of the harmonic series satisfy:

sn =
n∑
i=1

1√
n

≥
n∑
i=1

1
n

= s′n.

Since the harmonic series diverges (see the previous exercise), by de�nition, the sequence of

its partial sums {s′n}∞n=1 diverges as well. Therefore the sequence of its partial sums {sn}∞n=1

also diverges and so does the examined sequence.

iii) This series is divergent since it is a multiple of the harmonic series.

iv) The examined series is geometric, with common ratio 1
1+i . Such a sequence is convergent

if and only if the absolute value of the common ratio is less than one. We know that∣∣ 1
1 + i

∣∣ = ∣∣1 − i

2

∣∣ = ∣∣1
2

− 1
2
i
∣∣ =

√
1
4

+ 1
4

=
√

2
2
< 1,
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hence the series converges, and we are even able to calculate it:
∞∑
n=1

1
(1 + i)n

= 1
1 − 1

1+i
= 1 + i

i
= 1 − i.

□

5.247. Consider a square with sides of length a > 0. Now consider the square whose vertices are

the midpoints of the original square's sides. Then consider the square whose vertices are again the

midpoints of the sides of the previous square; and so on. Determine the sum of the areas and the sum

of the perimeters of all these (in�nitely many) squares. ⃝
5.248. Let a sequence of rows of semidiscs be given, such that for each n ∈ N, the n-th row contains

2n semidiscs, each having the radius of 2−n. What is the area of an arbitrary �gure consisting of all

these semidiscs, supposing the semicircles do not overlap? ⃝
5.249. Solve the equation

1 − tan x + tan2 x − tan3 x + tan4 x − tan5 x + · · · = tan 2x
tan 2x+1 .

⃝
5.250. Determine

∞∑
n=1

( 1
2n−1 + 2

3n−1

)
.

⃝
5.251. Calculate

∞∑
n=1

5n
√
n2 + 2n+ 1.

⃝
5.252. Prove the convergence of the series

∞∑
n=1

3n+2n

6n .

and �nd its value. ⃝
5.253. Calculate the series

(a)
∞∑
n=1

2n−1
2n ;

(b)
∞∑
n=0

n+1
3n .

⃝
5.254. Sum up

1
1·3 + 1

3·5 + 1
5·7 + · · · =

∞∑
n=1

1
(2n−1)(2n+1) .

⃝
5.255. Using the partial fraction decomposition, calculate
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(a)
∞∑
n=2

1
n2−1 ;

(b)
∞∑
n=1

1
n3+3n2+2n .

⃝
5.256. Determine the value of the convergent series

∞∑
n=0

1
4n2−1 .

⃝
5.257. Calculate the series

∞∑
n=1

1
n2+3n .

⃝
5.258. In terms of

s :=
∞∑
n=1

(−1)n−1

n
= 1 − 1

2 + 1
3 − 1

4 + 1
5 − 1

6 + 1
7 − 1

8 + · · · ,
express the following two series (

1 − 1
2 − 1

4

)+ ( 1
3 − 1

6 − 1
8

)+ · · · ;(
1 + 1

3 − 1
2

)+ ( 1
5 + 1

7 − 1
4

)+ · · ·
(both the series contain the same elements as the �rst one, only in a di�erent order). ⃝
5.259. Determine whether the series

∞∑
n=0

2n+(−2)n

5n

converges. ⃝
5.260. Prove the following statement: If a series

∑∞
n=0 an converges, then lim

n→∞ sin (3an + π) = 0.
⃝
5.261. Forwhichα ∈ R; β ∈ Z; γ ∈ R∖{0} do the series

∞∑
n=120

e−αn

n
;

∞∑
n=240

βn ·n!
nn ;

∞∑
n=360

n
γ n

converge? ⃝
5.262. Determine whether the series

∞∑
n=21

(−1)n n
8−5n6+2n

2n

converges absolutely, converges conditionally, or does not converge at all. ⃝
5.263. Find out whether the limit

lim
n→∞

( 1
n2 + 2

n2 + · · · + n−1
n2

)
is �nite. Let us warn that one cannot make use of the sums

∞∑
n=1

1
n2 = π2

6 ,
∞∑
n=2

n−1
n2 = +∞.

⃝
5.264. Find all real numbers A ≥ 0 for which the series
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∞∑
n=1
(−1)n ln

(
1 + A2n

)
is convergent. ⃝
5.265. Let us remind that the harmonic series diverges; i. e.

∞∑
n=1

1
n

= +∞.

Determine whether the series
1
1 + · · · + 1

9 + 1
11 + · · · + 1

19 + 1
21 + · · · + 1

29 + · · ·
· · · + 1

91 + · · · + 1
99 + 1

111 + · · · + 1
119 + 1

121 + · · ·
is divergent as well. ⃝
5.266. Give an example of two divergent series

∑∞
n=1 an,

∑∞
n=1 bn with positive numbers for which

the series
∑∞

n=1 (3an − 2bn) converges absolutely. ⃝
5.267. Find out whether the two series

∞∑
n=1
(−1)n (n!)2

(2n)! ;
∞∑
n=1
(−1)n n

7−n4+n
n8+2n6+n

converge absolutely, converge conditionally, or do not converge at all. ⃝
5.268. Does the series

∞∑
n=1
(−1)n+1 3√n+ 5√n+1

n+ 5√n
converge? ⃝
5.269. Find the values of the parameter p ∈ R for which the series

∞∑
n=1

(−1)n sinn p
n

converges. ⃝
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Solutions to the exercises

5.2. P(x) = (− 3
5 − 4

5 i)x
2 + (2 + 3i)x − 3

5 − 14
5 i.

5.11. 3x2 − 2x − 4.

5.12.
(
2x2 − 5

)
/3; eg.

(
2
3x

2 − 5
3

)3
.

5.13. a = 1, b = −2, c = 0, d = 1.

5.14. x3 + x2 − x + 2.
5.15. In�nitely many.

5.16. P(x) = x3 − 2x2 + 5x − 3;Q(x) = x3 − 2x2 + 3x − 3.

5.17. x5 − 2x4 − 5x + 2.

5.18. x2 .

5.19. x3 − 2x + 5; x3 − x + 6.
5.20. In�nitely many.

5.21. Eg. x2 − 3x + 6.

5.22. S1(x) = 1
2 (x + 1)3 − 3

2 (x + 1)+ 1, x ∈ [−1, 0]; S2(x) = − 1
2 x

3 + 3
2 x

2 , x ∈ [0, 1].

5.23. S1(x) = 1
2 (x + 1)3 − 3

2 (x + 1)+ 1, x ∈ [−1, 0]; S2(x) = − 1
2 x

3 + 3
2 x

2 , x ∈ [0, 1].

5.24. S1(x) ≡ x; S2(x) ≡ x.

5.25. S1(x) ≡ 1; S2(x) ≡ 1.
5.26. Si(x) = x + 3, x ∈ [−3 + i − 1,−3 + i]; i ∈ {1, 2}.
5.27. S1(x) = 1 − 11

20 x + 1
20 x

3 ; S2(x) = 1
2 − 2

5 (x − 1)+ 3
20 (x − 1)2 − 1

40 (x − 1)3.

5.29.

supA = 6, infA = −3;
supB = 1

4
, infB = −1;

supC = 9, infC = −9.

5.30. It can easily be shown that

supA = 3
2
, infA = 0.

5.31. Clearly

infN = 1, supM = 0, infJ = 0, supJ = 5.

5.32. We can, for instance, set

M := Z ∖ N; N := N.

5.33. Consider any singleton (one-element set) X ⊂ R.
5.34. The set C must be a singleton. Thus, let us choose C = {0}, for example. Now we can take A = (−1, 0),

B = (0, 1).
5.40. We have

lim
n→∞

(
1
n2 + 2

n2 + · · · + n− 2
n2 + n− 1

n2

)
= lim
n→∞

(
1 + n− 1

n2 · n− 1
2

)
= 1

2
.

5.41. It can easily be shown that

lim
n→∞

√
n3 − 11n2 + 2 + 5√

n7 − 2n5 − n3 − n+ sin2 n

2 − 3√5n4 + 2n3 + 5
= −∞.
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5.42. The limit is equal to 1.
5.43. We can, for instance, set

xn := n, yn := −n+ 1, n ∈ N.

5.44. The answer is ±1.
5.45. The result is

lim sup
n→∞

an = 1, lim inf
n→∞ an = 0.

5.46. We have

lim inf
n→∞

(
(−1)n

(
1 + 1

n

)n
+ sin

nπ

4

)
= −e −

√
2

2
.

5.62. The examined function is continuous on the whole R.
5.63. The function is continuous at the points −π , 0, π ; only right-continuous at the point 2; only left-

continuous at the point 3; and continuous from neither side at 1.
5.64. It is necessary to set f (0) := 0.
5.65. The function is continuous i� p = 2.
5.66. The correct answer is a = 4.
5.67. It holds that

lim
x→0+

sin8 x

x3 = lim
x→−∞

sin8 x

x3 = 0.

5.70. The only solution is x = −1.
5.71. It does.

5.116. r = +∞.

5.117. 1.

5.118. 3.

5.119. [−1, 1].

5.120. x ∈
[
2 − 1

3 , 2 + 1
3

]
.

5.121. It is.

5.122.

(a) True.

(b) False.

(c) False.

(d) True.

5.123. 1 − π2

102·2 + π4

104·4! .

5.124. The error lies in the interval (0, 1/200).

5.125.
∑∞
n=0

e
n! (x − 1)n;

∑∞
n=0

lnn 2
n! xn .

5.126. f (x) = x, x ∈ R; it is.
5.127. It does not.

5.128. (a) 1 − π2

182·2!
+ π4

184·4!
; (b) 1

2 − 1
5·25 .

5.129.
∑∞
n=0

1
(2n+1) n! x

2n+1 .

5.130. a > 1.

5.131. [− 3√2, 3√2).
5.133. x > 2.
5.134. The series is absolutely convergent.

5.135. ln (3/2).
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5.136.
x(1−x)
(1+x)3 .

5.137. (a) 1
2 ln 1+x

1−x ; (b)
1+x
(1−x)3 .

5.138. 2/9.

5.139. x e
x3
2 .

5.144. (a) no; (b) no; (c) yes; (d) yes; (e) no; (f) no; (g) no; (h) yes.

5.145. The functions (a), (e) are odd; the functions (c), (d) are even.

5.146. It is periodic, the prime period being (a) 2π ; (b) π/3.
5.147. The functions f and g are even, so it su�ces to consider the graphs of the functions y = ex , x ∈ [0,+∞)

and y = ln x, x ∈ (0,+∞).

5.148. The given function is even, so to draw its graph, it su�ces to know the graph of the function y = 2x ,

x ∈ (−∞, 0].

5.149. (sinh x)′ = cosh x; (cosh x)′ = sinh x; (tanh x)′ = 1
cosh2x

; (coth x)′ = − 1
sinh2x

.

5.150. 1√
1+x2

.

5.152. x4 + 2x3 − x2 + x − 2.

5.153. x4 + 2x3 − 2x2 + x + 2.

5.154. x4 + 3x3 − 3x2 − x − 1.
5.155. For every ε > 0, it su�ces to assign to the ε-neighborhood of the point −2 the δ-neighborhood of the

point 0 given by

ε 7→ δ, δ = ε,

and without loss of generality, we can assume that ε ≤ 1. Since if ε > 1, we can set δ = 1.
5.156. Existence of the limit and the equality

lim
x→−1

(1 + x)2 − 3
2

= −3
2

follows, for example, from the choice δ := ε for ε ∈ (0, 1).

5.157. Since − (x − 2)4 < x for x < 0, we get 3 (x − 2)4/2 > −x for x < 0.
5.158. As

lim
x→0+ arctan

1
x

= π

2
, lim

x→0− arctan
1
x

= −π
2
,

the considered limit does not exist.

5.159. The former limit equals +∞, the latter does not exist.

5.160. The limit can be determined by a lot of means. For instance:

lim
x→0

tan x − sin x

sin3 x
= lim
x→0

(
tan x − sin x

sin3 x
· cot x
cot x

)
= lim
x→0

1 − cos x

cos x · sin2 x
= lim
x→0

1 − cos x
cos x

(
1 − cos2 x

)
= lim
x→0

1
cos x (1 + cos x)

= 1
2
.

5.161. We have that

lim
x→π/6

2 sin3 x + 7 sin2 x + 2 sin x − 3

2 sin3 x + 3 sin2 x − 8 sin x + 3
= lim
x→π/6

sin x + 1
sin x − 1

= −3.

5.162. We have

lim
x→1

xm − 1
xn − 1

= m

n
.



344

CHAPTER 5. ESTABLISHING THE ZOO

5.163. After multiplying by the fraction
√
x2 + x + x√
x2 + x + x

,

we can easily get that

lim
x→+∞

(√
x2 + x − x

)
= 1

2
.

5.164. We have

lim
x→+∞

(
x
√

1 + x2 − x2
)

= 1
2
.

5.165. We have

lim
x→0

√
2 − √

1 + cos x

sin2 x
=

√
2

8
.

5.166. By extending the given fraction, we can obtain

lim
x→0

sin (4x)√
x + 1 − 1

= 8.

5.167. We have that

lim
x→0−

√
1 + tan x − √

1 − tan x

sin x
= 1.

5.168. Apparently,

lim
x→−∞

2x + √
1 + x2 − x9 − 7x5 + 44x2

3x + 5√6x6 + x2 − 18x5 − 592x4
= 7

18
.

5.169. The statement is false. For example, consider

f (x) := 1
x
, x ∈ (−∞, 0); g(x) := x, x ∈ R.

5.170.

lim
n→∞

(
n

n+ 5

)2n−1

= e−10.

5.178. (a) v(0) = 6m/s; (b) t = 3 s, s(3) = 16m; (c) v(4) = −2m/s, a(4) = −2m/s2.

5.179. f ′ (x0) = 1
2
√
x0
.

5.180. It does not because the one-sided derivatives di�er (concretely: π/2 from the right and −π/2 from the

left).

5.181. It does.

5.182. It does not.

5.183. f (x) := | x − 5 | + | x − 9 |.
5.184. For instance, let f = g take 1 at rational numbers and −1 at irrational ones.

5.185. (a) x2 sin x; (b) cos (sin x) · cos x; (c) 3x2+2
x3+2x cos

(
ln
(
x3 + 2x

))
; (d) 2(1−2x)

(1−x+x2)2
.

5.186. (a) 7
8 x

− 1
8 ; (b) cosec x = 1

sin x .

5.187. cos x · cos (sin x) · cos (sin (sin x)).

5.188. f ′(x) = 1√
1+2x−x2

+ 1, x ∈
(

1 − √
2, 1 + √

2
)
.

5.189. cos x
3

3√
sin2 x

.
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5.190. 1+2x2√
1+x2

+ x2 ex .

5.191. −8.

5.192. 2x2

1−x6
3
√

1+x3

1−x3 .

5.193. ln2
(
x + √

1 + x2
)
, x ∈ R.

5.194. f ′(x) = − 1
x

(
logx e

)2
, x > 0, x ̸= 1.

5.195.
[
f (x)g(x)h(x)k(x)

] ′ = f ′(x)g(x)h(x)k(x) + f (x)g′(x)h(x)k(x) + f (x)g(x)h′(x)k(x) +

f (x)g(x)h(x)k′(x).

5.196. x
3 (x+1)2 3√

x+2
(x+3)2

(
3
x

+ 2
x+1 + 1

3(x+2) − 2
x+3

)
.

5.207. The inscribed rectangle has sides of lengths x,
√

3/2(a − x), thus its area is
√

3/2(a − x)x. The

maximum occurs for x = a/2, hence the greatest possible area is (
√

3/8)a2.

5.208. 4m × 4m × 2m.
5.209. 28 = 24 + 4.
5.210. a = 1.

5.211. 2
√

5 r.
5.212. It is the square with sides of length c).

5.213. h = 4
3R, r = 2

√
2

3 R.

5.214. It is the equilateral triangle (with area
√

3p2/36).

5.215.
[
2,−1/2

]
,
[−2,−1/2

]
.

5.216. v = 2r.

5.217. The closest point is [1, 1], the distance then 2
√

2.

5.218. The closest point is [−1, 1], distance 3
√

2.

5.219. t = 1, 5s, the distance will be
√

5 units.

5.220. It will happen at the time t = 5
13 s, the distance being

√
13

13 units.

5.221. P = πrv + πr2 H⇒ v = P−πr2
πr

H⇒ V = 1
3 r(P − πr2 ). The extremum is at r =

√
P
3π , the

substitution gives V = 2π
3 cm3.

5.222. (a) 12 ft/s; (b) −59, 5 ft2/s; (c) −1 rad/s.
5.223. At about 3 414 products per day.

5.224. Triple use of l'Hospital's rule gives

lim
x→0−

sin x − x

x3 = −1
6
.

5.225. 2/π .
5.226.

lim
x→ π

2 −

(π
2

− x
)
tan x = 1.

5.227.

lim
x→+∞

((
3

1
x − 2

1
x

)
x
)

= ln
3
2
.

5.228. 1/2.
5.229. We have

lim
x→+∞

(
cos

2
x

)x2

= e−2.
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5.230. By double applying l'Hospital's rule, one obtains

lim
x→0

(1 − cos x)sin x = e0 = 1.

5.231. In both cases, the result is eα .

5.232. The limit can be easily calculated by l'Hospital's rule, for instance.

5.247. 2a2; 4a
(

2 + √
2
)
.

5.248. π/2.

5.249. x = π
6 + kπ , x = 5π

6 + kπ , k ∈ Z.
5.250. 5.

5.251. +∞.

5.252. 3/2.
5.253. (a) 3; (b) 9/4.
5.254. 1/2.
5.255. (a) 3/4; (b) 1/4.
5.256. −1/2.
5.257. 11/18.
5.258. s/2; 3s/2 (s = ln 2).
5.259. It does.

5.260. It su�ces to consider the necessary condition for convergence, namely limn→∞ an = 0.
5.261. α > 0; β ∈ {−2,−1, 0, 1, 2}; γ ∈ (−∞,−1) ∪ (1,+∞).

5.262. It is absolutely convergent.

5.263. The limit is equal to 1/2.

5.264. A ∈ [0, 1).
5.265. The value of the given series is �nite � the series converges.

5.266. For example: an = n/3, bn = n/2, n ∈ N.
5.267. The former series converges absolutely; the latter one does conditionally.

5.268. It does.

5.269. p ∈ R.



In the previous chapter we were playing either with extremely

large classes of functions � all continuous, all di�erentiable etc.

� or only with particular functions � for example exponential,

goniometric, polynomials etc. However we had only a minimum

of tools and we computed everything by hand. From the qualitative

point of view, we only indicated how to use the knowledge of a

linear approximation of a function to its derivative to discuss the

local behavior of such function near a given point. Now we will

put together several results that will allow us to workwith functions

more easily in simulations of real problems.

By di�erentiation we learned how to measure instantaneous

changes. In this chapter we will deal with the task of summing

in�nitely many of these "in�nitely small" changes, e.g. how to

"integrate". First though, we will clarify some things about di�er-

entiating.

In the last part of the chapter we will come back to series of

functions and �ll in several missing steps in our argumentation so

far.

1. Di�erentiation

6.1. Higher order derivatives. If the �rst derivative f ′(x) of a
real or a complex function has a derivative (f ′)′(x0)

at the point x0, we say that the second derivative of

function f (or second order derivative) exists.

Then we write f ′′(x0) = (f ′)′(x0) or f
(2)(x0).

Function f is double di�erentiable on some interval, if it has

a second derivative at each of its points. We de�ne derivatives of

higher orders inductively:

k times differentiable functions

A real or a complex function f is di�erentiable (k + 1) times
at the point x0 for some natural number k, if it is di�erentiable k

times on some neighbourhood of the point x0 and its k-th derivative

has a derivative at the point x0. For the k-th derivative of the func-

tion f (x) we write f (k)(x). For k = 0, by 0 times di�erentiable

functions we mean continuous functions.

If derivatives of all orders exist on an interval, we say that the

function f is smooth on it.

For functions with continuous k-th derivative we use the deno-

tation the class of funcitons Ck (A) on an interval A, where k can

attain values 0, 1, . . . ,∞. Often we write only Ck , if the domain

is known from the context.

CHAPTER 6

Di�erential and integral calculus

we already have the menagerie, but what shall we do with it?

� we'll learn to control it...

A. Derivatives of higher orders

First we'll introduce a convention for denoting the derivatives of

higher orders: we'll denote the second derivative of function f of one

variable by f ′′ or f (2), derivatives of third or higher order only by

f (3), f (4),. . .f (n). For remembrance, we'll start with a slightly cunning

problem using "only" �rst derivatives.

6.1. Determine the following derivatives:

i) (x2 · sin x)′′,
ii) (xx )′′,
iii)

(
x

ln x

)(3)
,

iv) (xn )(n),

v) (sin x)(n).

Solution. (a) (x2 · sin x)′′ = (2x sin x + x2 cos x)′ = 2 sin x +
4x cos x − x2 sin x.
(b) (xx )′′ = [(1 + ln x)xx ]′ = xx−1 + xx (1 + ln x)2.
(c)
(
x

ln x

)(3) = 1
x2(ln x)2 − 6

x2(ln x)4 .

(d) (xn )(n) = [
(xn )′

](n−1) = (nxn−1 )(n−1) = · · · = n!.
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We can illustrate the concept of higher order derivatives on

polynomials. Because a derivative of a polynomial is a polynomial

with a degree one less than the original one, after a �nite number of

di�erentiations we get the zero polynomial. More precisely, after

exactly k + 1 di�erentiations, where k is the degree of the poly-

nomial, we get zero. Of course then derivatives of all orders exist,

e.g. f ∈ C∞ (R).
In the spline construction, see 5.9, we took care that the re-

sulting functions would belong to the class C2 (R). Their third

derivatives will be sequentially constant functions. That is why

the splines won't belong to C3 (R), even though all their higher or-
der derivatives will be zero in all of the inner points of all single

intervals in the interpolation. Think this example through in detail!

The next assertion is a simple combinatorical corollary of

Leibniz's rule for di�erentiation of a product of two functions:

Lemma. If two functions f and g have derivatives of order k at

the point x0, then their product also has a derivative of order k and

the following equality holds:

(f · g)(k)(x0) =
k∑
i=0

(
k

i

)
f (i)(x0)g

(k−i)(x0).

Proof. For k = 0 the statement is trivial, for k = 1 it's Leib-

niz's product rule. If the equality holds for some k, by di�erentiat-

ing the right hand side and using Leibniz's rule we obtain a smiliar

expression

k∑
i=0

(
k

i

)(
f (i+1)(x0)g

(k−i)(x0)+ f (i)(x0)g
(k−i+1)(x0)

)
.

In this new sum, the sum of orders of derivatives of products in

all summands is k+1 and the coe�cients of f (j) (x0)g
(k+1−j) (x0)

are the sums of binomial coe�cients
(
k
j−1

)+ (
k
j

) = (
k+1
j

)
. □

6.2. Multiple roots and inversions of polynomials. We already

computed the derivatives of polynomials in the para-

graph 5.6 and it can be seen that these are smooth

functions. In this case di�erentiation can be viewed

as an injective algebraic map. Let's see how we can

use di�erentiation for discussing multiple roots of polynomials.

First we formulate The fundamental theorem of algebra,

whose proof will be left over to ??.

Theorem. Each nonzero complex polynomial f : C → C of de-

gree at least one has a root.

Thus a polynomial of degree k > 0 has exactly k complex

roots (counting multiplicities) and can be written uniquely in the

form

f (x) = (x − a1)
c1 · (x − aq)

cq ,

where a1, . . . , aq are all roots of the polynomial f and

1 ≤ c1, . . . , cq ≤ k

are their multiplicities (i.e. natural numbers).

By di�erentiation of f (x) as a function of one real variable x

we get

f ′(x) = c1(x − a1)
c1−1. . . (x − aq)

cq + . . .

+ cq(x − a1)
c1. . . (x − aq)

cq−1.
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(e) (sin x)(n) = re(in sin x)+ im(in cos x). □

6.2. Di�erentiate the expression

4
√
x − 1 · (x + 2)3

ex(x + 132)2
.

of variable x > 1.

Solution. We'll solve this problem using the so called logarithmic dif-

ferentiation. Let f be an arbitrary positive function. We know that[
ln f (x)

] ′ = f ′(x)
f (x)

, tj. f ′(x) = f (x) · [ln f (x)] ′
,

if the derivative f ′(x) exists. The usefulness of this formula is given
by the fact that for some functions, it's easier to di�erentiate their log-
arithm then themselves. Such is the expression in our provlem. We'll
obtain(

4√
x − 1 · (x + 2)3

ex(x + 132)2

)′
=

4√
x − 1 · (x + 2)3

ex(x + 132)2 ·
[

ln
4√
x − 1 · (x + 2)3

ex(x + 132)2

]′

=
4√
x − 1 · (x + 2)3

ex(x + 132)2 ·
[

3 ln (x + 2)+ 1
4

ln (x − 1)− x ln e− 2 ln (x + 132)

]′

=
4√
x − 1 · (x + 2)3

ex(x + 132)2

[
3

x + 2
+ 1

4 (x − 1)
− 1− 2

x + 132

]
.

□

6.3. Let n ∈ N be arbitrary. Find the n-th derivative of function

y = ln 1+x
1−x , x ∈ (−1, 1).

Solution. With respect of the equality

ln 1+x
1−x = ln (1 + x) − ln (1 − x) , x ∈ (−1, 1),

we'll de�ne an auxiliary function

f (x) := ln (ax + 1) , x ∈ (−1, 1), a = ±1.

For x ∈ (−1, 1) we can easily (sequentially) compute

f ′(x) = a
ax+1 ,

f ′′(x) = −a2

(ax+1)2 ,

f (3)(x) = 2a3

(ax+1)3 ,

f (4)(x) = −6a4

(ax+1)4 .

Based on these results we can �gure out that

(6.1) f (n)(x) = (−1)n−1(n− 1)! an

(ax + 1)n
, x ∈ (−1, 1), n ∈ N.

We'll verify the validity of this formula by mathematical induction. It
holds for n = 1, 2, 3, 4, so it su�ces to show that its validity for k ∈ N
implies its validity for k + 1. Because the direct computation yields

f (k+1)(x) =
(
(−1)k−1(k−1)! ak

(ax+1)k

)′ = (−1)k−1(k−1)! ak (−k) a
(ax+1)k+1 = (−1)kk! ak+1

(ax+1)k+1 ,

vzorec (∥6.1∥) it holds for all n ∈ N. Then
ln(n)(1+x) = (−1)n−1(n−1)!

(x+1)n , ln(n)(1−x) = − (n−1)!
(−x+1)n , x ∈ (−1, 1).

From here we obtain the result(
ln 1+x

1−x
)(n) = (n− 1)!

(
1

(1−x)n − (−1)n

(1+x)n
)
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If c1 = 1 and the root a1 is real, the value of the derivative f
′ at the

point a1 will be nonzero, because the �rst term is nonzero, while

all the others will vanish after setting x = a1. Similarly for other

roots. Thus we veri�ed a convenient property that a real root a of

a polynomial f is multiple if and only if it is a root of its derivative

f ′. (We will extend this statement to all complex roots in time.)

6.3. The meaning of second derivative. We have already seen

that the �rst derivative of a function is its linear ap-

proximation in the neighbourhood of a given point and

that the sign of nonzero derivative determines whether

the function is increasing or decreasing at the point

x0. The points where the �rst derivative is zero are called critical

points or stationary points of the given function.

If x0 is a stationary point of function f , the behavior of func-

tion f in the neighbourhood of x0 can vary. It can be seen for

example from the behavior of function f (x) = xn in the neigh-

bourhood of zero for arbitrary n. For odd n > 0, f (x) will be
increasing, while for even n it will be decreasing on the left side

and increasing on the right side, therefore at x0 it will attain its min-

imal value among points from (su�ciently small) neighbourhood

of x0 = 0.
We can apply this point of view to function f ′. If the second

derivative is nonzero, its sign determines the behavior of the �rst

derivative. That's why at the critical point x0 the derivative f
′(x)

will be increasing if the second derivative is positive and decreas-

ing if the second derivative is negative. If it's increasing though, it

means that it will necessarily be negative to the left of the critical

point and positive to the right of it. In that case, function f is de-

creasing to the left of the critical point and increasing to the right

of it. That means f attains its minimal value among all points from

(su�ciently small) neighbourhood of x0 at the point x0.

On the other hand, if the second derivative is negative at x0,

the �rst derivative is decreasing, thus negative to the left of x0 and

positive to the right of it. Function f will then attain its maximal

value among all values from some neighbourhood.

A function that is di�erentiable on (a, b) and continuous on

[a, b] certainly has an absolute maximum and minimum of this

interval. It can be attained only at its boundary or at a point with

zero derivative, i.e. in a critical point. That means critical points

may be su�cient for �nding extremes and second derivatives will

help us determine the types of the extremes, if they are nonzero.

For more precise discussion though we need better approximation

of the studied function than a linear one. That's why we'll �rst

study notions in this direction and later come back to discussing

the course of functions.
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pro x ∈ (−1, 1) a n ∈ N. □
6.4. Determine the second derivative of function y = tg x on its whole
domain, i.e. for cos x ̸= 0. ⃝
6.5. Determine the �fth and the sixth derivative of the polynomial

p (x) = (
3x2 + 2x + 1

) · (2x − 6) · (2x2 − 5x + 9
)
, x ∈ R.

⃝
6.6. With no computation involved, determine the 12th derivative of
function

y = e2x + cos x + x10 − 5x7 + 6x3 − 11x + 3, x ∈ R.

⃝
6.7. Write the 26th derivative of function

f (x) = sin x + x23 − x18 + 15x11 − 13x8 − 5x4 − 11x3 + 16 + e2x

pro x ∈ R. ⃝
We'll show some more interesting examples of using the di�eren-

tial calculus. First though, we'll mention the Jensen inequality, which
disscusses convex and concave functions and which we'll use later.

6.8. Jensen inequality. For a strictly convex function f on interval I
and for arbitrary points x1, . . . , xn ∈ I and real numbers c1, . . . , cn >

0 sucht that c1 + · · · + cn = 1, the inequality

f

(
n∑
i=1
ci xi

)
≤

n∑
i=1
ci f (xi)

holds, with equality occuring if and only if x1 = · · · = xn.

Solution. Proof can be found for example in ∥??∥ □
Remark.

The Jensen inequality can be also formulated in a more intuitive
way: the centroid of mass points placed upon a graph of a
strictly convex function lies above this graph.

6.9. Prove that among all (convex) n-gons inscribed into a circle, the
regular n-gon has the biggest area (for arbitrary n ≥ 3).
Solution. Clearly it su�ces to consider the n-gons inside of which
lies the center of the circle. We'll divide each such n-gon inscribed
into a circle with radius r to n triangles with areas Si , i ∈ {1, . . . , n}
according to the �gure. With regard to the fact that

sin φi

2 = xi
r
, cos φi

2 = hi

r
, i ∈ {1, . . . , n},

we have

Si = xi hi = r2 sin φi

2 cos φi

2 = 1
2 r

2 sinφi, i ∈ {1, . . . , n}.
This implies that the area of the whole n-gon is

S =
n∑
i=1
Si = 1

2 r
2

n∑
i=1

sinφi .

Thus we want to maximize the sum
∑n

i=1 sinφi , while for values φi ∈
(0, π) we clearly have

(6.2) φ1 + · · · + φn =
n∑
i=1

φi = 2π.

The function y = sin x is strictly concave on the interval (0, π),
which means, that the function y = − sin x is strictly convex on this
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6.4. Taylor expansion. As a surprisingly easy use of Rolle's theo-

rem we will now derive an extremely important result. It's

called Taylor expansion with a remainder. Intuitively we

can get to it by reversing our notions about power series. If

we have a power series centered in a,

S(x) =
∞∑
n=0

an(x − a)n,

and we di�erentiate it repeatedly, we are getting power series (we

know that we can di�erentiate such expression term after term,

even if we haven't proved it yet)

S(k) (x) =
∞∑
n=k

n(n− 1) . . . (n− k + 1)an(x − a)n−k.

At the point x = a we then have S(k) (a) = k!ak . Then we can

conversely read the last statement as an equation for ak and rewrite

the original series as

S(x) =
∞∑
n=0

1
k!
S(k) (a)(x − a)n.

If we have some su�ciently smooth function f (x) instead of

a power series, it's suitable to ask if it can be expressed as a power

series and how fast will the partial sums (i.e. approximations of

function f by polynomials) converge. Our notion just suggested

we can expect a good approximation by polynomials in the neigh-

bourhood of point a.

Taylor polynomials of function f

Fot k times di�erentiable function f we de�ne its Taylor poly-

nomial of k�th degree by the relation

Tk,af (x) = f (a)+ f ′(a)(x − a)+ 1
2
f ′′(a)(x − a)2+

1
6
f (3)(a)(x − a)3 + · · · + 1

k!
f (k)(a)(x − a)k.

The precise answer looks similar to the mean value theorem,

but we work with higher degrees of polynomials:

Theorem (Taylor expansionwith a remainder). Let f (x) be a func-

tion that is k times di�erentiable on interval (a, b) and continuous

on [a, b]. Then for all x ∈ (a, b) there exists a number c ∈ (a, x)
such that

f (x) = f (a)+ f ′(a)(x − a)+ . . .

+ 1
(k − 1)!

f (k−1)(a)(x − a)k−1 + 1
k!
f (k)(c)(x − a)k

= Tk−1,af (x)+ 1
k!
f (k)(c)(x − a)k.

Proof. De�ne the remainder R (i.e. the error of the approxi-

mation for �xed x) as follows

f (x) = Tk−1,af (x)+ R

i.e. R = 1
k! r(x − a)k for a suitable number r (dependant on x).

Now consider function F(ξ) de�ned by

F(ξ) =
k−1∑
j=0

1
j !
f (j) (ξ)(x − ξ)j + 1

k!
r(x − ξ)k.
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interval. Then according to Jensen's inequality for ci = 1/n and xi =
φi , we have

− sin
(

n∑
i=1

1
n
φi

)
≤ −

n∑
i=1

1
n

sinφi, tj. sin
(

n∑
i=1

1
n
φi

)
≥

n∑
i=1

1
n

sinφi .

Moreover, we know the equality occurs exactly for φ1 = · · · = φn. If
we express (using (∥6.2∥))

S = r2 n
2

n∑
i=1

1
n

sinφi ≤ r2 n
2 sin

(
n∑
i=1

1
n
φi

)
= r2 n

2 sin 2π
n
,

we can see that S can attain at most the value on the right hand side.
But that happens if and only if φ1 = · · · = φn (we chose xi = φi).
Hence the regular n-gon is the one with the maximum area, because it
satis�es φ1 = · · · = φn = 2π/n. □

6.10. Isoperimitric quotient. For a closed curve in plane enclosing
a planar region, we de�ne its isoperimetric quotient as the number

IQ := S

π
(

o
2π

)2 = 4πS
o2 ,

where S denotes the area of the region and o its perimeter (i.e. the
length of the curve). Hence the isoperimetric quotient determines the
ratio of the area of the region and the area of a circle with the same
perimeter as the given region. The notation IQ is therefore not only
an English abbreviation for the isoperimetric quotient, but can be also
thought of as the "intelligence of the region", with which it uses its
perimeter for attaining as big area as possible. The isoperimetric the-
orem then states that for every closed curve, IQ ≤ 1, with equality
occuring only for a circle, or ("the circle is the smartest").

Determine IQ for a regular polygon and a circle and �nd the sector
of a circle, for which its boundary has the largest IQ

Solution. First notice that the value of IQ doesn't change with a
change of scale on the axes (same on both). Because when the pro-
portions of the region get a times bigger (for arbitrary a > 0), the
perimeter also gets a times bigger and the area a2 times (it's a square
measure). Hence IQ doesn't depend on the size of the region, but
only on its shape. Thus we can consider a regular n-gon inscribed into
a unit circle. According to the �gure,

h = cosφ = cos π
n
, x

2 = sinφ = sin π
n
,

which yields

on = n · x = 2n sin π
n

and

Sn = n · 1
2 hx = n cos π

n
sin π

n
.

Thus for a regular n-gon, we have

IQ = 4πn cos π
n

sin π
n

4n2 sin2 π
n

= π
n
cotg π

n
,

which we can verify for example for a square (n = 4) with a side of
length a, where

IQ = 4πa2

(4a)2 = π
4 = π

4 cotg
π
4 .

Using the limit transition for n → ∞ and the limit

lim
x→0

sin x
x

= 1,

we get the isoperimetric quotient for a circle:
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Its derivative (when x is considered as a constant parameter) is

F ′(ξ) = f ′(ξ)+
k−1∑
j=1

(
1
j !
f (j+1) (ξ)(x−ξ)j− 1

(j − 1)!
f (j) (ξ)(x−ξ)j−1

)

− 1
(k − 1)!

r(x − ξ)k−1

= 1
(k − 1)!

f (k)(ξ)(x − ξ)k−1 − 1
(k − 1)!

r(x − ξ)k−1

= 1
(k − 1)!

(x − ξ)k−1(f (k)(ξ)− r),

because the expressions in the sum cancel each other out sequen-

tially. Now it su�ces to notice that F(a) = F(x) = f (x) (re-

call that x is an arbitrarily chosen but �xed value from interval

(a, b)). Then according to Rolle's theorem there exists a number

c, a < c < x such that F ′(c) = 0. That's exactly the desired

relation. □

6.5. Estimations for expansions with a remainder. An espe-

cially simple case of Taylor expansion is the expansion of an ar-

bitrary polynomial

f (x) = anx
n + an−1x

n−1 + · · · + a1x + a0, an ̸= 0.

Because the (n + 1)�th derivative f is identically zero, the Tay-

lor polynomial of degree n has a zero remainder, therefore for

eachx0 ∈ R

f (x) = f (x0)+ f ′(x0)(x − x0)+ · · · + 1
n!
f (n)(x0)(x − x0)

n

and we can compute all the derivatives easily (for example the last

term is always of the form) an(x − x0)
n).

This result is a very special case of error estimation in Taylor

series with a remainder. We know in advance that the remainder

can be estimated by the size of the derivative which is identically

zero from some degree on for polynomials.

More universally the estimation of the size of the k�th deriva-

tive on some interval can be used to estimate the error on the same

interval. A special case is also the mean value theorem as an ap-

proximation by Taylor series of degree zero, see (5.9). A good ex-

amples of an expansion of an arbitrary degree are the goniometric

functions sin and cos. By iterating the di�erentiation of function

sin x we always get either sine or cosine with some sign, but in the
absolute value the values won't exceed one. Thus we get a direct

estimation of the speed of convergence of the power series

| sin x − (Tk,0 sin)(x)| ≤ |x|k+1

(k + 1)!
.

It show that for x drasticall lesser than k the error will be small,

but for x comparable with k or bigger it will be large. Compare

with the �gure of the approximation of function cos x by Taylor

polynomial of degree 68 in paragraph 5.50.

As we mentioned in the introduction of the discussion of Tay-

lor expansion of functions, if we start with a power series f (x)

centered in a, then its partial sums coincide with Taylor polynomi-

als Tk,af (x). The next statement is one of the simple formulation

of the converse implication, i.e. when the given function f (x) is

actually a power series.
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IQ = lim
n→∞

π
n
cotg π

n
= lim

n→∞
cos π

n
sin π

n
π
n

= cos 0
1 = 1.

Of course, for a circle with radius r, we could have also directly com-
puted

IQ = 4πS
o2 = 4π

(
πr2

)
(2πr)2 = 1.

For the boundary a of sector of a circle with radius r and central
angle φ ∈ (0, 2π), we have

IQ = 4πS
o2 = 4π φr2

2
(2r+rφ) 2 = 2πφ

(2+φ)2 .
Hence we're looking for a maximum of the function

f (φ) := 2πφ
(2+φ)2 , φ ∈ (0, 2π).

By computing

f ′(φ) = 2π (2+φ)2−2φ(2+φ)
(2+φ)4 = 2π 2−φ

(2+φ)3 , φ ∈ (0, 2π)

we easily obtain that

f ′(φ) > 0, φ ∈ (0, 2), f ′(φ) < 0, φ ∈ (2, 2π).
Hence function f attains its maximal value for φ0 = 2 and for a central
angle φ0 = 2 (radians), we get the largest

IQ = 2πφ0
(2+φ0)

2 = π
4 .

For the sake of completeness, for a solid in three-dimensional
space (more precisely, for the closed surface which is its boundary),
we de�ne

IQ := V

4π
3

(
S

4π

) 3
2
,

whereV is the volume and S the surface of the solid. Thus we compare
the volume of the solid with a given surface with the volume of the ball
with the same space.◦ □
6.11. A string of length l is given. The task is to cut it into n parts so

that it's possible to create boundaries of geometric �gures
given in advance (for example a square, a triangle, a circle,
a halfcircle) with the least sum of areas from the n smaller
strings.

Solution. To solve this problem, we'll use the isoperimetric quotient
of curves and Jensen's inequality (stated in previous examples). For
the geometric �gures given in advance, denote the values of their
isoperimetric quotients as

1
λi

:= 4πSi

o2
i

, i ∈ {1, . . . , n},
where Si is the area and oi the perimeter of the i-th �gure. We'll also
use the denotation

3 :=
n∑
i=1
λi .

Recall that the isoperimetric quotient is given only by the shape of
the �gure and doesn't depend on its size. In particular, the value 3 is
constant (it's determined by the shapes of the given �gures).

Our task is to minimize the sum
∑n

i=1 Si with
∑n

i=1 oi = l. Be-
cause

Si = o2
i

4πλi
, i ∈ {1, . . . , n},

we need to minimize the expression

S := 1
4π

n∑
i=1

o2
i

λi
.
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Corollary (Taylor's theorem). Assume that the function f (x) is

smooth on the interval (a − b, a + b) and all of its derivatives are

bounded uniformally here by a constantM > 0, i.e.

|f (k)(x)| ≤ M, k = 0, 1, . . . , x ∈ (a − b, a + b).

Then the power series S(x) = ∑∞
n=0

1
k!f

(k)(a)(x− a)n converges
on the interval (a − b, a + b) to the function f (x).

Proof. The proof is identical with the notion in the speci�c

case of function cos x higher. Think through the details! □
6.6. Analytic and smooth functions. If f is smooth at a, we can

write a formal power series

S(x) =
∞∑
n=0

1
k!
f (k)(a)(x − a)n.

If this power series has a nonzero radius of convergence and simul-

taneously S(x) = f (x) on the respective interval, we say that f

is an analytic function at the point a. A function is analytic on an

interval, if it's analytic at its every point.

Not all smooth functions are analytic though. In fact it can be

proven that for every sequence of numbers an we can �nd a smooth

function, whose derivatives of order k will be these numbers ak .
1

To at least imagine the essence of the problem, we'll introduce

(as will be seen later, a very useful) function, that has

all derivatives zero at zero but is nonzero at every

other point.

Consider a function de�ned by

f (x) = e−1/x2
.

Obviously it's a well de�ned smooth function at all

points x ̸= 0. We'll check that at the point x = 0 the limit exists:

limx→0 f (x) = 0. Thus we can aditionally de�ne f (0) = 0 and

obtain a smooth function.

By a direct computation with usage of L'Hospital's rule we'll

compute the derivative and it su�ces to consider only the right

derivative, because the function is even.

f ′(0) = lim
x→0+

e−1/x2 −0
x

= lim
x→0

x−1

e1/x2 = 1
2

lim
x→0

x

e1/x2 = 0.

By di�erentiating the function f (x) at an arbitrary point x ̸=
0 we'll get f ′(x) = e−1/x2 ·2x−3 a by repeated di�erentiating of

the results we'll always get a sum of �nitely many terms of the form

C · e−1/x2 ·x−j ,
where C is an integer and j is a natural number.

So we'll assume we've already proven that the derivative of

order k of our function f (x) exists and is zero at zero. While com-

puting the following derivatives we'll proceed the same way as in

the case k = 0 higher. We'll compute the limit of the expression

f (k)(x)/x for x → 0+, i.e. a �nite sum of limits of the expressions

x−j e−1/x2 = x−j / e1/x2
. All these expressions are of type ∞/∞,

so we can use L'Hospital's rule repeatedly on them. Obviously af-

ter several di�erentiations of both the numerator and denominator

(and a similar adjustment as higher) there will be still the same

expression in the denominator, while in the numerator the power

will be nonnegative. Thus the whole expression necessarily has a

1It's a special case of so called Whitney's theorem, see. complete the cita-

tion and information.
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Using Jensen's inequality for the strictly convex function y = x2

(on the whole real axis), we obtain(
n∑
i=1
ci xi

)2

≤
n∑
i=1
ci x

2
i

for xi ∈ R and ci > 0 with the property c1 + · · · + cn = 1. Moreover
we know that the equality occurs if and only if x1 = · · · = xn. By
choosing

ci = λi

3
, xi = oi

λi
, i ∈ {1, . . . , n},

we then get (
n∑
i=1

λi

3

oi
λi

)2

≤
n∑
i=1

λi

3

(
oi
λi

)2
.

By several simpli�cations, we obtain the inequality

1
32

(
n∑
i=1
oi

)2

≤ 1
3

n∑
i=1

o2
i

λi

and then (notice that
∑n

i=1 oi = l)

l2

3
≤

n∑
i=1

o2
i

λi
,

with equality again occuring for

(6.3) x1 = · · · = xn, tj.
o1

λ1
= · · · = on

λn
.

This implies that S the smallest, if and only if (∥6.3∥) holds. This
smallest value of S is l2/(4π3). Now we only need to determine the
lengths of the cut parts oi . If (∥6.3∥) holds, then clearly oi = kλi for
all i ∈ {1, . . . , n} and certain constant k > 0. From

n∑
i=1
oi = l and simultaneously

n∑
i=1
oi = k

n∑
i=1
λi = k3,

we can immediately see that k = l/3, i.e.

oi = λi

3
l, i ∈ {1, . . . , n}.

Let's take a look at a speci�c situation where we are to cut a string
of length 1 m into two smaller ones and then create a square and a
circle from them so that the sum of their areas is the smallest possible.
For a square and a circle (in order), we have (see the example called
Isoperimetric quotient)

λ1 = 4
π
, λ2 = 1, tj. 3 = λ1 + λ2 = 4+π

π
.

Then the lengths of the respective parts are (in metres)

o1 = 4
π

4+π
π

· 1 = 4
4+π

.= 0, 56, o2 = 1
4+π
π

· 1 = π
4+π

.= 0, 44.

The area of a square with perimeter 0, 56 m (with a side of length
a = 0, 14 m) is 0, 019 6 m2 and the area of a circle with perimeter
0, 44 m (and radius r

.= 0, 07 m) is approximately 0, 015 4 m2. We
can verify that (in m2

l2

4π3 = 1
4(4+π)

.= 0, 035 = 0, 019 6 + 0, 015 4.

□
Taylor expansions. We necessarily need the derivatives of higher or-
ders to determine the Taylor expansion of a given function.
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zero limit at zero, just like we've computed in the case of the �rst

derivative higher. The same will hold true for a �nite sum of such

expressions, so we've found out that each derivative f (k)(x) at zero

will exist and its value will be zero.

We've shown that our function f (x) is smooth on whole R,
it's of course a nonzero function everywhere except for x = 0, but
all its derivatives at this point are zero. Of course, then it's not an

analytic function at the point x0 = 0.

6.7. Examples of nonanalytic smooth functions. We can easily

modify our function f (x) from the previous paragraph in

this way:

g(x) =
{

0 if x ≤ 0
e−1/x2

if x > 0
.

Again it's a smooth function on whole R. By another modi�cation
we can obtain a function that is nonzero in all inner points of the

interval [−a, a], a > 0 and zero elsewhere:

h(x) =
{

0 if |x| ≥ a

e
1

x2−a2 + 1
a2 if |x| < a .

This function is again smooth on whole R. The last two functions
are on the �gures, on right the parameter a = 1 is used.

0,8

0,6

0,4

0,2

x

0
43210 0-0,2-0,4

1

x

0,8

0,6

0,4

0,4

0,2

0,2
0

Finally we'll show how to get smooth analogies of Heaviside

functions. For two �xed real numbers a < bwe de�ne the function

f (x) with usage of earlier de�ned function g in this way:

f (x) = g(x − a)

g(x − a)+ g(b − x)
.

Obviously for all x ∈ R the denominator of the fraction is positive

(because for each of the intervals determined by numbers a and b at

least one of the summands of the denominator is nonzero, therefore

the whole denominator is positive. Thus from our de�nition we get

a smooth function f (x) on whole R. For x ≤ a the denominator

of the fraction is zero according to the de�nition of g though, for

x ≥ b the numerator and denominator are equal. On the next two

�gures there are these functions f (x) with parameters a = 1 − α,

b = 1 + α, where on the left we have α = 0.8 and on the right we

have α = 0.4.
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6.12. Determine the Taylor expansions T kx (of k-th order at point x)
of the following functions:

i) T 3
0 of function sin x,

ii) T 3
1 of function ex

x
.

Solution. (i) We'll compute the values of the �rst, second and third
derivative of function f = sin at point 0: f ′(0) = cos(0) = 1,
f (2)(0) = − sin(0) = 0, f (3)(0) = − cos(0) = −1, also f (0) = 0.
Thus the Taylor expansion of the third order of functionsin(x) at point
0 is

T 3
0 (sin(x)) = x − 1

6
x3 .

(ii) Again f (1) = e,

f ′(1) = ex

x
− ex

x2

∣∣∣∣
x=1

= 0

f (2)(1) = ex

x
− 2

ex

x

2

+ 2ex

x3

∣∣∣∣
x=1

= e

f (3)(1) = ex

x
− 3

ex

x

2

+ 6ex

x3
− 6ex

x4

∣∣∣∣
x=1

= −2e

Thus we get the Taylor expansion of third order of function ex

x
at point

1:

T 3
1 (
ex

x
) = e + e

2
(x − 1)2 − e

3
(x − 1)3 = e(−x

3

3
+ 3x2

2
− 2x + 5

6
).

□

6.13. Determine the Taylor polynomial T 6
0 of function sin and using

theorem (6.4), estimate the error of the polynomial at point π/4.

Solution. Analogously to the previous example, we compute

T 6
0 (sin(x)) = x − 1

6
x3 + 1

120
x5 .

Using the theorem 6.4, we then estimate the size of the remainder (er-
ror) R. According to the theorem, there exists c ∈ (0, π4 ) such that

R(π/4) =
∣∣∣∣− cos(c)π7

7!47

∣∣∣∣ < 1
7!

.= 0, 0002.

□

6.14. Find the Taylor polynomial of third order of function

y = arctg x, x ∈ R
at point x0 = 1. ⃝
6.15. Determine the Taylor expansion of third order at point x0 = 0
of function

(a) y = 1
cos x ;

(b) y = e− x2
2 ;

(c) y = sin (sin x) ;
(d) y = tg x;
(e) y = ex sin x
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1

0,8

0,6

0,4

0,2

0

x

21,510,50

alpha = .8

1

0,8

0,6

0,4

0,2

0

x

21,510,50

alpha = .40000

Now we can also easily create a smooth analogy of the char-

acteristic function of the interval [c, d].
Denote the higher speci�ed function f (x) with parameters

a = −ε, b = +ε as fε(x). Now for the interval (c, d) with length

d − c > 2ε we de�ne the function hε(x) = fε(x − c) · fε(d − x).

This function is identically zero on the intervals(−∞, c − ε) a

(d+ ε,∞) and identically equal one on the interval (c+ ε, d − ε),
moreover it's smooth everywhere and locally it's either constant or

monotonic. The smaller the ε > 0, the faster our function jumps

from zero to one around the beginning of the interval or back at

the end of it.

Thus we can see that smooth functions are very "plastic" �

from a local behaviour around one point we cannot deduce any-

thing at all about the global behavior of such function. Conversely,

analytic functions are completely determined just by derivatives at

one point. In particular they are completely determined by their

behavior on an arbitrarily small neighbourhood of a single point

from their domain. In this sense, they are very "rigid".

6.8. Local behavior of functions. We've seen that the sign of the

�rst derivative of a di�erentiable function de-

termines whether it's increasing or decreasing

on some neighbourhood of the given point. If

derivative is zero though, it doesn't tell usmuch

about the behavior of the function by itself.

We've already encountered the importance of the second deriv-

ative while describing critical points. Nowwe'll generalize the dis-

cussion of critical points for all orders. We'll start with discussing

the local extremes of functions, i.e. values, that are strictly bigger

or strictly smaller than all the other values from some neighbour-

hood of a given point.

In the following we'll consider functions with su�ciently high

number of continuous derivatives, without speci�cally pointing

this assumption out.

We say the point a in domain of f is a critical point of order

k i�

f ′(a) = · · · = f (k)(a) = 0, f (k+1)(a) ̸= 0.
Suppose f (k+1)(a) > 0. Then this continuous derivative is pos-

itive on a certain neighbourhood O(a) of the point a as well. In

that case, a Taylor expansion with a remainder gives us

f (x) = f (a)+ 1
(k + 1)!

f (k+1)(c)(x − a)k+1

for all x in O(a). Because of that, the change of values of f (x)
in a neighbourhood of a is given by the behavior of the function

(x−a)k+1. Moreover, if k+1 is an even number, then the values of
f (x) in such neighbourhood are necessarily bigger than the value
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de�ned in a certain neighbourhood of point x0. ⃝
6.16. Determine the Taylor expansion of fourth order of function y =
ln x2 , x ∈ (0, 2) at point x0 = 1. ⃝
6.17. Find the estimation of the error of the approximation

ln (1 + x) ≈ x − x2

2

for x ∈ (−1, 0). ⃝
6.18. Write the Taylor polynomial of fourth degree of function y =
sin x, x ∈ R centered at the origin. Using this polynomial, approxi-
mately compute sin 1◦ and determine the limit

lim
x→0+

x sin x−x2

x4 .

⃝
6.19. Determine the Taylor polynomial centered at the origin of degree
at least 8 of function y = e2x , x ∈ R. ⃝
6.20. Express the polynomial x3 − 2x+ 5 as a polynomial in variable
u = x − 1. ⃝

6.21. Espand the function ln(1+x) into a power series at point 0 and
1 and determine all x ∈ R for which these series converge.

Solution. First we'll determine the expansion at point 0. To expand a
function into a power series at a given point is the same as to determine
its Taylor expansion at that point. We can easily see that

[ln(x + 1)](n) = (−1)n+1 (n− 1)!
(x + 1)n

,

so after computing the derivatives at zero, we have ln(x+ 1) = ln 1 +
∞∑
n=1

anx
n , where

an = (−1)n+1(n− 1)!
n!

= (−1)n+1

n
.

Thus we can write

ln(x + 1) = x − 1
2
x2 + 1

3
x3 − 1

4
x4 + · · ·

=
∞∑
n=1

(−1)n+1

n
xn .

For the radius of convergence, we can then use the limit of the quotient
of the following coe�cients of terms of the power series

r = 1

limn→∞
∣∣∣ an+1
an

∣∣∣ = 1

limn→∞
1

n+1
1
n

= 1.

Hence the series converges for arbitrary x ∈ (−1, 1). For x = −1 we
get the harmonic series (with a negative sign), for x = 1 we get the
alternating harmonic series, which converges by the Leibniz criterion.
Thus the given series converges exactly for x ∈ (−1, 1].
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f (a) and obvisouly the point a is a point of local minimum then.

If k is even though, then the values on left are small and on right

bigger than f (a), so an extreme doesn't occur even locally. On the

other we can notice that the graph of function f (x) intersects its

tangent y = f (a) at point [a, f (a)].
Conversely, if f (k+1)(a) < 0, then because of the same rea-

soning it's a local maximum for odd k a again the extreme doesn't

occur for even k.

6.9. Convex and concave functions. We say that di�erentiable

function f is concave at point a, if in a certain neigh-

bourhood its graph lies completely below the tangent

at point [a, f (a)], i.e. we require

f (x) ≤ f (a)+ f ′(a)(x − a).

Conversely, we say that f is convex at point a, if its graph is above

the tangent at point a, i.e.

f (x) ≥ f (a)+ f ′(a)(x − a).

A function is convex or concave on an interval, if it has this prop-

erty in its every point.

Moreover suppose that function f has continuous second

derivatives in a neighbourhood of point a. From the Taylor ex-

pansion of second order with a remainder we obtain

f (x) = f (a)+ f ′(a)(x − a)+ 1
2
f ′′(c)(x − a)2.

Then obviously the function is convex, whenever f ′′(a) > 0, and
concave, whenever f ′′(a) < 0.

If the second derivative is zero, we cab zse derivatives of

higher orders. We can only make the same conclusion if the �rst

other nonzero derivative after the �rst derivative is of even order. If

the �rst nonzero derivative is of odd order, clearly the points of the

graph of the function on opposite sides of some small neighbour-

hood of the studied point will lie on opposite sides of the tangent

at this this point.

6.10. In�ection points. Point a is called an in�ective point of a

di�erentiable function f , if the graph of function f crosses from

one side of the tangent to the other.

Suppose f has continuous third derivatives and write the Tay-

lor expansion of third order with a remainder:

f (x)=f (a)+f ′(a)(x−a)+ 1
2
f ′′(a)(x−a)2+ 1

6
f ′′′(c)(x−a)3.

If a is a nonzero point of the second derivative such that f ′′′(a) ̸=
0, then the �rst derivative is nonzero on some neighbourhood as

well and clearly it's an in�ective point. In that case, the sign of

the third derivative determines whether the graph of the function

crosses the tangent from the top to the bottom or vice versa.

Moreover, if a is an isolated nonzero point of the second deriv-

ative and simultaneously an in�ective point, then clearly on some

small neighbourhood of a the function is concave on one side and

convex on the other. Thus we can also see the in�ective points as

the points of the crossover betwenn concave and convex behaviour

of the graph of the function.
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Analogously, for the expansion at point 1, by computing the above
derivatives from ∥6.21∥, we get

ln(x + 1) = ln(2)+ 1
2
(x − 1)− 1

8
(x − 1)2 + 1

3 · 23
(x − 1)3 − . . .

= ln(2)+
∞∑
n=1

(−1)n+1

n · 2n
(x − 1)n,

and for the radius of convergence of this series, we get

r = 1

limn→∞
∣∣∣ an+1
an

∣∣∣ = 1

limn→∞
1

2n+1(n+1)
1

2nn

= 1.

The �rst series converges for −1 < x ≤ 1, the second for −1 <
x ≤ 3. □

6.22. Expand the function

(a) y = ln 1+x
1−x , x ∈ (−1, 1);

(b) y = ex
2 + x2 e−2x, x ∈ R

into a Taylor series centered at the origin..

Solution. If the function can be expressed as a sum of a power series
(with a positive radius of convergence) on its domain of convergence,
then this series is necessarily the Taylor series of the given function (its
sum). This allows us to �nd the corresponding Taylor series easily.

Case (a). We know that

ln (1 + x) =
∞∑
n=1

(−1)n+1

n
xn , x ∈ (−1, 1),

i.e.

ln (1 − x) =
∞∑
n=1

(−1)n+1

n
(−x)n = −

∞∑
n=1

1
n
xn , x ∈ (−1, 1).

In total, we have

ln 1+x
1−x = ln (1 + x)− ln (1 − x) =

∞∑
n=1

(−1)n+1+1
n

xn =
∞∑
n=1

2
2n−1 x

2n−1

for x ∈ (−1, 1).
Case (b). Similarly, the well known identity

ex =
∞∑
n=0

1
n! x

n , x ∈ R,

implies

ex
2 =

∞∑
n=0

1
n!

(
x2
)n =

∞∑
n=0

1
n! x

2n , x ∈ R,

and

x2 e−2x = x2
∞∑
n=0

1
n! (−2x)n =

∞∑
n=0

(−2)n

n! xn+2 , x ∈ R.

Hence

ex
2 + x2 e−2x =

∞∑
n=0

x2n+(−2)nxn+2

n! , x ∈ R.

□ R
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6.11. Asymptotes of the graph of the function. We'll introduce

one more useful utility for sketching the graph of a

function. We'll try to �gure out the so called asymp-

totes, i.e. the lines, which the values of function f

approach. An asymptote at the improper point ∞ is

such a line y = ax + b, which satis�es

lim
x→∞(f (x)− ax − b) = 0.

We also call it an asymptote with a slope. If such an asymptote

exists, it satis�es

lim
x→∞(f (x)− ax) = b

and therefore the limit

lim
x→∞

f (x)

x
= a

exists as well.

Conversely, if the last two limits exist, the limit from the de�-

nition of the asymptote exists as well, thus these are su�cient con-

ditions as well.

We can de�ne and compute the asymptote at the improper

point −∞ similarly.

This way we can �nd all the potentional lines satasfying the

proporties of asymptotes with a slope. All we have left are poten-

tial lines perpendicular the the x axis:

The asyptotes at points a ∈ R are lines x = a such that the

function f has at least on of the one-sided limits at point a in�nite.

We also speak of th asymptotes without a slope.

For example rational functions have an asymptote in zero

points of denominator that aren't zero points of the numerator.

We'll compute at least one simple example: function f (x) =
x + 1

x
has the asymptotes y = x and x = 0. Indeed, the one-sided

limits from the right and left at zero are clearly±∞, while the limit

f (x)/x = 1+1/x2 is of course exactly ±1 at the improper points,

while the limit f (x)− x = 1/x is zero at the improper points.
By di�erentiating we get

f ′(x) = 1 − x−2 , f ′′(x) = 2x−3 .

function f ′(x) has two zero points ±1. At point x = 1 the

function has a local minimum, at point x = −1 a local maxi-

mum. The second derivative has no zero points in all its domain

(−∞, 0) ∪ (0,∞), so our function doesn't have any in�ection

points.
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6.23. Determine the Taylor series centered at the origin of function

(a) y = 1
(1+x)2 , x ∈ (−1, 1) ;

(b) y = arctg x, x ∈ (−1, 1).

Solution. Case (a). We'll use the formula

1
1+x =

∞∑
n=0

(−x)n =
∞∑
n=0
(−1)nxn , x ∈ (−1, 1)

abou the sum of a geometric series. By di�erentiating it, we obtain

− 1
(1+x)2 =

( ∞∑
n=0
(−1)nxn

)′
=

∞∑
n=1
(−1)n n xn−1 , x ∈ (−1, 1) ,

with
(
x0
)′ = 0, thus the lower index is n = 1. We can see that

1
(1+x)2 =

∞∑
n=1
(−1)n+1 n xn−1 , x ∈ (−1, 1) .

Case (b). We can express the derivative of function y = arctg t as

(arctg t) ′ = 1
1+t2 =

∞∑
n=0

(−t2 )n =
∞∑
n=0
(−1)nt2n , t ∈ (−1, 1) .

Because for x ∈ (−1, 1) we have
x∫
0
(arctg t) ′ dt = arctg x − arctg 0 = arctg x

and
x∫
0

( ∞∑
n=0
(−1)nt2n

)
dt =

∞∑
n=0

(
(−1)n

x∫
0
t2n dt

)
=

∞∑
n=0

(−1)n

2n+1 x
2n+1 ,

we already have the result

arctg x =
∞∑
n=0

(−1)n

2n+1 x
2n+1 , x ∈ (−1, 1) .

□

6.24. Find the Taylor series centered at x0 = 0 of function

f (x) =
x∫
0
u cos u2 du, x ∈ R.

Solution. The equality

cos t =
∞∑
n=0

(−1)n

(2n)! t
2n , t ∈ R

implies

u cos u2 = u
∞∑
n=0

(−1)n

(2n)!

(
u2
)2n =

∞∑
n=0

(−1)n

(2n)! u
4n+1, u ∈ R

and then (for x ∈ R)

f (x) =
x∫
0
u cos u2 du =

x∫
0

( ∞∑
n=0

(−1)n

(2n)! u
4n+1

)
du

=
∞∑
n=0

(
(−1)n

(2n)!

x∫
0
u4n+1 du

)
=

∞∑
n=0

(−1)n

(2n)! (4n+2) x
4n+2 .

□

6.25. On the interval of convergence (−1, 1), determine the sum of
the series

∞∑
n=1

n (n+ 1) xn .

Solution. We have
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6.12. Di�erential of a function. In practical use of di�erential

calculus, we often work with dependencies between

several quantites, say y a x, and the choice of de-

pendant and independant variable is not �xed. The

explicit relation y = f (x) with some function f is then only one

of several options. Di�erentiating then expresses, that the immedi-

ate change of y = f (x) is proportional to the immediate change of

x with a proportion of f ′(x) = df
dx
(x). This relation is often being

written as

df (x) = df

dx
(x)dx,

where we interpret df (x) as a linear map of increments of given

df (x)(1x) = f ′(x) ·1x, while dx(x)(1x) = 1x.

We speak of the di�erential of function f if the approximative

property

lim
1x→0

f (x +1x)− f (x)− df (x)(1x)

1x
= 0

holds. Taylor theorem then implies that a function with bounded

derivative f ′ has a di�erential df . In particular, that occurs at

point x if the �rst derivative f ′(x) exists and is continuous.
If the quantity x is expressed by another quantity t, i.e. x =

g(t), and moreover by a function with continuous �rst derivative

again, the the rule for di�erentiating composite functions tells us

the composite function f ◦ g has again a di�erential
df (t) = df

dx
(x)
dx

dt
(t)dt.

Therefore we can see df as a linear approximation of the given

quantity dependant on the increments of the dependant variable,

no matter how this dependance is given.

6.13. The curvature of the graph of a function. To train our-

selves in the basic rules for di�erentiating composite

functions etc., we'll disscuss the graph of a smooth

function f (x) as a special case of a parametrized

curve in a plane for now. We can imagine it as a

movement in the plane parametrized by an independant variable

x. For an arbitrary point x from the domain of our function, by

computing the �rst derivative we can immediately get the vec-

tor (1, f ′(x)) ∈ R2 that represents the immediate velocity of

such a movement. . The tangent line through the point [x, f (x)]
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∞∑
n=1

n (n+ 1) xn =
∞∑
n=1

n
(
xn+1

)′ =
( ∞∑
n=1

n xn+1
)′

=( ∞∑
n=1

n xn−1 x2
)′

=
[
x2

∞∑
n=1

(xn )′
]′

=
[
x2
( ∞∑
n=1

xn
)′ ]′

=[
x2
(

−1 +
∞∑
n=0

xn
)′ ]′

=
[
x2
(−1 + 1

1−x
)′ ]′ =

[
x2 · 1

(1−x)2
]′ =

2x
(1−x)3

for all x ∈ (−1, 1). □
6.26.Expand the function cos2(x) into a power series (i.e. determine
its Taylor expansion) at point 0 and determine for which real numbers
this series converges.

6.27. Expand the function sin2(x) into a power series at point 0 and
determine for which real numbers this series converges

6.28. Expand the function ln(x3 + 3x2 + 3x + 1) into a power series
at point 0 and determine for which x ∈ R it converges. ⃝
6.29. Expand the function ln

√
x into a power series at point 1 and

determine for which x ∈ R it converges. ⃝
More problems about Taylor polynomials and series can be found on
page 412.

Now we'll state several "classical" problems, in which we'll deter-
mine the course of distinct functions.

6.30. Determine the range of function

f (x) = ex−1
ex+1 , x ∈ R.

Solution. The line y = 1 is clearly an asymptote of function f at+∞
and the line y = −1 is an asymptote at −∞, because

lim
x→∞

ex−1
ex+1 = lim

x→∞
ex

ex = 1, lim
x→−∞

ex−1
ex+1 = 0−1

0+1 = −1.

The inequality

f ′(x) = 2ex

(ex+1)2
> 0, x ∈ R

then implies that f is continuous and increasing onR. Hence the range
is the interval (−1, 1). □
6.31. State all intervals on which the function y = e−x2

, x ∈ R is
concave. ⃝
6.32. Consider function

y = arctg x−1
x
, x ̸= 0 (x ∈ R).

Determine intervals on which this function is convex and concave and
also all its asymptotes. ⃝
6.33. Find all asymptotes of function

(a) y = x ex ;
(b) y = (x+3)3

(x−2)3

with maximal domain. ⃝
6.34. State the asymptotes of function

y = 2 arctg
∣∣∣ x

x2−1

∣∣∣ , x ̸= ±1 (x ∈ R).

⃝
6.35. Consider function
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parametrized by this directional vector then represents a linear ap-

proximation of the curve.

We've also seen that in the case f ′′(x) = 0 and simultaniously
f ′′′(x) ̸= 0 the graph of our function intersects the tangent line,

which means the tangent line is the best approximation of the curve

at the point x up to the second order as well. We usually describe

this by saying that the graph of the function f has a zero curva-

ture at the point x. While the nonzero values of the �rst derivative

described the speed of the growth (no matter the sign), we can intu-

itively expect the second derivative will describe the extent of the

curvature of the graph. So far we've only seen that the graph of the

function is above its tangent for a positive value and below it for a

negative one.

We got the tangent at a �xed point P = [x, f (x)] as a

limit of the secants, i.e. the lines passing through the points P

a Q = [x +1x, f (x +1x)]. If we want to approximate the sec-
ond derivative, we will interpolate the points P and Q ̸= P by a

circle CQ, whose center is at the intersection of the perpendicular

lines to the tangents at points P and Q. It can be seen from the

�gure that if the angle between the tangent at a �xed point P and

the x axis is α and the angle between the tangent at a �xed point

Q and the x axis is α + 1α, then the angle of the mentioned per-

pendicular lines will be1α as well. If we denote the radius of our

circle by ρ, then the length of the arc between points P andQ will

be ρ1α. As the point Q approaches a �xed point P , the length

of the arc will approach the length s of the studied curve, i.e. the

graph of the function f (x), and the circle will approach the circle

CP . Thus we get the basic relation for the limit radius ρ of the

circle CP :

ρ = lim
1α→0

1s

1α
= ds

dα
.

We de�ne the curvature of the graph of the function f at a point P

as the number 1/ρ. Zero curvature then corresponds to an in�nite
radius ρ.

For computing the radius ρ we need to express the length of

the arc s by the change of the angle α and express the derivative of

this function by the derivative of f .

We can already notice that for an increasing angle θ the length

of the arc can either increase or decrease, depending onwhether the

circle CQ has the center above or below the graph of the function

f . The sign of ρ then re�ects whether the function is concave or

convex. We also need to think abour the special case when the

center "runs o�" to in�nity in limit, i.e. instead of a circle we get

a line again, which is the tangent.

Obviously, we don't have a direct tool to compute the deriva-

tive ds
dα
. However, we know that tgα = df/dx and by di�erentiat-

ing this equality by x we obtain (using the rule for di�erentiating

composite functions)

1
(cosα)2

dα

dx
= f ′′.

On the left hand side we can substitute 1
(cos α)2 = 1 + (tgα)2 =

1 + (f ′)2 which implies (see the rule for di�erentiating an inverse
function)

dx

dα
= 1 + (tgα)2

f ′′ = 1 + (f ′)2

f ′′ .
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y = ln 3e2x+ex+10
ex+1

de�ned for all real x. Find its asymptotes. ⃝

6.36. Determine the course of the function

f (x) = 3
√| x |3 + 1.

Solution. The domain is the whole real axis, f has no discontinu-
ities. For example it su�ces to consider that the function y = 3

√
x is

continuous at every point x ∈ R (unlike even roots de�ned only on
the nonnegative axis). We can also immediately see that f (x) ≥ 1
and f (−x) = f (x) for all x ∈ R, i.e. the function f is positive and
even. Thus we can obtain the point [0, 1] as the only intersections of
the graph of f with the axes by substituting x = 0. The limit behavior
of the function can be determined only at ±∞ (there are no disconti-
nuities), where we can easily compute

(6.4) lim
x→±∞

3
√

| x |3 + 1 = lim
x→±∞

3
√

| x |3 = lim
x→±∞ | x | = +∞.

Now we'll step up to determing the course of a function by using
its derivatives. For x > 0, we have

f (x) = 3
√
x3 + 1 = (

x3 + 1
) 1

3 ,

hence

(6.5) f ′(x) = 1
3

(
x3 + 1

)− 2
3 3x2 = x2

3
√(
x3 + 1

)2
> 0, x > 0.

This implies that f is increasing on the interval (0,+∞). With re-
spect to its continuity at the origin, it must be increasing on [0,+∞).
Because it's an even function, we know that on the interval (−∞, 0]
it must be decreasing. Thus it has only one local minimum at point
x0 = 0, which is also a (strict) global minimum. Because a noncon-
stant continuous function maps an interval to an interval, the range of
f is exactly [1,+∞) (consider f (x0) = 1 and (∥6.4∥)). Notice that
thanks to the even parity of the function, we didn't have to compute
the derivative f ′ on the negative half-axis, which can though be easily
determined by substituting | x |3 = (−x)3 = −x3 , yielding

f ′(x) = 1
3

(−x3 + 1
)− 2

3
(−3x2

) = − x2

3
√(−x3+1

)2
< 0, x < 0.

When computing f ′(0), we can proceed according to the de�nition or
we can use the limits

lim
x→0+

x2

3
√(
x3+1

)2
= 0 = lim

x→0−
− x2

3
√(−x3+1

)2

determine the one-sided derivatives and then f ′(0) = 0. In fact, we
didn't even have to compute the �rst derivative on the positive half-axis
either. To obtain that f is increasing on (0,+∞), we only needed to
realize that both functions y = 3

√
x and y = x3 + 1 are increasing

on R and a composition of increasing functions is again an increasing
function.

For x > 0, we can easily compute the second derivative us-
ing (∥6.5∥)

f ′′(x) = 2x 3
√(
x3+1

)2− 2
3 x

2 3
√(
x3+1

)−1(3x2)
3

√(
x3+1

)4
,
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Now we're almost done, because the increment of the length of the

arc s in dependance on x is given by the formula

ds

dx
= (1 + (f ′)2)1/2

so by using the rule for di�erentianting a composite function we

can compute

ρ = ds

dα
= ds

dx

dx

dα
= (1 + (f ′)2)3/2

f ′′ .

Nowwe can see the relation between the curvature and the sec-

ond derivative: the numerator of our fraction is always positive, no

matter the value of the �rst derivative. It's equal to the third power

of the size of the tangent vector of the studied curve. The sign of

the curvature is therefore given only by the sign of the second deriv-

ative, which only con�rms our notions about concave and convex

points of functions. If the second derivative is zero, the curvature

is zero as well. The circle, by which we de�ned the curvature is

called the osculating circle.

Try to compute the curvature of simple functions yourself and

use osculating circles while sketching their graphs. The computa-

tion at the critical points of the function f is the easiest, because

in these we get the radius of the osculating circle as the reciprocal

of the second derivative with the corresponding sign.

6.14. Vector di�erential calculus. As we've mentioned already

in the introduction to chapter �ve, for our notions

about di�erentiating it was quite essential that we

studied functions de�ned on real numbers and that

their values could be added and multiplied by real

numbers. That's why we need out functions f : R → V to have

values in the vector space V . For distinction, we'll call them vector

functions of one real variable or more brie�y vector functions.

Now we'll take more interest in real function with values in

plane or space, i.e. f : R → R2 and f : R → R3. We talk about

(parametrized) curves in plane and space. Similarly, we couldwork

with values in Rn for any �nite dimension n.
For simpli�cation, we'll work in the �xed standard bases ei

in R2 and R3, so our curves will be given by doubles or triples of

simple real functions of one real variable, respectively. The vector

function r in plane or space, respectively, is then given by

r(t) = x(t)e1 + y(t)e2, r(t) = x(t)e1 + y(t)e2 + z(t)e3.

The derivative of such a vector function is a vector, which approx-

imates the map r by a linear map of a line to the plane or to the

space.

In plane it's

dr(t)

dt
(t) = r′ (t) = x′ (t)e1 + y′ (t)e2

and similarly in space.

We have to understand the di�erential of a vector function in

this context as well:

dr =
(
dx

dt
e1 + dy

dt
e2 + dz

dt
e3

)
dt

where we understand the expression on the right hand side in a

way the increment of the scalar independant variable t is linearly

mapped by multiplying the vector of the derivative and thus obtain-

ing the corresponding increment of the vector quantity r.
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i.e. after a simpli�cation we have

(6.6) f ′′(x) = 2x
3
√(
x3 + 1

)5
> 0, x > 0.

Similarly we can compute

f ′′(x) = −2x 3
√(−x3 + 1

)2 − 2
3x

2 3
√(−x3 + 1

)−1 (−3x2
)

3
√(−x3 + 1

)4
=

− 2x
3
√(−x3 + 1

)5
> 0,

for x > 0 and then f ′′(0) = 0. Next, we can use a limit transition:

lim
x→0+

2x
3

√(
x3+1

)5
= 0 = lim

x→0−
− 2x

3
√(−x3+1

)5
.

According to the inequality (∥6.6∥), f is strictly convex on the inter-
val (0,+∞). Also f must be strictly convex on (−∞, 0). To obtain
this conclusion though, we again didn't have to compute the second
derivative for x < 0, it su�ced to use the even parity of the function.
In total, we obtained that f is convex on its whole domain (it doesn't
have any in�ection points).

To be able to plot the graph of the function, we still need to �nd
the asymptotes (we leave the computation of values of the function at
certain points to the reader). Since f is continuous on R, it can't have
any horizontal asymptotes. A line y = ax+b is an inclined asymptote
for x → ∞ if and only if both (proper) limits

lim
x→∞

f (x)

x
= a, lim

x→∞(f (x)− ax) = b.

exist. Analogous statement holds for x → −∞. Hence the limits

lim
x→∞

f (x)

x
= lim

x→∞
3√
x3+1
x

= lim
x→∞

3√
x3

x
= 1,

lim
x→∞(f (x)− 1 · x) = lim

x→∞

(
3
√
x3 + 1 − x

)
=

lim
x→∞

([
3
√
x3 + 1 − x

] 3
√(
x3+1

)2+x 3√
x3+1+x2

3
√(
x3+1

)2+x 3√
x3+1+x2

)
=

lim
x→∞

x3+1−x3

3
√(
x3+1

)2+x 3√
x3+1+x2

= lim
x→∞

1
3x2 = 0

imply that the line y = x is an asymptote at+∞. If we again consider
the fact that f is even, we'll immediately obtain the line y = −x as an
asymptote at −∞. □

6.37. Determine the course of the function

f (x) = cos x
cos 2x .

Solution. The domain consists of exactly those x ∈ R, for which
cos 2x ̸= 0. The equality cos 2x = 0 is satisi�ed exactly for

2x = π
2 + kπ, k ∈ Z, tj. x = π

4 + kπ
2 , k ∈ Z.

Hence the domain is

R∖
{
π
4 + kπ

2 ; k ∈ Z
}
.

Clearly we have

f (−x) = cos(−x)
cos(−2x) = cos x

cos 2x = f (x)
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If the r(t) represents a parametrization of a curve, then its

derivative is a velocity vector of such de�ned distance. We studied

a special case of the vector r(t) = te1 + f (t)e2 giving the graph

of the function f in the last paragraph. The second derivative then

represents the acceleration of such de�ned movement. Notice that

of course the acceleration need not be collinear with the velocity.

In fact, in the case of the graph of a function, the acceleration is

collinear with the velocity only at the points, where f ′′ is zero,
which corresponds the idea that the acceleration can be collinear

only if the curvature of the graph is zero.

6.15. Di�erentiating composite maps. In linear algebra and ge-

ometry there are very useful maps called forms. They have

one or more vectors as their arguments and they are linear

in each of their aguments. Thus we can de�ne the size of

the vectors (the dot product is symmetric bilinear form) or

the volume of a parallelepiped (it's a n-linear antisymmetric form,

where n is the dimension of the space), see for example the para-

graphs 2.44 a 4.22.

Of course, we can use vectors r(t) dependant on a parameter

as the arguments of these operations. By a straightforward usage

of Leibniz's rule for di�erentiation of a product of functions we

will verify the following

Theorem. (1) If r(t) : R → Rn is a di�erentiable vector and

9 : Rn → Rm is a linear map, then the derivative of the map

9 ◦ r satis�es
d(9 ◦ r)
dt

= 9 ◦ dr
dt
.

(2) Consider di�erentiable vectors r1, . . . , rk : R → Rn and
a k�linear form 8 : Rn × . . .×Rn on the space Rn. The the

derivative of the composed map

φ(t) = 8(r1(t), . . . , rk(t))

satis�es (generalized Leibniz's) rule

dφ

dt
= 8

(dr1
dt
, r2, . . . , rk

)+ · · · +8
(
r1, . . . , rk−1,

drk

dt

)
.

(3) The previous statement remains valid without a change

even if 8 also has values in the vector space (and is linear in all

its k arguments).

Proof. (1) In linear algebra, it is shown that the linear maps

are given by a constant matrix of scalars A = (aij ) in a way that

9 ◦ r(t) =
( n∑
i=1

a1iri(t), . . . ,

n∑
i=1

amiri(t)

)
.

We now carry out the di�erentiation by individual coordinates of

the result. However, we know, that derivative acts linerly towards

scalar linear combinations, see Theorem 5.33. That's why we in-

deed get the derivative by simply evaluating the original linear map

9 on the derivative r′ (t).
(2) We obtain the second statement analogously. We write out

the evaluation of the k�linear form on the vectors r1, . . . , rk in the

coordinates in this way:

8(r1(t), . . . , rk(t)) =
n∑

i1,...,ik=1

Bi1...ik · (r1)i1(t) . . . (rk)ik (t),
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for all x in the domain, thus f (with its domain symmetric with respect
to the origin) is an even function, which was implied by the even parity
of the function y = cos x. Moreover, because cosine is periodic with a
period of 2π (i.e. y = cos 2x has a period of π ), it su�ces to consider
the function f for

x ∈ D := [0, π ] ∖
{
π
4 + kπ

2 ; k ∈ Z
} = [

0, π4
) ∪ (π4 , 3π

4

) ∪ ( 3π
4 , π

]
,

since the course of the function on its whole domain can be derived
using its even parity and periodicity with a period of 2π .

Hence we'll only be concerned with the discontinuities x1 = π/4
and x2 = 3π/4. We'll determine the corresponding one-sided limits

lim
x→ π

4 −
cos x
cos 2x = +∞, lim

x→ π
4 +

cos x
cos 2x = −∞,

lim
x→ 3π

4 −
cos x
cos 2x = +∞, lim

x→ 3π
4 +

cos x
cos 2x = −∞.

If we have a respect to the continuity of f on the interval (π/4, 3π/4),
we can see that f attains all real values on this interval. Hence the
range of f is the whole R. We also found out that the discontinuities
are of the second kind, where at least one of the one-sided limits is
improper (or doesn't exist). By that, we simultaneously proved that
the lines x = π/4 and x = 3π/4 are horizontal asymptotes. If we'd
want to formulate the previous results without a restriction to the [0, π ],
we can say that at all points

x̂k = π
4 + kπ

2 , k ∈ Z
f has a discontinuity of the second kind and every line

x = π
4 + kπ

2 , k ∈ Z
is a horizontal asymptote. Also the periodicity of f implies that
no other asymptotes exist. In particular, it cannot have any in-
clined asymptotes, nor can the (improper) limits limx→+∞ f (x),
limx→−∞ f (x) exist. Now we'll �nd the points of intersection with
the axes. The point of intersection [0, 1] with the y axis can be cound
by computing f (0) = 1. When looking for the points of intersection
with the x axis, we consider the equation cos x = 0, x ∈ D with the
only solution being x = π/2. Then we can easily obtain the intervals
[0, π/4), (π/2, 3π/4), on which f is positive, and the intervals
(π/4, π/2), (3π/4, π ], where it's negative.

Now we'll step up to computing the derivative

f ′(x) = − sin x cos 2x − 2 cos x (− sin 2x)
cos2 2x

= − sin x
(
cos2 x − sin2 x

) + 2 cos x (2 sin x cos x)
cos2 2x

= sin3 x + 3 cos2 x sin x
cos2 2x

=
(
sin2 x + cos2 x + 2 cos2 x

)
sin x

cos2 2x

=
(
2 cos2 x + 1

)
sin x

cos2 2x
, x ∈ D.

The points at which f ′(x) = 0 are clearly the solutions of the equation
sin x = 0, x ∈ D, i.e. the derivative is zero at points x3 = 0, x4 = π .
The inequalities

2 cos2 x + 1 ≥ cos2 2x > 0, sin x > 0, x ∈ D ∩ (0, π)
imply that f is increasing at every inner point of the set D, thus f
is increasing on every subinterval of D. The even parity of f then
implies that it's decreasing at every point x ∈ (−π, 0), x ̸= −3π/4,
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where the scalars Bi1...ik are given as the value of the given form

8(ei1 , . . . , eik ) on the chosen k�tuple of base vectors for every

choice of indices.

The rule for di�erentiating a product of scalar functions then

yields the statement.

(3) If 8 has vector values, it's given by �nitely many compo-

nents and we can use the previous notion on each of them □

On the euclidean space R3, besides the dot product, which

assigns a scalar to two vectors, we also have the vector product,

which assigns the vector u × v ∈ R3 to vectors u and v, see 4.24.

This vector u × v is orthogonal to both vectors u and v, its size

equals the area of the parallelogram determined by the u and v (in

this order) and an orientation such that the triple u, v, u × v is a

positively oriented basis.

The previous theorem immediately implies convenient corol-

laries:

Corollary. Consider the vectors u(t) and v(t) in the space R3.

The derivatives of their dot product ⟨u(t), v(t)⟩ and their vector

product u(t)× v(t) satisfy

d

dt
⟨u(t), v(t)⟩ = ⟨u′(t), v(t)⟩ + ⟨u(t), v′(t)⟩(6.1)

d

dt
(u(t)× v(t)) = u′(t)× v(t)+ u(t)× v′(t)(6.2)

6.16. The curvature of curves. Now we have far more powerful

tools for studying curves in amore systematic way than

we discussed the curvature of the graphs of functions.

Let's look at the curves r(t) in space and assume

they are parametrized in way that their tangent vector

always has a unit size, i.e. ⟨r′ (t), r′ (t)⟩ = 1 for all t. We say the

curve r(t) is parametrized by the length. By another di�erentiation

of this unit vector r′ (t) we obtain a vector r′′ (t), for which we'll

evaluate (using the symmetry of the dot product)

0 = d

dt
⟨r′ (t), r′ (t)⟩ = 2⟨r′′ (t), r′ (t)⟩

and thus the acceleration vector r′′ (t) is always orthogonal to the

velocity vector. That corresponds to the idea that after the choice of

a parametrization with a constant size of velocity, the acceleration

in the direction of the movement cannot be noticeable, therefore

the acceleration must lie in the plane orthogonal to the velocity

vector.

If the second derivative is nonzero, we call the normed vector

n(t) = 1
∥r′′ (t)∥ r

′′ (t)

the main normal of the curve r(t). The scalar function κ(t) satis-

fying (at the points where r′′ (t) ̸= 0)

r′′ (t) = κ(t)n(t)

is called the curvature of the curve r(t). At the zero points of the

second derivative we de�ne κ(t) by zero value as well.

At the nonzero points of the curvature the unit vector b(t) =
r′ (t) × n(t) is well de�ned, we call it the binormal of the curve

r(t). By a direct computation we obtain

0 = d

dt
⟨b(t), r′ (t)⟩ = ⟨b′(t), r′ (t)⟩ + ⟨b(t), r′′ (t)⟩

= ⟨b′(t), r′ (t)⟩ + κ(t)⟨b(t), n(t)⟩ = ⟨b′(t), r′ (t)⟩,
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x ̸= −π/4. Hence the function has strict local extremes exactly at the
points

x̃k = kπ, k ∈ Z.
With respect to periodicity of f , we uniquely describe these extremes
by stating that for x3 = x̃0 = 0, we get a local minimum ( recall
the value of the function f (0) = 1) and for x4 = x̃1 = π , a local
maximum with the value f (π) = −1.

Let's compute the second derivative:

f ′′(x) =[
4 cos x(− sin x) sin x+(

2 cos2 x+1
)

cos x
]

cos2 2x−4 cos 2x(− sin 2x)
(
2 cos2 x+1

)
sin x

cos4 2x

=
[−4 cos x sin2 x+2 cos3 x+cos x

](
cos2 x−sin2 x

)−4(−2 sin x cos x)
(
2 cos2 x+1

)
sin x

cos3 2x=
−6 cos3 x sin2 x+2 cos5 x+cos3 x+4 cos x sin4 x−cos x sin2 x+16 sin2 x cos3 x+8 sin2 x cos x

cos3 2x

=
[
10 sin2 x cos2 x+2 cos4 x+cos2 x+4 sin4 x+7 sin2 x

]
cos x

cos3 2x , x ∈ D.

Note that after a few simpli�cations, we can also express

f ′′(x) =
(
3+4 cos2 x sin2 x+8 sin2 x

)
cos x

cos3 2x , x ∈ D
or

f ′′(x) =
(
11−4 cos4 x−4 cos2 x

)
cos x

cos3 2x , x ∈ D.
Since

10 sin2 x cos2 x+2 cos4 x+cos2 x+4 sin4 x+7 sin2 x > 0, x ∈ R,
or

3 + 4 cos2 x sin2 x+ 8 sin2 x = 11 − 4 cos4 x− 4 cos2 x ≥ 3, x ∈ R
respectively, we have f ′′(x) = 0 for certain x ∈ D if and only if
cos x = 0. But that's satis�ed only by x5 = π/2 ∈ D. It's clear that
f ′′ changes its sign at this point, i.e. it's a point of in�ection. No other
points of in�ection exist (the second derivative f ′′ is continuous on
D). Other changes of the sign of f ′′ occur at zero points of the denom-
inator, which we have already determined as discontinuities x1 = π/4
and x2 = 3π/4. Hence the sign changes exactly at points x1, x2, x5,
thus the inequality

f ′′(x) > 0 pro x → 0+

implies that f is convex on the interval [0, π/4), concave on
(π/4, π/2], convex on [π/2, 3π/4) and concave on (3π/4, π ]. The
convexity and concavity of f on other subintervals is given by its
periodicity and a simple observation: if a function is even and convex
on an interval (a, b), where 0 ≤ a < b, then it's also convex on
(−b,−a).

All that's left is computing the derivative (to estimate the speed
of the growrth of the function) at the point of in�ection, yielding
f ′ (π/2) = 1. Based on all previous results, it's now easy to plot
the graph of function f . □

6.38. Determine the course of the function
x

ln(x)
,

and plot its graph.

Solution.

i) First we'll determine the domain of the function: R+ \ {1}.
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which show that the tangent vector to the binormal is orthogonal

to both b(t) and r′ (t). Therefore it must be a multiple of the vector
of the main normal. We write

b′(t) = −τ(t)n(t)
and call the scalar function τ(t) the torsion of the curve r(t).

We have not yet computed the speed of change of the main

normal, which we can also write as n(t) = b(t)× r′ (t):
n′(t) = b′(t)× r′ (t)+ κ(t)b(t)× n(t)

= −τ(t)n(t)× r′ (t)+ κ(t)(−r′ (t))
= τ(t)b(t)− κ(t)r′ (t).

Successively, for all points with nonzero second derivative of

the curve r(t) parametrized by the length of the arc, we derived an

importnat basis (r′ (t), n(t), b(t)), called the Frenet frame in the

classical literature and simultaneously in this basewe expressed the

derivatives of its components by the form of the so called Frenet�

Serret formulas

dr′

dt
(t) = κ(t)n(t),

dn

dt
(t) = τ(t)b(t)− κ(t)r′ (t)

db

dt
(t) = −τ(t)n(t).

Notice that if the curve r(t) still lies in one plane, then its

torsion is an identically zero function. In fact, the converse is true

as well. We won't prove it here, but it is a corollary of a classical

result of geometric theory of curves:

Two curves in a space parametrized by the length of the arc

can be mapped to each other by an euclidean transformation, if

and only if their curvature functions and torsion functions coincide

except for a constant shift of the parameter. Moreover, for every

choice of smooth funcitons κ a τ there exists a smooth curve with

these parameters.

We won't prove this result here, the persons concerned can

�nd the thorough version in[?].

By a straightforward computation we can check that the cur-

vature of the graph of the function y = f (x) in plane and the

curvature κ of this curve de�ned in this paragraph coincide. In-

deed, by computing the derivative of the composite function using

the di�erential of the length of the arc for the graph of a function

of form

dt = (1 + (fx)
2)1/2dx, dx = (1 + (fx)

2)−1/2dt

(here we write fx = df
dx
) we obtain this relation for our unir tangent

vector of the graph of a cruve

r′ (t) = (x′ (t), y′ (t)) = (
(1 + (fx)

2)−1/2, fx(1 + (fx)
2)−1/2)

and by fairly not well arranged, but similar computation of the sec-

ond derivative and its size we indeed obtain

κ2 = ∥r′′ ∥2 = (
d2 f

dx2 )
2(1 + (fx)

2)−3.

6.17. The approximations of derivatives and the asymptotic es-

timations. In the beggining of this textbook in para-

graphs 1.3, 1.9 and further we discussed how to ex-

press the value of a function by changes, i.e. di�eren-

tions. In the next part of the text we will similaely

reconstruct the function f using its derivatives, i.e. immediate

changes. Before that though, let's stop at the connections between
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ii) We'll �nd the intervals of monotonicity of the function: �rst
we'll �nd zero points of the derivative:

f ′(x) = ln(x)− 1
ln2(x)

= 0

The root of this equation is e. Next we can see that f ′(x)
is negative on both intervals (0, 1) and (1, e), hence f (x) is
decreasing on both intervals (0, 1) and (1, e). Additionally,
f ′(x) is positive on the interval (e,∞), thus f (x) is increas-
ing here. That means the function f has the only extreme at
point e, being the minimum. (we can also decide this using
the sign of the second derivative of the function f at point e,
because f (2)(e) > 0).

iii) We'll �nd the points of in�ection:

f (2)(x) = ln(x)− 2
x ln3(x)

= 0

The root of this equation is e2, so it must be a point of in-
�ection (it cannot be an extreme with regard to the ptrevious
point).

iv) The asymptotes. The line x = 1 is an asymptote of the func-
tion. Next, let's look for asymptotes with a �nite slope k:

k = limx→∞
x

ln(x)

x
= lim

x→∞
1

ln(x)
= 0.

If the asymptote exists, its slope must be 0. Let's continue
the computation

lim×→∞
x

ln(x)
− 0 · x = lim

x→∞ ln(x) = ∞,

and because the limit isn't �nite, an asymptote with a �nite
slope doesn't exist.

The course of the function:

–4–2

02468

10

y

2
4

6
8

10
12

14
16

18
20

x

□
Now move from determining the course of functions onto other

subjects connected to derivatives of functions. First we'll demonstrate
the concept of curvature and the osculating circle on an ellipse

6.39. Determine the curvature of the ellipse x2 + 2y2 = 2 at its
vertices (∥4.47∥). Also determine the equations of the circles of oscu-
lation at these vertices.
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derivatives and di�erentions. The key to this will be the Taylor

series with a remainder.

Suppose that for some (su�ciently) di�erentiable function

f (x) de�ned on the interval [a, b], we know the values fi = f (xi)

at the points x0 = a, x1, x2, . . . , xn = b, while all indices i =
1, . . . , n satisfy xi − xi−1 = h > 0 for some constant h. Write the

Taylor expansion of function f in the form

f (xi ± h) = fi ± hf ′(xi)+ h2

2
f ′′(xi)± h3

3!
f (3)(xi)+ . . .

We know that if we �nish the expansion by a term of order k

in h, i.e. an expression containing hk , then the actual error will be

bounded by

hk+1

(k + 1)!
f (k+1)(x)

on the interval [xi − h, xi + h]. If the (k + 1)�the derivative f
is continuous, we can approximate it by a constant. Then we can

see that for small h, the error of the approximation by the Taylor

polynomial of order k acts like hk+1 except for a constant multiple.

Such an estimation is called an asymptotic estimation.

De�nition. We say the expression G(h) is asymptoticall equal to

F(h) for h → 0 and write G(h) = O(F (h)), if the �nite limit

lim
h→0

G(h)

F (h)
= a ∈ R

exists.

Denote the sought estimations of the values of the derivatives

of f (x) at the points xi as f
(j)
i and write the Taylor expansion

brie�y in this way:

fi±1 = fi ± f ′
i h+ f ′′

i

2
h2 ± f ′′′

i

6
h3 + . . .

For the approximations of the �rst derivative we can immediately

use three di�erent di�erences computed from the Taylor expan-

sion:

f
(1)
i = fi+1 − fi−1

2h
− h2

3!
f (3)(xi)− . . .

f
(1)
i = fi+1 − fi

h
− h

2!
f ′′(xi)+ . . .

f
(1)
i = fi − fi−1

h
+ h

2!
f ′′(xi)+ . . .

when we only substracted the respective polynomials. Then we

obtain a numerical representation of the �rst derivative. The �rst

of them has an asymptotic estimation of the error of

f (1) = fi+1 − fi−1

2h
+ O(h2),

the other two have O(h). We call them the central di�erence, the

forward di�erence and the backward di�erence. Surprisingly, the

central di�erence one digit place better than the other two.

We can proceed the same way when approximating the second

derivative. To be able to compute f ′′(xi) from a suitable combi-

nation of the Taylor polynomials, we need to cancel both the �rst

derivatives and the value at xi . The simpliest combination cancels

all the odd derivatives as well:

f
(2)
i = fi+1 − 2fi + fi+1

h2 + h2

12
f (4)(xi)+ . . . .
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Solution. Because the ellipse is already in the basic form at the given
coordinates (there are no mixed or linear terms), the given basis is al-
ready a polar basis. Its axes are the coordinate axes x and y, its vertices
are the points [

√
2, 0], [−√

2, 0], [0, 1] and [0,−1]. Let's �rst com-
pute the curvature at vertice [0, 1]. If we consider the coordinate y
as a function of the coordinate x (determined uniquely in a neighbour-
hood of [0, 1] ), then di�erentiating the equation of the ellipse with
respect to the variable x yields 2x + 4yy′ = 0, hence y′ = − x

2y (y′

denotes the derivative of function y(x) with respect to the variable x;
in fact it's nothing else than expressing the derivative of a function
given implicitly, see ??). Di�erentiating this equation with respect to
x than yields y′′ = − 1

2(
1
y

− xy′
y2 ). At point [1, 0], we obtain y′ = 0

and y′′ = − 1
2 (we'd receive the same results if we explicitly expressed

y = 1
2

√
2 − x2 from the equation of the ellipse and performed dif-

ferentiation; the computation would be only a little more complicated,
as the reader can surely verify). According to 6.13, the radius of the
osculation circle will be

(1 + (y′ )2)
3
2

(y′′ )2
= −2,

or 2, respectively, and the sign tells us the circle will be "below" the
graph of the function. The ideas in 6.13 and 6.16 imply that its center
will be in the direction opposite to the normal line of this curve, i.e. on
the y axis (the function y as a function of variable x has a derivative
at point [0, 1], thus the tangent line to its graph at this point will be
parallel to the x axis, and because the normal is perpendicular to the
tangent, it must be the y axis at this point). The radius is 2, so the
center will be at point [0, 1 − 2] = [0,−1]. In total, the equation of
the osculation circle of the ellipse x2 + 2y2 = 2 at point [0, 1] will be
x2 + (y+1)2 = 4. Analogously, we can determine the equation of the
osculation circle at point [0,−1]: x2 + (y − 1)2 = 4. The curvatures
of the ellipse (as a curve) at these points then equal 1

2 (the absolute
value of the curvature of the graph of the function).

For determining the osculation circle at point [
√

2, 0], we'll con-
sider the equation of the ellipse as a formula for the variable x de-
pending on the variable y, i.e. x as a function of y (in a neighbour-
hood of point [

√
2, 0], the variable y as a function of x isn't deter-

mined uniquely, so we cannot use the previous procedure - techni-
cally it would end up by diving by zero). Sequentially, we obtain:
2xx′ + 4y = 0, thus x′ = −2 y

x
, and x′′ = −2( 1

x
− yx′

x2 ). Hence

at point [
√

2, 0], we have x′ = 0 and x′′ = −√
2 and the radius of

the circle of osculation is ρ = − 1√
2

=
√

2
2 according to 6.13. The

normal line is heading to −∞ along the x axis at point [
√

2, 0], thus
the center of the osculation circle will be on the x axis on the other
side at distance

√
2

2 , hence at the point [
√

2 −
√

2
2 , 0] = [

√
2

2 , 0]. In

total, the equation of the circle of osculation at vertice [
√

2, 0] will be
(x−

√
2

2 )
2 +y2 = 1

2 . The curvature at both of these vertices equals
√

2.
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We call this the di�erention of the second order and just like the

central �rst di�erention, the asymptotic estimation is one digit

place better than we would expect at �rst glance:

f
(2)
i = fi+1 − 2fi + fi+1

h2 + O(h2).

2. Integration

6.18. Newton integral. Nowwe'll take interest in the reverse pro-

cedure than we did for di�erentiating. We'll want

to reconstruct the actual values of some function us-

ing its immediate changes. If we consider the given

function f (x) the derivative of an unknown function F(x) then at

the di�erential level we can write

dF = f (x)dx.

We call the function F the primitive function or the inde�nite inte-

gral of the function f and traditionally we write

F(x) =
∫
f (x)dx.

Lemma. The primitive function F(x) to the function f (x) is de-

termined uniquely on each interval [a, b] except for an additive

constant.

Proof. The statement follows immediately from Lagrange's

mean value theorem, see 5.38. Indeed, if F ′(x) = G′(x) = f (x)

on the whole interval [a, b], the function (F − G)(x) has a zero

derivative in all points c of the interval [a, b]. Then the mean value
theorem implies that for all points x in this interval,

F(x)−G(x) = F(a)−G(a)+ 0 · (x − a).

Then the di�erence of the values of functions F a G must be the

same on the interval [a, b]. □

The previous lemma leads us to this notation for the inde�nite

integral:

F(x) =
∫
f (x)dx + C

with an unknown constant C.

We can also consider the value of real function f (x) as an

immediate increment of the area bounded by the graph of the func-

tion f and the x axis and try to �nd the size of this area between

boundary values a a b of some interval. Let's try to connect this

concept with the inde�nite integral. Suppose we know a real func-

tion and its inde�nite integral F(x), i.e. F ′(x) = f (x) on the

interval [a, b].
If we divide the interval [a, b] to n parts by choosing the points

a = x0 < x1 < · · · < xn = b

and approximate the values of the derivatives at the points xi by

the expressions

f (xi) = F ′(xi) ≃ F(xi+1)− F(xi)

xi+1 − xi
,

by summing over all the intervals of our partition, we obtain an

estimation of the sought size of the area:
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□

6.40. Remark. The vertices of an ellipse (more generally the vertices
of a closed smooth curve in plane) can be de�ned as the points at which
the function of curvature has an extreme. The ellipse having four ver-
tices isn't a coincidence. The so called "Four vertices theorem" states
that a closed curve of the classC3 has at least four vertices. (A curve of
the classC3 is locally given parametrically by points [f (t), g(t)] ∈ R2,
t ∈ (a, b) ⊂ R, where f and g are functions of the classC3 (R).) Thus
the curvature of the ellipse at its any point is between its curvatures at
its vertices, i.e. between 1

2 and
√

2.

B. Integration

First, several easy examples that everyone should handle.

6.41. Using integration "by heart", express

(a)
∫
e−x dx, x ∈ R;

(b)
∫ 1√

4−x2
dx, x ∈ (−2, 2);

(c)
∫ 1
x2+3 dx, x ∈ R;

(d)
∫ 3x2+1
x3+x+2 dx, x ̸= −1.

Solution. We can easily obtain

(a)
∫
e−x dx = − ∫ −e−x dx = −e−x + C;

(b)
∫ 1√

4−x2
dx = ∫ 1

2√
1−(

x
2
)2
dx = arcsin x

2 + C;

(c)
∫ 1
x2+3 dx = 1

3

∫ 1
x2
3 +1

dx = 1√
3

∫ 1√
3

1+
(

x√
3

)2 dx =
1√
3
arctg x√

3
+ C;

(d)
∫ 3x2+3
x3+3x+2 dx = ln

∣∣ x3 + 3x + 2
∣∣+ C,

where we used the formula
∫
f ′(x)
f (x)

dx = ln | f (x) | + C.

□

6.42. Compute the inde�nite integral∫ (
7x + 4 e

2x
3 − 1

2x + 9 sin 5x + 2 cos x2 − 3
cos2 x

+ 1
3−x

)
dx

pro x ̸= 3, x ̸= π
2 + kπ , k ∈ Z.

Solution. Only by combining the earlier derived formulas, we obtain
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n−1∑
i=0

f (xi) · (xi+1− xi) ≃
n−1∑
i=0

F(xi+1)− F(xi)

xi+1 − xi
· (xi+1− xi)

= F(b)− F(a).

Therefore we can expect that for "nice enough" functions f (x), the

size of the area bounded by the graph of the function and the x axis

can truly be calculated as a di�erence of the values of the primitive

function at the boundary points of the interval. This procedure is

called Newton integral. We write∫ b

a

f (x)dx = [F(x)]ba = F(b)− F(a)

and also speak of the (Newton) de�nite integral within the bounds

a, b.

In the case of a complex function f , the real and the imaginary

part of its inde�nite integral is uniquely determined by the real

and the imaginary part of f , so with no further comments we'll

only work with real functions from now on and we'll come back to

complex ones in applications as needed.

6.19. Integration "by heart". Before we'll clarify how the New-

ton integral is connected to the size of an area a

eventually how to use it for simulations of prac-

tical problems, we'll show several procedures

of computing the Newton integral. We'll only use our knowledge

of di�erentiation.

The most easy case is the one when we can see the derivative

in the integrated function �at out. To do that in the simple cases, it

su�ces to read the tables for function derivatives in our menagerie

from the other side. This way we get f.ex. the following statements

for all a ∈ R and n ∈ Z, n ̸= −1:∫
a dx = ax + C∫
axn dx = a

n+1x
n+1 + C∫

eax dx = 1
a

eax +C∫
a

x
dx = a ln x + C∫

a cos(bx) dx = a
b

sin(bx)+ C∫
a sin(bx) dx = − a

b
cos(bx)+ C∫

a cos(bx) sinn(bx) dx = a
b(n+1) sinn+1(bx)+ C∫

a sin(bx) cosn(bx) dx = − a
b(n+1) cosn+1(bx)+ C∫

a tg(bx) dx = −a
b

ln(cos(bx))+ C∫
a

a2 + x2 dx = arctg
(
x
a

)+ C∫ −1√
a2 − x2

dx = arccos
(
x
a

)+ C∫
1√

a2 − x2
dx = arcsin

(
t
x

a

)
+ C.
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∫ (
7x + 4 e

2x
3 − 1

2x + 9 sin 5x + 2 cos x2 − 3
cos2 x

+ 1
3−x

)
dx =

7x

ln 7 + 6 e
2x
3 + 1

2x ln 2 − 9
5 cos 5x + 4 sin x

2 − 3 tg x − ln | 3 − x | + C.

□
For expressing the following integrals, we'll use the method of

integration by parts (see 6.20).

6.43. Compute
∫
x cos x dx, x ∈ R and

∫
ln x dx, x > 0;

Solution.∫
ln x dx =

∣∣∣∣u = ln x u′ = 1
x

v′ = 1 v = x

∣∣∣∣
= x ln x −

∫
1 dx = x ln x − x + C.

∫
x cos x dx =

∣∣∣∣ u = x u′ = 1
v′ = cos x v = sin x

∣∣∣∣ = x sin x −
∫

sin x dx

= x sin x + cos x + C.

□
6.44. Using integration by parts, compute

(a)
∫ (
x2 + 1

)
e−x dx, x ∈ R,

(b)
∫
(2x − 1) ln x dx, x > 0,

(c)
∫
arctg x dx, x ∈ R,

(d)
∫
ex sin x dx, x ∈ R,

Solution. First emphasise that by integration by parts, we can compute
every integral in the form of∫

P(x) abx dx,
∫
P(x) sin (bx) dx,

∫
P(x) cos (bx) dx,∫

P(x) logna x dx,
∫
xb logna (kx) dx,∫

P(x) arcsin (bx) dx,
∫
P(x) arccos (bx) dx,∫

P(x) arctg (bx) dx,
∫
P(x) arccotg (bx) dx,∫

abx sin (cx) dx,
∫
abx cos (cx) dx,

where P is an arbitrary polynomial and

a ∈ (0, 1) ∪ (1,+∞), b, c ∈ R∖ {0}, n ∈ N, k > 0.
Thus we know that

(a) ∫ (
x2 + 1

)
e−x dx = F(x) = x2 + 1 F ′(x) = 2x

G′(x) = e−x G(x) = −e−x =
− (x2 + 1

)
e−x + ∫

2x e−x dx =
F(x) = 2x F ′(x) = 2
G′(x) = e−x G(x) = −e−x =

− (x2 + 1
)
e−x − 2x e−x + ∫

2 e−x dx = − (x2 + 1
)
e−x −

2x e−x − 2 e−x + C = −e−x (x2 + 2x + 3
)+ C;

(b) ∫
(2x−1) ln x dx = F(x) = ln x F ′(x) = 1/x

G′(x) = 2x − 1 G(x) = x2 − x
=(

x2 − x
)

ln x − ∫
x2−x
x
dx = (

x2 − x
)

ln x + ∫
1 − x dx =(

x2 − x
)

ln x + x − x2

2 + C;
(c)
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In all the cases it's necessary to think through the domain on which

the inde�nite integral is well de�ned.

We can relatively easily add another rules by simple observa-

tions of suitable structure of the integrated functions to these table

rules. F.ex. ∫
f ′(x)
f (x)

dx = ln |f (x)| + C

for all continuously di�erentiable functions f on the intervals

where they are nonzero. Of course, the rules for di�erentianting

a sum of di�erentiable functions and constant multiples of di�er-

entiable functions imply that analogous rules hold for the inde�nite

integral.

6.20. Integration by parts. The computation of the integral us-

ing a primitive function (the inde�nite integral), along with rule

(F ·G)′(t) = F ′(t) ·G(t)+ F(t) ·G′(t)
for di�erentiating a product of functions, gives us the following

formula for the inde�nite integral

F(x) ·G(x)+ C =
∫
F ′(x)G(x) dx +

∫
F(x)G′(x) dx.

This formula is usually used in a way that one of the integrals on

the right hand side is the one we want to compute, while we can

compute the other one more easily.

The principle is best shown on an example. Let's compute

I =
∫
x sin x dx.

In this case a choice F(x) = x, G′(x) = sin x will help. Then

G(x) = − cos x and therefore

I = −x cos x −
∫

− cos x dx = −x cos x + sin x + C.

A common trick is also using this procedure for F ′(x) = 1:∫
ln x dx =

∫
1 · ln x dx = x ln x −

∫
1
x
x dx = x ln x − x + C.

6.21. Integration by substitution. Another useful procedure is

derived from di�erentiating composite functions. If

F ′(y) = f (y), y = φ(x),

for a di�erentiable function φ with nonzero derivative, then

dF(φ(x))

dx
= F ′(y) · φ′ (x)

and thus F(y)+ C = ∫
f (y) dy can be computed as

F(φ(x))+ C =
∫
f (φ(x))φ′ (x) dx.

By substituting x = φ−1 (y) we then get the originally desired

primitive function. More often, we write this fact in this way:∫
f (y) dy =

∫
f (φ(x))φ′ (x) dx

and we talk of substituting the variable y. On the level of di�er-

entials, the substitution can be easily understood in a way that (lin-

earized) increments of the variable y and x are in mutual relation

formally described by

dy = φ′ (x) dx,
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∫
arctg x dx = F(x) = arctg x F ′(x) = 1

1+x2

G′(x) = 1 G(x) = x
=

x arctg x − ∫
x

1+x2 dx = x arctg x − 1
2

∫ 2x
1+x2 dx =

x arctg x − 1
2 ln

(
1 + x2

)+ C;
(d) ∫

ex sin x dx = F(x) = ex F ′(x) = ex

G′(x) = sin x G(x) = − cos x =
−ex cos x + ∫

ex cos x dx =
F(x) = ex F ′(x) = ex

G′(x) = cos x G(x) = sin x =
−ex cos x + ex sin x − ∫

ex sin x dx,

which implies∫
ex sin x dx = 1

2 e
x (sin x − cos x) + C.

□
For expressing the following integrals, it's convenient to use the

substitution method (see 6.21).

6.45. Using a suitable substitution, determine

(a)
∫ √

2x − 5 dx, x > 5
2 ;

(b)
∫
(7+ln x)7

x
dx, x > 0;

(c)
∫ cos x
(1+sin x)2 dx, x ̸= (3+4k)π

2 , k ∈ Z;
(d)

∫ cos x√
1+sin2 x

dx, x ∈ R.

Solution. We have

(a) ∫ √
2x − 5 dx = t = 2x − 5

dt = 2 dx = 1
2

∫ √
t dt = 1

3 t
3
2 + C =

1
3

√
(2x − 5)3 + C;

(b) ∫
(7+ln x)7

x
dx = t = 7 + ln x

dt = 1
x
dx

= ∫
t7 dt = t8

8 + C =
(7+ln x)8

8 + C;
(c) ∫ cos x

(1+sin x)2 dx = t = 1 + sin x
dt = cos x dx = ∫

dt

t2
= − 1

t
+ C =

− 1
1+sin x + C;

(d) ∫ cos x√
1+sin2 x

dx = t = sin x
dt = cos x dx = ∫ 1√

1+t2 dt =
u = t + √

1 + t2 > 0
du =

(
1 + t√

1+t2
)
dt

du

t+
√

1+t2 = 1√
1+t2 dt

= ∫ 1
u
du = ln u+ C =

ln
(
t + √

1 + t2
)

+ C = ln
(

sin x +
√

1 + sin2 x
)

+ C.

□
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which corresponds the relation between the integrated quantities

f (y)dy = f (φ(x))φ′ (x)dx.
As an example, we'll verify the penultimate integral in the list

in 6.20 using this method. For the integral

I =
∫

1√
1 − x2

dx

we'll choose the substitution x = sin t. Then dx = cos t dt and
we obtain

I =
∫

1√
1 − sin2 t

cos t dt =
∫

1√
cos2 t

cos t dt

=
∫
dt = t + C.

By reverse substitution t = arcsin x we get the already known re-

lation I = arcsin x + C.

While substituting, we need to be aware of the actual existence

of the inverse function to y = φ(x); while evaluating a de�nite

Newton integral we also need to correctly recalculate the bounds

of integration. The problems with the domains of the inverse func-

tions can sometimes be avoided by dividing the integraiton into

several intervals.

6.22. Integration by reduction to reccurences. Often the use of

subtitutions and integrating by parts leads to reccurent re-

lations, from which we can evaluate the desired integrals.

We'll illustrate this on an examples. By integration by

parts, we evaluate

Im =
∫

cosm x dx =
∫

cosm−1 x cos x dx

= cosm−1 x sin x − (m− 1)
∫

cosm−2 x(− sin x) sin x dx

= cosm−1 x sin x + (m− 1)
∫

cosm−2 x sin2 x dx.

Using the formula sin2 x = 1 − cos2 x, we get

mIm = cosm−1 x sin x + (m− 1)Im−2

and the initial values are

I0 = x, I1 = sin x.

The integrals in which the integrated function depends on ex-

pressions of the form (x2 + 1) can be often reduced to these types
of integrals using the substitution x = tg t. Indeed, f.ex. for

Jk =
∫

dx

(x2 + 1)k

the mentioned substitution gets us (notice that dx = cos−2 t dt)

Jk =
∫

dt

cos2 t
(

sin2 t
cos2 t

+ 1
)k =

∫
cos2k−2 t dt.

For k = 2, the result is

J2 = 1
2
(cos t sin t + t) = 1

2

(
tg t

1 + tg2 t
+ t

)
and therefore after the reverse substitution t = arctg x

J2 = 1
2

(
x

1 + x2 + arctg x
)

+ C.
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6.46. Determine the integrals

a)
∫ dx

sin2(x)−cos2(x)
,

b)
∫
x2

√
2x + 1 dx.

Solution. For computing the �rst integral, we'll choose the substitu-
tion t = tg x, which can be often used with an advantage.∫

dx
sin2(x)− cos2(x)

=

=

∣∣∣∣∣∣∣∣∣
substitution t = tg x
dt = 1

cos2 x
dx = (1 + tg2(x)) dx = (1 + t2 ) dx

sin2(x) = tg2(x)

1+tg2(x)
= t2

1+t2
cos2(x) = 1

1+tg2(x)
= 1

1+t2

∣∣∣∣∣∣∣∣∣ =

=
∫

1
t2 − 1

dt = 1
2

∫
1

t − 1
− 1

2

∫
1

t + 1
=

= 1
2

ln
(

tg(x)− 1
tg +1

)
+ C

Now we'll compute the second integral:∫
x2

√
2x + 1 dx =

=
∣∣∣∣ u = x2 u = 2x
v′ = √

2x + 1 v = 1
3(2x + 1)

∣∣∣∣ =

= 1
3
x2 (2x + 1)

3
2 − 4

3

∫
x2

√
2x + 1 dx − 2

9
(2x + 1)

3
2 + C,

which can be thought of as an equation, when the variable is the inte-
gral. By putting it on one side,∫

x2
√

2x + 1 dx =

= 1
7
x2 (2x + 1)

3
2 − 2

7

∫
x
√

2x + 1 =∣∣∣∣ u = x u′ = 1
v′ = √

2x + 1 v = 1
3

√
2x + 1

∣∣∣∣
= 1

7
x2 (2x + 1)

3
2 − 2

7

(
1
3
x
√

2x + 1 − 1
3

∫
(2x + 1)

3
2 dx

)
=

= 1
7
x2 (2x + 1)

3
2 − 2

21
x
√

2x + 1 + 2
105

(2x + 1)
5
2 =

= 1
7
x2 (2x + 1)

3
2 − 2

35
x(2x + 1)

3
2 + 2

105
(2x + 1)

3
2 + C

□

6.47. Using the basic formulas, compute

(a)
∫ 1

3√x dx, x ̸= 0;

(b)
∫
tg2 x dx, x ̸= π

2 + kπ, k ∈ Z;
(c)

∫ cos x
1+sin x dx, x ̸= −π

2 + 2kπ, k ∈ Z;
(d)

∫
6 sin 5x + cos x2 + 2 e

2x
3 dx, x ∈ R.

Solution. Case (a). We can immediately determine∫ 1
3√x dx = ∫

x−1/3 dx = x
2
3

2
3

+ C = 3
2

3
√
x2 + C,
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While evaluating de�nite integrals, we can compute the whole

reccurence straight out after avaluating in the given bounds. F.ex.

it can be seen immediately that while doing integration over the

interval [0, 2π ], our integrals have these values:

I0 =
∫ 2π

0
dx = [x]2π

0 = 2π

I1 =
∫ 2π

0
cos x dx = [sin x]2π

0 = 0

Im =
∫ 2π

0
cosm x dx =

{
0 for even m
m−1
m
Im−2 for odd m

.

Thus for even m = 2n we obtain the resulr∫ 2π

0
cos2n x dx = (2n− 1)(2n− 3) . . . 3 · 1

2n(2n− 2) . . . 2
2π,

outright, while for oddm it's always zero (as could be guessed from

the graph of the function cos x).

6.23. Integration of rational functions. While doing integration

of rational functions, we can use several simpli�ca-

tions. Particularly in the case the degree of the poly-

nomial f in the numerator is greater or equal to the

degree of the polynomial g in the denominator, it's

sensible to carry out the division with a remainder outright (see

the paragraph 5.2) and reduce the integration to a sum of two in-

tegrals. The �rst one will be an integration of a polynomial and

the second one an integration of an expression f/g with degree of

g strictly greater than the degree of f (such functions are called

proper rational functions).

Indeed, we can achieve this by simple division of the polyno-

mial:

f = q · g + h,
f

g
= q + h

g
.

Thus we can assume without loss of generality that degree of g is

strictly greater than the degree of f . We'll show another procedure

on a simple example. Let's try to analyse how to get the result

f (x)

g(x)
= 4x + 2
x2 + 3x + 2

= −2
x + 1

+ 6
x + 2

,

which we can integrate directly:∫
4x + 2

x2 + 3x + 2
dx = −2 ln |x + 1| + 6 ln |x + 2| + C.

First o�, by modifying the sum of the fractions to a common de-

nominator we can verify this equality easily. Conversely, if we

know our expression can be written in the form

4x + 2
x2 + 3x + 2

= A

x + 1
+ B

x + 2
,

we only need to compute the co�cients A and B. We can obtain

equations for them bymultiplying both side by the polynomial x2 +
3x + 2 from the denominator and comparing coe�cients of the

individual powers of x in the resulting polynomials on both sides:

4x + 2 = A(x + 2)+ B(x + 1) H⇒ 2A+ B = 2, A+ B = 4.

This is where our decomposition comes from. It's called decompo-

sition into partial fractions.

This elementary procedure can easily be generalized. It's

a purely algebraic notion based upon properties of polynomials,

which we'll come back to in chapter ??.
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where the notation in which we add C ∈ R has to be understood in
a way that we can get all primitive functions exactly by a constant
translation of an arbitrary primitive function. But that's only true on
an interval. In other words, the value C is generally distinct for x < 0
and for x > 0. Thus we should consider the values C1 and C2. For the
sake of simplicity though, we'll use the notation without indices and
stating the corresponding intervals. Furthermore, we'll help ourselves
by letting aC = C for a ∈ R ∖ {0} and C + b = C for b ∈ R, based
on the fact that

{C; C ∈ R} = {aC; C ∈ R} = {C + b; C ∈ R} = R.
We could then obtain an entirely correct expression for example by sub-
stitutions Ĉ = aC, C̃ = C + b. These simpli�cations will prove their
usefulness when computing more complicated problems, because they
make the procedures and the simpli�cations more lucid.

Case (b). Sequential simpli�cations of the integrated function lead
to ∫

tg2 x dx = ∫ sin2 x
cos2 x

dx = ∫ 1−cos2 x
cos2 x

dx =∫ 1
cos2 x

dx − ∫
1 dx = tg x − x + C,

where we helped ourselves by the knowledge of the derivative

(tg x) ′ = 1
cos2 x

, x ̸= π
2 + kπ, k ∈ Z.

Case (c). It su�ces to realize that this is a special case of the
formula ∫

f ′(x)
f (x)

dx = ln | f (x) | + C,

which can be veri�ed directly by di�erentiation

(ln | f (x) | + C) ′ = (
ln
[±f (x)])′+(C) ′ =

[±f (x)]′
±f (x) = ±f ′(x)

±f (x) = f ′(x)
f (x)

.

Hence ∫ cos x
1+sin x dx = ln (1 + sin x) + C.

Case (d). Because the integral of a sum is the sum of integrals
(if the seperate integrals are sensible) and a nonzero constant can be
factored out of the integral at any time, we have∫

6 sin 5x + cos x2 + 2 e
2x
3 dx = − 6

5 cos 5x + 2 sin x
2 + 3 e

2x
3 + C.

□

6.48. Determine

(a)
∫

x

cos2 x
dx, x ̸= π

2 + kπ, k ∈ Z;
(b)

∫
x2 e−3x dx, x ∈ R;

(c)
∫

cos2 x dx, x ∈ R.

Solution. Case (a). Using integration by parts, we obtain∫
x

cos2 x
dx = F(x) = x F ′(x) = 1

G′(x) = 1
cos2 x

G(x) = tg x
= x tg x − ∫

tg x dx =
x tg x + ∫ − sin x

cos x dx = x tg x + ln | cos x | + C.

Case (b). This time we are clearly integrating a product of two
functions. By applying the method of integration by parts, we reduce
the integral to another integral in a way that we di�erentiate one func-
tion and integrate the second. We can integrate both of them (we can
di�erentiate all elementary functions). Thus we must decide which of
the two variants of the method we'll use (whether we'll integrate the
function y = x2 , or y = e−3x). Notice that we can use integration bz
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Suppose the denominator g(x) and the numerator f (x) don't

share any real or complex roots and that g(x) has exactly n distinct

real roots a1, . . . , an. Then the points a1, . . . an are exactly all the

discontinuities of the function f (x)/g(x).

For simplifying the notion �rst write g(x) as the product

g(x) = p(x)q(x)

of two coprime polynomials. By Bezout identity (see ??), which is

a corollary of ordinary polynomial division with a remainder, there

exist polynomials a(x) and b(x) of degrees strictly lower than the

degree of g such that

a(x)p(x)+ b(x)q(x) = 1.

Multiplying this equality by the quotient f (x)/g(x), we obtain

f (x)

g(x)
= a(x)

q(x)
+ b(x)

p(x)
.

Now suppose our polynomial g(x) has only real roots, therefore

it has a unique factorization (x − ai)
ni , where ni are the multi-

plicities of the roots ai , i = 1, . . . , k. By a sequential use of the

previous procedure with coprime polynomials p(x) and q(x), we

get a representation of f (x)/g(x) as a sum of fractions of the form

r1(x)

(x − a1)n1
+ · · · + rk(x)

(x − ak)
mj
,

where the degrees of the polynomials ri(x) are strictly lesser than

the degrees of the denominators. Each of them can be very easily

represented as a sum

r(x)

(x − a)n
= A1

x − a
+ A2

(x − a)2
+ · · · + An

(x − a)n
,

if we start from the highest powers of the polynomial r(x) and

sequentially computeA1,A2, . . . by suitable adding and removing

of summands in the numerator. F.ex.

5x − 16
(x − 2)2

= 5
x − 2
(x − 2)2

− 6
1

(x − 2)2
= 5
x − 2

+ 6
(x − 2)2

.

Now we need to handle the case, where there are not enough

real roots. There always exists a factorization of g(x) to linear

factors with eventual complex roots though. Repeating the previ-

ous notion for complex polynomials gives us the same result. If

we know in advance the coe�cients of the polynomials are real

though, the complex roots in our expressions will come up simul-

taneously with their complex conjugate roots. Therefore we work

with quadratic factors of the form of sum of squares (x− a)2 + b2

and their powers straight out. Our previous notion work very well

again and guarantees that it will be possible to see the respective

summands in the form of

Bx + C

((x − a)2 + b2)n
.

Similarly to the real roots case, we can always �nd the correspond-

ing decomposition into partial fractions of the form

A1x + B1

(x − a)2 + b2 + · · · + Anx + Bn

((x − a)2 + b2)n

in the case of a power ((x−a)2+b2)n of such quadratic (irreducble)

factor as well. Speci�c results can also be tried out in Maple by

calling the procedure "convert(h, parfrac, x)" that decomposes the

expression h that is rationally dependant on the variable x into par-

tial fractions.
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parts repeatedlz and that the n-th derivative of a polynomial of degree
n ∈ N is a constant polynomial. That gives us a way to compute∫

x2 e−3x dx = F(x) = x2 F ′(x) = 2x
G′(x) = e−3x G(x) = − 1

3 e
−3x =

− 1
3 x

2 e−3x + 2
3

∫
x e−3x dx

and furthermore∫
x e−3x dx = F(x) = x F ′(x) = 1

G′(x) = e−3x G(x) = − 1
3 e

−3x =
− 1

3 x e
−3x + 1

3

∫
e−3x dx = − 1

3 x e
−3x − 1

9 e
−3x + C.

In total, we have∫
x2 e−3x dx = − 1

3 x
2 e−3x − 2

9 x e
−3x − 2

27 e
−3x + C =

− 1
3e

−3x
(
x2 + 2

3x + 2
9

)+ C.

Note that a repeated use of integration by parts within the scope of
computing one integral is common (just like when computeing limits
by the l'Hospital rule).

Case (c). Again we apply integration by parts using∫
cos2 x dx = ∫

cos x · cos x dx =
F(x) = cos x F ′(x) = − sin x
G′(x) = cos x G(x) = sin x = cos x · sin x + ∫

sin2 x dx =
cos x · sin x + ∫

1 − cos2 x dx =
cos x · sin x + ∫

1 dx − ∫
cos2 x dx = cos x · sin x + x − ∫

cos2 x dx.

Although the return to the given integral might make the reader cast
some doubts on it, the equality∫

cos2 x dx = cos x · sin x + x − ∫
cos2 x dx

implies

2
∫

cos2 x dx = cos x · sin x + x + C,

i.e.

(6.7)
∫

cos2 x dx = 1
2
(x + sin x · cos x) + C.

It su�ces to remember that we put C/2 = C and that the inde�nite
integral (as an in�nite set) can be represented by one speci�c function
and its translations.

We emphasise that usually suitable simpli�cations or substitutions
lead to the result faster than integration by parts. For example, by using
the identity

cos2 x = 1
2 (1 + cos 2x) , x ∈ R

we easily obtain∫
cos2 x dx = ∫ 1

2 dx + ∫ 1
2 cos 2x dx = x

2 + sin 2x
4 + C =

x
2 + 2 sin x cos x

4 + C = 1
2 (x + sin x · cos x) + C.

□

6.49. Integrate

(a)
∫

cos5 x · sin x dx, x ∈ R;
(b)

∫
cos5 x · sin2 x dx, x ∈ R;

(c)
∫ sin4 x

cos4 x
dx, x ∈ (−π

2 ,
π
2

)
;

(d) 1− 3√x+√
x

6√
x5+x dx, x > 0.
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We can already integrate all of the above shown partial frac-

tions. Recall that the last mentioned ones lead to integrals dis-

cussed in example 6.22 among other things.

To sum up, the rational function f (x)/g(x) can be integrated

fairly easily, if we can �nd the corresponding decomposition of

the polynomial in the denominator g(x). While computing New-

ton integrals though, the problematic points are the discontinuities

of rational functions, in whose neighbourhood these functions are

unbounded. We will tend to this problem later (see paragraph 6.30

lower).

6.24. Riemann integral. The notion of computing integral as a

representation of the area bounded by the graph of a

function and the x axis has to be put more precisely.

We'll do that now and then prove that for all continu-

ous function this de�nition yields the same results as Newton inte-

gral.

Consider a real function f de�ned on the interval [a, b] and
choose a partition of this interval along with the choice of represen-

tants ξi of the respective parts, i.e. a = x0 < x1 < · · · < xn = b

and ξi ∈ [xi−1, xi], i = 1, . . . , n. The number δ = mini{xi−xi−1}
is called the norm of the partition. We de�ne Riemann sum corre-

sponding to the chosen partition along with the chosen represen-

tants

4 = (x0, . . . , xn; ξ1, . . . , ξn)

as

S4 =
n∑
i=1

f (ξi) · (xi − xi−1).

We say the Riemann integral of function f on the interval [a, b] ex-
ists, if for every sequence of partitions with representants (4k)

∞
k=0

with norms of the partitions δk approaching zero, the limit

lim
k→∞ S4k

= S

exists and its value doesn't depend on the choice of the sequence

of partitions and their representants. In that case we write

S =
∫ b

a

f (x)dx.

This de�nition doesn't look too practically, but nonetheless it

will allow us to easily formulate and prove several simple proper-

ties of the Riemann integral:

Theorem. (1) If f is a bounded real function de�ned on the in-

terval [a, b] and c ∈ [a, b] is an inner point of this interval, then

the integral
∫ b
a
f (x)dx exists if and only if both of the integrals∫ c

a
f (x)dx and

∫ b
c
f (x)dx exist. In that case∫ b

a

f (x)dx =
∫ c

a

f (x)dx +
∫ b

c

f (x)dx

holds.

(2) If f and g are two real functions de�ned on the interval

[a, b] and both of the integrals
∫ b
a
f (x)dx and

∫ b
a
g(x)dx exist,

then the integral of their sum also exists and∫ b

a

(f (x)+ g(x))dx =
∫ b

a

f (x)dx +
∫ b

a

g(x)dx

holds.
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Solution. Case (a). This is a simple problem for the so called �rst
substitution method, whose essence is writing the integral in the form
of

(6.8)
∫
f (φ(x)) φ′ (x) dx

for certaing functions f and φ. Using the substitution y = φ(x), (we
also substitute dy = φ′ (x) dx, which we get by di�erentiating y =
φ(x)) , such integral can be reduced to the integral

∫
f (y) dy. By

substituing y = cos x, where dy = − sin x dx, we then obtain∫
cos5 x · sin x dx = − ∫ cos5 x (− sin x) dx = − ∫ y5 dy =

− y6

6 + C = − cos6 x
6 + C.

Case (b). Using the equality∫
cos5 x · sin2 x dx = ∫ (

cos2 x
)2 sin2 x · cos x dx =∫ (

1 − sin2 x
)2

sin2 x · cos x dx
we're tempted to use the substitution t = sin x, which yields∫

cos5 x · sin2 x dx = t = sin x
dt = cos x dx = ∫ (

1 − t2
)2
t2 dt =∫

t6 − 2t4 + t2 dt = t7

7 − 2 t
5

5 + t3

3 +C = sin7 x
7 − 2 sin5 x

5 + sin3 x
3 +C.

Case (c). Because both sine and cosine are contained in an even
power, we cannot proceed as in the previous problem. Let's try to use
the so called second substitution method, which means a reduction of∫
f (y) dy to the form (∥6.8∥) for y = φ(x). A situation in which we

replace a simple expression by a more complicated one might seem
surprising. But don't forget that this more complicated integral might
have such a form that we may just be able to compute it. We want to
determine the primitive function of function f (x) = tg4 x. Thus it's
sensible to consider the substitution u = tg x. We obtain∫ sin4 x

cos4 x
dx = x = arctgu

dx = du

1+u2
= ∫

u4

1+u2 du = ∫
u2 − 1 + 1

u2+1 du =
u3

3 − u+ arctgu+ C = tg3 x

3 − tg x + arctg (tg x) + C =
tg3 x

3 − tg x + x + C.

Case (d). We have∫ 1− 3√x+√
x

6√
x5+x dx = z6 = x

6z5 dz = dx
= ∫ 1−z2+z3

z5+z6 6z5 dz =
6
∫ 1−z2+z3

1+z dz = 6
∫
z2 − 2z+ 2 − 1

z+1 dz =
6
(
z3

3 − z2 + 2z− ln | z+ 1 |
)

+ C =
2
√
x − 6 3

√
x + 12 6

√
x − 6 ln

(
6
√
x + 1

)+ C,

where we again easily determined by substitution (for z ̸= −1)∫
dz
z+1 = v = z+ 1

dv = dz
= ∫

dv
v

= ln | v | + C = ln | z+ 1 | + C.

□

6.50. By combining integration by parts and the substitution method,
determine

(a)
∫
x3 e−x2

dx, x ∈ R;
(b)

∫
x arcsin x2 dx, x ∈ (−1, 1).

Solution. Case (a). The substitution method leads to the integral
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(3) If f is real function de�ned on the interval [a, b], C ∈ R
is a constant and the integral

∫ b
a
f (x)dx exists, then the integral∫ b

a
C · f (x)dx also exists and∫ b

a

C · f (x)dx = C ·
∫ b

a

f (x)dx

holds.

Proof. (1) First suppose that the integral over the whole in-

terval exists. When computing it, surely we can limit ourselves

to limits of the Riemann sums whose partitions have the point c

among their partitioning points. Each such sum can be obtained

as a sum of two partial Riemann sums. If these two partial sums

would depend on the chosen partitions and representants in limit,

then the total sums couldn't be independant on the choices in limit

(it su�ces to keep of sequence of partition of the subinerval the

same and change the other so the limit would change).

Conversely, if both Riemann integrals on both subintervals ex-

ists, they can be approximated with arbitrary precision by the Rie-

mann sums, and moreover independantly on their choice. If we

add a partitioning point c to any sequence of Riemann sums over

the whole interval [a, b], we'll change the value of the whole sum
and also the values of partial sums over the intervals belonging to

[a, c] and [c, b] at most by a multiple of the norm of the partition

and possible di�erences of the bounded function f on whole [a, b].
That's a number tending arbitrarily close to zero for a decreasing

norm of the partition. Then necessarily the partial Riemann sums

of our function also converge to the limits, whose sum is the Rie-

mann integral over [a, b].
(2) In every Riemann sum, the sum of the functions manifests

as the sum of the values in the chosen representants. Because mul-

tiplication of real numbers is distributive, the statement follows.

(3) The same thought as in the previous case. □

The following result is crucial for understanding the relation

between an integral and a derivative:

6.25. Theorem (The fundamental theorem of integral calculus).

For every continuous function f on a �nite interval

[a, b] there exists its Riemann integral
∫ b
a
f (x)dx.

Moreover, the function F(t) given on the interval

[a, b] by the Riemann integral

F(x) =
∫ x

a

f (t)dt

is a primitive function to f on this interval.

The whole proof of this important statement will be somewhat

longer. In the �rst step for proving the existence of the integral,

we'll use an alternative de�nition, in which we replace the choice

of representants and the corresponding value f (ξi) by the suprema

Mi of the values f (x) in the corresponding subinterval [xi−1, xi],
or by thein�ma mi of the function f (x) in the same subinterval,

respectively. We speak of upper and lower Riemann sums, respec-

tively (in literature, this process is sometimes called the Darboux

integral).
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∫
x3 e−x2

dx = t = −x2

dt = −2x dx = 1
2

∫
t et dt,

which can be easily computed by integrating by parts, yielding

1
2

∫
t et dt = F(t) = t F ′(t) = 1

G′(t) = et G(t) = et
= 1

2 t e
t − 1

2

∫
et dt =

1
2 t e

t − 1
2 e

t + C = − 1
2 e

−x2 (
x2 + 1

)+ C.

Case (b). Similarly, we obtain∫
x arcsin x2 dx = t = x2

dt = 2x dx = 1
2

∫
arcsin t dt =

F(t) = arcsin t F ′(t) = 1√
1−t2

G′(t) = 1 G(t) = t
= 1

2 t arcsin t − 1
2

∫
t√

1−t2 dt =
u = 1 − t2

du = −2t dt = 1
2 t arcsin t + 1

4

∫
du√
u

= 1
2 t arcsin t + 1

2

√
u+ C =

1
2 t arcsin t + 1

2

√
1 − t2 + C = 1

2x
2 arcsin x2 + 1

2

√
1 − x4 + C.

□

6.51. Compute the integral∫ √
1 − x2 dx, x ∈ (−1, 1)

in two di�erent ways.

Solution. Integration by parts yields∫ √
1 − x2 dx = F(x) = √

1 − x2 F ′(x) = −x√
1−x2

G′(x) = 1 G(x) = x
=

x
√

1 − x2 + ∫
x2√
1−x2

dx = x
√

1 − x2 − ∫ 1−x2−1√
1−x2

dx =
x

√
1 − x2 − ∫ √

1 − x2 dx + ∫ 1√
1−x2

dx =
x

√
1 − x2 − ∫ √

1 − x2 dx + arcsin x,
which implies

2
∫ √

1 − x2 dx = x
√

1 − x2 + arcsin x + C,

i.e. ∫ √
1 − x2 dx = 1

2

(
x

√
1 − x2 + arcsin x

)
+ C.

The substitution method along with (∥6.7∥) then yields∫ √
1 − x2 dx = x = sin y

dx = cos y dy = ∫ √
1 − sin2 y · cos y dy =∫

cos2 y dy = 1
2 (y + sin y · cos y) + C =

1
2

(
sin y ·

√
1 − sin2 y + y

)
+ C = 1

2

(
x

√
1 − x2 + arcsin x

)
+ C,

where y ∈ (−π/2, π/2) for x ∈ (−1, 1), thus among other things, we
have

0 < cos y = | cos y | = √
cos2 y =

√
1 − sin2 y.

□

6.52. Determine ∫
e
√
x dx, x > 0.

Solution. This problem can illustrate the possibilities of combining
the substitution method and integration by parts (in the sscope of one
problem. First we'll use the substitution y = √

x to get rid of the
root from the argument of the exponential function. That leads to the
integral
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6.26. Upper and lower Riemann integral. Because our func-

tion is continuous, it's surely bounded on a closed interval,

hence all the above considered suprema and in�ma and �-

nite. Then the upper Riemann sum corresponging to the

partition 4 = (x0, . . . , xn) is given by the expression

S4,sup =
n∑
i=1

(
sup

xi−1≤ξ≤xi
f (ξ)

) · (xi − xi−1) =
n∑
i=1

Mi(xi − xi−1),

while the lower Riemann sum is

S4,inf =
n∑
i=1

(
inf

xi−1≤ξ≤xi
f (ξ)

) · (xi − xi−1) =
n∑
i=1

mi(xi − xi−1).

Because for every partition4 = (x0, . . . , xn; ξ1, . . . , ξn) with rep-

resentants, the inequalities

(6.3) S4,inf ≤ S4,ξ ≤ S4,sup

hold, and the in�ma and suprema can be approximated with arbi-

trary precision by the real values, we can suspect that the Riemann

integral will exists if and only if for every sequences of partitions

with norm approaching zero, the limits of both the upper and lower

sums will exists and they will be equal. We'll prove that this is in-

deed true for all bounded functions:

Theorem. Let the function f be bounded on a closed interval

[a, b]. Then

Ssup = inf
4
S4,sup, Sinf = sup

4

S4,inf

are the limits of all sequences of upper and lower sums with norm

approaching zero, respectively.

The Riemann integral of a bounded function f over the inter-

val [a, b] exists i� Ssup = Sinf.

Proof. If we re�ne a partition 41 to 42 by adding another

points, clearly

S41,sup ≥ S42,sup, S41,inf ≤ S42,inf.

Every two partitions have common re�nement, hence the values

Ssup = inf
4
S4,sup, Sinf = sup

4

S4,inf

are good candidates for the limits of upper and lower sums. Indeed,

if the common limit of the upper sums S exists and is independant

on the chosen sequence of partitions, then it must be Ssup, and sim-

ilarly for lower sums.

Conversely, consider a �xed partition4with n inner partition-

ing points of the intervala [a, b], and another partition 41, whose

norm is a very small number δ. In their common re�nement 42,

there will be only n intervals, that will contribute to the sum S42,sup
by eventually lesser contribution than in the case of 41. Because

f is a bounded function on[a, b], each of these contributions will
be bounded by a universal constant multiplied by the norm of the

partition (i.e. the maximal length of the corresponding interval in

the partition). Hence when choosing su�ciently small δ, the dis-

tance of S41,sup from Ssup won't be bigger than twice the distance

of S4,sup from Ssup.

If we now choose an arbitrary sequence 4k with upper sums,

whose limit is Ssup, then for �xed ε > 0 we can �nd k such that

S4k,sup, k ≥ N will be distant from Ssup by less than ε.
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∫
e
√
x dx = y2 = x

2y dy = dx
= 2

∫
y ey dy.

Now by using integration by parts, we'll compute∫
y ey dy = F(y) = y F ′(y) = 1

G′(y) = ey G(y) = ey
= y ey − ∫

ey dy =
y ey − ey + C.

Thus in total, we have∫
e
√
x dx = 2y ey − 2 ey + C = 2 e

√
x
(√
x − 1

)+ C.

□

6.53. Prove that
1
2

sin4 x = −1
4

cos(2x)+ 1
16

cos(4x)+ 3
16
.

Solution. Easier than to compare the given expressions directly is to
show that the functions on the right and left hand side have the same
derivatives. We have L′ = 2 cos x sin3 x = sin(2x) sin2 x,

P ′ = 1
2 sin(2x) + 1

4 sin(4x) = sin 2x( 1
2 + 1

2 cos(2x)) =
sin(2x) sin2 x. Hence the left and the right hand side di�er by a con-
stant. This constant can be determined by comparing the values at one
point, for example 0. Both functions are zero at zero, thus they are
equal. □

C. Integration of rational functions

6.54. Integrate

(a)
∫ 6
x−2 dx, x ̸= 2;

(b)
∫ 6
(x+4)3 dx, x ̸= −4;

(c)
∫ 3x+7
x2−4x+15 dx, x ∈ R;

(d)
∫ 30x−77(

x2−6x+13
)2 dx, x ∈ R.

Solution. Cases (a), (b). We have∫ 6
x−2 dx = y = x − 2

dy = dx
= ∫ 6

y
dy = 6 ln | y |+C = 6 ln | x−2 |+C

and similarly∫ 6
(x+4)3 dx = y = x + 4

dy = dx
= ∫ 6

y3 dy = 6
−2y2 + C = − 3

(x+4)2 + C.

We can see that integrating the partial fractions which correspond to
real roots of a denominator of rational function is very easy. Moreover,
without loss of generality we can obtain∫

A
x−x0

dx = y = x − x0
dy = dx

= ∫
A
y
dy = A ln | y | + C =

A ln | x − x0 | + C

and ∫
A

(x−x0)
n dx = y = x − x0

dy = dx
= ∫

A
yn dy = Ay−n+1

−n+1 + C =
A

(1−n)(x−x0)
n−1 + C

for all A, x0 ∈ R, n ≥ 2, n ∈ N.
Case (c). Now we are to integrate a partial fraction corresponding

to a pair of complex conjugate roots. Thus in the denominator there
is a polynomial of degree 2 and in the numerator at most 1. If it's of
degree 1, we'll write the partial fraction so that we'll have a multiple
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According to the last notion, we can �nd δ such that for all

partitions with norm less than δ the sum will be closer than 2ε.
Hence we have just shown that for arbitrary ε > 0, we can �nd

δ > 0 such that for all partitions with norm at most δ the inequality

|S4,sup − S4| < ε will hold. That's exactly the statement that the

number Ssup is the limit of all sequences of upper sums with norms

of the partition approaching zero. We cam prove the statement for

lower sums in exactly the same way.

If the Riemann integral doesn't exist, there exist sequences of

partitions and representants with di�erent limits of Riemann sums.

The the proven statement implies, that the limits of upper and lower

sumswill be di�erent as well. Conversely, suppose Ssup = Sinf, but

then all Riemann sums of sequences of the partitions must have the

same limit because of the inequalities (6.3). □

6.27. Uniform continuity. Until now, we have only used the con-

tinuity of our function f to show that all such func-

tions are bounded on a closed �nite interval. We still

have to show though, that for continuous functions,

Ssup = Sinf.

>From the de�nition of continuitywe know that for every �xed

point x ∈ [a, b] and every neighbourhood Oε(f (x)) there exists

a neighbourhood Oδ(x) such that f (Oδ(x)) ⊂ Oε(f (x)). This

statement can also be rewritten in this way: for y, z ∈ Oδ(x), i.e.

|y − z| < 2δ,

it's true that f (y), f (z) ∈ Oε(f (x)), i.e.

|f (y)− f (z)| < 2ε.

We're going to need a global variant of such property, we call itu-

niform continuity of function f :

Theorem. Let f be a continuous function on a closed �nite in-

terval [a, b]. Then for every ε > 0, there exists δ > 0 such

that for all z, y ∈ [a, b] satisfying |y − z| < δ, the inequality

|f (y)− f (z)| < ε holds.

Proof. Because every �nite closed interval is compact, we

can cover it by �nitely many neighbourhoods Oδ(x)(x) mentioned

above in connection with continuity. Their radius δ(x) depends on

the center x, while we'll consider the number ε �xed. Finally, we'll

choose δ as the minimum of all (�nitely many) δ(x). Our continu-

ous function f then has the desired property (we only interchange

the numbers ε and δ for their doubles). □

6.28. Finishing the proof of Theorem 6.25. Now we can easily

�nish the whole proof of existence of the Riemann

integral. Choose ε and δ the sameway as in the previ-

ous theorem about uniform continuity and consider

any partition 4 with n intervals and norm at most δ.

Then

∣∣∣∣ n∑
i=1

sup
xi−1≤ξ≤xi

f (ξ) · (xi−xi−1)−
n∑
i=1

inf
xi−1≤ξ≤xi

f (ξ) · (xi−xi−1)

∣∣∣∣
≤

n∑
i=1

∣∣ sup
xi−1≤ξ≤xi

f (ξ)− inf
xi−1≤ξ≤xi

f (ξ)
∣∣ · (xi − xi−1)

≤ ε · (b − a).
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of the derivative of the denominator in the numerator and add to it the
fraction, in whose numerator there is only a constant. This way we'll
obtain ∫ 3x+7

x2−4x+15 dx = 3
2

∫ 2x−4
x2−4x+15 dx + 13

∫
dx

x2−4x+15 =
3
2 ln

(
x2 − 4x + 15

)+ 13
∫

dx

(x−2)2+11 = 3
2 ln

(
x2 − 4x + 15

)+
13
11

∫
dx(

x−2√
11

)2+1
= y = x−2√

11
dy = dx√

11

= 3
2 ln

(
x2 − 4x + 15

)+ 13√
11

∫
dy

y2+1 =
3
2 ln

(
x2 − 4x + 15

)+ 13√
11
arctg y + C =

3
2 ln

(
x2 − 4x + 15

)+ 13√
11
arctg x−2√

11
+ C.

Again, we can generally express∫
Ax+B

(x−x0)
2+a2 dx = A

2

∫ 2(x−x0)

(x−x0)
2+a2 dx + (B + Ax0)

∫ 1
(x−x0)

2+a2 dx

and compute∫ 2(x−x0)

(x−x0)
2+a2 dx = y = (x − x0)

2 + a2

dy = 2 (x − x0) dx
= ∫

dy

y
=

ln | y | + C = ln[(x − x0)
2 + a2] + C,∫ 1

(x−x0)
2+a2 dx = 1

a2

∫
dx(

x−x0
a

)2+1
= z = x−x0

a

dz = dx
a

= 1
a

∫
dz

z2+1 =
1
a
arctg z+ C = 1

a
arctg x−x0

a
+ C,

i.e.∫
Ax+B

(x−x0)
2+a2 dx = A

2 ln
(
(x − x0)

2 + a2
)+ B+Ax0

a
arctg x−x0

a
+ C,

where the values A,B, x0 ∈ R, a > 0 are arbitrary.
Case (d). All that is left are the partial fractions for multiple com-

plex roots in the form of
Ax+B[

(x−x0)
2+a2

]n , A, B, x0 ∈ R, a > 0, n ∈ N∖ {1},
which can be analogically simpli�ed to

A
2 · 2(x−x0)[

(x−x0)
2+a2

]n + (B + Ax0) · 1[
(x−x0)

2+a2
]n .

Then we'll determine∫ 2(x−x0)[
(x−x0)

2+a2
]n dx = y = (x − x0)

2 + a2

dy = 2 (x − x0) dx
= ∫

dy

yn =
1

(1−n)yn−1 + C = 1
(1−n)[(x−x0)

2+a2
]n−1 + C

and

Kn (x0, a) := ∫ 1[
(x−x0)

2+a2
]n dx =

F(x) = 1[
(x−x0)

2+a2
]n F ′(x) = −2n(x−x0)[

(x−x0)
2+a2

]n+1

G′(x) = 1 G(x) = x − x0
=

x−x0[
(x−x0)

2+a2
]n + 2n

∫
(x−x0)

2+a2[
(x−x0)

2+a2
]n+1 − a2[

(x−x0)
2+a2

]n+1 dx =
x−x0[

(x−x0)
2+a2

]n + 2n
(
Kn (x0, a)− a2Kn+1 (x0, a)

)
,

which implies

Kn+1 (x0, a) = 1
a2

(
2n−1

2n Kn (x0, a)+ 1
2n

x−x0[
(x−x0)

2+a2
]n) ,

which clearly also holds for n = 1. The last recurrent formula can be
extended with the integral (derived in case (c))

K1 (x0, a) = 1
a
arctg x−x0

a
+ C.

In the given problem we have∫ 30x−77(
x2−6x+13

)2 dx = 15
∫ 2x−6(

x2−6x+13
)2 dx + 13

∫ 1(
x2−6x+13

)2 dx

and furthermore
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We can see that for decreasing norm of the partition the upper

and lower sums are arbitrarily close to each other. That's why the

suprema and in�ma coincide, which is what we needed to show.

For a complete proof of the fundamental theorem of integral

calculus, we still need to verify the statement about the existence

of the primitive function. We already know that for continuous

function f on interval [a, b] there exists the integral
∫ t
a
f (x)dx

for every t ∈ [a, b]. As in the statement about uniform continuity,

we can choose δ > 0, dependant on dixed small ε > 0, such that

|f (x +1x)− f (x)| < ε

for all 0 ≤ 1x < δ on the whole intervalu[a, b]. The di�erence
of the derivative of our function F(x) and the integrated function

f (x) is expressed by the limit of the expressions

1
1x

(∫ x+1x

a

f (t)dt −
∫ t

a

f (t)dt

)
− f (x)

for 1x approaching zero. If we choose 0 < 1x < δ though, then

in absolute value this expression can be estimated by∣∣∣∣ 1
1x

(∫ x+1x

t

f (t)dt

)
− f (x)

∣∣∣∣ < ε,

because in the expression on the left hand side we can replace the

integral by its Riemann sum with arbitrary precision and in the

summands f (ξi)(xi−xi−1)with ξi ∈ [x, x+1x] in any Riemann
sum, the values f (ξ) are distant from f (x) by at most ε. Hence

by replacing all f (ξi) by f (x), we obtain a zero expression on the

left hand side with error of at most ε.

But that means that at the point x, the right derivative of func-

tion F(x) exists and equals f (x). We prove the result for the left

derivative in the sameway, and the whole theorem 6.25 is therefore

proven.

6.29. Important notes. (1) Theorems 6.25 and 6.24 claim that

integral is a linear map ∫
: C[a, b] → R

from a vector space of continuous functions on interval [a, b] to
real numbers. Hence it's a linear form on the space C[a, b].

(2) We proved that every continuous function is a derivative

of some function. Hence the concepts of Newton and Riemann

integral coincide for continuous functions. Therefore the Riemann

integral of continuous functions can be computed as the di�erence

of values F(b)− F(a) of the primitive function F .

(3) In the �rst step of the proof of the theorem 6.25 we also

proved an important statement, that for bounded function f on in-

terval [a, b], the limits of the upper and lower sums always exist.

They are also called the upper Riemann integral and the lower

Riemann integral and they are often denoted by
∫ b
a
f (x) dx and∫ b

a
f (x) dx.

In this way we can equivalently de�ne the Riemann integral

for continuous functions (as we did in the proof).

(4) In the next step of the proof we derived an important prop-

erty of continuous functions that is called the uniform continuity on

a closed interval [a, b]. Clearly every uniform continuous function

is continuous as well, but the converse need not be true on open in-

tervals. As an example, consider the function f (x) = sin(1/x) on
the interval (0, 1).
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∫ 2x−6(
x2−6x+13

)2 dx = y = x2 − 6x + 13
dy = (2x − 6) dx = ∫

dy

y2 = − 1
y

+ C =
− 1
x2−6x+13 + C,∫ 1(

x2−6x+13
)2 dx = ∫

dx[
(x−3)2+22

]2 =
1
22

(
2−1

2 K1(3, 2)+ 1
2

x−3
(x−3)2+22

)
=

1
4

(
1
4 arctg

x−3
2 + C + 1

2
x−3

x2−6x+13

)
= 1

16 arctg
x−3

2 + 1
8

x−3
x2−6x+13 + C.

In total, we have∫ 30x−77(
x2−6x+13

)2 dx = − 15
x2−6x+13 + 13

16 arctg
x−3

2 + 13
8

x−3
x2−6x+13 + C =

13
16 arctg

x−3
2 + 13x−159

8
(
x2−6x+13

) + C.

□

6.55. Integrate the rational functions

(a)
∫

x3+1
x(x−1)3 dx, x ̸= 0, x ̸= 1;

(b)
∫

x−4
5x2+6x+3 dx, x ∈ R;

(c)
∫ 1
(x−4)(x−2)(x2+2x+2) dx, x ̸= 2, x ̸= 4;

(d)
∫

x

x4−x3−x+1 dx, x ̸= 1;
(e)

∫ 2x+1
(x2+4x+13)2 dx, x ∈ R;

(f)
∫ 5x2−12
x4−12x3+62x2−156x+169 dx, x ∈ R.

Solution. We'll compute all the given integrals in the way we can
always use when integrating rational functions. We won't use any
speci�c simpli�cation or substitution. Even the recurrent formula for
Kn+1(x0, a), which we derived in a general form, will be used only for
x0 = 0, a = 1 (and also when n = 0). Using the aforementioned
procedures, we obtain

(a) ∫
x3+1
x(x−1)3 dx = 2

∫
dx
x−1 + ∫

dx

(x−1)2 + 2
∫

dx

(x−1)3 − ∫
dx
x

=
2 ln | x − 1 | − 1

x−1 − 1
(x−1)2 − ln | x | + C;

(b) ∫
x−4

5x2+6x+3 dx = 1
10

∫ 10x+6
5x2+6x+3 dx − 23

5

∫
dx

5x2+6x+3 =
1

10 ln
(
5x2 + 6x + 3

)− 23
25

∫
dx(

x+ 3
5

)2+ 6
25

=

1
10 ln

(
5x2 + 6x + 3

)− 23
6

∫
dx(

5x+3√
6

)2+1
= t = 5x+3√

6
dt = 5√

6
dx

=
1
10 ln

(
5x2 + 6x + 3

)− 23
√

6
30

∫
dt

t2 +1 =
1
10 ln

(
5x2 + 6x + 3

)− 23
√

6
30 arctg t + C =

1
10 ln

(
5x2 + 6x + 3

)− 23
√

6
30 arctg 5x+3√

6
+ C;

(c) ∫
dx

(x−4)(x−2)(x2+2x+2) =
1
52

∫
dx
x−4 − 1

20

∫
dx
x−2 + 1

130

∫ 4x+11
x2+2x+2 dx = 1

52 ln | x − 4 | −
1
20 ln | x − 2 | + 1

130

(
2
∫ 2x+2
x2+2x+2 dx + 7

∫
dx

x2+2x+2

)
=

1
260 ln

∣∣∣ (x−4)5

(x−2)13

∣∣∣+ 2
130 ln

(
x2 + 2x + 2

)+ 7
130

∫
dx

(x+1)2+1 =
t = x + 1
dt = dx

= 1
260 ln

∣∣∣∣ (x−4)5
(
x2+2x+2

)4

(x−2)13

∣∣∣∣+ 7
130

∫
dt

t2 +1 =
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(5) Consider a function f on an interval [a, b], which is only
sequentially continuous. That means it's continuous in all points

c ∈ [a, b] except for �nitely many discontinuities ci , a < ci < b,

in which it has �nite one-sided limits. Because of the additivity of

integral with respect to the interval of integration, see 6.24(1), the

last theorem implies that in this case the integral

F(x) =
∫ x

a

f (t)dt

exists for allx ∈ [a, b] and the derivative of function F(x) exists

in all points x, in which f is continuous. Moreover it can easily

be veri�ed that F(x) is continuous at the remaining points, so it's

a continuous function on the whole interval [a, b]. When evaluat-

ing the integral by primitive functions, it's necessary to choose its

individual parts so that they are connected. Then the whole inte-

gral can be computed as a di�erence of the function F(x) in its

boundary values.

(6) The Lagrange theorem of mean value of a di�erentiable

function has an analogy that is called the integral mean value the-

orem. Consider a functionf (x) that is continuous on an interval

[a, b] and its primitive function F(x). The mean value theorem

claims that there exists an inner point a < c < b such that∫ b

a

f (x) dx = F(b)− F(a) = F ′(c)(b − a) = f (c)(b − a).

This statement can be fairly easily derived directly from the de�ni-

tion of the Riemann integral and then it can be used in a straightfor-

ward way in the �nal step of the proof of the fundamental theorem

of integral calculus.

6.30. Improper integrals. When discussing integration of ratio-

nal functions, we saw, that we would also like to

work with de�nite integrals over intervals, where the

integrated function f (x) has improper (one-sided)

limits. In that case, the integrated function is neither continuous

nor bounded and thus may not satisfy the earlier derived results.

We speak of the "improper integral".

A simple help in this case is discussing the de�nite integrals on

smaller intervals with the boundary approaching the problematic

point and study, whether the limit value of such de�nite integrals

exists. If it does, we say the corresponding improper integral ex-

ists and equals this limit. We'll show this procedure on a simple

example:

I =
∫ 2

0

dx
4√2 − x

is an improper integral, because the integrated function f (x) =
(2 − x)−1/4 has its left-sided limit at the point b = 2 which equals

∞. The integrated function is continuous at all other points. There-

fore we study the integrals

Iδ =
∫ 2−δ

0

dx
4√2 − x

=
∫ 2

δ

y−1/4 dy

=
[
−4

3
y3/4

]2

δ

= 4
3

23/4 − 4
3
δ3/4.

Notice that whenwe used substitution, we obtained an integral with

recalculated upper bound δ and lower bound 2. By transforming

the bounds to a usual position, we add one minus sign.
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1
260 ln

∣∣∣∣ (x−4)5
(
x2+2x+2

)4

(x−2)13

∣∣∣∣+ 7
130 arctg t + C =

1
260

[
ln
∣∣∣∣ (x−4)5

(
x2+2x+2

)4

(x−2)13

∣∣∣∣+ 14 arctg (x + 1)
]

+ C;
(d) ∫

x

x4−x3−x+1 dx = 1
3

∫
dx

(x−1)2 − 1
3

∫
dx

x2+x+1 =
− 1

3(x−1) − 1
3

∫
dx(

x+ 1
2

)2+ 3
4

= − 1
3(x−1) − 4

9

∫
dx(

2x+1√
3

)2+1
=

t = 2x+1√
3

dt = 2√
3
dx

= − 1
3(x−1) − 2

3
√

3

∫
dt

t2 +1 =
− 1

3(x−1) − 2
3
√

3
arctg t +C = − 1

3(x−1) − 2
3
√

3
arctg 2x+1√

3
+C;

(e) ∫ 2x+1
(x2+4x+13)2 dx = ∫ 2x+4

(x2+4x+13)2 dx − 3
∫

dx

(x2+4x+13)2 =
t = x2 + 4x + 13
dt = (2x + 4) dx = ∫

dt

t2
− 3

∫
dx[

(x+2)2+9
]2 =

− 1
t
− 1

27

∫
dx[(

x+2
3

)2+1
]2 = u = x+2

3
du = 1

3 dx
= − 1

x2+4x+13 −

1
9

∫
du

(u2+1)2 = − 1
x2+4x+13 − 1

9

(
1
2 arctgu+ 1

2
u

u2+1

)
+ C =

− 1
x2+4x+13 − 1

18 arctg
x+2

3 − 1
18

x+2
3(

x+2
3

)2+1
+ C =

− 1
18 arctg

x+2
3 − 1

6
x+8

x2+4x+13 + C;
(f) ∫ 5x2−12

x4−12x3+62x2−156x+169 dx = ∫ 5x2−12
(x2−6x+13)2 dx =

5
∫

dx

x2−6x+13 + ∫ 30x−77
(x2−6x+13)2 dx =

5
∫

dx

(x−3)2+4 + 15
∫ 2x−6
(x2−6x+13)2 dx + 13

∫
dx

(x2−6x+13)2 =
5
4

∫
dx(

x−3
2

)2+1
+ 15

∫ 2x−6
(x2−6x+13)2 dx + 13

∫
dx[

(x−3)2+4
]2 =

t = x−3
2 u = x2 − 6x + 13

dt = 1
2 dx du = (2x − 6) dx

= 5
2

∫
dt

t2 +1 + 15
∫
du

u2 +
13
16

∫
dx[(

x−3
2

)2+1
]2 = 5

2 arctg t − 15
u

+ 13
8

∫
dt[

t2 +1
]2 =

5
2 arctg

x−3
2 − 15

x2−6x+13 + 13
8

(
1
2 arctg t + 1

2
t

t2 +1

)
+ C =

5
2 arctg

x−3
2 − 15

x2−6x+13 + 13
16 arctg

x−3
2 + 13

16

x−3
2(

x−3
2

)2+1
+ C =

5
2 arctg

x−3
2 + 13

16 arctg
x−3

2 − 15
x2−6x+13 + 13

8
x−3

(x−3)2+4
+ C =

53
16 arctg

x−3
2 + 13x−159

8(x2−6x+13) + C.

□

6.56. Compute ∫
x

(x−1)2
(
x2+2x+2

) dx, x ̸= 1.

Solution. Because the degree of the polynomial in the denominator is
lower than in the numerator, these polynomials don't have a common
root and we know the representation of the denominator in the form of
a product of root factors, we know the form of the decomposition of
the integrated function into partials fractions

x

(x−1)2
(
x2+2x+2

) = A
x−1 + B

(x−1)2 + Cx+D
x2+2x+2
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The limit for δ → 0 from the right clearly exists, so we've

evaluated the improper integral

I =
∫ 2

0

dx
4√2 − x

= 4
3

23/4.

We can proceed in the same way if we want to integrated over

an unbounded interval. In this case, we often speak of improper in-

tegrals of the �rst kind, while the integrals of unbounded functions

on �nite intervals are improper integrals of the second kind.

More generally, for example for a ∈ R

I =
∫ ∞

a

f (x) dx = lim
b→∞

∫ b

a

f (x) dx,

if the limit on the right hand side exists. Similarly we can have a

�nite upper bound and the other one in�nite. If both are in�nite,

we evaluate the integral as a sum of two integrals with a chosen

�xed bound in the middle, i.e.∫ ∞

−∞
f (x) dx =

∫ a

−∞
f (x) dx +

∫ ∞

a

f (x) dx.

The existence nor the value doesn't depend on the choice of

such bound, because by changing it, we only change both sum-

mands by the same �nite value, but with the opposite sign. Con-

versely a limit for which the upper and lower bound would ap-

proach ±∞ at the same speed can lead to di�erent results! For

example ∫ a

−a
x dx =

[
1
2
x2
]a

−a
= 0,

even though the values of the integrals
∫∞
a
x dx with one �xed

bound approach in�nite values fast.

When evaluating the improper integral of a rational function

we must carefully divide the given interval according to the discon-

tinuities of the integrated function and compute all the improper

integrals seperately. Moreover it's necesarry to divide the whole

interval in a way that we always integrate a function unbounded

only in a neighbourhood of one of the boundary points.

6.31. New acquisitions to the ZOO. From the solved problems it

could seem it's usual to �nd an inde�nite integral by expres-

sions composed of known elementary functions. That's a

completely false impression.

On the contrary, an overwhelmingmajority of continu-

ous functions leads to integrals we cannot express in this way. Even

if we integrate fairly simple functions. Because the functions ob-

tained by integration often appear in applications, many of them

have names and before the advent of computers, extensive tables

were published for the needs of engineers. In further text, we'll

come back to the methods of obtaining numeric approximations of

such functions.

Let's see at least some examples. In methods of signal pro-

cessing, the function

sinc(x) = sin(x)
x

is very important. It can be veri�ed in a way fairly straightforward,

although toilful way, that it's a smooth function with limit values

f (0) = 1, f ′(0) = 0, f ′′(0) = −2
3
.
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for A,B,C,D ∈ R. If we multiply this equation by the denominator
of the left hand side, we'll obtain the identity

x =
A (x − 1)

(
x2 + 2x + 2

)+ B
(
x2 + 2x + 2

)+ (Cx +D) (x − 1)2 ,
which hold for all x ∈ R∖ {1}. But on its both sided there are polyno-
mials, so the equality must also occur for x = 1. By substituing this
value we immediately get 1 = B(1 + 2 + 2), i.e. B = 1/5.

We could choose other real (eventually complex) numbers and sub-
stitute them into the given equation, but we cannot expect to directly
determine another of the variables (if we don't substitute a root of the
denominator). Thus we'll rather compare the coe�cients at the same
powers of the polynomials

x − 1
5

(
x2 + 2x + 2

) = − 1
5 x

2 + 3
5 x − 2

5 ,

A (x − 1)
(
x2 + 2x + 2

)+ (Cx +D) (x − 1)2 =
(A+ C) x3 + (A− 2C +D) x2 + (C − 2D) x − 2A+D,

which leads to a system of equations

0 = A + C,

−1/5 = A − 2C + D,

3/5 = C − 2D,
−2/5 = −2A + D.

Note that this systemmust have exactly one solution (which is uniquely
determined by any three of the given equations). The sought solution
is then

A = 1
25 , C = − 1

25 , D = − 8
25 .

Thus∫
x

(x−1)2
(
x2+2x+2

) dx = ∫
dx

25(x−1) + ∫
dx

5(x−1)2
− ∫

x+8
25

(
x2+2x+2

) dx =
1

25 ln | x − 1 | − 1
5(x−1) − 1

50 ln
(
x2 + 2x + 2

)− 7
25 arctg (x + 1)+ C,

where we used∫
x+8

x2+2x+2 dx = ∫ 1
2 (2x+2)
x2+2x+2 + 7

x2+2x+2 dx = 1
2

∫ 2x+2
x2+2x+2 dx +

7
∫ 1
(x+1)2+1 dx = 1

2 ln
(
x2 + 2x + 2

)+ 7 arctg (x + 1)+ C.

□

6.57. Determine

(a)
∫
x3+2x2+x−1
x2−x+1 dx, x ∈ R;

(b)
∫

x8

x8−1 dx, x ̸= ±1.

Solution. Case (a). First we must do the division of polynomials(
x3 + 2x2 + x − 1

)
:
(
x2 − x + 1

) = x + 3 + 3x−4
x2−x+1 ,

to consider a proper rational function (with the degree of the numerator
lower then the degree of the denominator). Now we'll compute∫

x3+2x2+x−1
x2−x+1 dx = ∫

x + 3 dx + ∫ 3x−4
x2−x+1 dx =

x2

2 + 3x + 3
2

∫ 2x−1
x2−x+1 dx − 5

2

∫
dx(

x− 1
2

)2+
( √

3
2

)2 =
x2

2 + 3x + 3
2 ln

(
x2 − x + 1

)− 5√
3
arctg 2x−1√

3
+ C.

Case (b). We have∫
x8

x8−1 dx = ∫
1 dx + 1

8

∫
dx
x−1 − 1

8

∫
dx
x+1 − 1

4

∫
dx

x2+1 +
1
8

∫ √
2x−2

x2−√
2x+1

dx − 1
8

∫ √
2x+2

x2+√
2x+1

dx =



CHAPTER 6. DIFFERENTIAL AND INTEGRAL CALCULUS

Hence it can be immediately seen that this even function will have

an absolute maximum at the point x = 0 and with the increasing

absolute value of x, it will ripple with ever decreasing amplitude.

The sine integral function is de�ned by

Si(x) =
∫ x

0
sinc(t) dt.

Another important functions are Fresnel's sine and cosine in-

tegrals

FresnelS(x) =
∫ x

0
sin
( 1

2πt
2 )dt

FresnelC(x) =
∫ x

0
cos
( 1

2πt
2 )dt.

On the left �gure, there's the course of the function Si(x), on the

right we can see both Fresnel's functions.

We can also obtain a new type of functions, if we allow a free

parameter in the integrated expression, on which the result then

depends. As an example, let's look at one of the most important

mathematical functions ever � the so calld Gamma function. It's

de�ned by

0(z) =
∫ ∞

0
e−t tz−1dt.

It can be shown that this function is analytic at all points z /∈ Z and

for small z ∈ N we can evaluate:

0(1) =
∫ ∞

0
e−t t0dt = [− e−t ]∞0 = 1

0(2) =
∫ ∞

0
e−t t1dt = [− e−t t]∞0 +

∫ ∞

0
e−t dt = 0 + 1 = 1

0(3) =
∫ ∞

0
e−t t2dt = 0 + 2

∫ ∞

0
e−t tdt = 0 + 2 = 2

and by induction we can easily derive that for all positive integers

n this function yields the value of a factorial:

0(n) = (n− 1)!

The following �gure shows the course of the function f (x) =
ln(0(x)) in logarithmic scale of the dependant variable. Hence

we can see how fast the factorial actually grows.
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x + 1
8 ln | x − 1 | − 1

8 ln | x + 1 | − 1
4 arctg x +

√
2

16

∫ 2x−√
2

x2−√
2x+1

dx −
1
8

∫
dx(

x−
√

2
2

)2+
( √

2
2

)2 −
√

2
16

∫ 2x+√
2

x2+√
2x+1

dx − 1
8

∫
dx(

x+
√

2
2

)2+
( √

2
2

)2 =
x + 1

8 ln | x − 1 | − 1
8 ln | x + 1 | − 1

4 arctg x +√
2

16 ln
(
x2 − √

2x + 1
)

−
√

2
8 arctg

(√
2x − 1

)
−

√
2

16 ln
(
x2 + √

2x + 1
)

−
√

2
8 arctg

(√
2x + 1

)
+ C.

□

6.58. Compute ∫ 2x4+2x2−5x+1
x
(
x2−x+1

)2 dx, x ̸= 0.

Solution. We have∫ 2x4+2x2−5x+1
x
(
x2−x+1

)2 dx = ∫
dx
x

+ ∫
x+3

x2−x+1 dx + ∫
x−6(

x2−x+1
)2 dx =

ln | x | + 1
2

∫ 2x−1
x2−x+1 dx + 7

2

∫
dx

x2−x+1 + 1
2

∫ 2x−1
(x2−x+1)2 dx −

11
2

∫
dx

(x2−x+1)2 = t = x2 − x + 1
dt = (2x − 1) dx = ln | x | +

1
2 ln

(
x2 − x + 1

)+ 7
2

∫
dx(

x− 1
2

)2+ 3
4

+ 1
2

∫
dt

t2
− 11

2

∫
dx[(

x− 1
2

)2+ 3
4

]2 =

ln
∣∣∣ x√

x2 − x + 1
∣∣∣+ 14

3

∫
dx(

2x−1√
3

)2+1
− 1

2t − 88
9

∫
dx[(

2x−1√
3

)2+1
]2 =

u = 2x−1√
3

du = 2√
3
dx

= ln
∣∣∣ x√

x2 − x + 1
∣∣∣+ 7

√
3

3

∫
du

u2+1 − 1
2(x2−x+1) −

44
√

3
9

∫
du[

u2+1
]2 = ln

∣∣∣ x√
x2 − x + 1

∣∣∣+ 7
√

3
3 arctgu− 1

2(x2−x+1) −
44

√
3

9

(
1
2 arctgu+ 1

2
u

u2+1

)
+ C = ln

∣∣∣ x√
x2 − x + 1

∣∣∣+
7
√

3
3 arctg 2x−1√

3
− 22

√
3

9 arctg 2x−1√
3

− 1
2(x2−x+1) − 22

√
3

9

2x−1√
3(

2x−1√
3

)2+1
+C =

ln
∣∣∣ x√

x2 − x + 1
∣∣∣− √

3
9 arctg 2x−1√

3
− 1

3
11x−4
x2−x+1 + C.

□

6.59. Integrate

(a)
∫

x

1+x4 dx, x ∈ R;
(b)

∫ 5 ln x
x ln3 x+x ln2 x−2x

dx, x > 0, x ̸= e.

Solution. Case(a). The advantage of the method of integrating ratio-
nal functions described above is its universality (using it, we can �nd
primitive functions of every rational function). Sometimes though, us-
ing the substitution method or integrating by parts is more convenient.
For example,∫

x

1+x4 dx = y = x2

dy = 2x dx = ∫
dy

2
(
1+y2

) = 1
2

∫
dy

1+y2 =
1
2 arctg y + C = 1

2 arctg x
2 + C.

Case (b). Using substitution, we obtain an integral of a rational
function∫ 5 ln x

x ln3 x+x ln2 x−2x
= ∫ 5 ln x

ln3 x+ln2 x−2
· 1
x
dx = y = ln x

dy = 1
x
dx

=∫ 5y
y3+y2−2 dy = ∫ 1

y−1 + −y+2
y2+2y+2 dy =
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Before we plunge into another topics of the mathematical anal-

ysis, we'll introduce several more direct applications of the Rie-

mann integral.

6.32. Riemann measurable sets. The de�nition of the Riemann

integral was derived from the concept of size of an

area in plane with coordinates x and y bounded the

x axis, values of the function y = f (x) and boundary

lines x = a, x = b. Moreover, the area above the x

axis is given with a positive sign, while the values under the axis

lead to a negative sign. In fact, so far we only know what's an

area of a parallelogram determined by two vectors, more generally

in vector space Rn we know what's an area of a parallelepiped.

The areas of other subsets are yet to be de�ned. For some simple

objects like polygons, the de�nition is given naturally by assumed

properties.

The concept of the Riemann integral that we bult can now be

directly used to measure the "volume" of one-dimensional subsets.

We say the subset A ⊂ R is (Riemann) measurable, if the

function χ : R → R

χA(x) =
{

1 if x ∈ A
0 if x /∈ A.

is Riemann integrable, i.e. the integral

m(A) =
∫ ∞

−∞
χA(x) dx

exists (the �niteness of its value doesn't matter). The function χAis

called the characteristic function of the set A, the value m(A) is

called the Riemannmeasure of the set A. Notice that for an interval

A = [a, b] it's actually the value∫ ∞

∞
χA(x) dx =

∫ b

a

dx = b − a,

just as we've expected.

This de�nition of "size" also has the expected property that the

measure of a union of �nitely many Riemann measurable pairwise

disjoint subsets is the sum of their measures. In particular, every

�nite set A has zero Riemann measure.

If we instead take a countable union though, this property is

no longer true. For example, it su�ces to take the set Q of all ra-

tional numbers as a union of one-element subsets. While every set

containing only �nitely many points has a zero measure by our def-

inition, the characteristic function χQ is not Riemann integrable.

Notice that the upper Riemann integral of the characteristic set

χA corresponds to the in�mum of the sums of lengths of �nitely

378

∫ 1
y−1 dy − 1

2

∫ 2y+2
y2+2y+2 dy + 3

∫ 1
(y+1)2+12 dy =

ln | y − 1 | − 1
2 ln

(
y2 + 2y + 2

)+ 3 arctg (y + 1)+ C =
ln | ln x − 1 | − 1

2 ln
(
ln2 x + 2 ln x + 2

)+ 3 arctg (ln x + 1)+ C.

□
For an arbitrary function f that is continuous and bounded on a

bounded interval (a, b), the so called Newton-Leibniz formula

(6.9)

b∫
a

f (x) dx = [F(x)]ba := lim
x→b−

F(x)− lim
x→a+F(x)

holds, where F ′(x) = f (x), x ∈ (a, b). Emphasise that under the
given conditions, the primitive functionF always exists and so do both
proper limits in (∥6.9∥). Hence to compute the de�nite integral, we
only need to �nd the antiderivative and determine the respective one-
sided limits (eventually only values of the function, if the primitive
function is continuous at the boundary points of the interval).

6.60. Determine

(a)
∫ 1√

x3+ 5√
x7
dx, x > 0;

(b)
∫

x+1
3√3x+1

dx, x ̸= − 1
3 ;

(c)
∫ 1
x

√
x+1
x−1 dx, x ∈ R∖ [−1, 1];

(d)
∫ 1
(x+4)

√
x2+3x−4

dx, x ∈ (−∞,−4) ∪ (1,+∞);

(e)
∫ 1

1+
√

−x2+x+2
dx, x ∈ (−1, 2);

(f)
∫ 1
(x−1)

√
x2+x+1

dx, x ̸= 1.

Solution. In this problem, we'll illustrate the use of the substitution
method while integrating expressions containing roots.

Case (a). If the integral is in the form of∫
f
(

p(1)
√
x, p(2)

√
x, . . . , p(j)

√
x
)
dx

for certain numbers p(1), p(2), . . . , p(j) ∈ N and a rational func-
tion f (of more variables), the substitution tn = x is suggested, where
n is the (least) common multiple of numbers p(1), . . . , p(j). Using
this substitution, we can always reduce the integrand (the integrated
function) to a rational function, which we can always integrate. We'll
get∫

dx√
x3+ 5√

x7
= ∫

dx

x
(√
x+ 5√

x2
) = t10 = x, 10

√
x = t

10t9 dt = dx
= ∫ 10t9

t10
(
t5 +t4 ) dt =

10
∫

dt

t6 +t5 = 10
∫ ( 1

t
− 1

t2
+ 1

t3
− 1

t4
+ 1

t5
− 1

t+1

)
dt =

10
[
ln t + 1

t
− 1

2t2 + 1
3t3 − 1

4t4 − ln (1 + t)
]+ C =

ln x

(1+ 10√x)10 + 10
10√x − 5

5√x + 10
3 10√

x3
− 5

2 5√
x2

+ C.

Case (b). For integrals∫
f
(
x, p(1)

√
ax + b, p(2)

√
ax + b, . . . , p(j)

√
ax + b

)
dx,

where again p(1), . . . , p(j) ∈ N, f is a rational expression and
a, b ∈ R, we choose the substitution tn = ax+b while preserving the
meaning of n. In this way, we'll get
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many disjoint intervals, by which we can cover the given set A,

while the lower integral is the supremum of the sums of lengths of

�nitely many disjoint intervals that can be embedded into the set

A. We can proceed in the same way in higher dimensions when

de�ning the Jordan measure. For the de�nition of area (volume)

in higher-dimensional space we will also be able to use the con-

cept of the Riemann integral as well, when we generalize it for the

multidimensional case. It's good to already notice though that the

original notion about an area of a plane �gure bounded by a graph

of a function in the way described above will indeed be ful�lled

completely.

6.33. Mean value of a function. For a �nite set of values, we're

used to think of their mean value and usually de�ne it as the arith-

metic mean.

For a Riemann integrable function f (x) on an interval (�nite

or in�nite) [a, b], its mean value is de�ned by

m(f ) = 1
b − a

∫ b

a

f (x) dx.

By de�nition, m(f ) is the altitude of the rectangle (oriented

according to the sign) over the interval [a, b], which has the same
area as the area between the x axis and the graph of the f (x).

Hence the integral mean value theorem holds in general.

Proposition. If f (x) is a Riemann integrable function on an inter-

val [a, b], then there exists a number m(f ) satisfying∫ b

a

f (x) dx = m(f )(b − a).

6.34. Length of a space curve. The integral we built can be also

e�ectively used to compute the length of a curve in

multidimensional vector space Rn. For the sake of

simplicity, we'll show this on the case of a curve inR2

with coordinates x, y. Suppose we have a parametric

description of a curve F : R → R2,

F(t) = [g(t), f (t)]
and look at it as a trajectory of a movement. For simplicity suppose

that f (t) and g(t) have sequentially continuous derivatives.

By di�erentiating the map F(t) we'll obtain values that will

correspond to the speed of the movement along this trajectory.

Hence the total length of the curve (i.e. distance traveled over time

between the values t = a, t = b) will be given by an integral over

the interval [a, b], where the integrated function h(t) will be ex-

actly the sizes of the vectors F ′(t). Therefore we want to compute
the length s given by

s =
∫ b

a

h(t) dt =
∫ b

a

√
(f ′(t))2 + (g′(t))2 dt.

In a special case when the curve is a graph of a function y = f (x)

between points a < b, we'll obtain

s =
∫ b

a

√
1 + (f ′(x))2 dx.

The same result can be intuitively seen as a corollary of Pythagor's

theorem: for a linear increment of the length of a curve 1s corre-

sponding to the increment 1x of variable x, we can compute

1s =
√
(1x)2 + (1y)2 ,
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∫
x+1

3√3x+1
dx = t3 = 3x + 1

dx = t2 dt
= ∫ t3 −1

3 +1
t

t2 dt = ∫
t3 −1+3

3 t dt =
1
3

∫
t4 + 2t dt = 1

3

(
t5

5 + t2
)

+ C = t2

3

(
t3

5 + 1
)

+ C =
3√
(3x+1)2

3

( 3x+1
5 + 1

)+ C = 3
√
(3x + 1)2 x+2

5 + C.

Case(c). Another generalizations are the integrals of the type∫
f
(
x, p(1)

√
ax+b
cx+d ,

p(2)

√
ax+b
cx+d , . . . ,

p(j)

√
ax+b
cx+d

)
dx,

with the only additional condition on the values a, b, c, d ∈ R being
ad− bc ̸= 0. Preserving the meaning of the aforementioned symbols,
we now put tn = ax+b

cx+d . Speci�cally,

∫ 1
x

√
x+1
x−1 dx =

t2 = x+1
x−1

x = t2 +1
t2 −1

dx = − 4t
(t2 −1)2 dt

= ∫
t2 −1
t2 +1

−4t2

(t2 −1)2 dt =
∫ −4t2

(t2 +1)(t2 −1) dt = ∫ ( 1
t+1 − 1

t−1 − 2
t2 +1

)
dt =

ln | t + 1 | − ln | t − 1 | − 2 arctg t + C =
ln
∣∣∣√ x+1

x−1 + 1
∣∣∣− ln

∣∣∣√ x+1
x−1 − 1

∣∣∣− 2 arctg
√
x+1
x−1 + C.

The simpli�cations

ln
∣∣∣√ x+1

x−1 + 1
∣∣∣− ln

∣∣∣√ x+1
x−1 − 1

∣∣∣ = ln

∣∣∣∣∣
√

x+1
x−1 +1√
x+1
x−1 −1

∣∣∣∣∣ = ln

∣∣∣∣∣
√ | x+1 |

| x−1 | +1√ | x+1 |
| x−1 | −1

∣∣∣∣∣ =

ln
∣∣∣ √| x+1 |+√| x−1 |√| x+1 |−√| x−1 |

∣∣∣ = ln
(√| x+1 |+√| x−1 |)2

| | x+1 |−| x−1 | | =
2 ln

(√| x + 1 | + √| x − 1 |)− ln 2

for x ∈ (−∞,−1) ∪ (1,∞) then allow to write∫ 1
x

√
x+1
x−1 dx = 2 ln

(√| x + 1 | + √| x − 1 |)− 2 arctg
√
x+1
x−1 + C.

Cases (d), (e), (f). Now we'll focus on the integrals∫
f
(
x,

√
ax2 + bx + c

)
dx,

where we expect a ̸= 0 and b2 − 4ac ̸= 0 for otherwise arbitrary
numbers a, b, c ∈ R. Recall that f is a rational expression. We'll
distinguish two cases, when the quadratic polynomial ax2 + bx + c

has real roots and when it doesn't.
If a > 0 and the polynomial ax2 + bx + c has real roots x1, x2,

we'll use the representation
√
ax2 + bx + c = √

a
√
(x − x1)2

x−x2
x−x1

= √
a | x − x1 |

√
x−x2
x−x1

and lett2 = x−x2
x−x1

. If a < 0 and the polynomial ax2 + bx + c has real
roots x1 < x2, we'll use the representation√
ax2 + bx + c = √−a

√
(x − x1)2

x2−x
x−x1

= √−a (x − x1)
√
x2−x
x−x1

and let t2 = x2−x
x−x1

. If the polynomial ax2 + bx + c doesn't have real
roots (necessarily for a > 0), we choose the substitution√

ax2 + bx + c = ±√
a · x ± t

with any choice of the signs. Note that we of course choose the signs
so that we get as easy expression to integrate as possible. In all these
cases, these substitutions again lead to rational functions.

Hence

(d)
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and when looking at our de�nition of integral, that means

s =
∫ b

a

√
1 +

(
dy

dx

)2

dx.

Conversely, the fundamental theorem of di�erential calculus (see

6.25) shows, that at the level of di�erentials, such de�ned quantity

of the length of a graph of a function y = y(x) satis�es

ds =
√

1 + (y′ (x))2dx,
just as we've expected.

As an easy example, we'll calculate the length of a unit cir-

cle as a double of an integral of the function y = √
1 − x2 over

[−1, 1]. We already know that the result must be 2π , because we
de�ned π in this way.

s = 2
∫ 1

−1

√
1 + (y′ )2 dx = 2

∫ 1

−1

√
1 + x2

1 − x2 dx

= 2
∫ 1

−1

1√
1 − x2

dx = 2[arcsin x]1−1 = 2π.

If we instead use

y =
√
r2 − x2 = r

√
1 − (x/r)2

and bounds [−r, r] in the previous calculation, by substituting x =
rt we'll obtain the length of a circle with radius r:

s(r) = 2
∫ r

−r

√
1 + (x/r)2

1 − (x/r)2
dx = 2

∫ 1

−1

r√
1 − t2

dt

= 2r[arcsin x]1−1 = 2πr.

The result is of course well known from elementary geometry.

Nonetheless, by using integral calculus, we've just derived an im-

portant fact, that the length of a circle is linearly dependent on its

diameter 2r. The number π is exactly the ration, in which is this

dependancy realized.

6.35. Areas and volumes. The Riemann integral can be used di-

rectly to compute areas or volumes of shapes de�ned by a graph of

a function.

As an example, let's calculate the area of a circle with radius

r. The halfcircle bounded by the function
√
r2 − x2 has an area,

whose double a(r) can be computed using the substitution x =
r sin t, dx = r cos t dt (using the corollary for I2 in the paragraph

6.22)

a(r) = 2
∫ r

−r

√
r2 − x2 dx = 2r2

∫ π/2

−π/2
cos2 t dt

= 2r2

2
[cos t sin t + t]π/2−π/2 = πr2 .

It's again worth noticing that this well known formula is derived

from the principles of integral calculus and surprisingly, the area

of a circle is not only proportional to the square of the radius, but

this proportion is again given by the constant π .

Also notice the ratio of the area and the perimeter of a circle,

i.e.
πr2

2πr
= r

2
.

A square with the same area has a side of length
√
πr and therefore

its perimeter is 4
√
πr. Hence the perimeter of a square with an
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∫
dx

(x+4)
√
x2+3x−4

= ∫
dx

(x+4)
√
(x−1)(x+4) = ∫

dx

(x+4)| x+4 |
√

x−1
x+4

=
t2 = x−1

x+4
x = 5

1−t2 − 4
dx = 10t

(1−t2 )2 dt
= ∫ 10t

(1−t2 )2(
5

1−t2

)∣∣∣ 5
1−t2

∣∣∣ t dt = ∫ 2
5

∣∣ 1−t2 ∣∣
1−t2 dt =

2
5 sgn

(
1 − t2

) ∫
1 dt = 2

5 sgn
( 5
x+4

)
t + C =

2
5 sgn (x)

√
x−1
x+4 + C;

(e) ∫
dx

1+
√

−x2+x+2
= ∫

dx

1+√−(x−2)(x+1) = ∫
dx

1+(x+1)
√

2−x
x+1

=
t2 = 2−x

x+1
x = 3

t2 +1 − 1
dx = −6t

(t2 +1)2 dt

= ∫ −6t

(t2 +1)2

1+ 3
t2 +1

t
dt = ∫ −6t

(t2 +1)2
t2 +1

t2 +3t+1 dt =
∫ −6t
(t2 +1)(t2 +3t+1) dt =∫ (− 4

5

√
5

2t+3+√
5

− 2
t2 +1 − 4

5

√
5

−2t−3+√
5

)
dt =

− 2
√

5
5 ln

∣∣∣ 2t + 3 + √
5
∣∣∣− 2 arctg t +

2
√

5
5 ln

∣∣∣−2t − 3 + √
5
∣∣∣+ C =

− 2
√

5
5 ln

∣∣∣ 2
√

2−x
x+1 + 3 + √

5
∣∣∣− 2 arctg

√
2−x
x+1 +

2
√

5
5 ln

∣∣∣−2
√

2−x
x+1 − 3 + √

5
∣∣∣+ C =

2
√

5
5 ln

2
√

2−x
x+1 +3−√

5

2
√

2−x
x+1 +3+√

5
− 2 arctg

√
2−x
x+1 + C;

(f)

∫
dx

(x−1)
√
x2+x+1

=

√
x2 + x + 1 = x + t

x2 + x + 1 = x2 + 2xt + t2

x = − t2 +2t−2
2t−1 + 1

dx = −2(t2 −t+1)
(2t−1)2 dt

=

∫ −2(t2 −t+1)

(2t−1)2

− t2 +2t−2
2t−1

t2 −t+1
2t−1

dt = ∫ 2
t2 +2t−2 dt =∫ (√

3
3

1
t+1−√

3
−

√
3

3
1

t+1+√
3

)
dt =

√
3

3 ln
∣∣∣ t + 1 − √

3
∣∣∣− √

3
3 ln

∣∣∣ t + 1 + √
3
∣∣∣+ C =

√
3

3 ln
∣∣∣ t+1−√

3
t+1+√

3

∣∣∣+ C =
√

3
3 ln

∣∣∣ √
x2+x+1−x+1−√

3
∣∣∣√

x2+x+1−x+1+√
3

+ C.

□

6.61. Using a suitable substitution, compute∫
dx

x+
√
x2+x−1

dx, x ∈
(
−∞, −√

5−1
2

)
∪
(√

5−1
2 ,+∞

)
.

Solution. Even though the quadratic polynomial under the root has
real roots x1, x2, we won't solve this problem by substitution t2 =
x−x2
x−x1

. We could proceed that way, but we'll rather use a method we
introduced for the complex roots case. That's because this method
yields a very simple integral of a rational function, as can be seen from
the calculation
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area of a unit circle is 4
√
π , which is approximately 0.8 more than

the perimeter of a unit circle. It can be shown, in fact, that circle is

a shape with the smallest perimeter among all with the same area.

We'll get to derive such results in our comments about the so called

calculus of variations in later chapters.

Another analogy of the this principle is the computation of

surface and volume of a solid of revolution. If a solid originates by

the rotation of a graph of function f around the x axis in an interval

[a, b], an increment 1x causes the area to increase by a multiple

of the length1s of the curve given by the graph a of function y =
f (x) and the size of a circle with radius f (x). Hence the surface

can be computed by the formula

A(f ) = 2π
∫ b

a

f (x) ds = 2π
∫ b

a

f (x)

√
1 + (f ′(x))2 dx,

where ds is given by the increment on the length of curve

y = f (x), see above. If we would determine the solid of

revolution by its bound parametrized by a pair of functions

[x(t), y(t)], the corresponding di�erential will be in the form

ds = √
(x′ (t))2 + (y′ (t))2 dt and for the surface, we'll get

A = 2π
∫ b

a

y(t)

√
(y′ (t))2 + (x′ (t))2 dt.

When changing1x, the volume of the same solidwill increase

by a multiple of this increment and the area of a circle with radius

f (x). Hence it's given by the formula

V (f ) = π

∫ b

a

(f (x))2 dx.

As an example of using the formulas for surface and volume,

we'll derive the well known formulas for the surface of a sphere

and volume of a ball with diameter r.

Ar = 2π
∫ r

−r
r

√
1 − (x/r)2

1√
1 − (x/r)2

dt

= 2πr
∫ r

−r
dt = 4πr2

Vr = π

∫ r

−r
(r2 − x2 ) dx

= π

[
r2x − 1

3
x3
]r

−r
= 4

3
πr3 .

Similar to the circle, a ball is also and object which has the

smallest volume among all with a given surface. That's the reason

why soap bubbles almost always assume this shape.

6.36. Integral criterion of the convergence of series. Using the

improper integral, we can also decide the question of convergence

of a wider class of in�nite series than before:

Theorem. Let
∑∞
n=1 f (n) be a series such that the function f :

R → R is positive and nonincreasing on the interval ⟨1,∞). Then

this series converges if and only if the integral∫ ∞

1
f (x) dx.

converges.

Proof. If we interpret the integral as an area under the curve,

the criterion is clear.
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∫
dx

x+
√
x2+x−1

=

√
x2 + x − 1 = x + t

x2 + x − 1 = x2 + 2xt + t2

x = t2 +1
1−2t

dx = −2t2 +2t+2
(1−2t)2 dt

= ∫ −2t2 +2t+2
(t+2)(1−2t) dt =

∫ (
1 − 2

t+2 − 1
2

1
t− 1

2

)
dt = t − 2 ln | t + 2 | − 1

2 ln
∣∣ t − 1

2

∣∣+ C =
√
x2 + x − 1 − x − 2 ln

(√
x2 + x − 1 − x + 2

)
−

1
2 ln

∣∣∣√x2 + x − 1 − x − 1
2

∣∣∣+ C.

Note that each recommended substitution (see the above problems) can
be in most speci�c problems usually replaced by another substitution,
which allows to obtain the result in a much easier way. An undeni-
able advantage of the recommended substitutions is their universality
though: by using them, one can compute all integrals of the respective
type. □

Another method of integration can be found on page 406

D. De�nite integrals

6.62. Compute the de�nite integrals
π
3∫

π
6

tg2 x dx,

π
4∫

0

x

cos2 x
dx.

Solution. For x ̸= π
2 + kπ , where k ∈ Z, we have∫

tg2 x dx = tg x − x + C,

as we have compute earlier. This implies that
π/3∫
π/6

tg2 x dx = [
tg x − x

]π/3
π/6 = √

3 − π
3 −

(
1√
3

− π
6

)
= 2√

3
− π

6 .

Of course, de�nite integrals can be also computed directly. For
example, the substitution y = tg x yields

π/3∫
π/6

tg2 x dx =
π/3∫
π/6

sin2 x
cos2 x

dx = y = tg x; dy = dx

cos2 x

sin2 x = tg2 x

1+tg2 x
= y2

1+y2

=
√

3∫
1/

√
3

y2

1+y2 dy =
√

3∫
1/

√
3

1 − 1
1+y2 dy = [

y − arctg y
]√

3
1/

√
3 = 2√

3
− π

6 .

When doing the substitution, we only need to not forget to change the
limits of the integral to values gained by substituting

√
3 = tg (π/3),

1/
√

3 = tg (π/6).
We'll compute the second integral by integration by parts for the

de�nite integral. (Note that we also found the primitive function to
function y = x cos−2 x earlier.) We have

π/4∫
0

x

cos2 x
dx = F(x) = x F ′(x) = 1

G′(x) = 1
cos2 x

G(x) = tg x
=

[
x tg x

]π/4
0 −

π/4∫
0
tg x dx = [

x tg x
]π/4

0 +
π/4∫
0

− sin x
cos x dx =[

x tg x
]π/4

0 + [ln (cos x)]π/40 = π
4 + ln

√
2

2 = π−2 ln 2
4 .

□
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If the given series diverges, then the series∑∞
n=2 f (n) diverges as well. For any k ∈ N, we

have the following inequality for k-th partial sum s′k
(of the series without its �rst term)

s′k =
k∑
n=2

f (n) <

∫ k

1
f (x) dx,

because s′k is a lower sum of the Riemann integral
∫ k

1 f (x) dx. But
then ∫ ∞

1
f (x) dx = lim

k→∞

∫ k

1
f (x) dx > lim

k→∞ s
′
k = ∞

and the intergral diverges.

Now suppose the given integral converges and denote the k-th

partial sum of the given series by sk . Then we have the inequalities∫ ∞

1
f (x) dx = lim

k→∞

∫ k

1
f (x) dx < lim

k→∞ sk < ∞,

because sk is an upper sum of the Riemann integral
∫ k

1 f (x) dx and
we suppose the given series converges. □

3. In�nite series

While building our menagerie, we have already encountered

power series, which extend the collection of all polynomials in a

natural way, see 5.44. We also said that we'll obtain a class of an-

alytic functions in this way, but we didn't even prove that power

series are continuous functions. Now we can easily show that it

is indeed the case and that we can also di�erentiate and integrate

power series term by term. Because of this, we will see that it's

not possible to obtain a su�ciently wide class of functions by us-

ing power series. For example, in this waywe can never obtain only

sequentially continuous periodic functions, which are very impor-

tant for simulations and processing of audio and video signals.

6.37. How tamed are our series of functions? Let's now return

to disscussing the limits of sequences of functions and the

sum of series of functions from the point of applying the

methods of di�erential and integral calculus. Consider a

convergent series of functions

S(x) =
∞∑
n=1

fn(x)

on an interval [a, b]. Natural questions are:
• If all functions fn(x) are continuous at some point x0 ∈ [a, b],
is the function S(x) also continuous at the point x0?

• If all functions fn(x) are di�erentiable at some point a ∈
[a, b], is the function S(x) also di�erentiable there and does

the equality S′ (x) = ∑∞
n=1 f

′
n(x) hold?

• If all functions fn(x) are Riemann integrable on an interval

[a, b], is the function S(x) also integrable there and does the
equality

∫ b
a
S(x)dx = ∑∞

n=1
∫ b
a
fn(x)dx hold?

First we'll show on examples that the answer on all three such

formulated questions are "NO!". But then we'll �nd simple addi-

tional conditions on the convergence of the series which, on the

contrary, will guarantee the validity of all three statements. Hence

the series of functions are not generally well managable, though

we can choose a wide class of ones which can be worked with very
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6.63. Compute the de�nite integrals

(a)
∫ 1

0
x√

1−x2
dx;

(b)
∫ 2

1
1√
x2−1

dx;

(c)
∫ 1

0

(
ex

e2x+3 + 1
cos2 x

)
dx;

Solution. We have

(a)
1∫

0

x√
1−x2

dx = y = 1 − x2

dy = −2x dx = −
0∫

1

y−1/2

2 dy =
1∫

0

y−1/2

2 dy = [√
y
]1

0 = 1;
(b)

2∫
1

dx√
x2−1

= z = x + √
x2 − 1

dz =
√
x2−1+x√
x2−1

dx
=

2+√
3∫

1

1
z
dz =

[ln z]2+√
3

1 = ln
(

2 + √
3
)

;
(c)

1∫
0

(
ex

e2x+3 + 1
cos2 x

)
dx =

1∫
0

ex

e2x+3 dx +
1∫

0

1
cos2 x

dx =
p = ex

dp = ex dx
=

e∫
1

1
p2+3 dp + [tg x]1

0 = 1
3

e∫
1

1(
p√
3

)2+1
dp +

tg 1 = s = p√
3

ds = 1√
3
dp

=
√

3
3

e/
√

3∫
1/

√
3

1
s2+1 ds + tg 1 =

√
3

3 [arctg s]e/
√

3
1/

√
3
+ tg 1 =

√
3

3

(
arctg e

√
3

3 − π
6

)
+ tg 1;

□

6.64. Prove that
√

2
20 ≤

1∫
0

x9√
1+x dx ≤ 1

10 .

Solution. Because

0 ≤ x9√
2

≤ x9√
1+x ≤ x9 , x ∈ [0, 1],

the geometric meaning of the de�nite integral implies
√

2
20 =

1∫
0

x9√
2
dx ≤

1∫
0

x9√
1+x dx ≤

1∫
0
x9 dx = 1

10 .

□

6.65. Without symbols of di�erentiation and integration, express(
0∫
x

t5 ln (t + 1) dt

) ′
, x ∈ (−1, 1),

if the di�erentiation is done with respect to x.

Solution. Integration is often thought of as the inverse operation to
di�erentiation. In this problem, we'll use this "inverseness". The func-
tion

F(x) :=
x∫
0
t5 ln (t + 1) dt, x ∈ (−1, 1)
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well. Fortunately, power series will belong there as well. Then

we'll also give some thoughts to alternative concepts of integration

that work more satisfyingly even for wider classes of functions

6.38. Examples of nasty sequences. (1) First consider the func-

tions

fn(x) = (sin x)n

on intervalu [0, π ]. The values of these functions will be nonnega-
tive and lesser than one at all points 0 ≤ x ≤ π , except for x = π

2 ,

where the value is 1. Hence on the whole interval [0, π ], these
functions will converge to the function

f (x) = lim
n→∞ fn(x) =

{
0 for all x ̸= π

2
1 for x = π

2 .

point by point. Clearly, the limit of the sequence of functions fn
is a noncontinuous function, even though all functions fn(x) are

continuous. The problematic point is even an inner point of the

interval.

We can �nd the same phenomenon for series of functions, be-

cause the sum is the limit of partial sums. Hence in the previous

example, it su�ces to express fn as the n-t partial sum. For exam-

ple, f1(x) = sin x, f2(x) = (sin x)2 − sin x, etc. The left �gure
plots the functions fm(x) for m = n3, n = 1, . . . , 10.

x

32,5

0,2

1

0,5

0,4

1 20

0,6

1,5

0,8

0

-0,5

0,4

0,2

x

1

-0,4

-0,2

0
0-1 0,5

(2) Let's now look at the second question, i.e. badly behav-

ing derivatives. Quite natural idea on the same principle as above

is constructing a sequence of functions which will always have the

same nonzero derivative at one point, but they will become smaller

and smaller, so theywill pointwise converge to an identic zero func-

tion.

The previous �gure on the right plots the functions

fn(x) = x(1 − x2 )n

on interval [−1, 1] for values n = m2, m = 1, . . . , 10. At �rst

glance, it's clear that

lim
n→∞ fn(x) = 0

and all functions fn(x) are smooth. Their derivative at the point

x = 0 is

f ′
n(0) = (

(1 − x2 )n − 2nx2 (1 − x2 )n−1)|x=0 = 1

no matter the n. But the limit function for the sequence fn has a

zero derivative at every point of course!

(3) We've already seen the counterexample to the third state-

ment in 6.32. The characteristic function χQ of rational numbers

can be expressed as a sum of countably many functions, which will

be numbered exactly by rational numbers and will be zero every-

where except for the single point after which they are named for,
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is clearly the antiderivative of function f (x) := x5 ln (x + 1) on inter-
val (−1, 1), i.e. by di�erentiating it, we'll get exactly f . Hence(

0∫
x

t5 ln (t + 1) dt

) ′
= −

(
x∫
0
t5 ln (t + 1) dt

) ′
= −x5 ln (x + 1) .

□

E. Improper integrals

6.66. Decide if
+∞∫
1

arctg x

x
√
x
dx ∈ R.

Solution. The improper integral represents the area of the �gure be-
tween the graph of a positive function

y = arctg x

x
√
x
, x ≥ 1

and the x axis (from the left, the �gure is bounded by the line x = 1).
Hence the integral is a positive real number, or equals +∞. We know
that

π
4 ≤ arctg x ≤ π

2 , x ∈ [1,+∞).

But that implies

π
2 = π

4

+∞∫
1
x− 3

2 dx ≤
+∞∫
1

arctg x

x
√
x
dx ≤ π

2

+∞∫
1
x− 3

2 dx = π,

i.e. in particular
+∞∫
1

arctg x

x
√
x
dx ∈ R.

□
The formula (∥6.9∥) can be also used in a case when the functionf

is unbounded or the interval (a, b) is unbounded. We speak of the
so called improper integrals. For the improper integrals, the limits
on the right hand side may be improper and may not exist at all. If
one of the limits doesn't exist or we receive an expression ∞ − ∞, it
means that the integral doesn't exist (∞ − ∞ doesn't have a character
of an inde�nite expression in this case). We say the integral oscilates.
In every other case, we have the result (recall that ∞ + ∞ = +∞,
−∞ − ∞ = −∞, ±∞ + a = ±∞ for a ∈ R).

6.67. Determine

(a)
∞∫
1

sin x dx ;

(b)
∞∫
1

dx

x4+x2 ;

(c)
4∫

0

dx√
x
;

(d)
1∫

−1

dx

x2 .

Solution. Case (a). We can immediately determine
∞∫
1

sin x dx = [− cos x]∞
1 = lim

x→∞(− cos x)+ cos 1.
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where they value will be 1. Riemann integrals of all such functions
will be zero, but their sum is not a Riemann integrable function.

This example illustrates the fundamental �aw of the Riemann

integral, which we'll come back to later.

We can easily also �nd an example when the limit function

f is integrable, all functions fn are continuous, but the value of

the integral still isn't the limit of the values of integrals of fn. It

su�ces to slightly change the sequence of functions which we used

above:

fn(x) = 2nx(1 − x2 )n.

We can easily verify that the values of these functions also con-

verge to zero for every x ∈ [0, 1] (for example we can see that

ln(fn(x)) → −∞). But∫ 1

0
fn(x) dx = n

n+ 1
→ 1 ̸= 0.

6.39. Uniform convergence. An obvious reason of failure in all

three previous examples is the fact that the speed

of pointwise convergence of values fn(x) → f (x)

varies dramatically point from point. Hence a natural

idea is to limit ourselves to cases where the conver-

gence will have roughly the same speed all over the interval

Uniform convergence

De�nition. We say the sequence of functions fn(x) converges uni-

formly on interval [a, b] to a limit f (x), if for every positive num-
ber ε, there exists a natural number N ∈ N such that for all n ≥ N

and all x ∈ [a, b] the inequality

|fn(x)− f (x)| < ε

holds.

We say a series of functions converges uniformly on an inter-

val, if the sequence of its partial sums converges uniformly.

Albeit the choice of the number N depends on the chosen ε,

it's independant on the point x ∈ [a, b]. That's a di�erence from
the pointwise convergence, whereN depends on both ε and x. We

can visualise the de�nition graphically in this way: if we consider a

zone created by a translation of the limit function f (x) to f (x)±ε
for arbitrarily small, but �xed positive ε, all of the functions fn(x)

will fall into this zone, except for �nitely many of them. Clearly

the �rst and the last of the previous cases didn't have this property;

at the second case, the sequence of derivatives f ′
n lacked it.

The following three theorems can be brie�y summed up by a

statement that all three generally false statements in 6.37 are true

for uniform convergence (but beware of the subtilities when di�er-

entiating).

6.40. Theorem. Let fn(x) be a sequence of functions that are

continuous on interval [a, b], which converges uni-

formly to function f (x) on this interval. Then f (x)

is also continuous on interval [a, b].

Proof. We want to show that for an arbitrary �xed point x0 ∈
[a, b] and any �xed small ε > 0, the inequality

|f (x)− f (x0)| < ε
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Because the limit on the right hand side doesn't exist, the integral os-
cilates.

Cases (b), (c). Analogously, we can easily compute
∞∫
1

dx

x4+x2 =
∞∫
1

dx

x2
(
x2+1

) =
∞∫
1

1
x2 − 1

1+x2 dx = [− 1
x

− arctg x
]∞

1 =
lim
x→∞

(− 1
x

− arctg x
) + 1

1 + arctg 1 = 0 − π
2 + 1 + π

4 = 1 − π
4

and even more easily
4∫

0

dx√
x

= [
2
√
x
]4

0 = 4 − 0 = 4,

where the primitive function is continuous from the right side at the
origin (thus the limit equals the value of the function).

Case (d). If we'd mindlessly compute
1∫

−1

dx

x2 = [− 1
x

]1
−1 = −1 − 1 = −2,

we'd receive an obviouslywrong result (a negative valuewhile integrat-
ing a positive function). The reason why the Newton-Leibniz formula
cannot be applied in this way is the discontinuity of the given function
at the origin. But if we use the additivity rule

b∫
a

f (x) dx =
c∫
a

f (x) dx +
b∫
c

f (x) dx,

which always holds, if the integrals on the right hand side are sensible,
we'll �nd the correct result

1∫
−1

dx

x2 =
0∫

−1

dx

x2 +
1∫

0

dx

x2 = [− 1
x

]0
−1 + [− 1

x

]1
0 =

lim
x→0−

(− 1
x

)− 1 − 1 − lim
x→0+

(− 1
x

) = ∞ − 2 + ∞ = +∞.

Note that the even character of function y = x−2 also implies
1∫

−1

dx

x2 = 2
1∫

0

dx

x2 = 2 · ∞ = +∞.

□
6.68. Compute the de�nite integrals

(a)
∫∞

0
1

(x+2)5 dx;

(b)
∫ 2
−2 ln | x | dx;

(c)
∫∞

1
e−√

x√
x
dx;

(d)
∫ 0
−1

e1/x

x3 dx;

(e)
∫ 2

1
1

x ln x dx.

Solution. We have

(a)
∞∫
0

dx

(x+2)5 = − 1
4

[
(x + 2)−4

]∞
0 =

− 1
4

(
lim
x→∞(x + 2)−4 − 2−4

)
= − 1

4

(
0 − 1

16

) = 1
64 ;

(b)
2∫

−2
ln | x | dx =

0∫
−2

ln | x | dx +
2∫

0
ln | x | dx = 2

2∫
0

ln x dx =

F(x) = ln x F ′(x) = 1
x

G′(x) = 1 G(x) = x
= 2

(
[x ln x]2

0 −
2∫

0
1 dx

)
=
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will hold for all x close enough to x0. From the de�nition of uni-

form convergence, for some ε > 0 we have

|fn(x)− f (x)| < ε

for all x ∈ [a, b] and all su�ciently large n. Choose some n with

this property and consider δ > 0 such that

|fn(x)− fn(x0)| < ε

for all x in δ-neighbourhood of x0 (that's possible, because all

fn(x) are continuous). Then

|f (x)− f (x0)| ≤ |f (x)− fn (x)| + |fn(x)− fn(x0)|
+ |fn(x0)− f (x0)| < 3ε

for all x in our chosen δ-neighbourhood of x0. □

6.41. Theorem. Let fn(x) be a sequence of Riemann integrable

functions on a �nite interval [a, b] which converge

uniformly to function f (x) on this interval. Then

f (x) is Riemann integrable as well and

lim
n→∞

∫ b

a

fn(x) dx =
∫ b

a

(
lim
n→∞ fn(x)

)
dx =

∫ b

a

f (x) dx.

The proof of this theorem is based upon a generalization of

properties of Cauchy sequences of numbers to uniform conver-

gence of functions. This way we can work with the existence of

the limit of a sequence of integrals without needing to know it.

Uniformly Cauchy sequences

De�nition. We say the sequence of functions fn(x) on interval

[a, b] is uniformly Cauchy, if for every (small) positive number ε,
there exists (large) natural number N such that for all x ∈ [a, b]
and all n ≥ N , the inequality

|fn(x)− fm(x)| < ε

holds.

Clearly every uniformly convergent sequence of function on

interval [a, b] is also uniformly Cauchy on the same interval; it

su�ces to notice the usual bound

|fn(x)− fm(x)| ≤ |fn(x)− f (x)| + |f (x)− fm(x)|
based on triangle inequality.

This observation will now su�ce to prove our theorem, but

�rst we'll stop at a convinient converse statement:

Proposition. Every uniformly Cauchy sequence of functions fn(x)

on interval [a, b] uniformly converges to some function f on this

interval.

Proof. The condition for a sequence of functions to be

Cauchy implies that also for all x ∈ [a, b], the sequence of values
fn(x) is a Cauchy sequence of real (eventually complex) numbers.

Hence the sequence of functions fn(x) must converge pointwise

to some function f (x).

We'll show that in fact, the sequence fn(x) converges to its

limit uniformly. Choose N large enough so that

|fn(x)− fm(x)| < ε

385

2
(
[x ln x]2

0 − [x]2
0

) = 2
(

2 ln 2 − lim
x→0+

(x ln x)− 2 + 0
)

=
4 ln 2 − 4;

(c)
∞∫
1

e−√
x√
x
dx = t = √

x

dt = 1
2
√
x
dx

= 2
∞∫
1
e−t dt = 2

[−e−t]∞
1 =

−2
(

lim
t→∞ e−t − e−1

)
= 2

e
;

(d)
0∫

−1

e1/x

x3 dx = u = 1/x
du = − 1

x2 dx
= −

−∞∫
−1
u eu du =

−1∫
−∞

u eu du = F(u) = u F ′(u) = 1
G′(u) = eu G(u) = eu

=

[u eu]−1
−∞ −

−1∫
−∞

eu du = [u eu]−1
−∞ − [eu]−1

−∞ =
− 1

e
− lim

u→−∞ u e
u − 1

e
+ lim

u→−∞ eu = − 2
e
;

(e)
2∫

1

dx
x ln x = r = ln x

dr = 1
x
dx

=
ln 2∫
0

dr
r

= [ln r] ln 2
0 =

ln (ln 2)− lim
r→0+

ln r = ln (ln 2)+ ∞ = +∞.

□

6.69. Compute the improper integrals
∞∫
0
x2 e−x dx;

∞∫
−∞

dx
ex+e−x .

Solution. Because the improper integral is a special case of a de�nite
integral, we have at our disposal the basic methods to compute them.
By integration by parts, we obtain

∞∫
0
x2 e−x dx = F(x) = x2 F ′(x) = 2x

G′(x) = e−x G(x) = −e−x =[−x2 e−x]∞
0 + 2

∞∫
0
x e−x dx = F(x) = x F ′(x) = 1

G′(x) = e−x G(x) = −e−x =

− lim
x→∞

x2

ex + 2
[−x e−x]∞

0 + 2
∞∫
0
e−x dx =

0 − 2 lim
x→∞

x
ex + 2

[−e−x]∞
0 = 0 + 2

(
lim
x→∞ −e−x + 1

)
= 2.

The substitution method then yields
∞∫

−∞
dx

ex+e−x =
∞∫

−∞
ex

e2x+1 dx = y = ex

dy = ex dx
=

∞∫
0

dy

y2+1 =[
arctg y

]∞
0 = lim

y→∞ arctg y = π
2 ,

when the new limits of the integral are derived from the limits

lim
x→−∞ ex = 0, lim

x→∞ ex = +∞.

□

6.70. Compute
∞∫
0
x2n+1 e−x2

dx, n ∈ N.
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for some small positive ε chosen beforehand and all n ≥ N , x ∈
[a, b]. Now choose one such n and �x it, then we have

|fn(x)− f (x)| = lim
m→∞ |fn(x)− fm(x)| ≤ ε

for all x ∈ [a, b]. □

Proof of the Theorem. Recall that every uniformly conver-

gent sequence of functions is also uniformly Cauchy and that the

Riemann sums of all single terms of our sequence converge to∫ b
a
fn(x) dx independently on the choice of the partition and the

representants. Hence, if we have

|fn(x)− fm(x)| < ε

for all x ∈ [a, b], then also∣∣∣∣∫ b

a

fn(x) dx −
∫ b

a

fm(x) dx

∣∣∣∣ ≤ ε|b − a|.

Therefore the sequence of numbers
∫ b
a
fn(x) dx is Cauchy, hence

convergent. Also because of the uniform convergence of the se-

quence fn(x), the same must be true for the limit function f (x)

(its Riemann sums are arbitrarily close to the Riemann sums of the

functions fn for su�ciently large n), so the limit function f (x)

will again be integrable. Moreover,∣∣∣∣∫ b

a

fn(x) dx −
∫ b

a

f (x) dx

∣∣∣∣ ≤ ε|b − a|,
so it must be the correct limit value. □

For the corresponding result about derivatives, we need to take

extra care regarding the assumptions:

6.42. Theorem. Let fn(x) be a sequence of functions di�eren-

tiable on interval [a, b] and assume fn(x0) → f (x0)

at some point x0 ∈ [a, b]. Moreover, let all derivatives

gn(x) = f ′
n(x) be continuous and let them converge

uniformly to function g(x) on the same interval. The

the function f (x) = ∫ x
x0
g(t) dt is also di�erentiable on interval

[a, b], the functions fn(x) converge to f (x) and f ′(x) = g(x).

Proof. If we consider functions f̃n(x) = fn(x) − fn(x0) in-

stead of fn(x), the assumptions and conclusions in the theorem

will be valid or invalid for both sequences and the same time.

Hence without loss of generality we can assume that all our func-

tions satisfy fn(x0) = 0. Then for all x ∈ [a, b], we can write

fn(x) =
∫ x

x0

gn(t) dt.

Because the functions gn uniformly converge to function g on

whole [a, b], the functions fn(x) converge to function

f (x) =
∫ x

x0

g(t) dt.

Because function g is a uniform limit of continuous functions, it

is again a continuous function, thus we have proved all that was

needed, see 6.24 about the Riemann integral and a primitive func-

tion. □

For in�nite series, we can sum up the previous conlusions in

this way:

6.43. Corollary. Consider functions fn(x) on interval [a, b].
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Solution. We'll �rst solve this problem by the substitution method and
then repeatedly apply integration by parts, yielding

∞∫
0
x2n+1 e−x2

dx = y = x2

dy = 2x dx = 1
2

∞∫
0
yn e−y dy =

F(y) = yn F ′(y) = nyn−1

G′(y) = e−y G(y) = −e−y =
1
2

([−yn e−y]∞
0 + n

∞∫
0
yn−1 e−y dy

)
= n

2

∞∫
0
yn−1 e−y dy =

F(y) = yn−1 F ′(y) = (n− 1)yn−2

G′(y) = e−y G(y) = −e−y =
n
2

([−yn−1 e−y]∞
0 + (n− 1)

∞∫
0
yn−2 e−y dy

)
=

n(n−1)
2

∞∫
0
yn−2 e−y dy = · · · = n(n−1)···2

2

∞∫
0
y e−y dy =

F(y) = y F ′(y) = 1
G′(y) = e−y G(y) = −e−y = n!

2

([−y e−y]∞
0 +

∞∫
0
e−y dy

)
=

n!
2

[−e−y]∞
0 = n!

2 .

□
6.71. In dependancy on a ∈ R+ determine the integral

∫ 1
0

1
xa dx. ⃝

F. Lengths, areas, surfaces, volumes

6.72. Determine the length of the curve given parametrically:

x = sin2 t, y = cos2 t,

for t ∈ [0, π2 ].
Solution. According to ∥??∥, the length of a curve is given by the
integral∫ π

2

0

√
(x′ (t))2 + (y′ (t))2 dt =

∫ π
2

0

√
(sin 2t)2 + (− sin 2t)2 dt

=
∫ π

2

0

√
2 sin 2t dt = √

2.

If we realize that the given curve is a part of the line y = 1 − x

(since sin2 t + cos2 t = 1) and moreover the segment with boundary
points [0, 1] (for t = 0) and [1, 0] (for t = π

2 ), we can immediately

writw its length
√

2. □

6.73. Determine the length of a curve given parametrically:

x = t2 , y = t3

for t ∈ [0,
√

5].
Solution. We'll again determine the length l by using the formula
∥??∥:

l =
∫ √

5

0

√
4t2 + 9t4 dt =

∫ √
5

0
t
√

9t2 + 4 dt

= 1
2

∫ 5

0

√
9u+ 4 dt = 2

27
[(9u+ 4)

3
2 ]5

0 = 335
27

□



CHAPTER 6. DIFFERENTIAL AND INTEGRAL CALCULUS

(1) If all functions fn(x) are continuous on [a, b] and the series

S(x) =
∞∑
n=1

fn(x)

uniformly converges to function S(x), then S(x) is continuous

on [a, b].
(2) If all functions fn(x) are continuously di�erentiable on inter-

val [a, b], the series S(x) = ∑∞
n=1 fn(x) converges for some

x0 ∈ [a, b] and the series T (x) = ∑∞
n=1 f

′
n(x) converges

uniformly on [a, b], then the series S(x) converges, it is con-

tinuously di�erentiable on [a, b] and S′ (x) = T (x), i.e.( ∞∑
n=1

fn(x)

)′
=

∞∑
n=1

f ′
n(x).

(3) If all functions fn(x) are Riemann integrable on [a, b] and the
series

S(x) =
∞∑
n=1

fn(x)

uniformly converges to function S(x) on [a, b], then S(x) is
integrable on [a, b] and∫ b

a

( ∞∑
n=1

fn(x)

)
dx =

∞∑
n=1

∫ b

a

fn(x) dx.

6.44. Test of uniform convergence. The simpliest way to �nd out

whether a sequence of functions converges uni-

formly is a comparison with absolute conver-

gence of a suitable sequence of numbers. This

is often called the Weierstrass test.

Suppose we have a series of functions fn(x) on interval I =
[a, b] and we have a bound

|fn(x)| ≤ an ∈ R

for suitable real constants an and for all x ∈ [a, b]. We can imme-

diately put a bound on the di�erences of the partial sums

sk(x) =
k∑
n=1

fn(x)

for distinct indices k. For k > m we get

|sk(x)− sm(x)| =
∣∣∣∣ k∑
n=m+1

fn(x)

∣∣∣∣ ≤
k∑

n=m+1

|fn(x)| ≤
k∑

n=m+1

ak.

If a series of (nonnegative) constants
∑∞
n=1 an is convergent, then

of course the sequence of its partial sums is Cauchy. But we have

just veri�ed that in that case the sequence of partial sums sn(x)

will even be uniformly Cauchy.

Thanks to the statement proven above in 6.41 we just proved

the following

Theorem (Weierstrass test). Let fn(x) be a sequence of functions

de�ned on interval [a, b] with |fn(x)| ≤ an ∈ R.
If the series of numbers

∑∞
n=1 an is convergent, then the series

S(x) = ∑∞
n=1 fn(x) converges uniformly.
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6.74. Determine the area to the right of the line x = 3 and bounded
by the graph of a function y = 1

x3−1 and the x axis.

Solution. The are is given by the improper integral
∫∞

3
1

x3−1 dx. We'll
compute it using decomposition into partial fractions:

1
x3 − 1

= Ax + B

x2 + x + 1
+ C

x − 1
,

1 = (Ax + B)(x − 1)+ C(x2 + x + 1),

x = 1 H⇒ C = 1
3
,

x0 : 1 = C − B H⇒ B = −2
3
,

x2 : 0 = A+ C H⇒ A = −1
3

and we can write

∫ ∞

3

1
x3 − 1

dx = 1
3

∫ ∞

3

(
1

x − 1
− x + 2
x2 + x + 1

)
dx.

Now we'll seperately determine the inde�nite integral
∫

x+2
x2+x+1 dx:

∫
x + 2

x2 + x + 1
dx =

=
∫

x + 1
2

(x + 1
2)

2 + 3
4

dx + 3
2

∫
1

(x + 1
2)

2 + 3
4

dx =∣∣∣∣∣∣
substitution at the �rst integral

t = x2 + x + 1
dt = 2(x + 1

2) dx

∣∣∣∣∣∣
= 1

2

∫
1
t

dt + 3
2

∫
1

(x + 1
2)

2 + 3
4

=
∣∣∣∣∣∣

substitution at the �rst integral

s = x + 1
2

ds = dx

∣∣∣∣∣∣
= 1

2
ln(x2 + x + 1)+ 3

2

∫
1

s2 + 3
4

ds =

= 1
2

ln((x2 + x + 1)+ 3
2

4
3

∫
1(

2√
3
s
)2 + 1

ds =
∣∣∣∣∣∣∣

substitution at the second integral

u = 2√
3
s

du = 2√
3
s ds

∣∣∣∣∣∣∣
= 1

2
ln(x2 + x + 1)+ 2

√
3

2

∫
1

u2 + 1
du =

= 1
2

ln(x2 + x + 1)+ √
3 arctan(u) =

= 1
2

ln(x2 + x + 1)+ √
3 arctan

(
2x + 1√

3

)
.
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6.45. Consequences for power series. The Weierstrass test is

very useful for discussing power series

S(x) =
∞∑
n=0

an(x − x0)
n

centered at point x0.

During our �rst encounter with power series we showed in

5.47 that each such series converges on (x0 − δ, x0 +
δ), where the so called radius of convergence δ ≥ 0
can also be zero or ∞. (see 5.51). In particular, in

the proof of the theorem 5.47, we used a comparison

with a suitable geometric series to verify the convergence of the

series S(x). By the Weierstrass test, the series S(x) converges uni-

formly on every compact (i.e. �nite) interval [a, b] belonging to

the interval (x0 − δ, x0 + δ). Thus we proved this:

Theorem. Every power series S(x) is continuous and continu-

ously di�erentiable at all points inside its interval of convergence.

The function S(x) is also integrable and di�erentiating and inte-

grating can be done term by term.

In fact, the so called Abel's theorem states the power series

are continuous even in boundary points of their domain (including

eventual in�nite limits). We won't prove it here.

Just proven pleasant properties of power series also point at

the boundaries of their useablity when simulating dependences of

some practical events or processes. In particular, it's not possible

to simulate sequentially continuous functions very well by using

power series. Aswe'll see in amoment, for speci�c needs it's possi-

ble to �nd better sets of functions fn(x) than the values fn(x) = xn .

The best known examples are the Fourier series and the so called

wavelets which we'll discuss in the next chapter.

6.46. Laurent series. In the context of Taylor expansions let's

look at a smooth function f (x) = e−1/x2
from para-

graph 6.6. We've seen it's not analytic at zero, because

all its derivatives are zero there. So while at all other

points x0 this function is given by convergent Taylor

series with radius of convergence r = |x0|, at the origin the series
converges at only one point.

But if we substitute the expression −1/x2 for x in the power

series for ex , we get a series of functions

S(x) =
∞∑
n=0

1
n!
(−1)nx−2n =

0∑
n=−∞

(−1)|n|

|n|! x2n ,

which will converge at all points except for x ̸= 0 and gives us

a good description of behavior near the exceptional point x = 0.
Thus it seems useful to consider the following more general series

quite similar to the power ones:

Laurent series

A series of functions of the form

S(x) =
∞∑

n=−∞
an(x − x0)

n

is called a Laurent series centered at x0. We call the series conver-

gent if both its parts with positive and negative exponents converge

separately.
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In total, for the improper integral we can write:∫ ∞

3

1
x3 − 1

dx

= 1
3

lim
δ→∞

[
ln |x − 1| − 1

2
ln(x2 + x + 1)− √

3 arctan
(

2x + 1√
3

)]δ
3

= 1
3

lim
δ→∞

(
1
3

ln |δ − 1| − 1
2

ln(δ2 + δ + 1)− √
3 arctan

(
2δ + 1√

3

))
−1

3
ln 2 + 1

6
ln 13 +

√
3

3
arctan

7√
3

=

= 1
6

ln 13 − 1
3

ln 2 +
√

3
3

arctan
7√
3

−

−1
3

lim
δ→∞ ln

∣∣∣∣ x − 1√
x2 + x + 1

∣∣∣∣− 1
3

lim
δ→∞

√
3 arctan

(
2δ + 1√

3

)
=

= 1
6

ln 13 + 1√
3

arctan
7√
3

− 1
3

ln 2 −
√

3
6
π.

□
6.75. Determine the surface and volume of a circular paraboloid cre-
ated by rotating a part of the parabola y = 2x2 for x ∈ [0, 1] around
the y axis.

Solution. The formulas stated in the texts are true for rotating the
curves around the x axis! Hence it's necessary either to integrate the
given curve with respect to variable y, or to transform.

V =
∫ 2

0

x

2
dx = π

S = 2π
∫ 2

0

√
x

2

√
1 + 1

8x
dx = 2π

∫ 2

0

√
x

2
+ 1

16
dx

= π
17

√
17 − 1
24

.

□
6.76. Compute the area S of a �gure composed of two parts of plane
bounded by lines x = 0, x = 1, x = 4, the x axis and the graph of a
function

y = 1
3√
x−1
.

Solution. First realize that
1

3√
x−1

< 0, x ∈ [0, 1), 1
3√
x−1

> 0, x ∈ (1, 4]

and

lim
x→1−

1
3√
x−1

= −∞, lim
x→1+

1
3√
x−1

= +∞.

The �rst part of the �gure (below the x axis) is thus bounded by the
curves

y = 0, x = 0, x = 1, y = 1
3√
x−1

with an area given by the improper integral

S1 = −
1∫

0

1
3√x−1

dx;
while the second part (above the x axis), which is bounded by the
curves
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The purpose of Laurent series can be seen at rational functions.

Consider such function S(x) = f (x)/g(x) with coprime polyno-

mials f and g and consider a root x0 of polynomial g(x). If the

multiplicity of this root is s, then after multiplication we get func-

tion S̃(x) = S(x)(x − x0)
s , which will now be analytic on some

neighbouthood of the point x0 and therefore we can write

S(x) = a−s
(x − x0)s

+ · · · + a−1

x − x0
+ a0 + a1(x − x0)+ . . .

=
∞∑

n=−s
an(x − x0)

n.

Now consider seperate parts

S(x) = S− + S+ =
−1∑

n=−∞
an(x − x0)

n +
∞∑
n=0

an(x − x0)
n.

As for the series S+, Theorem 5.47 implies that its radius of con-

vergence R is given by the equality

R−1 = lim sup
n→∞

n
√|an|.

If we apply the same idea to the series S− with 1/x subtituted for x
though, we'll �nd out the series S−(x) converges for |x − x0| > r,

where

r−1 = lim sup
n→∞

n
√|a−n|.

These notions remain completely true even for complex values of

x substituted into our expressions.

Theorem. A Laurent series S(x) centered at x0 converges for all

x ∈ C satisfying r < |x−x0| < R and diverges for all x satisfying

|x − x0| < r or |x − x0| > R.

Hence we can see the Laurent series need not converge at any

point at all, because we can have values R < r. But if we look

for example at the above case of rational functions expanded to

Laurent series at some of the roots of the denominator, then clearly

r = 0 and therefore, as expected, it will really converge in the

punctured neighbouthood of this point x0, while R will be given

exactly by the distance to the closest root of the denominator. In

case of our �rst example, for the function e−1/x2
we have r = 0

and R = ∞.

6.47. Numerical approximation of integration. Just like at the

end of the previous part of the text (see paragraph

6.17), we'll now use the Taylor expansion to pro-

pose as good and simple approximations of integra-

tion as possible. We'll work with an integral I =∫ b
a
f (x)dx of analytic function f (x) and a uniform partition of

the interval [a, b] using points a = x0, x1, . . . , xn = b with dis-

tances xi − xi−1 = h > 0. We'll denote the points in the middle

of the intervals in the partitions by xi+1/2 and the values of our

function at the points of the partition by f (xi) = fi .

We'll compute the contribution of one segment of the partition

to the integral by the Taylor expansion and the previous theorem.

We intentionally integrate symmetrically around the middle values

so that the derivatives of odd orders cancel each other out while
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y = 0, x = 1, x = 4, y = 1
3√
x−1
,

has an area of

S2 =
4∫

1

1
3√
x−1

dx.

Since ∫ 1
3√
x−1

dx = 3
2

3
√
(x − 1)2 + C,

the sum S1 + S2 can be gotten as

S = − lim
x→1−

(
3
2

3
√
(x − 1)2 − 3

2

)
+ lim

x→1+

(
3
2

3
√

9 − 3
2

3
√
(x − 1)2

)
=

3
2

(
1 + 3

√
9
)
.

We have shown among other things, that the given �gure has a �nite
area, even though it's unbounded (both from the top and the bottom).
(If we approach x = 1 from the right, eventually from the left, its
altitude grows beyond measure.) Recall here the inde�nite expression
of type 0 · ∞. Namely, the �gure is bounded if we limit ourselves to
x ∈ [0, 1 − δ] ∪ [1 + δ, 4] for an arbitrarily small δ > 0. □

6.77. Determine the avarage velocity vp of a solid in the time interval
[1, 2], if its velocity is

v(t) = t√
1+t2 , t ∈ [1, 2].

Omit the units.

Solution. To solve the problem, it su�ces to realize that the sought
avarage velocity is the mean value of function v on interval [1, 2].
Hence

vp = 1
2−1

2∫
1

t√
1+t2 dt =

5∫
2

1
2

√
x
dx = √

5 − √
2,

with 1 + t2 = x, t dt = dx/2. □

6.78. Compute the length s of a part of the curve calles tractrix given
by the parametric description

f (t) = r cos t + r ln
(
tg t

2

)
, g(t) = r sin t, t ∈ [π/2, a],

where r > 0, a ∈ (π/2, π).
Solution. Since
f ′(t) = −r sin t + r

2tg t
2 ·cos2 t

2
= −r sin t + r

sin t = r cos2 t
sin t ,

g′(t) = r cos t on interval [π/2, a],
for the length s we get

s =
a∫

π/2

√
r2 cos4 t

sin2 t
+ r2 cos2 t dt =

a∫
π/2

√
r2 cos2 t

sin2 t
dt =

− r
a∫

π/2

cos t
sin t dt = −r [ln (sin t)]aπ/2 = −r ln (sin a) .

□

6.79. Compute the volume of a solid created by rotation of a bounded
surface, whose boundary is the curve x4 − 9x2 + y4 = 0, around the
x axis.

Solution. If [x, y] is a point on the x4 − 9x2 + y4 = 0, clearly
this curve also intersects points [−x, y], [x,−y], [−x,−y]. Thus
is symmetric with respect to both axes x, y. For y = 0, we have
x2 (x − 3) (x + 3) = 0, i.e. the x axis is intersected by the boundary
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integrating:∫ h/2

−h/2
f (xi+1/2 + t)dt =

∫ h/2

−h/2

( ∞∑
n=0

1
n!
f (n)(xi+1/2)t

n

)
dt

=
∞∑
k=0

(∫ h/2

−h/2
1
k!
f (k)(xi+1/2)t

k dt

)

=
∞∑
k=0

h2k+1

22k(2k + 1)!
f (2k)(xi+1/2).

A very simple numerical approximation of integration on one

segment of the partition is the so called trapezoidal rule, which

uses the area of a trapezoid given by the points [xi, 0], [xi, fi],
[0, xi+1], [xi+1, fi+1] for approximation. This area is

Pi = 1
2
(fi + fi+1)h

so in total we can approximate the integral I by value

Ilich =
n−1∑
i=0

Pi = h

2
(f0 + 2f1 + · · · + 2fn−1 + fn).

We'll now compare Ilich with the exact value of I computed

by contributions over seperate segments of the partition. We can

express the values fi by middle values and derivatives f
(k)
i+1/2 in

this way:

fi+1/2±1/2 = fi+1/2 ± h

2
f ′
i+1/2 + h2

2!22 f
′′(i + 1/2)

± h3

3!23 f
(3)(i + 1/2)+ . . . ,

so for the contribution Pi to the approximation we get

Pi = 1
2
(fi + fi+1)h = h

(
fi+1/2 + h2

2!22 f
′′(i + 1/2)

)+ O(h5).

>From here we get an estimations of the error I − Ilich over one

segment of the partition

1i = h
(
fi+1/2 + h2

24
f ′′
i+1/2 − fi+1/2 − h2

8
f ′′
i+1/2 + O(h4)

)
= h3

12
f ′′
i+1/2 + O(h5).

The total error is thus estimated as

I − Ilich = 1
12
nh3f ′′ + nO(h5) = 1

12
(b − a)h2f ′′ + O(h4)

where f ′′ represents the approximation of the second derivative of
f .

If the linear approximation of the function over the seperate

segments doesn't su�ce, we can try can an approximation by a

quadratic polynomial. To do that, we'll always need three points,

so we'll work with segments of the partition in pairs. Suppose

n = 2m and consider xi with odd indices. We'll require

fi+1 = f (xi + h) = fi + αh+ βh2

fi−1 = f (xi − h) = fi − αh+ βh2

which gives (see the similarity to the di�erence for approximating

the second derivative)

β = 1
2h2 (fi+1 + fi−1 − 2fi).
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curve at points [−3, 0], [0, 0], [3, 0]. In the �rst quadrant, it can then
be expressed as a graph of the function

f (x) = 4
√

9x2 − x4 , x ∈ [0, 3].
The sought volume is thus a double (here we consider x > 0) of the
integral

3∫
0
πf 2(x) dx = π

3∫
0

√
9x2 − x4 dx.

Using the substitution t = √
9 − x2 (xdx = −tdt), we can easily

compute
3∫

0

√
9x2 − x4 dx =

3∫
0
x · √

9 − x2 dx = −
0∫

3
t2 dt = 9,

and receive the result 18π . □
6.80. Torricelli's trumpet, 1641. Let a part of a branch of the hy-
perbola xy = 1 for x ≥ a, where a > 0, rotate around the x axis.
Show that the solid of revolution created in this manner has a �nite
volume V and simultaneously an in�nite surface S.

Solution. We know that

V = π
+∞∫
a

( 1
x

)2
dx = π

+∞∫
a

1
x2 dx = π

(
lim

x→+∞ − 1
x

− (− 1
a

)) = π
a

and

S = 2π
+∞∫
a

1
x

·
√

1 + (− 1
x2

)2
dx = 2π

+∞∫
a

√
x4+1
x3 dx ≥ 2π

+∞∫
a

1
x
dx =

2π
(

lim
x→+∞ ln x − ln a

)
= +∞.

The fact the the given solid (the so called Torricelli's trumper) can-
not be painted with a �nite amount of color, but can be �lled with a
�nite amount of �uid, is called Torriccelli's paradox. But realize that a
real color painting has a nonzero width, which the computation doesn't
take into account. For example, if we would paint it from the inside, a
single drop of color would undoubtedly "block" the trumpet of in�nite
length. □

Another problems about computing lengths of curves, areas of
plane �gures and volumes of parts of space can be found on page 413.

6.81. Apllications of the integral criterion of convergence. Now
let's get back to (number) series. Thanks to the integral criterion of
convergence (see 6.33), we can decide the question of convergence for
a wider class of series: Decide, whether the following sums converge
of diverge:

a)
∞∑
n=1

1
n ln n ,

b)
∞∑
n=1

1
n2 .

Solution. First notice, that we cannot decide the convergence of none
of these series by using the ratio or root test (all limits lim

n→∞ | an+1
an

| and
lim
n→∞

n
√
an equal 1). Using the integral criterion for convergence of

series, we obtain:

a) ∫ ∞

1

1
x ln(x)

dx =
∫ ∞

0

1
t

dt = lim
δ→∞ [ln(t)] δ0 = ∞,
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The area of approximation of the integral over two segments of the

partition between xi−1 and xi+1 is now estimated by the expression

Pi =
∫ h

−h
fi + αt + βt2 dt = 2hfi + 2

3
βh3

= 2hfi + 2h
6
(fi+1 + fi−1 − 2fi)

= h

3
(4fi+1 + fi−1 − 2fi).

This procedure is called Simpson's rule. The whole integral is now

approximated by

ISimp = 1
3
h
(
f0 + f2n + 4

∑
odd k

fk + 2
∑

even k

fk
)
.

Similarly to the procedure above we can derive that the total error

is estimated by

I − ISimp = 1
180

(b − a)h4f (4) + O(h5),

where f (4) represents the approximation of the fourth derivative of

f .

By the end of this chapter, we'll stop at other concepts of in-

tegration. First we'll show a modi�cation of the Riemann integral,

which will later be useful in notions about probability and statis-

tics. We'll mostly stay in an area of notions and comments though,

readers interested in a thorough explication will need to �nd an-

other sources.

6.48. Riemann�Stieltjes integral. In our idea of integration as

summing in�nitely many linearized (in�nitely) small increments

of the area given by a function f (x) we omitted the possibility

that for di�erent values of x we would take the increments with

di�erent weights. This could be surely arranged at the in�nitesi-

mal level by interchanging the di�erential dx for φ(x)dx for some

suitable function φ. We've seen this behavior for example while

computing the length of a parametrized curve in space.

Surely we can also imagine that at some point x0, the incre-

ment of the integrated quantity is given by αf (x0) in-

dependently on the size of the increment of x. For ex-

amplewe can observe the probability that the amount

of per mille of alcohol in blood of a driver at a test

will be at most x. With quite a large probability we'll obtain value

0, thus for any integral sum, the segment containing zero must

contribute by a constant nonzero contribution, independent on the

norm of the partition. We cannot simulte such behavior by multi-

plying the di�erential dx by some real function. Instead we can

generalize the Riemann integral in this way:

Choose a real nondecreasing function g on a �nite interval

[a, b]. For every partition 4 with representants ξi and points of

partition

a = x0, x1, . . . , xn = b

we de�ne the Riemann�Stieltjes integral sum of function f (x) as

S4 =
n∑
i=1

f (ξi)
(
g(xi)− g(xi−1)

)
.

Then we say the Riemann�Stieltjes integral

I =
∫ b

a

f (x)dg(x)
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hence the given series diverges.
b) ∫ ∞

1

1
x2

dx = lim
δ→∞

[
−1
x

]δ
1

= 1,

hence the given series converges.

□

6.82. Using the integral criterion, decide the convergence of series
∞∑
n=1

1
(n+1) ln2(n+1)

.

Solution. The function

f (x) = 1
(x+1) ln2(x+1)

, x ∈ [1,+∞)

is clearly positive and nonincreasing on its whole domain, thus the
given series converges if and only if the integral

∫ +∞
1 f (x) dx con-

verges. By using the substitution y = ln (x + 1) (where dy =
dx/(x + 1)), we can compute

+∞∫
1

1
(x+1) ln2(x+1)

dx =
+∞∫
ln 2

1
y2 dy = 1

ln 2 .

Hence the series converges. □

G. Uniform convergence

6.83. Does the sequence of functions

yn = e
x4

4n2 , x ∈ R, n ∈ N
converge uniformly on R?
Solution. The sequence {yn}n∈N converges pointwise to the constant
function y = 1 on R, since

lim
n→∞ e

x4

4n2 = e0 = 1, x ∈ R.

But the computation

yn

(√
2n
)

= e > 2 for all n ∈ N
implies that it's not a uniform convergence. (In the de�nition of uni-
form convergence, it su�ces to consider ε ∈ (0, 1).) □

6.84. Decide whether the series
∞∑
n=1

√
x·n

n4+x2

converges uniformly on the interval (0,+∞).

Solution. Using the denotation

fn(x) =
√
x·n

n4+x2 , x > 0, n ∈ N,
we have

f ′
n(x) = n

(
n4−3x2)

2
√
x
(
n4+x2

)2 , x > 0, n ∈ N.

From now on, let n ∈ N be arbitrary. The inequalities f ′
n(x) > 0 for

x ∈
(

0, n2/
√

3
)
and f ′

n(x) < 0 for x ∈
(
n2/

√
3,+∞

)
imply that the

maximum of function fn is attained exactly at the point x = n2/
√

3.
Since

fn

(
n2√

3

)
= 4√27

4n2 a
∞∑
n=1

4√27
4n2 = 4√27

4

∞∑
n=1

1
n2 < +∞,
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exists and its value is I , if for every real ε > 0 there exists a norm

of the partition δ > 0 such that for all partitions4with norm lesser

than δ, we have

|S4 − I | < ε.

For example, if we choose g(x) on interval [0, 1] as a se-

quentially constant function with �nitely many discontinuities

c1, . . . , ck and "jumps"

αi = lim
x→ci+

g(x)− lim
x→ci−

g(x),

then the Riemann�Stieltjes integral exists for every continuous

f (x) and equals

I =
∫ 1

0
f (x)dg(x) =

k∑
i=1

αif (ck).

By the same technique we used for the Riemann integral,

we can now de�ne upper and lower sums and uppoer and lower

Riemann�Stieltjes integral, which have the advantage that for

bounded functions they always exist and their values coincide if

and only if the Riemann�Stieltjes integral in the above sense ex-

ists.

We already encountered problems with Riemann integration

of functions that were "too jumpy". Technically, for function g(x)

on a �nite interval [a, b] we de�ne its variation by

varba g = sup
4

n∑
i=1

|g(xi)− g(xi−1)|,

where we take the supremum over all partitions 4 of the interval

[a, b]. If the supremum is in�nite, we say g(x) has an unbounded

variation on [a, b], otherwise we say g is a function with a bounded
variation on [a, b].

Similarly to the procedure for the Riemann integral, we can

quite easily derive the following:

Theorem. Let f (x) and g(x) be real functions on a �nite interval

[a, b].
(1) If g(x) is decreasing and continuously di�erentiable, then the

Riemann integral on the left side and the Riemann�Stieltjes

integral on the right side both exist simultaneously and their

values are equal∫ b

a

f (x)g′(x)dx =
∫ b

a

f (x)dg(x)

(2) If f (x) is continuous and g(x) is a nondecreasing function

with a �nite variation, then the integral
∫ b
a
f (x)dg(x) exists.

6.49. Kurzweil integral. The last stop will be a modi�cation of

the Riemann integral, which �xes the unfortunate be-

havior at the third point in the paragraph 6.37, i.e. the

limits of the nondecreasing sequences of integrable

functions will again be integrable. Then we will be

able to interchange the order of the limit process and integration in

these cases, just like with uniform convergence.

First notice what's the essence of the problem. Intuitively we

should assume that very small sets must have a zero size, and thus

the changes of values of the functions on such sets shouldn't in�u-

ence the integration. Moreover, a countable union of such "negli-

gible for the purpose of integration" sets should have a zero size

again. Surely we would expect that for example the set of rational
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according to theWeierstrass test, the series
∑∞

n=1 fn(x) converges uni-
formly on the interval (0,+∞). □

6.85. For x ∈ [−1, 1], add
∞∑
n=1

(−1)n+1

n(n+1) x
n+1 .

Solution. First notice that by the symbol for an inde�nite integral,
we'll denote one speci�c primitive function (while preserving the vari-
able), which should be understood as a so called function of the upper
limit, while the lower limit is zero. Using the theorem about integra-
tion of a power series for x ∈ (−1, 1), we'll obtain∑∞

n=1
(−1)n+1

n(n+1) x
n+1 = ∑∞

n=1

(
(−1)n+1

n

∫
xn dx

)
=∫ ∞∑

n=1

(
(−1)n+1

n
xn
)
dx = ∫ ∑∞

n=1

(
(−1)n+1

∫
xn−1 dx

)
dx =

∫ ( ∫ ∑∞
n=1(−x)n−1 dx

)
dx = ∫ ( ∫

1 − x + x2 − x3 + · · · dx)dx =∫ ( ∫ 1
1+x dx

)
dx =

∫
ln (1 + x) + C1 dx .

Since ∫ ∞∑
n=1

(
(−1)n+1

n
xn
)
dx =

∫
ln (1 + x) + C1 dx,

we know from the continuity of the given functions that
∞∑
n=1

(−1)n+1

n
xn = ln (1 + x) + C1, x ∈ (−1, 1).

The choice x = 0 then yields 0 = ln 1 + C1, i.e. C1 = 0. Next,∫
ln (1 + x) dx = ∣∣ per partes ∣∣ =

∣∣∣∣ u = ln (1 + x) u′ = 1
1+x

v′ = 1 v = x

∣∣∣∣ =
x ln (1 + x) − ∫

x
1+x dx = x ln (1 + x) − ∫

1 − 1
1+x dx =

x ln (1 + x) − x + ln (1 + x) + C2 = (x + 1) ln (x + 1)− x + C2.

Since the given series converges at the point x = 0 with a sum of 0,
analogously as for C1 ,

0 = 1 · ln 1 − 0 + C2

implies that C2 = 0. In total, we have
∞∑
n=1

(−1)n+1

n(n+1) x
n+1 = (x + 1) ln (x + 1)− x, x ∈ (−1, 1).

Moreover, according to Abel's theorem (see 6.45), the sum of the
given series equals the (potentially improper) limit of the function (x+
1) ln (x + 1)−x at points−1 and 1. In our case, both limits are proper
(at point 1, the function is even continuous and the value of the limit at
point 1 then equals the value of the function 2 ln 2−1.) For computing
the value of the limit at point −1, we'll use L'Hospital's rule:

lim
x→−1+(x + 1) ln (x + 1)− x = lim

t→0+ t ln t + 1

= lim
t→0+

ln t
1
t

+ 1 = lim
t→0+

1
t

− 1
t2

+ 1 = lim
t→0+ −t + 1 = 1.
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numbers inside a �nite interval would have this property, hence its

characteristic function should be integrable and the value of such

interval should be zero.

We say the set A ⊂ R has a zero measure, if for every ε > 0
we can �nd a covering of set A by a countable system of open

intervals Ji , i = 1, 2, . . . such that

∞∑
i=1

m(Ji) < ε.

In the following, by the statement "function f has the given prop-

erty on set B almost everywhere" we'll always mean the fact that

f has this property at all points except for a subset A ⊂ B of zero

measure. For example, the characteristic function of rational num-

bers is zero almost everywhere, a sequentially continuous function

is continuous almost everywhere etc.

We'd now like to modify the de�nition of the Riemann inte-

gral so that when choosing the partition and the corresponding

Riemann sums, we would be able to eliminate the omnious e�ect

of the values of the integrated function on a before known set of

zero measure. It also seems reasonable to try to guarantee that the

segments in the given partitions with representants would have the

property that near points of such set, they would be controllably

small.

A positive real function δ on a �nite interval [a, b] is called a
calibre. We call a partition 4 of interval [a, b] with representants
ξi δ�calibrated, if we have

ξi − δ(ξi) < xi−1 ≤ ξi ≤ xi < ξi + δ(ξi)

for all i.

For further procedure, it's essential to verify that for every cal-

ibre δ, a δ�calibrated partition with representants can be found.

This statement is called Cousin's lemma and can be proven for ex-

ample in the usual way based upon the properties of supremas. For

a given calibre δ on [a, b], we'll denote byM the set of all points

x ∈ [a, b] such that a δ�calibrated partition with representants can
be found on [a, x]. SurelyM is nonempty and bounded, thus it has

a supremum s. If s ̸= b, then we could �nd a calibrated partition

with a representant at s, which leads to a contradiction.

Now we can de�ne a generalization of the Riemann integral

in this way:

De�nition. Function f de�ned on a �nite interval [a, b] has its
Kurzweil integral

I =
∫ b

a

f (x) dx,

if for every ε > 0, there exists a calibre δ such that for every δ�

calibrated partition with representants4, the inequality |S4−I | <
ε holds for the corresponding Riemann sum S4.

6.50. Properties of theKurzweil integral. First notice that when

de�ning the Kurzweil integral, we only bounded the

set of all partitions, for which we take the Riemann

sums into account. Hence if our function is Riemann

integrable, then it must also have the Kurzweil inte-

gral and these two integrals are equal.
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Of course, the convergence of the series at points ±1 can be veri-

�ed directly. It's even possible to directly deduce that
∞∑
n=1

1
n(n+1) = 1

(by writing out 1
n(n+1) = 1

n
− 1

n+1 . □

6.86. Sum of a series. Using theorem 6.41 "about the interchange of
a limit and an integral of a sequence of uniformly convergent func-
tions", we'll now add the number series

∞∑
n=1

1
n2n

.

We'll use the fact that
∞∫
2

dx
xn+1 = 1

n2n .

Solution. On interval (2,∞), the series of functions
∑∞

n=1
1

xn+1 con-
verges uniformly. That is implied for example by the Weierstrass test:
each of the function 1

xn+1 is decreasing on interval (2,∞), thus their

values are at most 1
2n+1 ; the series

∑∞
n=1

1
2n+1 is convergent though

(it's a geometric series with quotient 1
2 ). Hence according to the

Weierstrass test, the series of functions
∑∞

n=1
1

xn+1 converges uniformly.
We can even write the resulting function explicitly. Its value at any
x ∈ (2,∞) is the value of the geometric series with quotient 1

x
, so if

we denote the limit by f (x), we have

f (x) =
∞∑
n=1

1
xn+1

= 1
x2

1
1 − 1

x

= 1
x(x − 1)

.

By using (6.43) (3), we get
∞∑
n=1

1
n2n

=
∞∑
n=1

∫ ∞

2

dx
xn+1

=
∫ ∞

2

( ∞∑
n=1

1
xn+1

)
dx

=
∫ ∞

2

1
x(x − 1)

dx

= lim
δ→∞

∫ δ

2

1
x − 1

− 1
x

dx

= lim
δ→∞ [(ln(δ − 1)− ln(δ)− ln(1)+ ln 2]

= lim
δ→∞

[
ln
(
δ − 1
δ

)]
+ ln(2) = ln

(
lim
δ→∞

δ − 1
δ

)
+ ln 2

= ln 2

□

6.87. Consider function f (x) = ∑∞
n=1 ne

−nx . Determine∫ ln 3

ln 2
f (x) dx.

Solution. Similarly as in the previous case, the Weierstrass test for
uniform convergence implies that the series of functions

∑∞
n=1 ne

−nx
converges uniformly on interval (ln 2, ln 3), since each of the functions
ne−nx is lesser than n

2n on (ln 2, ln 3) and the series
∑∞

n=1
n
2n converges,
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For the same reason, we can repeat the argumentation in Theo-

rem 6.24 about simple properties of the Riemann integral and again

verify that the Kurzweil integral behaves in the same way. In par-

ticular, a linear combination of integrable function cf (x)+ dg(x)

is again integrable and its integral is c
∫ b
a
f (x)dx + d

∫ b
a
g(x)dx

etc. For proving this, it only su�ces to think through little mod-

i�cations when discussing the re�ned partitions, which moreover

should be δ�calibrated.

Analogously, for the case of monotonic sequences of point-

wise convergent functions, we can extend the argumentation verify-

ing that the limits of uniformly convergent sequences of integrable

functions fn are again integrable and the integral of the limit is the

limit of the values of integrals fn.

Finally, the Kurweil integral behaves in the way we would like

it to, even to sets with zero measure:

Theorem. Consider a function f on interval [a, b], which is zero
almost everywhere. Then the Kurzweil integral

∫ b
a
f (x)d(x) exists

and equals zero.

Proof. This is a nice illustration of the idea that we can get rid

of the in�uence of values on a small set by a smart choice of calibre.

Denote by M the corresponding set of zero measure, outside of

which f (x) = 0 and writeMk ⊂ [a, b], k = 1, . . . , for the subset
of the points for which k − 1 < |f (x)| ≤ k. Because all the

setsMk have zero measure, we can cover it by a countable system

of in sum arbitrarily small and pairwise disjoint open intervals Jk,i .

Now de�nte the calibre δ(x) for x ∈ Jk,i so that the whole intervals
(x− δ(x), x+ δ(x)) were still contained in Jk,i . Outside of setM,

we then de�ne δ arbitrarily.

For δ�calibrated partition 4 of the interval [a, b] we can then
put a bound on the corresponding Riemann sum∣∣∣∣n−1∑

j=0

f (ξn)(xi+1 − xi)

∣∣∣∣ =
∣∣∣∣ n−1∑
j=0
ξi∈M

f (ξn)(xi+1 − xi)

∣∣∣∣
≤

∞∑
k=1

n−1∑
j=0
ξi∈Mk

∣∣f (ξn)∣∣(xi+1 − xi)

≤
∞∑
k=1

k

( n−1∑
j=0
ξi∈Mk

m(Jk,j )

)

Hence if we want this bound to be smaller than ε for an ε known

in advancem it su�ces to choose the covering by the intervals Jk,j
so that

∞∑
j=1

m(Jk,j ) = ε

k2k
.

Then in the last expression we can substitute for the inner sum, add

the geometric series
∑∞
k=1 2−k and get exactly the required ε. □

Corollary. We don't change the Kurzweil integrability of a given

function f (x) neither the value of its integral if we change the val-

ues f (x) on a set of zero measure.
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which can be seen for example from the ratio test for convergence of
series:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1)2−(n+1

n2n
= lim

n→∞
1
2
n+ 1
n

= 1
2
.

In total, according to (6.43) (3), we have∫ ln 3

ln 2
f (x) dx =

∫ ln 3

ln 2

∞∑
n=1

ne−nx =

=
∞∑
n=1

∫ ln 3

ln 2
ne−nx dx =

=
∞∑
n=1

[−e−nx]ln 3
ln 2 =

∞∑
n=1

(
1
2n

− 1
3n

)
= 1 − 1

2
= 1

2
.

□
6.88. Determine the following limit (give reasons for the procedure
of computation):

lim
n→∞

∫ ∞

0

cos
(
x
n

)(
1 + x

n

)n dx.

Solution. First we'll determine lim
n→∞

cos( x
n
)(

1+ x
n

)n . The sequence of these

functions converges pointwise and we have

lim
n→∞

cos( x
n
)(

1 + x
n

)n = 1

lim
n→∞

(
1 + x

n

)n (∥??∥)= 1
ex

It can be shown that the given sequence converges uniformly. Then
according to (6.41) ,

lim
n→∞

∫ ∞

0

cos
(
x
n

)(
1 + x

n

)n dx =
∫ ∞

0

[
lim
n→∞

cos
(
x
n

)(
1 + x

n

)n
]

dx =

=
∫ ∞

0

1
ex

= 1

We leave the veri�cation of uniform convergence to the reader (we
only point out that the discussion is more complicated than in the pre-
vious cases).

□
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6.51. Comments about the integration. To �nish ....

absolutely continuous functions, the relation be-

tween the inde�nite integral and the primitive func-

tion, intergration in absolute value, Lebesgue inte-

gral
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H. Expletory examples for the whole chapter

6.89. Let f be a given function and let z be a point such that

f (z) = 0, f ′(z) = 0, f ′′(z) = 0, f (3)(z) = 1.
Which of the following statements:

(a) the tangent line to the graph of function f at point [z, f (z)] is the x axis;
(b) the function f is not a polynomial of degree two;
(c) the function f is increasing at point z;
(d) the function f does not have a strict local minimum at point z ;
(e) the point z is an in�ective point of function f

are necessarily true? ⃝
6.90. Determine the total course of function

f (x) = − x2

x+1 , x ∈ R∖ {−1}.
Hence determine (if sensible):

(a) the domain (it's given) and the range;
(b) eventual parity and periodicity;
(c) discontinuities and their kind (including the according one-sided limits);
(d) points of intersections with the axes x, y;
(e) the intervals where the function is positive and where it's negative;
(f) the limits limx→−∞ f (x), limx→+∞ f (x);
(g) the �rst and the second derivatice;
(h) the critical and the so called stationary points, at which the �rst derivative is zero (eventually

the points, at which the �rst or the second derivative don't exist)
(i) the intervals of monotonicity;
(j) strict and nonstrict local and absolute extremes;
(k) the intervals where the function is convex and where it's concave;
(l) the points of in�ection;
(m) the horizontal and inclined asymptotes;
(n) values of the function f and its derivative f ′ at �signi�cant� points;
(o) the graph.

⃝
6.91. Determine the course of the function

f (x) = 1−x3

x2 .

By determining the course of function f (not only in this example) we mean �determining the
domain, the range and eventual parity or periodicity; computing the limits

lim
x→−∞ f (x) a lim

x→+∞ f (x),

if they exist; determining the discontinuities and their kind including the according one-sided limits
(if they exist), zeros (if they exist) and the intervals where the function is positive and where it's
negative; determining the �rst (and the second, if needed) derivative and the intervals on which the

function increases, decreases or remains constant; �nding the stationary (critical) points and all local
extremes (if they exist); determining the points of in�ection and the intervals on which the function

is convex and concave; computing the values at signi�cant points (i.e. �nd the values of the function
at stationary points and points of in�ection, if it helps when plotting the graph, and �nd the points of
intersection with the axes, if they exist); plot its graph with the asymptotes�. ⃝
6.92. Determine the course of the function

f (x) = x3−3x2+3x+1
x−1 .

⃝
6.93. Determine the course of the function
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f (x) = 3
√
x e−x .

⃝
6.94. Determine the course of the function

f (x) = arctg x
2−x .

⃝
6.95. Determine the course of the function ln x

x
; among other things, �nd the extremes, the points of

in�ection and the asymptotes and plot its graph. ⃝
6.96. Determine the course of the function; among other things, �nd the extremes, the points of
in�ection and the asymptotes:

ln(x2 − 3x + 2)+ x.

⃝
6.97. Determine the course of the function; among other things, �nd the extremes, the points of
in�ection and the asymptotes:

(x2 − 2)ex
2−1.

⃝
6.98. Determine the course of the function; among other things, �nd the extremes, the points of
in�ection and the asymptotes:

ln(2x2 − x − 1).

⃝
6.99. Determine the course of the function (among other things, �nd the extremes, the points of
in�ection and the asymptotes):

x2 − 2
x − 1

.

⃝
6.100. Using the basic formulas, determine any primitive function to function

(a) y =
√
x
√
x

√
x, x ∈ (0,+∞);

(b) y = (2x + 3x)2 , x ∈ R;
(c) y = 1√

4−4x2
, x ∈ (−1, 1);

(d) y = cos x
1+sin x , x ∈ (−π

2 ,
3π
2

)
.

⃝
6.101. Use the derivatives of functions y = tg x and y = cotg x to �nd the inde�nite integrals of
functions

(a) y = cotg2 x, x ∈ (0, π);
(b) y = 1

sin2 x cos2 x
, x ∈ (0, π2 ) .

⃝
6.102. Find the primitive function to function

y = ex + 3√
4−x2

na intervalu (−2, 2). ⃝
6.103. Determine ∫

x3

1+x4 dx, x ∈ R.
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⃝
6.104. Determine ∫ 4

x2−2x+3 dx, x ∈ R.

⃝
6.105. For x ∈ (0, 1), compute∫ (

x2+1
x
(
x2−1

) + 3√
4−4x2

+ 4 sin x − 5 cos x
)
dx .

⃝
6.106. Determine the inde�nite integrals

(a)
∫
arctg x dx, x ∈ R;

(b)
∫ ln x

x
dx, x > 0

using integration by parts. ⃝
6.107. By repeated use of integration by parts, for all x ∈ R determine

(a)
∫
x2 sin x dx;

(b)
∫
x2 ex dx.

⃝
6.108. For example by using integration by parts, determine∫

x ln2 x dx

for x > 0. ⃝
6.109. Using integration by parts, determine∫ (

2 − x2
)
ex dx

on the whole real line. ⃝
6.110. Integrate

(a)
∫
(2x + 5)10 dx, x ∈ R;

(b)
∫ 1
x ln2 x

dx, x > 0;
(c)

∫
e−x3

x2 dx, x ∈ R;
(d)

∫
15 arcsin2 x√

1−x2
dx, x ∈ (−1, 1);

(e)
∫ ln x

x
dx, x > 0;

(f)
∫

arctg
√
x√

x(1+x) dx, x > 0;
(g)

∫
ex

e2x+3 dx, x ∈ R;
(h)

∫
sin

√
x dx, x > 0

by using the substitution method. ⃝
6.111. For x ∈ (0, 1), by using suitable substitutions, reduce the integrals∫

x2
√

x
1−x dx ; ∫

dx

(x−1)
√
x2+x+1

to integrals of rational functions. ⃝
6.112. For x ∈ (−π/2, π/2) compute ∫

dx

1+sin2 x

using the substitution t = tg x. ⃝
6.113. Determine ∫ √

x√
x+1 dx , x > 0.
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in an arbitrary way. ⃝
6.114. Compute

(a)
∫
xn ln x dx, x > 0, n ̸= −1;

(b)
∫

x

1+x4 dx, x ∈ R.

⃝
6.115. For x > 0 determine

(a)
∫
(2+5x)3

4√
x3

dx;

(b)
∫ 3

√
1+ 4√x√
x

dx;

(c)
∫ 1

4√1+x4
dx.

Solution. All three given integrals are binomial, i.e. they can be written as∫
xm (a + bxn )p dx for some a, b ∈ R, m, n, p ∈ Q.

The binomial integrals are usually solved by applying the substitution method. If p ∈ Z (not neces-
sarily p < 0), we choose the subtitution x = ts , where s is the common denominator of numbers m
a n; if m+1

n
∈ Z and p /∈ Z, we choose a + bxn = ts , where s is the denominator of number p; and

if m+1
n

+ p ∈ Z (p /∈ Z, m+1
n

/∈ Z), we choose a + bxn = ts xn , where s is the denominator of p. In
these three cases, a reduction to an integration of a rational function is guaranteed.

Hence we can easily compute

(a) ∫
(2+5x)3

4√
x3

dx = ∫
x− 3

4 (2 + 5x)3 dx =
p ∈ Z
x = t4

dx = 4t3 dt
= 4

∫ (
2 + 5t4

)3
dt =

4
∫ (

8 + 60t4 + 150t8 + 125t12
)
dt = 4

(
8t + 12t5 + 50

3 t
9 + 125

13 t
13
)+ C =

4
(

8 4
√
x + 12 4

√
x5 + 50

3
4
√
x9 + 125

13
4
√
x13
)

+ C;
(b)

∫ 3
√

1+ 4√x√
x
dx = ∫

x− 1
2

(
1 + x

1
4

) 1
3
dx =

p /∈ Z, m+1
n

∈ Z
1 + x

1
4 = t3

x = (t3 − 1)4

dx = 12t2
(
t3 − 1

)3
dt

= 12
∫
t3
(
t3 − 1

)
dt =

12
∫
t6 − t3 dt = 12

(
t7

7 − t4

4

)
+ C = 12 3

√
(1 + 4

√
x)4

(
1+ 4√x

7 − 1
4

)
+ C;

(c)

∫ 1
4√1+x4

dx = ∫ (
1 + x4

)− 1
4 dx =

p /∈ Z, m+1
n
/∈ Z, m+1

n
+ p ∈ Z

1 + x4 = t4x4

x = (
t4 − 1

)− 1
4

dx = −t3 (t4 − 1
)− 5

4 dt

= − ∫ t2

t4 −1dt =

− ∫ t2

(t−1)(t+1)(t2 +1) dt = − 1
4

∫ ( 1
t−1 − 1

t+1 + 2
t2 +1

)
dt =

− 1
4 (ln | t − 1 | − ln | t + 1 | + 2 arctg t) + C =

− 1
4

[
ln

4
√

1
x4 +1−1

4
√

1
x4 +1+1

+ 2 arctg
(

4
√

1
x4 + 1

)]
+ C.

□

6.116. For x ∈ (−π
2 ,

π
2

)
, integrate

(a)
∫ sin3 x

1+4 cos2 x+3 sin2 x
dx;

(b)
∫ 1

1+sin2 x
dx;
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(c)
∫ 1

2−cos x dx.

Solution. Integrals in the form of
∫
f (sin x, cos x) dx for some rational function f are usually

solved by the substitution method. If f (sin x,− cos x) = −f (sin x, cos x), we choose t = sin x;
if f (− sin x, cos x) = −f (sin x, cos x), we choose t = cos x; and if f (− sin x,− cos x) =
f (sin x, cos x), then t = tg x. If none of these equalities hold, the substitution t = tg x

2 is used.
We'll show it on the given integrals.

Case (a). In the denominator, we have

1 + 4 cos2 x + 3 sin2 x = 4 + cos2 x

and in the numerator only the sine function to an odd power, i.e. the substitution t = cos x, where
dt = − sin x dx, allows to replace all the sines and cosines and thus obtain∫ sin3 x

1+4 cos2 x+3 sin2 x
dx = ∫ sin x

(
1−cos2 x

)
4+cos2 x

dx = ∫ −(
1−t2 )

4+t2 dt = ∫
(1 − 5

4+t2 ) dt = t − 5
2 arctg

t
2 + C =

cos x − 5
2 arctg

cos x
2 + C.

Case (b). Because both the sine and cosine appear here to an even power, the substitution t = tg x
leads to

sin2 x = t2

1+t2 , cos2 x = 1
1+t2 , dx = 1

1+t2 dt,
by which we obtain∫

dx

1+sin2 x
= ∫ 1

1+t2

1+ t2

1+t2

dt = ∫ 1
1+2t2 dt =

√
2

2 arctg
(√

2t
)

+ C =
√

2
2 arctg

(√
2 tg x

)
+ C.

Case (c). Now we'll use the universal substitution t = tg x
2 , where

sin x = 2t
1+t2 , cos x = 1−t2

1+t2 , dx = 2
1+t2 dt.

Then we can determine∫
dx

2−cos x = ∫ 2
1+t2

2− 1−t2

1+t2

dt = 2
∫

dt

1+3t2 = 2
√

3
3 arctg

(√
3t
)

+ C = 2
√

3
3 arctg

(√
3 tg x

2

)
+ C.

□
6.117. Carry out the suggested division of polynomials

2x5−x4+3x2−x+1
x2−2x+4

for x ∈ R. ⃝
6.118. Express the function

y = 3x4+2x3−x2+1
3x+2

as a sum of a polynomial and a rational function. ⃝
6.119. Decompose the rational expression

(a) 4x2+13x−2
x3+3x2−4x−12 ;

(b) 2x5+5x3−x2+2x−1
x6+2x4+x2

into partial fractions. ⃝
6.120. Express the function

y = 2x3+6x2+3x−6
x4−2x3

in the form of partial fractions. ⃝
6.121. Decompose the expression

7x2−10x+37
x3−3x2+9x+13

into partial fractions. ⃝
6.122. Express the rational function

y = −5x+2
x4−x3+2x2

in the form of a sum of partial fractions. ⃝
6.123. Decompose the function
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y = 1
x3(x+1)

into partial fractions. ⃝
6.124. Determine the form of the decomposition of the rational function

y = 2x2−114
(x−2) x2 (3x2+x+4)2

into partial fractions. Don't compute the undetermined coe�cients! ⃝
6.125. Express the function

y = x4+6x2+x−2
x4−2x3

as a sum of a polynomial and a proper rational functionQ. Then express the obtained functionQ in
the form of a sum of partial fractions. ⃝
6.126. Write the primitive function to the rational function

(a) y = 3
x−2 , x ̸= 2;

(b) y = − 2
(x−2)3 , x ̸= 2.

⃝
6.127. Determine ∫ 3x+5

x2+4x+8 dx, x ∈ R.

⃝
6.128. Compute the inde�nite integral of the function

y = 1
(x2+x+1)2 , x ∈ R.

⃝
6.129. Determine ∫

dx

x3+1 , x ̸= −1.

⃝
6.130. Integrate ∫ 1

x3−1 dx , x ̸= 1.

⃝
6.131. Compute the integral ∫

x3

(x−1)(x−2)2
dx , x ∈ R∖ {1, 2}.

⃝
6.132. For x ∈ (0, π2 ), compute

(a)
∫

sin3 x cos4 x dx;
(b)

∫ 1+cos2 x
1+cos 2x dx;

(c)
∫

2 sin2 x
2 dx;

(d)
∫

cos2 x dx;
(e)

∫
cos5 x

√
sin x dx;

(f)
∫

dx

sin2 x cos4 x
;

(g)
∫

dx

sin3 x
;

(h)
∫

dx
sin x .

⃝
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6.133. Let y = | x | on the interval I = [−1, 1] and let
4n = (−1,−n−1

n
, . . . ,− 1

n
, 0, 1

n
, . . . , n−1

n
, 1
)

be a partition of the interval I for arbitrary n ∈ N. Determine S4n, sup and S4n, inf (the upper and lower
Riemann sum corresponding to the given partition).

Based on this result decide if the function y = | x | on [−1, 1] is integrable (in Riemann sense).
⃝
6.134. Compute

lim
n→∞

√
1+ 1

n
+

√
1+ 2

n
+···+√

1+1

n
.

⃝
6.135. How many distinct primitive functions to function y = cos (ln x) does there exist on the
interval (0, 10)? ⃝
6.136. Give an example of a function f on th interval I = [0, 1] that doesn't have a primitive function
on I . ⃝
6.137. Using the Newton integral, compute

(a)
π∫
0

sin x dx;

(b)
1∫

0
arctg x dx;

(c)
3π/4∫

−π/4
cos x

1+sin x dx;

(d)
e∫

1/e
| ln x | dx .

⃝
6.138. Compute

2∫
1

x√
1+x2

dx.

⃝
6.139. For arbitrary real numbers a < b determine

b∫
a

sgn x dx.

Recall that sgn x = 1, for x > 0; sgn x = −1, fpr x < 0; and sgn 0 = 0. ⃝
6.140. Compute the de�nite integral

1∫
0

x3

1+x4 dx.

⃝
6.141. For example by repeated integration by parts, compute

π/2∫
0
e2x cos x dx.

⃝
6.142. Determine

1∫
−1
x2 e−x dx .
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⃝
6.143. Compute the integral

1∫
−1

x√
5−4x

dx

using the substitution method. ⃝
6.144. Compute

(a)
e8∫
1

dx

x
√

1+ln x
;

(b)
ln 2∫
0

x
ex dx.

⃝
6.145. Which of the positive numbers

p :=
π/2∫
0

cos7 x dx, q :=
π∫
0

cos2 x dx

is bigger? ⃝
6.146. Determine the signs of these three numbers (values of integrals)

a :=
2∫

−2
x3 2x dx; b :=

π∫
0

cos x dx; c :=
2π∫
0

sin x
x
dx.

⃝
6.147. Order the numbers

A :=
π/2∫
0

cos x sin2 x dx, B :=
π/2∫
0

sin2 x dx, C :=
1∫

−1
−x5 5x dx,

D :=
10∫

2π

x2+2
x6+4 dx +

2π∫
π

x2+2
x6+4 dx +

π∫
10

x2+2
x6+4 dx

by size. ⃝
6.148. By considering the geometric meaning of the de�nite integral, determine

(a)
2∫

−2
| x − 1 | dx;

(b)
0,10∫

−0,10
tg x dx;

(c)
2π∫
0

sin x dx.

⃝
6.149. Compute

∫ 1
−1 | x | dx. ⃝

6.150. Determine
1∫

−1
x5 sin2 x dx.

⃝
6.151. With an error lesser than 1/10, approximately compute

2∫
1

(
x − cos10 x

10

)
ln x dx .
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⃝
6.152. Without using the symbols of di�erentiating and integrating, express(

a∫
x2

3t2 cos t dt

) ′

with variable x ∈ R and a real constant a, if we di�erentiate with respect to x. ⃝
6.153. Compute the inde�nite integral∫

1
x4 + 3x3 + 5x2 + 4x + 2

dx.

⃝
6.154. Compute the integral∫ π

2

π
4

sin t
1 − cos2 t

dt.

⃝
6.155. Compute the integral∫ ln 2

0

dx
e2x − 3ex

.

⃝
6.156. Compute:

(i)
∫ π

2
0 sin x sin 2x dx,

(ii)
∫

sin2 x sin 2x dx.

⃝
6.157. Compute the improper integral

(a)
+∞∫
−∞

dx

1+x2 ;

(b)
+∞∫
0

dx
x

;

(c)
4∫

0

2x2+√
x

x
dx;

(d)
1∫

−1
ln | x | dx.

⃝
6.158. Determine

3π/2∫
0

cos x
1+sin x dx.

⃝
6.159. Compute the improper integral

+∞∫
−∞

1
x2+x+1 dx .

⃝
6.160. Compute
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+∞∫
−∞

ex

e2x+ex+1 dx .

⃝
6.161. By using the substitution method, compute

0∫
−∞

x e−x2
dx ;

∞∫
0

e− 1
x

x2 dx .

⃝
6.162. Compute the integrals

1∫
0

e−√
x√
x
dx;

4∫
1

e−√
x√
x
dx;

+∞∫
4

e−√
x√
x
dx.

⃝
6.163. Find the values of α ∈ R, for which

(a)
+∞∫
1

dx
xα ∈ R;

(b)
1∫

0

dx
xα ∈ R;

(c)
+∞∫
−∞

sinαx dx ∈ R.

⃝
6.164. For which p, q ∈ R is the integral

+∞∫
2

dx
xp lnq x

�nite? ⃝
6.165. Decide, if the following is true:

(a)
+∞∫
−∞

dx

x2+3 ∈ R;

(b)
+∞∫
−∞

dx

x2−3 ∈ R;

(c)
+∞∫
1

1+2 sin3 x
x5+x3+1 dx ∈ R.

⃝
6.166. Approximately compute cos π

10 with an error lesser than 10−5. ⃝
6.167. For a convergent series

∞∑
n=0

(−1)n√
n+100 ,

estimate the error of the approximation of its sum by the partial sum s9999. ⃝
6.168. Without computing the derivatives, determine the Talor polynomial of degree 4 centered at
x0 = 0 of function

f (x) = cos x − 2 sin x − ln (1 + x) , x ∈ (−1, 1).
Then decide if the graph of function f in neighbourhood of the point [0, 1] is above or below the
tangent line. ⃝
6.169. By using di�erentiation, obtain the Taylor expansion of function y = cos x from the Taylor
expansion of function y = sin x centered at the origin. ⃝
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6.170. Find the analytic function whose Taylor series is

x − 1
3 x

3 + 1
5 x

5 − 1
7 x

7 + · · · ,
for x ∈ [−1, 1]. ⃝
6.171. From the knowledge of the sum of a geometric series, derive the Taylor series of function

y = 1
5+2x

centered at the origin. Then determine its radius of convergence. ⃝
6.172. Expand the function

y = 1
3−2x , x ∈ (− 3

2 ,
3
2

)
to a Taylor series centered at the origin. ⃝
6.173. Expand the function cos2(x) to a power series at the point π/4 and determine for which x ∈ R
this series converges. ⃝
6.174. Express the function y = ex de�ned on the whole real axis as an in�nite polynomial with
terms of the form an(x − 1)n and express the function y = 2x de�ned on R as an in�nite polynomial
with terms anxn . ⃝
6.175. Find a function f such that for x ∈ R, the sequence of functions

fn(x) = n2x3

n2x2+1 , n ∈ N
to it. Is this convergence uniform on R? ⃝
6.176. Does the series

∞∑
n=1

n x

n4+x2 , kde x ∈ R,

converge uniformly on the whole real axis? ⃝
6.177. By using di�erentiation, obtain the Taylor expansion of function y = cos x from the Taylor
expansion of function y = sin x centered at the origin. ⃝
6.178. Approximate

(a) cosine of ten degress with a precision of at least 10−5;

(b) the de�nite integral
∫ 1/2

0
dx

x4+1 with a precision of at least 10−3.

⃝
6.179. Determine the power expansion centered at x0 = 0 of function

f (x) =
x∫
0
et

2
dt, x ∈ R.

⃝
6.180. Find the analytic function whose Taylor series is

x − 1
3 x

3 + 1
5 x

5 − 1
7 x

7 + · · · ,
for x ∈ [−1, 1]. ⃝
6.181. From the knowledge of the sum of a geometric series, derive the Taylor series of function

y = 1
5+2x

centered at the origin. Then determine its radius of convergence. ⃝
6.182. Let a movement of a solid (a trajectory of a mass point) be described by function

s(t) = −(t − 3)2 + 16, t ∈ [0, 7]
in units m, s. Determine

(a) the initial (i.e. at time t = 0 s) velocity of the solid;
(b) the time and location at which the solid has zero velocity;
(c) the velocity and the acceleration of the solid at time t = 4 s.

Recall that velocity is the derivative of trajectory and acceleration is the derivative of velocity. ⃝
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Solutions of the exercises

6.4. 2 sin x
cos3 x

.

6.5. p(5)(x) = 12 · 5!; p(6)(x) = 0.

6.6. 212 e2x + cos x.

6.7. f (26)(x) = −sin x + 226 e2x .

6.14. π4 + 1
2 (x − 1)− 1

4 (x − 1)2 + 1
12 (x − 1)3.

6.15. (a) 1 + x2

2 ; (b) 1 − x2

2 ; (c) x − x3

3 ; (d) x + x3

3 ; (e) x + x2 + x3

3 .

6.16. 2 (x − 1)− (x − 1)2 + 2
3 (x − 1)3 − 1

2 (x − 1)4.

6.17. −x3

3(1+x)3 .

6.18. x − x3

6 ; sin 1◦ ≈ π
180 − π3

6·1803 ; limx→0+ x sin x−x2

x4 = − 1
6 .

6.19.
∑n
k=0

2k

k! x
k , n ≥ 8, n ∈ N.

6.20. (x − 1)3 + 3 (x − 1)2 + (x − 1)+ 4.
6.26. ∞∑

i=0

(−1)n
22n−1

(2n)!
x2n ,

converges for all real x.

6.27. ∞∑
n=1

(−1)n+1 22n−1

(2n)!
x2n ,

converges for all real x.

6.28.

f (x) =
∞∑
n=1

3(−1)n+1

n
xn ,

converges for x ∈ (−1, 1].

6.29. It's good to realize we're expanding 1
2 ln(x).

f (x) =
∞∑
i=0

(−1)i+1 1
2i
(x − 1)i,

Converges on interval (0, 2].

6.31.
(
−

√
2

2 ,
√

2
2

)
.

6.32. It's convex on intervals (−∞, 0) and (0, 1/2); concave on interval (1/2,+∞). It has only one asymptote,

the line y = π/4 (v ±∞).

6.33. (a) y = 0 at −∞; (b) x = 2 � horizontal, y = 1 v ±∞.

6.34. y = 0 for x → ±∞.

6.35. y = ln 10, y = x + ln 3.

6.71. 1
1−a for a ∈ (0, 1), ∞ else.

6.89. All of them.

6.90. The range is (−∞, 0] ∪ [4,+∞). Function f is not odd, even nor periodic. It has a single discontinuity

x0 = −1 with

lim
x→−1+ f (x) = −∞, lim

x→−1− f (x) = +∞.

The function intersects the x axis only at the origin. It's positive for x < −1 and nonpositive for x > −1. It
can be shown easily that

lim
x→−∞ f (x) = +∞, lim

x→+∞ f (x) = −∞;
f ′(x) = − x2+2x

(x+1)2 , f ′′(x) = − 2
(x+1)3 , x ∈ R∖ {−1}.
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This implies that f is increasing on the intervals [−2,−1), (−1, 0] and decreasing on the intervals (−∞,−2],
[0,+∞). At the stationary point x1 = 0 it reaches a strict local maximum and at the stationary point x2 = −2
it has a sharp local minimum y2 = 4. It's convex on the interval (−∞,−1) and concave on the interval

(−1,+∞). It doesn't have a point of in�ection. The line x = −1 is a horizontal asymptote, the inclined

asymptote at ±∞ is the line y = −x + 1. For example, f (−3) = 9/2, f ′(−3) = −3/4, f (1) = −1/2,
f ′(1) = −3/4.
6.91. The function is de�ned and continuous on R ∖ {0}. It's not odd, even nor periodic. It's negative exactly
on the interval (1,+∞). The only point of intersection of the graph with the axes is the point [1, 0]. At the
origin, f has a discontinuity of the second kind and its range is is R, because

lim
x→0

f (x) = +∞, lim
x→+∞ f (x) = −∞, lim

x→−∞ f (x) = +∞.

Aditionally,

f ′(x) = − x3+2
x3 , x ∈ R∖ {0},

f ′′(x) = 6
x4 , x ∈ R∖ {0}.

The only stationary point is x1 = − 3√2. The function f is increasing on the interval [x1, 0), decreasing on

the intervals (−∞, x1], (0,+∞). Hence at point x1 it has a local minimum y1 = 3/ 3√4. It has no points of

in�ection. It's convex on its whole domain. The line x = 0 is a horizontal asymptote and the line y = −x is
an inclined asymptote at ±∞.

6.92. The function is de�ned and continuous on R ∖ {1}. It's not odd, even nor periodic. The points of

intersection of the graph of f with the axes are the points
[
1 − 3√2, 0

]
and [0,−1]. At x0 = 1, the function

has a discontinuity of the second kind and its range is R, which follows from the limits

lim
x→1− f (x) = −∞, lim

x→1+ f (x) = +∞, lim
x→±∞ f (x) = +∞.

After the arrangement

f (x) = (x − 1)2 + 2
x−1 , x ∈ R∖ {1},

it's not di�cult to compute

f ′(x) = 2 (x−1)3−1
(x−1)2 , x ∈ R∖ {1},

f ′′(x) = 2 (x−1)3+2
(x−1)3 , x ∈ R∖ {1}.

The only stationary point is x1 = 2. The function f is increasing on the interval [2,+∞), decreasing on the

intervals (−∞, 1), (1, 2]. Hence at the point x1 it attains the local minimum y1 = 3. It's convex on the intervals(
−∞, 1 − 3√2

)
, (1,+∞) and concave on the intervals

(
1 − 3√2, 1

)
. The point x2 = 1 − 3√2 is thus a point

of in�ection. The line x = 1 is a horizontal asymptote. The function doesn't have any inclined asymptotes.

6.93. The function is de�ned and continuous on whole R. It's not odd, even nor periodic. It attains positive

values on the positive half-axis, negative values on the negative half-axis. The point of intersection of the graph

of f with the axes is only the point [0, 0]. The derivative can be determined easily:

f ′(x) = e−x

3 3√
x2

− 3
√
x e−x, x ∈ R∖ {0}, f ′(0) = +∞,

f ′′(x) = 3
√
x e−x − 2e−x

3 3√
x2

− 2e−x

9 3√
x5
, x ∈ R∖ {0}.

The only zero point of the �rst derivative is the point x0 = 1/3. The function f is increasing on the interval

(−∞, 1/3] and decreasing on the interval [1/3,+∞). Hence at the point x0, it has an absolute maximum

y0 = 1/ 3√3e. Since limx→−∞ f (x) = −∞, its range is (−∞, y0
]
. The points of in�ection are

x1 = 1−√
3

3 , x2 = 0, x3 = 1+√
3

3 .

It's convex on the intervals (x1, x2) and (x3,+∞), concave on the intervals (−∞, x1), (x2, x3). The only

asymptote is the line y = 0 at +∞, i.e. limx→+∞ f (x) = 0.
6.94. The function is de�ned and continuous on R ∖ {2}. It's not odd, even nor periodic. It's positive exactly
on the interval (0, 2). The only point of intersection of the graph of f with the axes is the point [0, 0]. At the
point x0 = 2, the so called jump of size π is realized, as follows from the limits

lim
x→2− f (x) = π

2 , lim
x→2+ f (x) = −π

2 .

We have

f ′(x) = 1
x2−2x+2 , x ∈ R∖ {2},
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f ′′(x) = 2 (1−x)
(x2−2x+2)2 , x ∈ R∖ {2}.

The �rst derivative doesn't have a zero point. The function f is therefore increasing at every point of its domain.

Since

lim
x→−∞ f (x) = −π

4 , lim
x→+∞ f (x) = −π

4 ,

its range is the set (−π/2, π/2)∖ {−π/4}. The function f is convex on the interval (−∞, 1), concave on the
intervals (1, 2), (2,+∞). Thus the point x1 = 1 is a point of in�ection with f (1) = π/4. The only asymptote
is the line y = −π/4 at ±∞.

6.95. Domain R+, global maximum x = e, point of in�ection x = √
e3, increasing on (0, e), decreasing

on (e,∞), concave on (0,
√
e3, convex on (

√
e3,∞), asymptotes x = 0 and y = 0, limx→0 f (x) = −∞,

limx→∞ f (x) = 0.

6.96. Domain R \ [1, 2]. Local maximum x = 1−√
5

2 , concave on the whole domain, asymptotes x = 1,
x = 2.
6.97. Domain R. Local minimas −1, 1, maximum at 0. Even function. Points of in�ection ± 1√

2
, no asymp-

totes.

6.98. Domain R \ [− 1
2 , 1]. No global extremes. No in�ection points, asymptotes x = − 1

2 , x = 1.

6.99. DomainR\{1}. No extrems. No points of in�ection, convex on (−∞, 1), concave on (1,∞). Horizontal

asymptote x = 1. Inclined asymptote y = x + 1.

6.100. (a) 8
15 x

8√
x7 ; (b) 4x

ln 4 + 2 6x

ln 6 + 9x

ln 9 ; (c)
arcsin x

2 ; (d) ln (1 + sin x) .

6.101. (a) −cotg x − x + C; (b) tg x − cotg x + C.

6.102. ex + 3 arcsin x
2 .

6.103. 1
4 ln

(
1 + x4 )+ C.

6.104. 2
√

2 arctg x−1√
2

+ C.

6.105. ln
∣∣∣ x2−1

x

∣∣∣+ 3
2 arcsin x − 4 cos x − 5 sin x + C.

6.106. (a) x arctg x − ln(1+x2)
2 + C; (b) ln2 x

2 + C.

6.107. (a) −x2 cos x + 2x sin x + 2 cos x + C; (b) ex
(
x2 − 2x + 2

)+ C.

6.108. x
2

4

(
2 ln2 x − 2 ln x + 1

)+ C.

6.109.
(
2x − x2 ) ex + C.

6.110. (a) (2x+5)11

22 + C; (b) − 1
ln x + C; (c) − 1

3 e
−x3 + C; (d) 5 arcsin3 x + C; (e) ln2 x

2 + C;

(f) arctg2 √
x + C; (g)

√
3

3 arctg
(√

3
3 ex

)
+ C; (h) 2 sin

√
x − 2

√
x cos

√
x + C.

6.111. For example 1 − x = t2x gives
∫ −2(

1+t2 )4 dt ; and
√
x2 + x + 1 = x + y leads to

∫ 2 dy
y2+2y−2 .

6.112.
√

2
2 arctg

(√
2 tg x

)
+ C.

6.113. x − 2
√
x + 2 ln

(
1 + √

x
)+ C.

6.114. (a) x
n+1

n+1 ln x − xn+1

(n+1)2 + C; (b)
arctg x2

2 + C.

6.117. 2x3 + 3x2 − 2x − 13 + −19x+53
x2−2x+4 .

6.118. x3 − 1
3x + 2

9 + 5
9(3x+2) .

6.119. (a) 2
x−2 + 3

x+2 − 1
x+3 ; (b)

2
x

− 1
x2 + 1

x2+1 + x

(x2+1)2 .

6.120. 5
x−2 + 3

x3 − 3
x
.

6.121. 3
x+1 + 4x−2

x2−4x+13 .

6.122. 1
x2 − 2

x
+ 2x−3

x2−x+2 .
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6.123. 1
x

− 1
x2 + 1

x3 − 1
x+1 .

6.124. A
x−2 + B

x2 + C
x

+ Dx+E
(3x2+x+4)2 + Fx+G

3x2+x+4 .

6.125. 1 + 1
x3 − 3

x
+ 5

x−2 .

6.126. (a) 3 ln | x − 2 |; (b) 1
(x−2)2 .

6.127. 3
2 ln

(
x2 + 4x + 8

)− 1
2 arctg

x+2
2 + C.

6.128. 4
3
√

3
arctg 2x+1√

3
+ 2x+1

3
(
x2+x+1

) + C.

6.129. 1
6 ln (x+1)2

x2−x+1 +
√

3
3 arctg 2x−1√

3
+ C.

6.130. 1
3 ln |x − 1| − 1

6 ln
(
x2 + x + 1

)− 1√
3
arctg 2x+1√

3
+ C.

6.131. ln
(| x − 1 | (x − 2)4

)− 8
x−2 + x + C.

6.132. (a) cos7 x
7 − cos5 x

5 +C; (b) tg x
2 + x

2 +C; (c) x− sin x+C; (d) x2 + sin 2x
4 +C; (e) 2

3 sin
3
2 x− 4

7 sin
7
2 x+

2
11 sin

11
2 x + C; (f)

tg3 x
3 + 2 tg x − 1

tg x
+ C; (g) 1

2 ln
∣∣tg x2 ∣∣− cos x

2 sin2 x
+ C; (h) ln

∣∣tg x
2

∣∣+ C.

6.133. S4n, sup = n+1
n
, S4n, inf = n−1

n
; yes, it is.

6.134.
∫ 2

1
√
x dx = 2

3

(
2
√

2 − 1
)
.

6.135. In�nitely many.

6.136. For example, f can attain a value of 1 at rational points of the interval and be zero at irrational points.

6.137. (a) 2; (b) π4 − ln 2
2 ; (c) 2 ln

(
1 + √

2
)
; (d) 2 − 2

e
.

6.138.
√

5 − √
2.

6.139. |b| − |a|.
6.140. 1

4 ln 2.

6.141. 1
5 (e

π − 2).

6.142. e − 5e−1.

6.143. 1
6 .

6.144. (a) 4; (b) 1−ln 2
2 .

6.145. p < q.

6.146. a > 0; b = 0; c > 0.
6.147. C < D = 0 < A < B.

6.148. (a) 5; (b) 0; (c) 0.
6.149. 1.
6.150. 0.

6.151. 0 <
∫ 2

1
cos10 x

10 ln x dx < 1
10 ,
∫ 2

1 x ln x dx = ln 4 − 3
4 .

6.152. −6x5 cos x2 .

6.153. 1
2 ln(x2 + 2x + 2)− 1

2 ln(x2 + x + 1)+ 1
3

√
3 arctan

(
(2x+1)

√
3

3

)
+ C.

6.154. 1
2 ln

(
2+ln 2
2−ln 2

)
.

6.155. − 1
6 − 2

9 ln 2.

6.156.

(i) 2
3 ,

(ii) 1
2 sin4 x.

6.157. (a) π ; (b) +∞; (c) 20; (d) −2.
6.158. −∞.
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6.159.
√

3
9 π .

6.160. 2
√

3
9 π .

6.161. − 1
2 ; 1.

6.162. 2 − 2
e
; 2
e

− 2
e2 ;

2
e2 .

6.163. (a) α > 1; (b) α < 1; (c) α = 0.
6.164. Exactly for p > 1, q ∈ R and for p = 1, q > 1.
6.165. (a) true; (b) false; (c) true.

6.166. 1 − π2

102·2 + π4

104·4! .

6.167. The error belongs to the interval (0, 1/200).

6.168. 1 − 3x + 7
24x

4 ; above the tangent line.

6.169.
∑∞
n=0

(−1)n
(2n)! x

2n .

6.170. y = arctg x.

6.171. Exactly for x ∈
(
− 5

2 ,
5
2

)
, we have

1
5+2x = 1

5

∞∑
n=0

(
− 2

5

)n
xn .

6.172. 1
3
∑∞
n=0

2n

3n x
n .

6.173.

f (x) = 1/2 +
∞∑
i=0

(−1)i+122i

(2i + 1)!

(
x − π

4

)2i+1
.

The series converges for all x ∈ R.
6.174.

∑∞
n=0

e
n! (x − 1)n;

∑∞
n=0

lnn 2
n! xn .

6.175. f (x) = x, x ∈ R; yes.
6.176. No.

6.177.
∑∞
n=0

(−1)n
(2n)! x

2n .

6.178. (a) 1 − π2

182·2!
+ π4

184·4!
; (b) 1

2 − 1
5·25 .

6.179.
∑∞
n=0

1
(2n+1) n! x

2n+1 .

6.180. y = arctg x.

6.181. Exactly for x ∈
(
− 5

2 ,
5
2

)
, we have

1
5+2x = 1

5

∞∑
n=0

(
− 2

5

)n
xn .

6.182. (a) v(0) = 6m/s; (b) t = 3 s, s(3) = 16m; (c) v(4) = −2m/s, a(4) = −2m/s2.



In this chapter, we will show several applications of the tools

of di�erential and integral calculus for various problems in which

we will do with functions of one real variable.

The tools and procedures will be quite similar to the ones

shown in the third chapter, i. e. manipulations with linear combi-

nations of selected generators and linear transformations (looking

for their kernels or the reverse images of given elements). However,

we will work not with �nite-dimensional vectors but with spaces

of functions, i. e. the vector spaces we will be considering will

seldom have �nite dimension. We will get back to these as well

as other practical �elds in the next chapter in the context of func-

tions of several variables, di�erential equations, and the calculus

of variations.

First, we will approximate functions with linear combinations

from given sets of generators. However, on the way, we will have

to clarify how we can work with such concepts like distance. Actu-

ally, we will sketch the basics of what is called the theory of metric

spaces, and this part will also serve us as a preparation for analysis

in Euclidean spaces Rn. We will mainly resume applying the pro-

cedures we have already known from the Euclidean vector spaces.

We will �nd out that our intuition from the Euclidean spaces of low

dimensions is quite convenient in general as well.

Then we will focus on integral operators, i. e. linear mappings

on functions which are de�ned in terms of integrals. Especially, we

will pay our attention to the so-called Fourier analysis. As usual,

our reasoning will touch discrete variants of previously discussed

continuous operations.

In the entire chapter, we will work with functions of one vari-

able which will take real or (very often) complex values.

CHAPTER 7

Continuous models

How do we manage non-linear objects?

� mainly by linear tools again...

A. Orthogonal systems of functions

If we want to depict a three-dimensional object in a plane, we usu-
ally consider its (mostly orthogonal) projection into the plane. Simi-
larly, if we want to "express" somemore complicated function in terms
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1. Fourier series

7.1. Spaces of functions. As usual, we begin with choosing ap-

propriate sets of functions which we want to work

with. We want to have enough functions so that our

models could be conveniently applied in practice. At

the same time, the functions must be su�ciently "nice" as we must

be able to integrate and di�erentiate them as needed.

Wewill largely work with functions de�ned on an interval I =
[a, b] ⊂ R, or on an in�nite interval (i. e. the marginal values a

and b can take the values ±∞, but the sets will still be closed).

Spaces of piecewise smooth functions

The set of functions S0 = S0 [a, b] contains exactly the piece-
wise continuous functions on I = [a, b] with real or complex val-
ues, i. e. we suppose that at every point of the interval, the function

f ∈ S0 has the corresponding �nite one-sided limits both from

the left and from the right, and that on every �nite interval, there

are only �nitely many points of discontinuity. Especially, all such

functions are bounded on bounded intervals.

For every natural number k ≥ 1, we will also consider the set
of all piecewise continuous functions f such that all their deriva-

tives up to order k (inclusive) lie in S0 (i. e. they need not exist at

all points, but their one-sided limits do exist). We will denote this

set by Sk .
In the case of an unbounded interval I , we will also often work

with the subset Skc ⊂ Sk of all functions with a compact support

(i. e. the functions take zero outside some �nite closed interval).

On bounded intervals, of course, all such functions have a com-

pact support in this sense. When we are not interested in the inter-

val we work on, we will write only Skc in all cases. In the case

of a �nite interval [a, b] or under the condition of a compact sup-
port, our functions from S0 are always Riemann integrable on the

chosen interval I , both in the absolute value and squared, i. e.∫ b

a

|f (x)|dx < ∞,

∫ b

a

(f (x))2dx < ∞.

Our reasonings can be extended on signi�cantly greater do-

mains of functions, yet this often costs us a lot of technical ef-

fort. From time to time, we will make reference to Kurzweil (or

Lebesgue) integrable functions for which the results are more com-

pact and nicer. Interested readers are referred to extended and spe-

cialized literature. Actually we will keep the same strategy as with

the rational and real numbers � we calculate with nice functions

only and we can "handle" the limits of Cauchy sequences in the

chosen metrics (which are usually needed only formally).

7.2. Distance of functions. From the already proved properties

of limits and derivatives, we can immediately see that

Sk and Skc are vector spaces. In �nite-dimensional

spaces, the distance of vectors was considered in

terms of the di�erences of the particular coordinates.

In spaces of functions, we can proceed analogously and utilize the

absolute value of real or complex numbers (or the Euclidean dis-

tance) in the following way:

Distance of functions
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of simpler ones, we can consider its projection into the (real) vector
space generated by those simpler functions. Then we will be able to
integrate, for instance, the more complicated functions in the same
way as we integrated (or di�erentiated) functions expressed in terms
of power series (if the space of the simpler functions is "su�ciently"
large, then we will be able to do this with arbitrary accuracy).

We can even de�ne a scalar product on a suitable (in�nite) vector
space of functions on a given interval. Thus the scalar product is not to
be de�ned on the space of all functions on the given interval, but rather
on a subspace of its which, on the other hand, will be large enough for
our calculations (besides, it will contain all continuous functions on
the given interval). The scalar product will allow us to calculate the
projections in the same way as we used to do in the case of vector
spaces. Given a �nite-dimensional vector (sub)space of functions and
wanting to determine the projection of a function onto it, we �rst cal-
culate the orthogonal (or orthonormal) basis of this subspace by the
Gram�Schmidt orthogonalization process and then we determine the
orthogonal projection in the known way (2.3).

7.1. Let the vector subspace ⟨x2 , 1/x⟩ of the space of real-valued
functions on the interval [1, 2] be given. Complete the function 1/x
to an orthogonal basis of the subspace and determine the orthogonal
projection of the function x onto it.

Solution. First, we deal with the basis. It is required that the function
1/x be one of the vectors of the basis. The vector space in question is
generated by two linearly independent functions, thus its dimension is
2 (and all of the vectors lying in it are of the form a · 1

x
+ b · x2 for

some a, b ∈ R). It remains to �nd onemore vector of the basis which is
orthogonal to the function f1 = 1/x. According to the Gram�Schmidt
process, we are looking of it in the form f2 = x2 + k · 1

x
, k ∈ R. The

real constant k can be determined from the condition of orthogonality:

⟨1
x
, x2 + k · 1

x
⟩ = ⟨1

x
, x2 ⟩ + k⟨1

x
,

1
x

⟩.

Therefore,

k = −⟨ 1
x
, x2 ⟩

⟨ 1
x
, 1
x
⟩ = −

∫ 2
1

1
x

· x2 dx∫ 2
1

1
x

· 1
x

dx
= −3.

Thus, the wanted orthogonal basis is ( 1
x
, x2 − 3

x
). Now, we calcu-

late the projection px of the function x onto this subspace (see (2.3)):

px = ⟨x, 1
x
⟩

⟨ 1
x
, 1
x
⟩ · 1
x

+ ⟨x, x2 − 3
x
⟩

⟨x2 − 3
x
, x2 − 3

x
⟩ · (x2 − 3

x
)

= 2
x

+ 15
34
(x2 − 3

x
).

□

7.2. Let us consider the real vector space of functions on the interval
[1, 2] generated by the functions 1

x
, 1
x2 ,

1
x3 . Complete the function

1
x
to

an orthogonal basis of this space.
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De�nition. The L1�distance of functions f and g from S0
c is de-

�ned by

∥f − g∥1 =
∫ b

a

|f (x)− g(x)|dx .
Similarly, L2�distance of f and g is de�ned by

∥f − g∥2 =
(∫ b

a

|f (x)− g(x)|2dx
)1/2

.

The size of the function ∥f ∥1 or ∥f ∥2 is understood to be its

distance from the zero function.

In the �rst case, the L1�distance of functions f and g which

take real values only expresses the area enclosed by the graphs

of these functions, regardless of which function takes greater val-

ues. Since we consider piecewise continuous functions f and g,

their distance can equal zero only if they di�er in their values at

the points of discontinuity, i. e. at only �nitely many points on

bounded intervals. Indeed, if our functions di�er at a point x0 and

they are continuous at it, then they also di�er on some su�ciently

small neighborhood of this point, and this neighborhood, in turn,

contributes a non-zero value into the integral.

If we have three functions f , g, and h, then, of course,∫ b

a

|h(x)− f (x)|dx =
∫ b

a

|h(x)− g(x)+ g(x)− f (x)|dx

≤
∫ b

a

|h(x)− g(x)|dx +
∫ b

a

|g(x)− f (x)|dx,
so the usual triangle inequality holds. We can notice that to derive

this inequality, we only used the triangle inequality for the scalars;

thus it holds for functions f , g ∈ S0
c with complex values as well.

The second de�nition is similar. The square of the size ∥f ∥2
of a function f is

∥f ∥2
2 =

∫ b

a

|f (x)|2 dx
and it is derived from the well-de�ned symmetric bilinear mapping

of real functions to scalars

⟨f, g⟩ =
∫ b

a

f (x)g(x) dx

by substituting f for both functions. In the case of complex values,

we obtain this size similarly from the scalar product, using complex

conjugation:

⟨f, g⟩ =
∫ b

a

f (x)g(x) dx,

as we saw when talking about the unitary spaces in the third chap-

ter:

Thus the triangle inequality will hold as well because the

whole discussion can be done in a space of dimension at most three

with scalar product, generated by given functions f , g, h.

7.3. (In)�niteness of dimensions, orthogonality. Let us, for a

while, stay at our de�nition of the L2�size ∥ ∥2 on

the vector space S0
c . Apparently, the operation at the

end of the last paragraph satis�es both linearity in the

�rst argument and symmetry

⟨f, g⟩ = ⟨g, f ⟩,
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Solution. Similarly to the previous exercise, we use the Gram�
Schmidt orthogonalization process (with the given scalar product).

Thus we gradually get that
f1(x) = 1

x
,

f2(x) = 1
x2 − 3

4x ,

f3(x) = 1
x3 − 3

2x2 + 13
24x .

□

7.3. Determine the projection of the functions 1
x4 and x onto the vec-

tor space from the exercise ∥7.2∥. Determine the dis-
tances from this vector space as well.

Solution. Projection of 1
x4 : 15

32f1+ 69
40f2+ 9

4f3, distance:√
14

2240 . Projection of x : 2f1 + (− 3
4 + ln(2))f2 + (− 3

2 ln(2) + 25
24)f3,

distance: about 0.03496029493. We can see that the distance of the
function which behaves in a similar way as the generators is smaller.
□
7.4. Let the vector subspace ⟨sin(x), x⟩ of the space of real-valued
functions on the interval [0, π ] be given. Complete the function x
to an orthogonal basis of the subspace and determine the orthogonal
projection of the function 1

2 sin(x) onto it. ⃝
7.5. Let the vector subspace ⟨cos(x), x⟩ of the space of real-valued
functions on the interval [0, π ] be given. Complete the function cos(x)
to an orthogonal basis of the subspace and determine the orthogonal
projection of the function 1

3 cos(x) onto it. ⃝
B. Fourier series

One of the fundamental studied periodic processes which can be
met in applications is a general simple harmonic oscillation in mechan-
ics. It is the case of a mass point moving along a straight line. It is
well known that the function f which describes the position of the
mass point on the line in time is of the form

(7.1) f (t) = a sin (ωt + b)

for certain constants a, ω > 0, b ∈ R determined by the position and
velocity of the point at the initial time. The function y ≡ f (t) can, for
instance, be obtained by solving the homogeneous linear di�erential
equation

(7.2) y′′ + ω2y = 0

following from Newton's law of force for the given movement. Let
us mention that the function f has period T = 2π/ω (in mechanics,
one often talks about frequency 1/T ) and that the positive value a (ex-
pressing the maximum displacement of the oscillating point from the
equilibrium position) is called the amplitude. The value b (expressing
the position of the point at the initial time) is called the initial phase,
and ω is the angular frequency of the oscillation.

Similarly, we can focus on the function z ≡ g(t) which describes
the dependence of voltage upon time t in an electrical circuit with in-
ductanceL and capacityC and which is the solution of the di�erential
equation

(7.3) z′′ + ω2z = 0.

The only di�erence between the equations (∥7.2∥) ans (∥7.3∥) (besides
the dissimilar physical interpretation) is the constantω. In the equation
(∥7.2∥), there is ω2 = k/m where k is the proportionality constant
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i. e. in the real case, it is a symmetric bilinear mapping. At the

same time, for continuous functions, the condition of non-zero size

of non-zero functions holds as well, while for our piecewise con-

tinuous functions, zero size implies that the function is non-zero

except for an (at most) countable set of points (�nite on every �-

nite interval). Thus we have truly de�ned the scalar product for the

vector subspace of continuous functions.

In the case of more general functions, we should, from the

technical point of view, identify functions which di�er on �nite

intervals at �nitelymany points only. In our subsequent reasonings,

this technical obstruction will play an insigni�cant role (we will

occasionally make a reference to it in notes).

In the case of �nite-dimensional real or complex vector spaces,

we considered scalar products and the size of vectors as soon as

in the second and third chapter. Now let us notice that when we

derived the properties, we always worked with pairs or �nite sets

of vectors.

Now, we can do just the same with functions, and if we re-

strict our de�nition of a scalar product to a vector subspace gener-

ated (over real or complex numbers, according to our need) by only

�nitely many functions f1, . . . , fk , we again obtain a well-de�ned

scalar product on this �nite-dimensional vector subspace.

As an example, let us consider the functions fi = xi , i =
0, . . . , k. In S0 , they generate the (k+ 1)�dimensional vector sub-
space Rk[x] of all polynomials of degree at most k. The scalar

product of two such polynomials is given by an integral. Every

polynomial of degree at most k is uniquely expressed as a linear

combination of the generators f0, . . . , fk . Moreover, if our gener-

ators were such that

(7.1) ⟨fi, fj ⟩ =
{

0 for i ̸= j ,

1 for i = j ,

then we would have the so-called orthonormal basis. At this occa-

sion, let us remind the procedure of Gram�Schmidt orthogonaliza-

tion, see 2.42, which transforms any system of linearly independent

generators fi into new (again linearly independent) orthogonal gen-

erators gi of the same subspace, i. e. ⟨gi, gj ⟩ = 0 for all i ̸= j .

We can calculate them step by step as g1 = f1 and by the formulae

gℓ+1 = fℓ+1 + a1g1 + · · · + aℓgℓ, ai = −⟨fℓ+1, gi⟩
∥gi∥2

for ℓ ≥ 1.
For illustration, we will apply this procedure to three polyno-

mials 1, x, x2 on the interval [−1, 1]. We get g1 = 1,

g2 = x − 1
∥g1∥2

∫ 1

−1
x · 1 dx · 1 = x − 0 = x

g3 = x2 − 1
∥g1∥2

∫ 1

−1
x2 · 1 dx · 1 − 1

∥g2∥2

∫ 1

−1
x2 · x dx · x

= x2 − 1
3
.

Thus the corresponding orthogonal basis of the space R2[x] of all
polynomials of degree less than three on the interval [−1, 1] is
1, x, x2 − 1/3. Normalization, i. e. multiplying by an appropriate
scalar to change the size of the basis' elements to one, gives the

orthonormal basis

h1 =
√

1
2
, h2 =

√
3
2
x, h3 = 1

2

√
5
2
(3x2 − 1/3).
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and m is the mass of the point, while in the equation (∥7.3∥), there is
ω2 = (LC)−1.

Actually, every periodic process which can be described by a func-
tion of the form (∥7.1∥) is considered a harmonic oscillation, and the
constants a, ω, b are almost exclusively given the mentioned names
borrowed from the simple harmonic oscillation of a mass point in me-
chanics.

Applying one of the sum formulae

sin (α + β) = cosα sinβ + sinα cosβ, α, β ∈ R,
we can write the function f (see (∥7.1∥)) as
(7.4) f (t) = c cos (ωt) + d sin (ωt) ,

where c = a sin b, d = a cos b. Thus, the function f from (∥7.4∥)
also describes a harmonic oscillation with amplitude a = √

c2 + d2

and the initial phase b ∈ [0, 2π) satisfying sin b = c/a, cos b = d/a.
An important task in application problems is the composition (so-

called superposition) of di�erent harmonic oscillations. A key posi-
tion is occupied by the superposition of �nitely many harmonic oscil-
lations expressed by functions of the form

fn(x) = an cos (nωx) + bn sin (nωx)
for n ∈ {1, . . . , m}. These particular functions have prime period
2π/(nω). Therefore, their sum

(7.5)
m∑
n=1

[an cos (nωx) + bn sin (nωx)]

is a periodic function with period 2π/ω. It holds generally that the
superposition of any �nite collection of simple harmonic oscillations
with commensurable periods is a period function whose period is the
lease common multiple of the prime periods of the particular oscilla-
tions.

The sum (∥7.5∥) modi�ed by an appropriate movement,

(7.6)
a0

2
+

m∑
n=1

[an cos (nωx) + bn sin (nωx)] ,

is just the m-th partial sum of the functional series

(7.7)
a0

2
+

∞∑
n=1

[an cos (nωx) + bn sin (nωx)] .

From the physical point of view, it is a complicated periodic process
which can serve as a natural approximation of the superposition of in-
�nitely many simple harmonic oscillations (so-called harmonic com-
ponents) of the functional series (∥7.7∥).

It may be an interesting question whether, on the other hand, ev-
ery periodic process can be in a "reasonable" way expressed by the su-
perposition of �nitely (or possibly in�nitely) many simple harmonic
oscillations � whether every periodic process is the result of such a su-
perposition. Exactly formulated from the mathematical point of view:
whether every periodic function can be expressed as the �nite sum
(∥7.6∥), or at least as the series (∥7.7∥). Of course, the positive answer
for a signi�cant and broad class of periodic functions is obtained for
the in�nite sum only (see the theoretical part).

We have already mentioned that periodic processes play an im-
portant role in many physical and technical �elds. Traditionally, we
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Such orthonormal generators ofRk[x] are called Legendre polyno-
mials.

7.4. Orthogonal systems of functions. We have just reminded

ourselves the advantages of orthonormal bases of sub-

spaces of �nite-dimensional vector spaces. In the last

example of Legendre polynomials generatingR2[x] ⊂
V = Rk[x], k ≥ 2, for any polynomial h ∈ V , the

function

H = ⟨h, h1⟩h1 + ⟨h, h2⟩h2 + ⟨h, h3⟩h3

will be the uniquely determined function which minimizes ourL2�

distance ∥h−H∥ among all functions in Rk[x], see 3.25.
The coe�cients for the best approximation of a given func-

tion by a function from a selected subspace can be obtained just by

integrating in the de�nition of the scalar product.

The mentioned example suggests the following generalization:

If we do the Gram�Schmidt orthogonalization for all monomials

1, x, x2 , . . . , i. e. for a countable system of generators, what will

become of that?

Orthogonal systems of functions

Every (at most) countable system of linearly independent func-

tions in S0
c [a, b] such that the scalar product of each pair of distinct

functions is zero is called an orthogonal system of functions. If all

the functions fn in the sequence are pairwise orthogonal and for

all n, the size ∥fn∥2 = 1, we talk about an orthonormal system of

functions.

Let us thus consider an orthogonal system of functions fn ∈
S0 [a, b] and suppose that for (real or complex) constants cn, the

series

F(x) =
∞∑
n=1

cnfn

converges uniformly on a �nite interval [a, b]. Then the scalar

product ⟨F, fn⟩ can easily be expressed in terms of the particular
summands (see the corollary 6.43), obtaining

⟨F, fn⟩ =
∞∑
m=1

cm

∫ b

a

fm(x)fn(x) dx = cn∥fn∥2,

where the normmeans (just like in further paragraphs) ourL2�size.

Surely we can now anticipate in what sense the procedures

from �nite-dimensional spaces can be extended: Instead

of �nite linear combinations of base vectors, we will work

with in�nite series of pairwise orthogonal functions. The

following theorem gives us a transparent and very general

answer to the question howwell the �nite sums of such a series can

approach a given function:

7.5. Theorem. Let fn, n = 1, 2, . . . , be an orthogonal sequence

of (real or complex) functions in S0 [a, b] and let g ∈ S0 [a, b] be
an arbitrary function. Let us denote

cn = ∥fn∥−2
∫ b

a

g(x)fn(x) dx.

(1) For any �xed n ∈ N, the expression which has the least L2�

distance from g among all linear combinations of functions
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can point out acoustics, mechanics, and electrical engineering where
answering the above question is undoubtedly of extreme importance.
Besides that, looking for the answer has given rise to an independent
mathematical �eld � the theory of Fourier series. Later, it began to be
applied in many other classes of problems (among others, for solving
the most of important types of ordinary and partial di�erential equa-
tions) and led to development of the particular theoretical foundations
of mathematics (for instance, to precise de�nition of the fundamental
concepts of a function and an integral).

The Fourier series are named in honor of French mathematician
and physicist Jean B. J. Fourier, who was the �rst to apply trigono-
metric expressions (∥7.6∥) in practice in his work from 1822 devoted
to the issue of heat conduction (he began to deal with this issue in
1804, and he �nished the publication as early as in 1811). The sig-
ni�cance of this work of Fourier's for physics is enormous although
Fourier himself did not pay much attention to physics. He introduced
mathematical methods which even nowadays belong to the standard
tools of theoretical physics. His mathematical theory of heat also be-
came the foundations for George S. Ohm when he derived the famous
law of conduction of electric current. We should not forget to mention
that there were manymathematicians who studied the properties of the
sums (∥7.6∥) many years earlier than Fourier (L. Euler, for example).
However, they did not achieve such signi�cant results with regard to
practical applications.

7.6. Determine the Fourier coe�cients of the function

(a) g(x) = sin (2x) cos (3x) , x ∈ [−π, π ];
(b) g(x) = cos4 x, x ∈ [−π, π ].

Solution. The case (a). Since for x ∈ R, we have
sin (2x) cos (3x) = sin (2x) [cos (2x) cos x − sin (2x) sin x] =

1
2 sin (4x) cos x− sin2 (2x) sin x = 1

2 cos x sin (4x) − 1−cos(4x)
2 sin x =

− 1
2 sin x+ 1

2 cos x sin (4x)+ 1
2 sin x cos (4x) = − 1

2 sin x+ 1
2 sin (5x) ,

we can see that the Fourier coe�cients are all zero except for b1 =
−1/2, b5 = 1/2.

The case (b). Similarly, from

cos4 x =
[
cos2 x

]2 =
[

1+cos(2x)
2

]2

= 1
4

[
1 + 2 cos (2x) + cos2 (2x)

] = 1
4

[
1 + 2 cos (2x) + 1+cos(4x)

2

]
=

3
8 + 1

2 cos (2x) + 1
8 cos (4x) , x ∈ R,

it follows that a0 = 3/4, a2 = 1/2, a4 = 1/8, and the other coe�cients
are all zero.

We showed in this exercise that the calculation of the Fourier series
may not lead to integrations (usually by parts). Especially in the cases
where the function g is a product (power) of functions y = sin (mx) ,
y = cos (nx) form, n ∈ N, it su�ces to apply high-school knowledge
(well-known trigonometric formulae). □

7.7. Find the Fourier series for the periodic extension of the function

(a) g(x) = 0, x ∈ [−π, 0), g(x) = sin x, x ∈ [0, π);
(b) g(x) = | x |, x ∈ [−π, π);
(c) g(x) = 0, x ∈ [−1, 0), g(x) = x + 1, x ∈ [0, 1).
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f1, . . . , fn is

hn =
n∑
i=1

cifi(x).

(2) The series
∑∞
n=1 |cn|2∥fn∥2 always converges and it holds

that
∞∑
n=1

|cn|2∥fn∥2 ≤ ∥g∥2.

(3) L2�distance of g from the partial sums sk = ∑k
n=1 cnfn con-

verges to zero, i. e.

lim
k→∞ ∥g − sk∥ = 0,

if and only if

∞∑
n=1

c2
n∥fn∥2 = ∥g∥2.

Before we start with the proof, let us �rst look at the mean-

ings of the particular statements of this theorem. Since we are

working with an arbitrarily chosen orthogonal system of functions,

we cannot expect that all functions can be approximated by linear

combinations of the functions fi .

For instance, if we consider the case of Legendre orthogonal

polynomials on the interval [−1, 1] and restrict ourselves to even

degrees only, we will surely be able to approximate even functions

only. Nevertheless, the �rst statement of the theorem says that we

can always reach the best approximation possible by partial sums

(in L2�distance).

The second and third statements then can be perceived as an

analogy to the orthogonal projections into subspaces expressed by

Cartesian coordinates. Indeed, if for a given function g, the series

F(x) = ∑∞
n=1 cnfn converges pointwise, then the function F(x)

is, in a certain sense, a orthogonal projection of g into the vector

subspace of all such series.

The second statement is called Bessel's inequality and it is an

analogy of the �nite-dimensional proposition that the orthogonal

projection of a vector cannot be greater than the original vector.

The equality from the third statement is called Parseval's theorem

and it says that if a given vector does not become smaller by the

orthogonal projection into a given subspace, then it surely belongs

to the subspace.

On the other hand, our theorem does not claim that the partial

sums of the considered series would have to converge pointwise

to some function. There is no analogy to this phenomenon in the

�nite-dimensional world. In general, the series F(x) need not be

convergent (i. e. if we considered more general functions than the

ones from our space S0 [a, b]) even in the case when the equality

in (3) holds. However, if the series
∑∞
n=1 |cn| converges to a �nite

value and all the functions fn are bounded uniformly on I , then,

the series F(x) = ∑∞
n=1 cnfn apparently converges at every point

x. Yet it need not converge to the function g everywhere. We will

get back to this problem shortly.

The proof of all of the three statements of the theorem is quite

similar to the case of �nite-dimensional Euclidean spaces. Nowon-

der it is so as the bounds for the distances of g from the partial sum

f are constructed in the �nite-dimensional linear hull of the func-

tions concerned:
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Solution. The case (a). Direct calculation gives

a0 = 1
π

x0+2π∫
x0

g(x) dx = 1
π

0∫
−π

0 dx + 1
π

π∫
0

sin x dx

= 1
π

[− cos x]π0 = 2
π
,

an = 1
π

x0+2π∫
x0

g(x) cos (nx) dx

= 1
π

0∫
−π

0 dx + 1
π

π∫
0

sin x cos (nx) dx

= 1
2π

π∫
0

sin ([1 + n]x) + sin ([1 − n]x) dx

= 1
2π

[
− cos([1+n]x)

1+n − cos([1−n]x)
1−n

]π
0

= 1
2π

(
− cos([1+n]π)

1+n − cos([1−n]π)
1−n + 1

1+n + 1
1−n
)
, n ∈ N,

b1 = 1
π

x0+2π∫
x0

g(x) sin x dx = 1
π

0∫
−π

0 dx + 1
π

π∫
0

sin2 x dx

= 1
2π

π∫
0

1 − cos (2x) dx = 1
2π

[
x − sin(2x)

2

]π
0

= 1
2 ,

bn = 1
π

x0+2π∫
x0

g(x) sin (nx) dx = 1
π

0∫
−π

0 dx + 1
π

π∫
0

sin x sin (nx) dx

= 1
2π

π∫
0

cos ([1 − n]x) − cos ([1 + n]x) dx

= 1
2π

[
sin([1−n]x)

1−n − sin([1+n]x)
1+n

]π
0

= 0, for n ∈ N∖ {1}

Thus, we get the Fourier series

1
π
+ sin x

2 + 1
2π

∞∑
n=1

[(
− cos([1+n]π)

1+n − cos([1−n]π)
1−n + 1

1+n + 1
1−n
)

cos (nx)
]
.

The obtained result can be re�ned: For even numbers n, we have
− cos([1+n]π)

1+n − cos([1−n]π)
1−n + 1

1+n + 1
1−n

= 1
1+n + 1

1−n + 1
1+n + 1

1−n = − 4
n2−1 ,

and for odd numbers n,
− cos([1+n]π)

1+n − cos([1−n]π)
1−n + 1

1+n + 1
1−n

= − 1
1+n − 1

1−n + 1
1+n + 1

1−n = 0.
Altogether,

− cos([1+n]π)
1+n − cos([1−n]π)

1−n + 1
1+n + 1

1−n = 2 (−1)n+1−1
n2−1 , n ∈ N,

so the resulting series can be written as

1
π

+ sin x
2 + 1

π

∞∑
n=1

[
(−1)n+1−1
n2−1 cos (nx)

]
= 1

π
+ sin x

2 − 2
π

∞∑
n=1

cos(2nx)
4n2−1 .

The case (b). First, let us mention that the given function is often
talked of as a function of sawtooth-shaped oscillation and that its ex-
pression as a Fourier series is very important in practice. Since the
function g is even on (−π, π), we can immediately see that bn = 0 for
all n ∈ N. Therefore, it su�ces to determine

a0 = 1
π

x0+2π∫
x0

g(x) dx = 2
π

π∫
0
x dx = 2

π

[
x2

2

]π
0

= π ,
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Proof of theorem 7.5. Let us choose a linear combination

f = ∑k
n=1 anfn and calculate its distance from g. We get

∥g −
k∑
n=1

anfn∥2 =
∫ b

a

∣∣∣∣g(x)−
k∑
n=1

anfn(x)

∣∣∣∣2 dx
=
∫ b

a

|g(x)|2 dx −
∫ b

a

k∑
n=1

g(x)anfn(x) dx−

−
∫ b

a

k∑
n=1

anfn(x)g(x) dx +
∫ b

a

∣∣∣∣ k∑
n=1

anfn(x)

∣∣∣∣2 dx
= ∥g∥2 −

k∑
n=1

ancn∥fn∥2 −
k∑
n=1

ancn∥fn∥2 +
k∑
n=1

a2
n∥fn∥2

= ∥g∥2 +
k∑
n=1

∥fn∥2((cn − an)(cn − an)− |cn|2
)
.

Apparently, the last expression can beminimized be choosing an =
cn, which �nishes the proof of the �rst statement.

Substituting this choice yields the so-called Bessel's identity

∥g −
k∑
n=1

cnfn∥2 = ∥g∥2 −
k∑
n=1

|cn|2∥fn∥2,

from which the Bessel's inequality

k∑
n=1

c2
n∥fn∥2 ≤ ∥g∥2

immediately follows as the left-hand side is non-negative. There-

fore, the whole second statement has been proved as well because

every non-decreasing sequence of real numbers which is bounded

from above has a limit (the limit is equal to the supremum of the

set of the sequence's terms).

If the Bessel's inequality happens to hold with equality, then

the statement (3) follows straight from the de�nitions and the

Bessel's identity proved above. □

An orthogonal system of functions is called a complete orthog-

onal system on an interval I = [a, b] for some space of functions
on I i� Parseval's equality holds for every function g from this

space.

7.6. Fourier series. The previous theorem indicates that we are

able to work with countable orthogonal systems of

functions fn in much the same way as with �nite or-

thogonal bases of vector spaces. There are, however,

essential di�erences:

• It is not easy to say what the whole space of convergent or

uniformly convergent series

F(x) =
∞∑
n=1

cnfn

looks like.

• For a given integrable function, we can �nd only the "best ap-

proximation possible" by such a series F(x) in the sense of

L2�distance.
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and for any n ∈ N using integration by parts, we get

an = 1
π

x0+2π∫
x0

g(x) cos (nx) dx = 2
π

π∫
0
x cos (nx) dx

= 2
π

[
x
n

sin (nx)
]π

0 − 2
nπ

π∫
0

sin (nx) dx

= 2
n2π

[cos (nx)]π0 = 2
n2π

[(−1)n − 1] , so

an = − 4
n2π

for n odd, an = 0 for n even.

Now, we know the Fourier series of the function of sawtooth-shaped
oscillation

π
2 + 2

π

∞∑
n=1

[
(−1)n−1
n2 cos (nx)

]
= π

2 − 4
π

∞∑
n=1

cos([2n−1]x)
(2n−1)2 =

π
2 − 4

π

[
cos x + cos(3x)

32 + cos(5x)
52 + · · ·

]
.

This series could have been found by an easier means � integrating the
Fourier series of Heaviside's function (see "angular wave function" in
the theoretical part).

The case (c). The function's period is T = 2, so we use more
general formulae

a0 = 2
T

x0+T∫
x0

g(x) dx =
1∫

−1
g(x) dx =

0∫
−1

0 dx +
1∫

0
(x + 1) dx = 3

2 ,

an = 2
T

x0+T∫
x0

g(x) cos (nωx) dx =
1∫

−1
g(x) cos (nπx) dx

=
0∫

−1
0 dx +

1∫
0
(x + 1) cos (nπx) dx = (−1)n−1

n2π2 , n ∈ N,

bn = 2
T

x0+T∫
x0

g(x) sin (nωx) dx =
1∫

−1
g(x) sin (nπx) dx

=
0∫

−1
0 dx +

1∫
0
(x + 1) sin (nπx) dx = 1−2(−1)n

nπ
, n ∈ N.

The calculation of a0 was simple and needs no more comments. As
for determining the integrals at an and bn, it again su�ced to use
integration by parts once (di�erentiating the polynomial u = x + 1).
Thus, the wanted Fourier series is

3
4 +

∞∑
n=1

(
(−1)n−1
n2π2 cos (nπx) + 1−2(−1)n

nπ
sin (nπx)

)
.

Some re�nements of the expression can be achieved when we realize,
for instance, that for n ∈ N, we have

an = − 2
n2π2 for n odd, an = 0 for n even,

and, similarly,

bn = 3
nπ

for n odd, bn = − 1
nπ

for n even.

□
7.8. Let the Fourier series of a function f on the interval [−π, π ]
with coe�cients am, bn, m ∈ N ∪ {0}, n ∈ N be given. Prove the
following statements:

(a) If f (x) = f (x + π), x ∈ [−π, 0], then a2k−1 = b2k−1 = 0
for every k ∈ N.

(b) If f (x) = −f (x+π), x ∈ [−π, 0], then a0 = a2k = b2k =
0 for every k ∈ N.

Solution. The case (a). For any k ∈ N, the statement can be proved
directly by the calculations
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We talk about (abstract) Fourier series and the coe�cients cn
from the previous theorem are calledFourier coe�cients of a given

function.

In the case when we have an orthonormal system of functions

fn, the formulae mentioned in the theorem are a bit simpler, but

still there is no further improvement.

The choice of an orthogonal system of functions for use in

practice must follow the purpose for which we want to apply the

approximation and further tools. The name "Fourier series" itself

references to the following choice of a system of real-valued func-

tions:

Fourier's orthogonal system

1, sin x, cos x, sin 2x, cos 2x, . . . , sin nx, cos nx, . . .

As an elementary exercise on integration by parts, we can cal-

culate that indeed it is an orthogonal system of functions on the

interval [−π, π]. Presently, we will show another means of veri�-

cation of this fact.

These functions are periodic with common period 2π (see

the de�nition below) and the so-called "Fourier analysis", which

builds upon this orthogonal system, allows us to work with all

(piecewise continuous) periodic functions with extraordinary ef-

�ciency. Since many physical, chemical, and biological data are

perceived, received, or measured, in fact, by frequencies of the so-

called signals (i. e. the measured quantities), it is really an essen-

tial mathematical tool. Biologists and engineers even use the word

"signal" in the sense of "function".

Periodic functions

A function f with real or complex values de�ned on the whole

R is called a periodic function with period T > 0 i� for every

x ∈ R, it holds that f (x + T ) = f (x).

It is apparent that sums and scalar products of periodic func-

tions with the same period are again periodic functions with the

same period.

The integral
∫ x0+T
x0

f (x) dx of a periodic function f on an

interval whose length equals the period T is independent of the

choice of x0 ∈ R.

The last proposition can be proved easily:

Let us choose two such marginal points x0 and y0 for the in-

tegration Substituting t = x + kT for a suitable k, we transform∫ y0+T
y0

f (x) dx to the case when y0 ∈ [x0, x0 + T ]. Now we can

split the interval of integration into three parts, thereby �nishing

the proof.

The orthogonality of the Fourier system of functions can be

calculated by a nice trip to the world of complex num-

bers, which we can utilize later:

Let us remind that eix = cos(x) + i sin(x).
Straight di�erentiation of the product of real-valued

functions, we can verify that real-valued functions z(x) and φ(x)

of a real variable x satisfy

(
z(x) eiφ(x)

)′ = z′(x) eiφ(x) +i z(x) φ′ (x) eiφ(x) .
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a2k−1 = 1
π

π∫
−π
f (x) cos ([2k − 1]x) dx

= 1
π

0∫
−π
f (x) cos ([2k − 1]x) dx + 1

π

π∫
0
f (x) cos ([2k − 1]x) dx

= | x = y + π | = 1
π

−π∫
−2π

f (y + π) cos ([2k − 1][y + π]) dy

+ 1
π

π∫
0
f (x) cos ([2k − 1]x) dx

= 1
π

π∫
0
f (y) cos ([2k − 1][y + π ]) dy + 1

π

π∫
0
f (x) cos ([2k − 1]x) dx

= 1
π

π∫
0
f (y)

[
cos ([2k − 1]y) cos ([2k − 1]π)

− sin ([2k − 1]y) sin ([2k − 1]π)
]
dy + 1

π

π∫
0
f (x) cos ([2k − 1]x) dx

= − 1
π

π∫
0
f (y) cos ([2k − 1]y) dy + 1

π

π∫
0
f (x) cos ([2k − 1]x) dx = 0,

b2k−1 = 1
π

π∫
−π
f (x) sin ([2k − 1]x) dx

= 1
π

0∫
−π
f (x) sin ([2k − 1]x) dx + 1

π

π∫
0
f (x) sin ([2k − 1]x) dx

= | x = y + π | = 1
π

−π∫
−2π

f (y + π) sin ([2k − 1][y + π]) dy

+ 1
π

π∫
0
f (x) sin ([2k − 1]x) dx

= 1
π

π∫
0
f (y) sin ([2k − 1][y + π ])+ 1

π

π∫
0
f (x) sin ([2k − 1]x) dx

= 1
π

π∫
0
f (y)

[
sin ([2k − 1]y) cos ([2k − 1]π)+ sin ([2k − 1]π) cos ([2k − 1]y)

]
dy

+ 1
π

π∫
0
f (x) sin ([2k − 1]x) dx

= − 1
π

π∫
0
f (y) sin ([2k − 1]y) dy + 1

π

π∫
0
f (x) sin ([2k − 1]x) dx = 0.

The case (b). We immediately get

a0 = 1
π

π∫
−π
f (x) dx = 1

π

0∫
−π
f (x) dx + 1

π

π∫
0
f (x) dx = 0,

and then, in an analogous way as for the �rst statement, we get that for
any k ∈ N,

a2k = 1
π

π∫
−π
f (x) cos ([2k]x) dx

= 1
π

0∫
−π
f (x) cos ([2k]x) dx + 1

π

π∫
0
f (x) cos ([2k]x) dx = | x = y + π |

= 1
π

−π∫
−2π

f (y + π) cos ([2k][y + π]) dy + 1
π

π∫
0
f (x) cos ([2k]x) dx

= − 1
π

π∫
0
f (y) cos ([2k][y + π]) dy + 1

π

π∫
0
f (x) cos ([2k]x) dx
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The antiderivative of a complex function f (x) of a real variable x

can, of course, be obtained in terms of antiderivatives of the real

and imaginary components of the function f .

Thus we can easily calculate the integral (supposing m ̸= n)∫ π

−π
eimx e−inx dx =

∫ π

−π
ei(m−n)x dx = 1

i(m−n) [e
i(m−n)x]π−π ,

which always equals zero because it does not matter whether we

run the multiples of π clockwise or counterclockwise.

The integral we have just determined expresses the scalar prod-

uct ⟨eimx, einx⟩. Thus we can see that all of our functions einx (with
complex values) are, indeed, perpendicular to each other.

This scalar product can be rewritten as follows:

⟨eimx, einx⟩ = ⟨cos(mx)+ i sin(mx), cos(nx)+ i sin(nx)⟩
= (⟨cos(mx), cos(nx)⟩ + ⟨sin(mx), sin(nx)⟩)

+ i
(⟨sin(mx), cos(nx)⟩ − ⟨cos(nx), sin(mx)⟩).

We can notice that in the imaginary part of this expressions, there

are odd functions integrated over the interval [−π, π ], which
surely results in zero.

The functions sin(x) and cos(x) di�er only by the phase shift,
i. e. cos(mx − π/2) = sin(mx). Thus both the summands in the
real part of our expression are equal. Therefore, both of them must

give zero. Thus we have veri�ed the orthogonality of our system

of functions.

At the same time, we can see that for m = n, the result is

the real number
∫ π
−π dx = 2π , and the sizes of both sin(nx) and

cos(nx) must equal. Thus for positive numbers n, we necessarily
get the sizes

∥ cos(nx)∥2 = π, ∥ sin(nx)∥2 = π.

For n = 0 only, we get ∥1∥2 = 2π .
Fourier series

A series of functions

F(x) = a0

2
+

∞∑
n=1

(
an cos(nx)+ bn sin(nx)

)
from the theorem 7.5, with coe�cients

an = 1
π

∫ ×0+2π

x0

g(x) cos(nx) dx,

bn = 1
π

∫ ×0+2π

x0

g(x) sin(nx) dx,

is called the Fourier series of a function g on the interval [x0, x0 +
2π].

The coe�cients an and bn are called Fourier coe�cients of

the function g.

In practice, we want to work with Fourier series with an

arbitrary period T of the functions, not only the value

2π . Then it su�ces to move to functions cos( 2π
T
nx),

sin( 2π
T
nx). By mere substitution t = ωx, where ω = 2π

T
,

we can verify the orthogonality of our new system of func-

tions and recalculate the coe�cients in the Fourier series F(x) of

a function g on the interval [x0, x0 + T ]:
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= − 1
π

π∫
0
f (y)

[
cos ([2k]y) cos ([2k]π)− sin ([2k]y) sin ([2k]π)

]
dy

+ 1
π

π∫
0
f (x) cos ([2k]x) dx

= − 1
π

π∫
0
f (y) cos ([2k]y) dy + 1

π

π∫
0
f (x) cos ([2k]x) dx = 0,

b2k = 1
π

π∫
−π
f (x) sin ([2k]x) dx

= 1
π

0∫
−π
f (x) sin ([2k]x) dx + 1

π

π∫
0
f (x) sin ([2k]x) dx = | x = y + π |

= 1
π

−π∫
−2π

f (y + π) sin ([2k][y + π]) dy + 1
π

π∫
0
f (x) sin ([2k]x) dx

= − 1
π

π∫
0
f (y) sin ([2k][y + π]) dy + 1

π

π∫
0
f (x) sin ([2k]x) dx

= − 1
π

π∫
0
f (y)

[
sin ([2k]y) cos ([2k]π)+ sin ([2k]π) cos ([2k]y)

]
dy

+ 1
π

π∫
0
f (x) sin ([2k]x) dx

= − 1
π

π∫
0
f (y) sin ([2k]y) dy + 1

π

π∫
0
f (x) sin ([2k]x) dx = 0.

□

7.9. Decide the convergence and uniform convergence of the Fourier
series of the function g(x) = e−x for x ∈ [−1, 1).
Solution. We need not calculate the corresponding Fourier series if
we only want to decide the convergence. Let us de�ne a function s on
R with period T = 2 as follows:

s(x) := g(x) = e−x, x ∈ (−1, 1), s(1) :=
g(−1)+ lim

x→1− g(x)

2 = e+e−1

2 .

We know that this function is the sum of the Fourier series in question.
In other words, the Fourier series converges to a periodic function s.
Moreover, this convergence is uniform on every closed interval which
contains none of the points 2k + 1, k ∈ Z. This follows from the
continuity of the functions g and g′ on (−1, 1). On the other hand,
the convergence cannot be uniform on any interval (c, d) such that
[c, d] ∩ {2k + 1; k ∈ Z} ̸= ∅ because a uniform limit of continuous
functions is always a continuous function. Thus, the series converges
to the function g on (−1, 1), yet this convergence is uniform only on
the subintervals [c, d] which satisfy the restriction −1 < c < d < 1.
□

7.10. Determine the cosine Fourier series for the periodic extension
of the function

g(x) = 1, x ∈ [0, 1), g(x) = 0, x ∈ [1, 4).
Further, determine the sine Fourier series for

f (x) = x − 1, x ∈ (0, 2), f (x) = 3 − x, x ∈ [2, 4).

Solution. We have already encountered the construction of a cosine
Fourier series. It is the case of the Fourier series of an even function.
Therefore, the �rst thing we must do is to de�ne the function g on the
interval (−4, 0) so that it is even, which means to set

g(x) := 1 for x ∈ (−1, 0), g(x) := 0 for x ∈ (−4,−1].
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F(x) = a0

2
+

∞∑
n=1

(
an cos(nωx)+ bn sin(nωx)

)
,

which have values

an = 2
T

∫ ×0+T

x0

g(x) cos(nωx) dx,

bn = 2
T

∫ ×0+T

x0

g(x) sin(nωx) dx.

7.7. Exponential formula. A while ago, we used the basic for-

mula for parametrization of the unit circle in the complex plane by

the trigonometric functions when we veri�ed the orthogonality of

the functions cos(nx), sin(nx) If we consider ω = 2π/T to be the

speed of running around the circle, where T is the time of one lap,

we get the same parametrization in the form:

eiωt = cosωt + i sinωt.

For a (real or complex) function f (t) and all integers n, we can de-

�ne, in this context, its complex Fourier coe�cients as the complex

numbers

cn = 1
T

∫ T/2

−T/2
f (t) e−iωnt dt.

Straight from the de�nition, the relation between the coe�cients

an and bn of the Fourier series (after recalculating the formulae

for these coe�cients for functions with a general period of length

T ) and these complex coe�cients cn become clear. For natural

numbers n, we get

cn = 1
2 (an − ibn), c−n = 1

2 (an + ibn),

and if the function f takes on real values only, cn and c−n are, of
course, complex conjugates of each other.

Thus we have expressed the Fourier series F(t) for a function

f (t) in the form

F(t) =
∞∑

n=−∞
cn eiωnt .

Both in the case of functions with real and complex values, the

corresponding Fourier series can be written in this form. However,

the coe�cients will be complex in general in both cases.

We will return to this expression several times; for instance,

when we will discuss the extraordinarily useful Fourier transfor-

mation.

We can notice that having �xed T , the expression ω = 2π/T
describes just the change of the frequency caused by n being in-

creased by one. Thus it is just the discrete step by which we change

the frequencies when calculating the coe�cients of the Fourier se-

ries.

In subsequent parts of this chapter, we will show that Fourier

series work with a complete orthogonal system on S0 . However,

we will have to prepare ourselves for that thoroughly. For that rea-

son, we formulate some useful results right now and add some prac-

tically oriented notes. We will get back to the proofs later.

7.8. Theorem. Let us consider a �nite interval [a, b] with length

T = b−a. Further, let f be a function with real or complex values

in S1 [a, b] (i. e. a piecewise continuous function with a piecewise
continuous �rst derivative), periodically extended on the whole R.
Then:
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Now we can consider its periodic extension onto the whole R with
period T = 8 and ω = π/4.

We always must have bn = 0 for all n ∈ N in a cosine Fourier
series. We can also easily determine the Fourier coe�cients

a0 = 2
T

x0+T∫
x0

g(x) dx = 1
2

1∫
0

1 dx = 1
2 ,

an = 2
T

x0+T∫
x0

g(x) cos (nωx) dx = 1
2

1∫
0

cos nπx4 dx = 2
nπ

sin nπ
4 , n ∈ N,

where we used the formula

(7.8)

a∫
−a
f (x) dx = 2

a∫
0

f (x) dx,

which is valid for every even function f integrable on the interval
[0, a].

It is not a good idea to replace the expression sin (nπ/4) in a sim-
ilar way as in the previous exercises. We would have to divide the
natural numbers n into 8 groups with respect to their remainder mod-
ulo 8. However, this would not yield much of a transparent expression.
Thus we will do with the following form of the cosine Fourier series:

1
4 +

∞∑
n=1

[ 2
nπ

sin nπ
4 cos nπx4

]
.

The sine Fourier transform of the function can be determined anal-
ogously from the odd extension of the given segment. We again have
T = 8 and ω = π/4 for the function f . However, this time it is the
coe�cients an, n ∈ N∪ {0}, which are zero. To �nd the remaining co-
e�cient, we use integration by parts and (∥7.8∥) (the product of two
odd functions is an even function), obtaining

bn = 2
T

x0+T∫
x0

f (x) sin (nωx) dx

= 1
2

[
2∫

0
(x − 1) sin nπx

4 dx −
4∫

2
(x − 3) sin nπx

4 dx

]
= [−(x − 1) 2

nπ
cos nπx4

]2
0 + [ 8

n2π2 sin nπx
4

]2
0
− [−(x − 3) 2

nπ
cos nπx4

]4
2

− [ 8
n2π2 sin nπx

4

]4
2

= 2
nπ

[(−1)n − 1] + 16
n2π2 sin nπ

2 , n ∈ N.

Hence we can immediately see that for even n, we have bn = 0.
Thanks to that, the sine Fourier series can be re�ned to the form

∞∑
n=1

[( 2
nπ

[(−1)n − 1] + 16
n2π2 sin nπ

2

)
sin nπx

4

]
=

∞∑
n=1

[(
−4

[2n−1]π + (−1)n−116
[2n−1]2π2

)
sin [2n−1]πx

4

]
.

□

7.11. Express the function g(x) = cos x, x ∈ (0, π), as the sum of
a cosine Fourier series and a sine Fourier series.

Solution. Of course, we have

cos x = cos x, x ∈ (−π, π),
considering the left-hand cosine to be the even extension of the func-
tion g and the right-hand cosine to be the uniquely given cosine Fourier
series.

Then, the sine series must have an = 0, n ∈ N ∪ {0}, and we can
easily calculate that
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(1) The partial sums sN of its Fourier series converge pointwise

to the function

g(x) = 1
2

(
lim
y→x+

f (y)+ lim
y→x−

f (y)
)
.

(2) Moreover, if f is a continuous periodic function with piece-

wise continuous derivative, then the piecewise convergence of

its Fourier series is uniform.

(3) The L2�distance ∥sN − f ∥2 of the partial sums sN of the

Fourier series from the function f on S1 [a, b] always con-

verges to zero for N → ∞.

7.9. Extension of periodic functions. The convergent Fourier se-

ries converges, of course, outside the original interval

[−T/2, T /2] as well and it is a periodic function on
the whole R.

As an example, let us consider the Fourier series for the peri-

odic function given by Heaviside's function g(x) restricted to one

period. I. e., our function g will be equal to −1 on the interval

[−π, 0] and to 1 on the interval (0, π). We need not care about the

values at zero and at the marginal points of the interval because

these do not have any e�ect on the coe�cients of the Fourier se-

ries. Its periodic extension onto the whole R is usually called an

"angular wave function".

Since it is an odd function, the coe�cients at the functions

cos(nx) must be all zero. For the coe�cients at the functions

sin(nx), we get

bn = 1
π

∫ π

−π
g(x) sin(nx) dx = 2

π

∫ π

0
sin(nx) dx

= 2
nπ
(1 − (−1)n).

Thus the Fourier series has the form

g(x) = 4
π

(
sin(x)+ 1

3
sin(3x)+ 1

5
sin(5x)+ . . .

)
.

The partial sums of its �rst �ve and �fty terms, respectively, are

shown in the following pictures.

-1

0 2

x

0
-2

-0,5

0,5

-4

1

4

t = 2.

-1

0 2

x

4-2

-0,5

0
-4

1

0,5

t = 24.

If the interval [−T/2, T /2] is chosen for the prime period of
such an angular wave function, i. e. we want to work with the

periodic extension of Heaviside's function with period T , we can

easily recalculate that the resulting Fourier series has the form

g(x) = 4
π

(
sin(ωx)+ 1

3
sin(3ωx)+ 1

5
sin(5ωx)+ . . .

)
,

where the number ω = 2π
T

is called the "phase frequency" of the

wave. It expresses the ratio of the actual prime period to the unit

frequency, i. e. the length 2π of the unit circle.
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b1 = 2
π

π∫
0

cos x sin x dx = 1
π

π∫
0

sin (2x) dx = 0,

bn = 2
π

π∫
0

cos x sin (nx) dx

= 1
π

π∫
0

sin ([n+ 1]x) + sin ([n− 1]x) dx

= − 1
π

[
cos([n+1]x)

n+1 + cos([n−1]x)
n−1

]π
0

= 2n
[
(−1)n+1

]
(n2−1)π , n ∈ N∖ {1}.

Considering that

bn = 0 for odd n ∈ N and bn = 4n
(n2−1)π for even n,

we get

cos x =
∞∑
n=1

[
8n

(4n2−1)π sin (2nx)
]
, x ∈ (0, π).

□
7.12. Write the Fourier series of the π-periodic function which
equals cosine on the interval (−π/2, π/2). Further, write the cosine
Fourier series of the 2π-periodic function y = | cos x |.
Solution. It is not hard to realize that we are looking for one
Fourier series only (the second part of the problem is only refor-
mulation of the �rst one). Therefore, let us construct the Fourier
series for the function g(x) = cos x, x ∈ [−π/2, π/2]. Since
g is even, we have bn = 0, n ∈ N. At the same time, we have

a0 = 2
π

π/2∫
−π/2

cos x dx = 4
π
,

an = 2
π

π/2∫
−π/2

cos x cos (2nx) dx

= 2
π

π/2∫
−π/2

1
2 [cos ([2n+ 1]x) + cos ([2n− 1]x)] dx

= 1
π

[
sin([2n+1]x)

2n+1 + sin([2n−1]x)
2n−1

]π/2
−π/2

= 2
π

[
(−1)n

2n+1 + (−1)n+1

2n−1

]
= 4

π

(−1)n+1

4n2−1

for every n ∈ N. Let us notice that the calculation of a0 could have
been included in the calculation of a general coe�cient an. Thewanted
Fourier series is

2
π

+ 4
π

∞∑
n=1

[
(−1)n+1

4n2−1 cos (2nx)
]
.

□
7.13. Expand the function g(x) = ex into

(a) a Fourier series on the interval [0, 1);
(b) a cosine Fourier series on the interval [0, 1];
(c) a sine Fourier series on the interval (0, 1].

Solution. All the way, we will use the formulae
(7.9)∫

ex cos (αx) dx = ex [α sin (αx) + cos (αx)]
1 + α2

+ C, α ∈ R,

(7.10)∫
ex sin (βx) dx = ex [sin (βx) − β cos (βx) ]

1 + β2
+ C, β ∈ R,

which can be obtained by double integration by parts.
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Let us notice that as the number of terms of the series in-

creases, the approximation gets much better except in a (still shrink-

ing) neighborhood of the discontinuity point. There, the maximum

of the deviance remains roughly the same. This is a general prop-

erty of Fourier series and it is called Gibbs phenomenon.

Let us also notice that at the point of discontinuity, the value of

the approximating function right half between the one-sided limits

for Heaviside's function, just like 7.8(1) claims.

Of course, we cannot expect that the convergence of Fourier

series for functions g with discontinuity points be uniform (then,

the function g would have to be continuous itself, being a uniform

limit of continuous functions).

7.10. Utilizing symmetry of functions. Let us think about the

problem how we could approximate the function

g(x) = x2 by a Fourier series on the interval [0, 1]
as best as possible. If we just periodically extended

this function from the given interval [0, 1], it would
not be continuous, and so the convergence at integers would be as

queer as in the case of an angular wave function. However, we can

easily work with the Fourier series on the base interval [−1, 1]. It
is an even function on this domain, and so only the coe�cients an
can be non-zero.

For n > 0, double application of integration by parts yields:

an = 2
2

∫ 1

−1
x2 cos

( 2πnx
2

)
dx = 2

∫ 1

0
x2 cos(πnx)dx

= 4
π2n2 (−1)n.

The remaining coe�cient is

a0 = 2
2

∫ 1

−1
x2dx = 2

∫ 1

0
x2dx = 2

3
.

The entire series giving the periodic extension of x2 from the in-

terval [−1, 1] thus equals

f (x) = 1
3

+ 4
π2

∞∑
n=1

(−1)n

n2 cos(πnx).

By Weierstrass criterion, it is apparent that this series converges

uniformly. Therefore, f (x) will be continuous. Thanks to the the-

orem 7.8, we know that actually f (x) = x2 on the whole interval

[−1, 1] since we are approximating a continuous function on the

whole R, and the convergence must be uniform. Thus our series

approximates the function x2 on the interval [0, 1] far better than
we could do it with a periodic extension of the function from this

interval only.

Let us proceed with our illustrations. Thanks to the uniform

convergence, we can invoke the rule for di�erentiating and inte-

grating series term by term and calculate the Fourier series for the

functions x and x3 . The di�erentiation will be the simpler one:

1
2
(x2 )′ = x = 2

π

∞∑
n=1

(−1)n+1

n
sin(πnx).

Apparently, this series cannot converge uniformly since the peri-

odic extension of the function x is not a continuous function. How-

ever, we can easily derive that it will converge pointwise (see our

reasonings about alternating series in ??), thus we really obtained

the equality. (see the theorem ??).
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Thanks to them, we can get
(a)

a0 = 2
1∫

0
ex dx = 2(e − 1),

an = 2
1∫

0
ex cos (2nπx) dx = 2

[
ex [2nπ sin(2nπx)+cos(2nπx) ]

1+4n2π2

]1

0

= 2(e−1)
1+4n2π2 , n ∈ N,

bn = 2
1∫

0
ex sin (2nπx) dx = 2

[
ex [sin(2nπx)−2nπ cos(2nπx) ]

1+4n2π2

]1

0

= 4nπ(1−e)

1+4n2π2 , n ∈ N;
(b)

a0 = 2
1∫

0
ex dx = 2(e − 1),

an = 2
1∫

0
ex cos (nπx) dx = 2

[
ex [nπ sin(nπx)+cos(nπx) ]

1+n2π2

]1

0

= 2
[
(−1)ne−1

]
1+n2π2 , n ∈ N;

(c)

bn = 2
1∫

0
ex sin (nπx) dx = 2

[
ex [sin(nπx)−nπ cos(nπx) ]

1+n2π2

]1

0

= 2nπ
[

1+(−1)n+1e
]

1+n2π2 , n ∈ N.
Straight substitution then yields the corresponding Fourier series

(a)

e − 1 + 2 (e − 1)
∞∑
n=1

cos(2nπx)
1+4n2π2 + 4π (1 − e)

∞∑
n=1

n sin(2nπx)
1+4n2π2 ;

(b)

e − 1 + 2
∞∑
n=1

[
(−1)ne−1

]
cos(nπx)

1+n2π2 ;
(c)

2π
∞∑
n=1

n
[
1+(−1)n+1e

]
sin(nπx)

1+n2π2 . □

7.14. Express the function g(x) = π2−x2 on the interval [−π, π ] in
the form of a Fourier series. Using this expression, sum up the series

∞∑
n=1

(−1)n+1

n2 ,
∞∑
n=1

1
n2 .

Solution. Once again, we could take advantage of the function g being
even and calculate the non-zero coe�cients an by integration by parts.
However, in the theoretical part, the Fourier series for the function
f (x) = x2 on the interval [−1, 1] is derived. This actually proves the
identity

f (x) = 1
3 + 4

π2

∞∑
n=1

(−1)n cos(nπx)
n2 , x ∈ (−1, 1).

Hence it follows (taking into account that g(−π) = g(π)) that

g(x) = π2 −
(

1
3 + 4

π2

∞∑
n=1

(−1)n cos nπx
π

n2

)
π2

= 2
3π

2 + 4
∞∑
n=1

(−1)n+1 cos(nx)
n2 , x ∈ [−π, π ].

It su�ced

to add π2 and multiply the original series by −1. Further, we have to
realize that only nx, and not nπx, will be the arguments of the cosines.
Thus the period is π times as great (2/T and the integration bounds in
the formula for an are changed), and integrating the cosines now does
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Similarly, we can integrate term by term, leading to

1
3
x3 = 2

3
x + 4

π3

∞∑
n=1

(−1)n

n3 sin(πnx),

and the resulting Fourier series is obtained by substituting for x

from the previous equality.

7.11. General Fourier series and wavelets. In the case of a gen-

eral orthogonal system of functions fn and the

series made from it, we often talk about gen-

eral Fourier series with respect to the orthogo-

nal system of functions fn.

Fourier series and further tools built upon them are used for

processing various signals, pictures, and so on. The nature of the

period trigonometric functions used in the standard Fourier series

and their simple scaling by increasing the frequency limit their us-

ability. In many application �elds, there arose a natural require-

ment of more convenient orthogonal systems of functions which

will re�ect the supposed nature of the data and which could be

processed more e�ciently.

Requirements for fast numerical processing usually include

quick scalability and the possibility of easy movements by constant

values. We can hope in such a system if, for instance, we choose a

suitable continuous functionψ with a compact support fromwhich

we create countably many functions ψjk , j, k ∈ Z, by translations
and dilations:

ψjk (x) = 2j/2ψ(2jx − k).

If at the same time, the following two conditions are satis�ed:

• the form of themother functionψ captures the possible behav-

ior of the data in a good way,

• its descendants ψjk form a complete orthogonal system,

then, possibly, only a few of the functions will do to approxi-

mate the processed signal in question. We talk about the so-called

wavelets.

We have no space for details here, it is an extraordinarily vital

�eld of research as well as the base of commercial applications.

Interested readers are referenced to special literature.

Let us remark that actually, only discrete versions of our ob-

jects are used, i. e. the values of all the functions ψjk are only en-

listed in a discrete (very large) set of points and are also orthogonal

in this sense. The standards JPEG2000 are a good example of this,

they use this technique and are a tool for professional compression

of visual data in �lm industry, or the format DjVu for compressed

publications.

One of the �rst wavelets was created by Ingrid Daubechies.

In the picture below, there are the so-called Daubechies mother

wavelet D4(x) and its daughter D4(2−3x − 1).
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not give π in the denominators (the change of the upper bound takes
e�ect when calculating a0). Therefore, we had to multiply the original
series by π2. Readers who are unable to perform the corresponding
calculations in mind and to immediately realize the di�erences, are
advised to calculate the Fourier series of the function g directly.

Substituting x = 0 and x = π then gives

π2 = 2
3π

2 + 4
∞∑
n=1

(−1)n+1

n2 , i. e.
∞∑
n=1

(−1)n+1

n2 = π2

12 ,

and

0 = 2
3π

2 + 4
∞∑
n=1

(−1)n+1(−1)n

n2 , i. e.
∞∑
n=1

1
n2 = π2

6 .

In other words, we have found another way of expressing

π2 = 12
(
1 − 1

22 + 1
32 − 1

42 + · · · ) = 6
(
1 + 1

22 + 1
32 + 1

42 + · · · ) .
□

7.15. Using the Fourier series of the function g(x) = ex , x ∈ [0, 2π),
calculate

∑∞
n=1

1
1+n2 .

Solution. We have (see also (∥7.9∥), (∥7.10∥))
a0 = 1

π

2π∫
0
ex dx = 1

π

(
e2π − 1

)
,

an = 1
π

2π∫
0
ex cos (nx) dx = 1

π

[
ex [cos(nx)+n sin(nx)]

1+n2

]2π

0

= e2π−1(
1+n2

)
π
, n ∈ N,

bn = 1
π

2π∫
0
ex sin (nx) dx

= 1
π

[
ex [sin(nx)−n cos(nx)]

1+n2

]2π

0
= −n

(
e2π−1

)(
1+n2

)
π
, n ∈ N.

Therefore,

ex = e2π−1
π

(
1
2 +

∞∑
n=1

cos(nx)−n sin(nx)
1+n2

)
, x ∈ (0, 2π).

However, no choice of x ∈ (0, 2π) yields the series
∑∞

n=1
1

1+n2 on
the right-hand side. It would be obtained for x = 0. The periodic
extension of g to R is apparently not continuous at this point, so we
get

e0+e2π

2 =
g(0)+ lim

x→2π− g(x)

2 = e2π−1
π

(
1
2 +

∞∑
n=1

cos 0−n sin 0
1+n2

)
,

hence it follows that
e2π+1

2 · π

e2π−1 = 1
2 +

∞∑
n=1

1
1+n2

which can be re�ned to
∞∑
n=1

1
1+n2 = (π−1)e2π+π+1

2
(
e2π−1

) .

□

7.16. Calculate the series
∞∑
n=1

1
(2n−1)2 .

Solution. To determine the value of this series, one can successfully
apply many known Fourier series of various functions. Let us remind,
for instance, the Fourier series
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The function F4 is not described by any means from analysis.

The function is given only by the values it takes on a �nite (yet very

large) set of input values. It is chosen so that it would have, in its

various parts, all the necessary properties for graphics data� both

slow and fast increase, sharp turns at both extrema, and so on. The

complexity of the construction lies, of course, in the condition that

the system obtained by the mentioned construction be orthogonal!

2. Metric spaces

In this part of the chapter, we will focus on the concepts of dis-

tance and convergence in a more abstract way. We will take advan-

tage of this presently when we prove the already mentioned proper-

ties of Fourier series, and we will also return to these concepts in

miscellaneous contexts. So we can consider the subsequent pages

to be a very useful (and hopefully manageable) trip into the world

of mathematics for the competent or courageous.

7.12. Metrics and norms. When we derived the technique of

Fourier series, we freely talked about the distance

on a space of functions. Now we will stop by this

concept and explain it thoroughly.

The Euclidean distance in the vector spaces Rn satis�es the

following three abstract requirements. (So does the L1�distance

d(f, g) = ∥f − g∥1 on the space of continuous and absolutely

integrable functions.) For the oncoming paragraphs, let us try to

keep these two examples in our minds.

Axioms of a metric and a norm

A set X together with a mapping d : X × X → R such that

for all x, y, z ∈ X, the following conditions are satis�ed
d(x, y) ≥ 0; and d(x, y) = 0 i� x = y ,(7.2)

d(x, y) = d(y, x),(7.3)

d(x, z) ≤ d(x, y)+ d(y, z),(7.4)

is called a metric space. The mapping d is the metric on X.

If X is a vector space over R and ∥ ∥ : X → R is a function

satisfying

∥x∥ ≥ 0; and ∥x∥ = 0 i� x = 0 ,(7.5)

∥λx∥ = |λ| ∥x∥, for all scalars λ ,(7.6)

∥x + y∥ ≤ ∥x∥ + ∥y∥,(7.7)

then the function ∥ ∥ is called the norm on X, and the space X is

then a normed vector space.

A norm always gives the metric d(x, y) = ∥x − y∥.
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π
2 − 4

π

∞∑
n=1

cos([2n−1]x)
(2n−1)2 ,

which was calculated for the function g(x) = | x |, x ∈ [−π, π). Since
this function is continuous on [−π, π) and | − π | = |π |, we even
know that

| x | = π
2 − 4

π

∞∑
n=1

cos([2n−1]x)
(2n−1)2 , x ∈ [−π, π ].

Substituting x = 0 gives

0 = π
2 − 4

π

∞∑
n=1

1
(2n−1)2 , i. e.

∞∑
n=1

1
(2n−1)2 = π2

8 .

□

7.17. Sum up the series
∞∑
n=1

1
n4 ,

∞∑
n=1

(−1)n+1

n4 .

Solution. First, let us remind that the values of the series
∞∑
n=1

1
n2 = π2

6 ,
∞∑
n=1

(−1)n+1

n2 = π2

12

have already been determined. In this exercise, we will hint the proce-
dure by which the series

∞∑
n=1

1
n2k ,

∞∑
n=1

(−1)n+1

n2k

for a general k ∈ N can be calculated. We use the identities

(7.11) x = π − 2
∞∑
n=1

sin (nx)
n

, x ∈ (0, 2π),

(7.12)

x2 = 4π2

3
+ 4

∞∑
n=1

cos (nx)
n2

− 4π
∞∑
n=1

sin (nx)
n

, x ∈ (0, 2π),

which follow from the constructions of the Fourier series for the func-
tions g(x) = x and g(x) = x2 , respectively, on the interval [0, 2π).

By (∥7.11∥), we have
∞∑
n=1

sin(nx)
n

= π−x
2 , x ∈ (0, 2π).

Substituting into (∥7.12∥) gives
∞∑
n=1

cos(nx)
n2 = 3x2−6πx+2π2

12 , x ∈ (0, 2π).

Mere substitution then proves the validity of this formula at the mar-
ginal points x = 0, x = 2π as well. The left-hand series is apparently
bounded from above by

∑∞
n=1

1
n2 , thus it converges absolutely and uni-

formly on [0, 2π]. Therefore, it can be integrated term by term:
∞∑
n=1

sin(nx)
n3

=
∞∑
n=1

[
sin(ny)
n3

]x
0

=
x∫
0

∞∑
n=1

cos(ny)
n2 dy

=
x∫
0

3y2−6πy+2π2

12 dy = x3−3πx2+2π2 x
12 , x ∈ [0, 2π].

Let us point out that, in fact, every Fourier series may be integrated
term by term. Similarly, further integration gives
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At the beginning of the previous part of this chapter, we actu-

ally de�ned the distance of functions using the so-called L1�norm.

In Euclidean vector spaces, it was the norm ∥x∥, which is induced
by the bilinear scalar product by the relation ∥x∥2 = ⟨x, x⟩. Sim-
ilarly, we worked with the norm on unitary spaces. We obtained

the L2�norm on continuous functions in the same way.

Of course, metrics given by a norm have very speci�c proper-

ties since their behavior on the whole spaceX can be derived from

the properties in an arbitrarily small neighborhood of the zero ele-

ment x = 0 ∈ X.
7.13. Convergence. The concepts of (close) neighborhoods of

particular elements, convergence of sequences of ele-

ments and the corresponding "topological" concepts

can be de�ned on completely abstract metric spaces

in much the same way as in the case of the real and

complex numbers and their sequences at the beginning of the �fth

chapter, see 5.12�5.17.

We can almost copy these paragraphs; only the proofs of the

theorem 5.17 will be much harder. We will start o� with the con-

cept of convergent sequences in a metric space X with metric d:

Cauchy sequences

Let us consider an arbitrary sequence of elements x0, x1, . . .

lying in X such that for any �xed positive real number ε, it holds

for all but �nitely many terms xi of the sequence that for all but

�nitely many terms xj ,

d(xi, xj ) < ε.

In other words, for any �xed ε > 0, there is an index N such that

the above inequality holds for all i, j > N ; i. e. the elements of

the sequence are eventually arbitrarily close to each other. Such a

sequence is called a Cauchy sequence.

Just as in the case of the real or complex numbers, we would

like every Cauchy sequence of terms xi ∈ X to converge to some

value x in the following sense:

Convergent sequences

If a sequence of elements x0, x1, . . . ∈ X, a �xed element

x ∈ X and every positive real number ε are such that for all but

�nitely many i (depending on the choice of ε), it holds that

d(xi, x) < ε,

we say that the sequence xi , i = 0, 1, . . . , converges to the element
x, which is called the limit of the sequence xi , i = 0, 1, . . . in the
metric space X.

Thanks to the triangle inequality, we get that for each pair of

terms xi , xj from a convergent sequence with su�ciently large

indeces, it holds that (the denotation is taken from the de�nition

above)

d(xi, xj ) ≤ d(xi, x)+ d(x, xj ) < 2ε.

Therefore, every convergent sequence is a Cauchy sequence. Met-

ric spaces where the converse (i. e. every Cauchy sequence is

convergent) is true as well are called complete metric spaces.

7.14. Topology, convergence, and continuity. Just as in the case

of the real numbers, we can formulate the convergence in terms of

"open neighborhoods".
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∞∑
n=1

1−cos(nx)
n4 =

∞∑
n=1

[
− cos(ny)

n4

]x
0

=
x∫
0

∞∑
n=1

sin(ny)
n3 dy

=
x∫
0

y3−3πy2+2π2 y
12 dy = x4−4πx3+4π2 x2

48 , x ∈ [0, 2π ].

Substituting x = π leads to
∞∑
n=1

1+(−1)n+1

n4 =
∞∑
n=1

1−cos(nπ)
n4 = π4

48 .

Taking into account the fact the left-hand numerator is zero for even
numbers n and equals 2 for odd numbers n, the obtained series can be
written as

(7.13)
∞∑
n=1

2
(2n− 1)4

= π4

48
.

From the expression
∞∑
n=1

1
n4 =

∞∑
n=1

1
(2n)4 +

∞∑
n=1

1
(2n−1)4 = 1

16

∞∑
n=1

1
n4 +

∞∑
n=1

1
(2n−1)4 ,

it follows that
∞∑
n=1

1
n4 = 16

15

∞∑
n=1

1
(2n−1)4 = 16

15 · 1
2 · π4

48 = π4

90 ,

thereby having summed up the �rst series. As for the second one, we
have∞∑
n=1

(−1)n+1

n4 =
∞∑
n=1

1
(2n−1)4 −

∞∑
n=1

1
(2n)4 =

∞∑
n=1

1
(2n−1)4 − 1

16

∞∑
n=1

1
n4

= 1
2 · π4

48 − 1
16 · π4

90 = 7π4

720 .

As we have said, one can proceed similarly when summing up the
series

∞∑
n=1

1
n2k ,

∞∑
n=1

(−1)n+1

n2k

for other k ∈ N. Therefore, it is natural to ask for the value of the
series

∑∞
n=1

1
n3 . This problem has been tackled by mathematicians for

centuries without success. The reader may justi�ably be surprised by
this since the mentioned procedure should be applicable to all the odd
powers as well.

We can, for instance, start with the identity
∞∑
n=1

cos(nx)
n

= −ln
(
2 sin x

2

)
, x ∈ (0, 2π),

which, by the way, can be proved by expanding the right-hand func-
tion into a Fourier series again. If we, similarly to above, integrated
the left-hand series term by term twice and substituted x → 0+ in the
limit, we would get just the series

∑∞
n=1

1
n3 . Thus, it should su�ce to

integrate the right-hand function twice and calculate one limit. How-
ever, the integration of the right-hand side leads to a non-elementary
integral, i. e., the antiderivative cannot be expressed in terms of ele-
mentary function we usually work with. 1

□

7.18. Using Parseval's identity for Fourier's orthogonal system, ver-
ify that

∞∑
n=1

1
(2n−1)4 = π4

96 .

1
The function ζ(p) =∑∞

n=1 is called the Riemann zeta function.
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Open and closed sets

The open ε�neighborhood of an element x in a metric space

X (or just ε�neighborhood in short) is the set

Oε(x) = {y ∈ X; d(x, y) < ε}.
A subset U ⊂ X is open i� with every point x it contains, it con-

tains some ε�neighborhood of x as well. A subset W ⊂ X is

closed i� its complement X \W is an open set.

Instead of an ε�neighborhood, we also talk about an (open)

ε�ball centered at x. In the case of a normed space, we can do

with ε�balls centered at zero: those added to the given element x

give just its ε�neighborhood.

The limit points of a subset A ⊂ X are, again, de�ned as

such elements x ∈ X that there is a sequence of points from A

converging to, but not containing x. We can easily see that a set is

closed if and only if it contains all of its limit points:

Indeed, it follows straight from the de�nition that a set A is

closed if and only if for every point x /∈ A, there is some ε > 0 such
that the whole ε�neighborhood Oε(x) has an empty intersection

with A. Thus if A were closed and x were a limit point of the set

A not belonging to it, then in every such ε�neighborhood of such

a point x, there are in�nitely many points of the set A, which is a

contradiction.

On the other hand, let us suppose thatA contains all of its limit

points and let us consider x ∈ X \ A. If in every ε�neighborhood
of the point x, there were a point xε ∈ A, then the choices ε = 1/n
give us a sequence of points xn ∈ A converging to x. But then, the

point x would have to be a limit point, thus lying inA, which again

leads to a contradiction.

For every subset A in a metric space X, we de�ne its interior

as the set of those points in A which belong to A together with

some neighborhood of theirs. Further, we de�ne the closure Ā of

a set A as the union of the original set A with the set of all A's

limit points.

As easily as in the case of the real numbers, we can verify that

the intersection of any system of closed sets as well as the union of

any �nite system of closed sets results in a closed set again.

It is the other case with open sets: any union of open sets is

an open set, but in general, only a �nite intersection of open sets is

again an open set. Prove these propositions by yourselves in detail!

We also advise the reader to verify that the interior of a set A

equals the union of all open sets contained in A, while the closure

of A is the intersection of all closed sets which contain A.

The closed and open sets are the essential concepts of themath-

ematical discipline called topology. Without going into deeper

connections, we have just made ourselves familiar with the topol-

ogy of the metric spaces.

The concept of convergence can be reformulated now as fol-

lows: a sequence of elements xi , i = 0, 1, . . . , in a metric space

X converges to x ∈ X i� for every open set U containing x, all but

�nitely many points of our sequence lie in U .

Just as in the case of the real numbers, we can de�ne continu-

ous mappings between metric spaces:

A mapping f : W → Z is continuous i� the reverse image

f−1(V ) of every open set V ⊂ Z is an open set in W . Of course,

thismeans nothing else than the claiming that for every z = f (x) ∈
Z and a positive real number ε, there is a positive real number δ
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Solution. We have already summed this series up (see (∥7.13∥)). Now,
we will reveal that number series can be summed up even more easily
thanks to Fourier series. However, this way is conditioned by knowl-
edge of a good deal of Fourier series and can be a bit more complicated
for the reader. (We recommend to compare the solutions of this exer-
cise and the previous one.)

It is imperative to choose an appropriate Fourier series. For in-
stance, let us take the Fourier series

π
2 − 4

π

∞∑
n=1

cos([2n−1]x)
(2n−1)2 ,

which we have obtained for the function g(x) = | x |, x ∈ [−π, π) and
which has already been used once to determine the value of a series.
Parseval's identity

a2
0
2 +

∞∑
n=1

a2
n +

∞∑
n=1

b2
n = 2

T

x0+T∫
x0

[g(x)]2 dx

says for it that

π2

2 + 16
π2

∞∑
n=1

1
(2n−1)4 = 1

π

π∫
−π

| x |2 dx = 2
π

π∫
0
x2 dx = 2π2

3 ,

i. e.,
∞∑
n=1

1
(2n−1)4 =

(
2π2

3 − π2

2

)
π2

16 = π4

96 .

□
Now, we will illustrate how Fourier series can be applied in the

theory of di�erential equations. For the sake of simplicity, we consider
only the non-homogeneous (compare to (∥7.2∥)) di�erential equation
(7.14) y′′ + a2y = f (x)

with y an unknown in variable x ∈ R, with a periodic, continuously
di�erentiable function f : R → R on the right-hand side and a con-
stant a > 0. Let T > 0 be the prime period of the function f and let
its Fourier series on [−T/2, T /2] be known, i. e., the identity

(7.15) f (x) = A0

2
+

∞∑
n=1

[
An cos

2πnx
T

+ Bn sin
2πnx
T

]
, x ∈ R.

7.19. Prove that if the equation (∥7.14∥) has a periodic solution on
R, then the period of this solution is also a period of the function f .
Further, prove that the equation (∥7.14∥) has a unique periodic solution
with period T if and only if

(7.16) a ̸= 2πn
T

for every n ∈ N.

Solution. Let a function y = g(x), x ∈ R, be a solution of the equa-
tion (∥7.14∥) and let it have period p > 0. In order to substitute the
function g into a second-order di�erential equation, its second deriv-
ative g′′ must exist. Since the functions g, g′, g′′, . . . share the same
period, the function

g′′(x)+ a2g(x) = f (x)

is also period with period p. In other words, the function f is periodic
as a linear combination of functions with period p. Thus, we have
proved the �rst statement claiming that p = lT for a certain l ∈ N.
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such that for all elements y ∈ W with distance dW (x, y) < δ, it

also holds that dZ(z, f (y)) < ε.

Again, similarly as in the case of the real-valued functions, a

mapping f between metric spaces is continuous if and only if it

respects convergence of sequences.

7.15. Lp�norms. Now we have the general tools with which we

can have a look at examples of metric spaces created by

�nite-dimensional vectors or functions at our disposal. We

will restrict ourselves to an extraordinarily useful class of

norms.

We begin with the real or complex �nite-dimensional vector

spaces Rn and Cn, and for a �xed real number p ≥ 1 and any

vector z = (z1, . . . , zn), we de�ne

∥z∥p =
( n∑
i=1

|zi |p
)1/p

.

We are going to prove that this indeed de�nes a norm. The �rst

two properties from the de�nition are clear. It remains to prove

the triangle inequality. For that purpose, we will use the so-called

Hölder's inequality:

Lemma. For a �xed real numberp > 1 and every pair of n�tuples
of non-negative real numbers xi and yi , it holds that

n∑
i=1

xiyi ≤
( n∑
i=1

x
p
i

)1/p

·
( n∑
i=1

y
q
i

)1/q

,

where 1/q = 1 − 1/p.

Proof. Let us denote by X and Y the expressions in the prod-

uct on the right-hand side of the inequality to be

proved. If all of the numbers xi or all of the numbers

yi are zero, then the statement clearly holds. There-

fore, let us suppose that X ̸= 0 and Y ̸= 0.
Hölder's inequality is a useful straight corollary of the convex-

ity of the exponential function. Let us de�ne the numbers vk and

wk so that

xk = X evk/p, yk = Y ewk/q .

Since 1/p + 1/q = 1, we can consider the a�ne combination of

the values 1
p
vk + 1

q
wk and thanks to the mentioned convexity, we

obtain

evk/p+wk/q ≤ 1
p

evk + 1
q

ewk .

Hence we can calculate straightaway that

1
XY

xkyk ≤ 1
p

(
xk

X

)p
+ 1
q

(
yk

Y

)q
,

and summing over k = 1, . . . , n,

1
XY

n∑
i=1

xiyi ≤ 1
pXp

n∑
i=1

x
p
i + 1

qYp

n∑
i=1

y
q
i .

However, the particular sums on the right-hand side give exactly

Xp and Y q , so the whole expression is equal to 1/p + 1/q = 1.
Multiplying this inequality by the number XY �nishes the proof.

□

Nowwe will really be able to prove that ∥ ∥p is indeed a norm:
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Now, suppose that the a function y = g(x), x ∈ R, is a periodic
solution of the equation (∥7.14∥) with period T and that it is expressed
by a Fourier series as follows:

(7.17) g(x) = a0

2
+

∞∑
n=1

[an cos (ωnx)+ bn sin (ωnx)] , x ∈ R,

where ω = 2π/T . If g satis�es the equation (∥7.14∥), it must have a
continuous second derivative on R. Therefore,

g′(x) =
∞∑
n=1

[ωnbn cos (ωnx)− ωnan sin (ωnx)] , x ∈ R,

(7.18)

g′′(x) =
∞∑
n=1

[−ω2n2an cos (ωnx)− ω2n2bn sin (ωnx)
]
, x ∈ R.

Substituting (∥7.15∥), (∥7.17∥) and (∥7.18∥) into (∥7.14∥) yields
a2 a0

2 +
∞∑
n=1

[(−ω2n2an + a2an
)

cos (nωx) + (−ω2n2bn + a2bn
)

sin (nωx)
]

= A0
2 +

∞∑
n=1

[An cos (nωx) + Bn sin (nωx)] .

Hence it follows that

(7.19) a2 a0

2
= A0

2
, i. e. a0 = A0

a2
,

and
(7.20)(−ω2n2 + a2) an = An,

(−ω2n2 + a2) bn = Bn, n ∈ N.
We can see that there is exactly one pair of sequences {an}n∈N∪{0},

{bn}n∈N satisfying these conditions if and only if

−ω2n2 + a2 = − ( 2πn
T

)2 + a2 ̸= 0 for every n ∈ N,
i. e., if (∥7.16∥) holds. In this case, the only solution of (∥7.14∥) with
period T is determined by the only solution

(7.21) an = An

−ω2n2 + a2
, bn = Bn

−ω2n2 + a2
, n ∈ N

of the system (∥7.20∥). Let us emphasize that we have silently uti-
lized the uniform convergence of the series in (∥7.18∥). This follows,
besides others, from deeper results of the general theory of Fourier
series to which we will not pay further attention. □

7.20. Using the solution of the previous problem, �nd all
2π -periodic solutions of the di�erential equation

y′′ + 2y =
∞∑
n=1

sin(nx)
n2 , x ∈ R.

Solution. The equation is in the form of (∥7.14∥) for a = √
2 and the

continuously di�erentiable function

f (x) =
∞∑
n=1

sin(nx)
n2 , x ∈ R

with prime period T = 2π . According to the problem ∥7.19∥, the con-
dition

√
2 /∈ N implies the there is exactly one 2π-periodic solution.

If we look for it as the value of the series
a0
2 +

∞∑
n=1

[an cos (nx)+ bn sin (nx)] , x ∈ R,
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Minkowski inequality

For everyp > 1 and all n�tuples of non-negative real numbers
(x1, . . . , xn) and (y1, . . . , yn), it holds that( n∑

i=1

(xi + yi)
p

)1/p

≤
( n∑
i=1

x
p
i

)1/p

+
( n∑
i=1

y
p
i

)1/p

.

To verify this practical inequality, we can use the following

trick, invoking Hölder's inequality. We surely have (notice that

p > 1)
n∑
i=1

xi(xi + yi)
p−1 ≤

( n∑
i=1

x
p
i

)1/p

·
( n∑
i=1

(xi + yi)
(p−1)q

)1/q

as well as
n∑
i=1

yi(xi + yi)
p−1 ≤

( n∑
i=1

y
p
i

)1/p

·
( n∑
i=1

(xi + yi)
(p−1)q

)1/q

.

Summing up the last two inequalities and taking into account that

p + q = pq, and so (p − 1)q = pq − q = p, we arrive at∑n
i=1(xi + yi)

p(∑n
i=1(xi + yi)p

)1/q ≤
( n∑
i=1

x
p
i

)1/p

+
( n∑
i=1

y
p
i

)1/p

.

However, 1 − 1/q = 1/p, so this is just the so-called Minkowski

inequality which we have wanted to prove.

Thus we have veri�ed that on every �nite-dimensional real or

complex vector space, there is a class of norms ∥ ∥p for all p ≥ 1.
Beside that, we further set

∥z∥∞ = max{|zi |, i = 1, . . . , n},
which, apparently, is a norm, too.

We can notice that Hölder's inequality can be, in the context

of these norms, written for all x = (x1, . . . , xn), y = (y1, . . . , yn)

as
n∑
i=1

|xi | · |yi | ≤ ∥x∥p · ∥y∥q
for all p ≥ 1 and q satisfying 1/p + 1/q = 1, where for p = 1,
we set q = ∞.

7.16. Lp�norms for sequences and functions. Now we can eas-

ily de�ne norms on suitable in�nite-dimensional vec-

tor spaces as well. Let us begin with sequences. The

vector space ℓp, p ≥ 1, is the set of all sequences of
real or complex numbers x0, x1, . . . such that

∞∑
i=0

|xi |p < ∞.

All sequences with bounded absolute values of their terms create

the space ℓ∞. Taking the limit as n goes to∞, we immediately get

from the Minkowski inequality

∥x∥p =
( ∞∑
i=0

|xi |p
)1/p

is a norm on ℓp. Similarly, we set

∥x∥∞ = sup{|xi |, i = 0, 1, . . . }
on ℓ∞, again obtaining a norm.
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we further know that (see (∥7.19∥) and (∥7.21∥))
a0 = an = 0, bn = 1

n2
(
2−n2

) , n ∈ N.
Thus, the given equation has the unique 2π -periodic solution

y =
∞∑
n=1

sin(nx)
n2

(
2−n2

) , x ∈ R.

□

C. Metric spaces

7.21. Show that the de�nition of a metric as a function d de�ned on
X ×X for a non-empty set X and satisfying

d(x, y) = 0, if and only if x = y, x, y ∈ X,(7.22)

d(x, z) ≤ d(y, x)+ d(y, z), x, y, z ∈ X,(7.23)

is equivalent to the de�nition given in the theoretical part, in para-
graph 7.12.

Solution. Ostensibly, this de�nition lays fewer requirements on the
metric than the de�nition from the theoretical part. The de�nitions
are equivalent i� the conditions (∥7.22∥), (∥7.23∥) imply

d(y, x) ≥ 0, x, y ∈ X,(7.24)

d(x, y) = d(y, x), x, y ∈ X.(7.25)

However, if we set x = z in (∥7.23∥), we get (∥7.24∥) from (∥7.22∥).
Similarly, the choice y = z in (∥7.23∥), using (∥7.22∥), implies that
d(x, y) ≤ d(y, x) for all points x, y ∈ X. Interchanging the variables
x and y then gives d(y, x) ≤ d(x, y), i. e. (∥7.25∥). Thus, we have
proved that the de�nitions are equivalent.

Many more ways of de�ning a metric can be found in literature.
Besides those, one can �nd many de�nitions which are a bit di�erent
and lead to objects other than metrics (the most important ones being
pseudometrics, ultrametrics, and semimetrics). The �rst axiomatic
de�nition of a "traditional" metric was given by Maurice Fréchet in
1906. However, the name of the metric comes from Felix Hausdor�,
who used this word in his work from 1914. □

7.22. Consider the power set (the set of all subsets) of a given �nite
set. Determine whether the mapping de�ned for all considered subsets
X, Y by

(a) d1(X, Y ) := | (X ∪ Y)∖ (X ∩ Y) |;
(b) d2(X, Y ) := | (X∪Y )∖(X∩Y) |

| X∪Y | , X ∪ Y ̸= ∅, d2(∅,∅) := 0
is a metric. (By |X |, we mean the number of elements of a set X.)
Solution. Wewill omit veri�cations of the �rst and second conditions
from the de�nition of a metric in exercises on deciding whether a par-
ticular mapping is a metric. The reader should immediately realize
that both d1 and d2 satisfy them. Therefore, we analyze the triangle
inequality only.

The case (a). For any sets X, Y,Z, we have
(7.26)
(X ∪ Z)∖ (X ∩ Z) ⊆ [(X ∪ Y)∖ (X ∩ Y)] ∪ [(Y ∪ Z)∖ (Y ∩ Z)]
since if x ∈ (X ∪ Z) ∖ (X ∩ Z), then exactly one of the following
occurs:

x ∈ X and x /∈ Z, x /∈ X and x ∈ Z.
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Eventually, let us get back to the space of functions S0 [a, b]
on a �nite interval [a, b] or S0

c [a, b] on an unbounded interval. We

have already met the norm ∥ ∥1. However, for every p > 1 and for

all functions in such a space of functions, the Riemann integrals∫ b

a

|f (x)|pdx
surely exist, so we can de�ne

∥f ∥p =
(∫ b

a

|f (x)|pdx
)1/p

.

The Riemann integral was de�ned in terms of limits, using the so-

called Riemann sums which correspond to splitting 4 with repre-

sentatives ξi . In our case, those are the �nite sums

S4,ξ =
n∑
i=1

|f (ξi)|p(xi − xi−1).

Hölder's inequality applied to the Riemann sums of a product of

two f (x) and g(x) gives

n∑
i=1

|f (ξi)||g(ξi)|(xi − xi−1) =

=
n∑
i=1

|f (ξi)|(xi − xi−1)
1/p|g(ξi)|(xi − xi−1)

1/q

≤
( n∑
i=1

|f (ξi)|p(xi − xi−1)

)1/p

·
( n∑
i=1

|g(ξi)|q(xi − xi−1)

)1/q

,

where on the right-hand side, there is just the product of the Rie-

mann sums for the integrals ∥f ∥p and ∥g∥q .
Moving to limits, we thus verify the so-called Hölder's in-

equality for integrals:∫ b

a

f (x)g(x) dx ≤
(∫ b

a

f (x)p dx

)1/p(∫ b

a

g(x)q dx

)1/q

which is valid for all non-negative real-valued functions f and g in

our space of piecewise continuous functions with a compact sup-

port.

In just the same way as in the previous paragraph, we can de-

rive the integral variant of theMinkowski inequality fromHölder's

inequality:

∥f + g∥p ≤ ∥f ∥p + ∥g∥p.
Thus ∥ ∥p is indeed a norm on the vector space of all continuous

functions having a compact support for all p > 1 (we veri�ed this

for p = 1 long ago). We will use the word "norm" for the entire

space S0 [a, b] of piecewise continuous functions in this context;

however, we should bear in mind that we have to identify those

functions which di�er only by their values at points of discontinu-

ity.

Among these norms, the case of p = 2 is exceptional; we

have realized it by the scalar product. In this case, we could have

derived the triangle inequality muchmore easily using the Schwarz

inequality.

For the functions from S0 [a, b], we can de�ne an analogy of
the L∞�norm on n�dimensional vectors. Since our functions are

piecewise continuous, they will always have suprema of absolute

values on a �nite closed interval, so we can set

∥f ∥∞ = sup{f (x), x ∈ [a, b]}
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Thus, it makes sense to consider these four possibilities:

x ∈ X, x /∈ Z, x ∈ Y, x ∈ X, x /∈ Z, x /∈ Y,
x /∈ X, x ∈ Z, x ∈ Y, x /∈ X, x ∈ Z, x /∈ Y,

which may occur for x ∈ (X∪Z)∖ (X∩Z). However, in any of these
four cases, x belongs to exactly one of the sets (X ∪ Y) ∖ (X ∩ Y),
(Y ∪ Z) ∖ (Y ∩ Z). Thus we have obtained the inclusion (∥7.26∥)
whence the wanted triangle inequality follows.

d1(X,Z) = | (X ∪ Z)∖ (X ∩ Z) | ≤
| [(X ∪ Y)∖ (X ∩ Y)] ∪ [(Y ∪ Z)∖ (Y ∩ Z)] | ≤
| (X ∪ Y )∖ (X ∩ Y) | + | (Y ∪ Z)∖ (Y ∩ Z) | =

d1(X, Y )+ d1(Y, Z).

The case (b). We can proceed similarly to the case of d1. Let us
denote by X′ the complement of a set X. The equalities

(X ∪ Y)∖ (X ∩ Y) =
(X ∩ Y ′ ∩ Z) ∪ (X ∩ Y ′ ∩ Z′) ∪ (X′ ∩ Y ∩ Z) ∪ (X′ ∩ Y ∩ Z′),

(Y ∪ Z)∖ (Y ∩ Z) =
(X ∩ Y ∩ Z′) ∪ (X ∩ Y ′ ∩ Z) ∪ (X′ ∩ Y ∩ Z′) ∪ (X′ ∩ Y ′ ∩ Z),

[(X ∪ Z)∖ (X ∩ Z)] ∪ [Y ∖ (X ∪ Z)] =
(X∩Y∩Z′)∪(X∩Y ′∩Z′)∪(X′∩Y∩Z)∪(X′∩Y ′∩Z)∪(X′∩Y∩Z′),
which, again, can be proved by listing several possibilities, imply a
stronger form of (∥7.26∥):

[(X ∪ Z)∖ (X ∩ Z)] ∪ [Y ∖ (X ∪ Z)] ⊆
[(X ∪ Y)∖ (X ∩ Y)] ∪ [(Y ∪ Z)∖ (Y ∩ Z)] .

Further, we invoke the inequality
| (X∪Z)∖(X∩Z) |

| X∪Z | ≤ | [(X∪Z)∖(X∩Z)]∪[Y∖(X∪Z)] |
| X∪Z∪[Y∖(X∪Z)] | , X ∪ Z ̸= ∅.

That is based upon calculations with non-negative numbers only since
it holds in general that

x
z

≤ x+y
z+y , y ≥ 0, z > 0, x ∈ [0, z].

Since, apparently,

X ∪ Z ∪ [Y ∖ (X ∪ Z)] = X ∪ Y ∪ Z,
we get

d2(X,Z) = | (X∪Z)∖(X∩Z) |
| X∪Z | ≤ | [(X∪Z)∖(X∩Z)]∪[Y∖(X∪Z)] |

| X∪Z∪[Y∖(X∪Z)] | ≤
| [(X∪Y )∖(X∩Y)]∪[(Y∪Z)∖(Y∩Z)] |

| X∪Y∪Z | ≤ | (X∪Y )∖(X∩Y) |+| (Y∪Z)∖(Y∩Z) |
| X∪Y∪Z | ≤

| (X∪Y)∖(X∩Y ) |
| X∪Y | + | (Y∪Z)∖(Y∩Z) |

| Y∪Z | = d2(X, Y )+ d2(Y, Z),

if X ∪ Z ̸= ∅ and Y ̸= ∅. However, for X = Z = ∅ or Y = ∅, the
triangle inequality clearly holds as well.

Therefore, both mappings are metrics. The metric d1 has a mere
helping use. On the other hand, the metric d2 has wider applications
and it is also known as Jaccard'smetric. It is named after biologist Paul
Jaccard, who, in 1908, described the measure of similarity in insects
populations using the function 1 − d2. □

7.23. Let

d(x, y) := | x−y |
1+| x−y | , x, y ∈ R.

Prove that d is a metric on R.
Solution. Again, we prove the triangle inequality only (the rest is
clear). Let us introduce a helping increasing function

(7.27) f (t) := t

1 + t
, t ≥ 0.
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for such a function f . Let us notice that if we considered both

the one-sided limits (which always exist by our de�nition) and the

value of the function itself to be the value f (x) at points of disconti-

nuity, we can work with maxima instead of suprema. It is apparent

again that it is a norm (except for the problems with the values at

discontinuity points).

7.17. Completion ofmetric spaces. Both the real numbersR and

the complex numbers C are (with the metric given

by the absolute value) a complete metric space. Ac-

tually, this is contained in the axiom of existence of

suprema. Let us remind the the real numbers were

created as a "completion" of the space of rational numbers which is

not complete itself. It is apparent that the closure of the setQ ⊂ R
is the whole R.

Dense and nowhere-dense subsets

We say that a subsetA ⊂ X in a metric spaceX is dense i� the

closure of A is the whole space X. A set A is said to be nowhere

dense in X i� the set X \ Ā is dense.

Apparently, A is dense in X if every open set in the whole

space X has a non-empty intersection with A.

In all cases of norms on functions from the previous paragraph,

we can easily see that the metric spaces de�ned in this way are not

complete since it can happen that the limit of a Cauchy sequence

of functions from our vector space S0 [a, b] should be a function

which does not belong to this space any more. Let us consider

the interval [0, 1] as the domain of functions fn which take zero

on [0, 1/n) and are equal to sin(1/x) on [1/n, 1]. Apparently, they
converge to the function sin(1/x) in allLp norms, but this function
does not lie in our spaces.

Completion of a metric space

Let X be a metric space with metric d which is not complete.

A metric space X̃ with metric d̃ such that X ⊂ X̃, d is the restric-

tion of d̃ to the subsetX and the closure X̄ is the whole space X̃ is

called a completion of the metric space X.

The following theorem says that the completion of an arbitrary

(incomplete) metric space X can be found in essentially the same

way as the real numbers were created from the rationals. Before

we get to the quite di�cult proof of this extraordinarily important

and useful result, we can notice that such a "completion" X̃ of a

space X can be done in a unique way, in a certain sense:

A mapping φ : X1 → X2 between metric spaces with metrics

d1 and d2, respectively, is called an isometry i� all elements x,y ∈
X satisfy d2(φ(x), φ(y)) = d1(x, y).

Of course, every isometry is a bijection onto its image (this

follows from the property that the distance of distinct elements is

non-zero) and the corresponding inverse mapping is an isometry

as well.

Now, let us consider two inclusions of a dense subset, ι1 :
X → X̃1 and ι2 : X → X̃2, into two completions of the space

X, and let us denote the corresponding metrics by d, d1, and d2,

respectively. Apparently, the mapping

φ : ι1(X)
ι−1
1 // X

ι2 // X̃2
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The fact that f is increasing need not be veri�ed by calculation of the
�rst derivative. It can be seen by the simple rearrangement

f (s)− f (r) = s
1+s − r

1+r = s−r
(1+s)(1+r) > 0, s > r ≥ 0.

Therefore,

d(x, z) = | x−z |
1+| x−z | = | x−y+y−z |

1+| x−y+y−z | ≤ | x−y |+| y−z |
1+| x−y |+| y−z | =

| x−y |
1+| x−y |+| y−z | + | y−z |

1+| x−y |+| y−z | ≤ | x−y |
1+| x−y | + | y−z |

1+| y−z | =
d(x, y)+ d(y, z), x, y, z ∈ R.

□

7.24. Determine the distance of the functions

f (x) = x, g(x) = − x√
1+x2

, x ∈ [1, 2]

as elements of the normed vector spaceS[1, 2] of continuous functions
on the interval [1, 2] with norm

(a) ∥ f ∥1 = ∫ 2
1 | f (x) | dx;

(b) ∥ f ∥∞ = max {| f (x) |; x ∈ [1, 2]}.
Solution. The case (a). It su�ces to compute

2∫
1

| f (x)− g(x) | dx =
2∫

1
x + x√

1+x2
dx =

[
x2

2 + √
1 + x2

]2

1
=

3
2 + √

5 − √
2.

The case (b). Now, we want to determine

max
x∈[1,2]

| f (x)− g(x) | = max
x∈[1,2]

(
x + x√

1+x2

)
.

When looking for extrema of functions, di�erentiation is a very strong
and e�cient tool. From the inequality(

x + x√
1+x2

)′ = 1 + 1(√
1+x2

)3 > 0, x ∈ [1, 2],

we can immediately see

max
x∈[1,2]

(
x + x√

1+x2

)
= 2 + 2√

1+22
= 2 + 2√

5
.

An increasing function takes the maximum value at the right marginal
point of a closed interval. □

7.25. Determine whether the sequence {xn}n∈N where

x1 = 1, xn = 1 + 1
2 + · · · + 1

n
, n ∈ N∖ {1},

is a Cauchy sequence in R. First, consider the usual metric given by
the di�erence in absolute value (i. e., induced by the norm of absolute
value). Then, consider the metric

d(x, y) := | x−y |
1+| x−y | , x, y ∈ R.

Solution. Let us remind that

(7.28)
∞∑
k=1

1
k

= ∞, i. e.
∞∑
k=m

1
k

= ∞, m ∈ N.

Therefore,

lim
n→∞ | xn − xm | =

∞∑
k=m+1

1
k

= ∞, m ∈ N.
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is well-de�ned on the dense subset ι1(X) ⊂ X̃1. Its image is the

dense subset ι2(X) ⊂ X̃2 and, moreover, this mapping is clearly

an isometry. The dual mapping ι1 ◦ ι−1
2 works in the same way.

Every isometric mapping maps, of course, Cauchy sequences

to Cauchy sequences. At the same time, such Cauchy sequences

converge to the same element in the completion if and only if this

holds for their images under the isometry φ. Thus if such a map-

ping φ is de�ned on a dense subsetX of a metric space X̃1, then it

surely has a unique extension to the whole X̃1 with values lying in

the closure of the image φ(X), i. e. X̃2.

By the previous reasoning, there is a unique extension of φ

to the mapping φ̃ : X̃1 → X̃2 which is both a bijection and an

isometry. Thus, the completions X̃1 and X̃2 are indeed identical in

this sense.

7.18. Theorem. Let X be a metric space with metric d which is

not complete. Then there exists a completion X̃ ofX with metric d̃

which is unique up to bijective isometries.

Proof. The idea of the construction is quite identical to

the one used when building the real numbers. Two

Cauchy sequences xi and yi of points belonging to

X are considered equivalent i� d(xi, yi) converges to

zero for i approaching in�nity. This is a convergence

of real numbers, thus the de�nition is correct.

From the properties of convergence on the real numbers, it is

quite apparent that the relation de�ned above is really an equiva-

lence relation. The reader is advised to verify this in detail. For

instance, the transitivity follows from the fact that the sum of two

sequences converging to zero converges to zero as well.

Now, let us de�ne X̃ as the set of the classes of this equivalence

of Cauchy sequences. The original points x ∈ X can be identi�ed

with the class of sequences equivalent to the constant sequence

xi = x, i = 0, 1, . . . .
It is now easy to de�ne the metric d̃. It suggests itself to con-

sider

d̃(x̃, ỹ) = lim
i→∞ d(xi, yi)

for sequences x̃ = {x0, x1, . . . } and ỹ = {y0, y1, . . . }.
First, we have to verify that this limit exists at all and is �-

nite. Straight from the triangle inequality and the fact that both the

sequences x̃ and ỹ are Cauchy sequences, it follows that the consid-

ered sequence is also a Cauchy sequence of real numbers d(xi, yi),

so its limit exists.

If we select di�erent representatives x̃ = {x′0, x′1, . . . } and

ỹ = {y′0, y′1, . . . }, then we can see from the triangle inequality for

the distance of real numbers (we need to consider the consequences

for di�erences of distances) that

|d(x′i, y′i)− d(xi, yi)| ≤ |d(x′i, y′i)− d(x′i, yi)|+
|d(x′i, yi)− d(xi, yi)|

≤ d(xi, x
′
i)+ d(yi, y

′
i).

Therefore, the de�nition is indeed independent of the choice of

representatives.

Further, we verify that d̃ is a metric on X̃. The �rst and second

properties are clear, so it remains to prove the triangle inequality.

For that purpose, let us choose three Cauchy representatives of the
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Hence we can see that the sequence {xn} cannot be a Cauchy sequence.
Thus we have found the answer for the usual metric. However, we
could have utilized the fact that the sequence {xn} is not convergent by
(∥7.28∥) and that we �nd ourselves in a complete metric space, where
Cauchy sequences and convergent sequences coincide.

For the metric d, it su�ces to realize that the mapping f intro-
duced in (∥7.27∥) is a continuous bijection between the sets [0,∞)

and [0, 1), having the property that f (0) = 0. Thus, any sequence
is convergent "in the original meaning" if and only if it converges in
the metric space R with metric d. It holds as well that a sequence is a
Cauchy sequence in R with respect to the usual metric if and only if it
is a Cauchy sequence with respect to d. □

7.26. Is the metric space S[−1, 1] of continuous functions on the
interval [−1, 1] with metric given by the norm

(a) ∥ f ∥p =
(∫ 1

−1 | f (x) |p dx
) 1/p

for p ≥ 1;
(b) ∥ f ∥∞ = max {| f (x) |; x ∈ [−1, 1]}

complete?

Solution. The case (a). Let us, for every n ∈ N, de�ne a function
fn(x) = 0, x ∈ [−1, 0) , fn(x) = 1, x ∈ [ 1

n
, 1
]
,

fn(x) = nx, x ∈ [0, 1
n

)
.

The obtained sequence {fn}n∈N ⊂ S[−1, 1] is a Cauchy sequence of
functions. To verify it is a Cauchy sequence, it su�ces, using the geo-
metrical meaning of de�nite integral, to express(

1∫
−1

| fm(x)− fn(x) |p dx
) 1/p

<

(
1/n∫
0

1 dx

) 1/p

= ( 1
n

)1/p

for every m ≥ n, m, n ∈ N.
Let us focus on the potential limit of the sequence {fn} in S[−1, 1].

Let us assume it exists and denote it by f . For every ε ∈ (0, 1), there
apparently exists an n(ε) ∈ N such that

fn(x) = 0, x ∈ [−1, 0], fn(x) = 1, x ∈ [ε, 1]
for all n ≥ n(ε). Therefore, the continuous function f must satisfy

f (x) = 0, x ∈ [−1, 0], f (x) = 1, x ∈ [ε, 1]
for an arbitrarily small ε > 0. Thus, necessarily,

f (x) = 0, x ∈ [−1, 0], f (x) = 1, x ∈ (0, 1].
However, this function is not continuous on [−1, 1] � it does not be-
long to the consideredmetric space. Therefore, the sequence {fn} does
not have a limit in S[−1, 1], so this space is not complete.

The case (b). Let an arbitrary Cauchy sequence {fn}n∈N ⊂
S[−1, 1] be given. The terms of this sequence are continuous func-
tions fn on [−1, 1] having the property that for ε > 0 (or for every
ε/2 if you want) there is an n(ε) ∈ N such that

(7.29) max
x∈[−1,1]

| fm(x)− fn(x) | < ε

2
, m, n ≥ n(ε).

In particular, we get for every x ∈ [−1, 1] a Cauchy sequence
{fn(x)}n∈N ⊂ R of numbers. Since the metric space R with the usual
metric is complete, every (for x ∈ [−1, 1]) sequence {fn(x)} is con-
vergent. Let us set

f (x) := lim
n→∞ fn(x), x ∈ [−1, 1].
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elements x̃, ỹ, z̃, and we easily get

d̃(x̃, z̃) = lim
i→∞ d(xi, zi)

≤ lim
i→∞ d(xi, yi)+ lim

i→∞ d(yi, zi)

= d̃(x̃, ỹ)+ d̃(ỹ, z̃).

Apparently, the restriction of the metric d̃ just de�ned to the

original spaceX is identical to the original metric because the orig-

inal points are represented by constant sequences.

It remains to prove that X is dense in X̃ and that the con-

structed metric space is complete. We want to prove that for any

�xed Cauchy sequence x̃ = {xi} and every (no matter how small)

ε > 0, we can �nd an element y of the original space such that the
distance of the constant sequences of y's from the chosen sequence

xi does not exceed ε. However, since the sequence xi is a Cauchy

sequence, all pairs of its terms xn, xm will eventually (i. e. for suf-

�ciently large indecesm and n) become closer than ε to each other.

Then the choice y = xn for one of those indeces necessarily gives

that the elements y and xm will be closer than ε, and so, from the

limit point of view, it will hold that d̃(ỹ, x̃) ≤ ε.

Finally, it remains to prove that Cauchy sequences of points of

the extended space X̃ with respect to the metric d̃ are necessarily

convergent. In other words, we want to show that repeating the

above procedure does not yield new points. This can be done by

approaching the points of a Cauchy sequence x̃k by points yk from

the original spaceX so that the resulting sequence ỹ = {yi} would
be the limit of the original sequence with respect to the metric d̃.

Since we already know that X is a dense subset in X̃, we can

choose, for every element x̃k of our �xed sequence, an element zk ∈
X so that the constant sequence z̃k would satisfy d̃(x̃k, z̃k) < 1/k.
Now, let us consider the sequence z̃ = {z0, z1, . . . }. The original
sequence x̃ is Cauchy, i. e. for a �xed real number ε > 0, there is
an index n(ε) such that d̃(x̃n, x̃m) < ε/2 whenever both m and n

are greater than n(ε). Without loss of generality, we can assume

that our index n(ε) is greater than or equal to 4/ε. Now, for m and

n greater than n(ε), we get:

d(zm, zn) = d̃(z̃m, z̃n)

≤ d̃(z̃m, x̃m)+ d̃(x̃m, x̃n)+ d̃(x̃n, z̃n)

≤ 1/m+ ε/2 + 1/n ≤ 2
ε

4
+ ε

2
= ε.

Thus it is a Cauchy sequence zi of elements inX, and so z̃ ∈ X̃. Let
us examine whether the distance d̃(x̃n, z̃) approaches zero, which

we tried to guarantee by the construction. From the triangle in-

equality,

d̃(z̃, x̃n) ≤ d̃(z̃, z̃n)+ d̃(z̃n, x̃n).

However, from our previous bounds, it follows that both the sum-

mands on the right-hand side converge to zero, thereby �nishing

the proof. □

In the following three paragraphs, we will introduce quite

simple three theorems about complete metric spaces. They are

highly applicable in both mathematical analysis and verifying con-

vergence of numerical methods.
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Letting m → ∞ in (∥7.29∥), we obtain
max

x∈[−1,1]
| f (x)− fn(x) | ≤ ε

2 < ε, n ≥ n(ε).

However, this means that the sequence {fn}n∈N converges uniformly
to the function f on [−1, 1]. In other words, {fn}n∈N converges to f
with respect to the given norm. We have already found that a uniform
limit of continuous functions is a continuous function. Thanks to that,
we need not prove that f ∈ S[−1, 1]. Therefore, the metric space is
complete.

Let us mention that we could arrive at the same results (using
the same reasoning in both cases) for the more general metric space
S[a, b] of continuous functions on [a, b] as well. □

7.27. One of the most important classi�cations of metric spaces is
given by the so-called principle of nested balls. It says that a met-
ric space (X, d) is complete if and only if every sequence {An}n∈N of
nested (i. e., An+1 ⊆ An, n ∈ N) non-empty closed sets An satis�es

(7.30)
∩
n∈N

An ̸= ∅.

However, there is one more part of this theorem - a requirement upon
the considered sequences {An}. It must hold that
(7.31) lim

n→∞ sup {d(x, y); x, y ∈ An} = 0.

Find out whether this requirement can be omitted.

Solution. The requirement (∥7.31∥), probably contrarily tomany read-
ers' expectations, cannot be omitted: the statement would become
false. We need to give a counterexample proving that the statement
does not hold without the mentioned condition.

For that purpose, let us consider the set X = N with metric

d(m, n) = 1 + 1
m+n , m ̸= n, d(m, n) = 0, m = n.

The �rst and second properties are clearly satis�ed. To prove the trian-
gle inequality, it su�ces to realize that d(m, n) ∈ (1, 4/3] if m ̸= n.
All Cauchy sequences can be found equally easily: they are the so-
called almost stationary sequences � constant from some index on
(i. e., constant except for �nitely many terms). Thus, every Cauchy
sequence is convergent, so the metric space in question is complete.

Let us introduce the sets

An := {
m ∈ N; d(m, n) ≤ 1 + 1

2n

}
, n ∈ N.

As the inequality in their de�nition is not strict, it is guaranteed that
they are closed sets. Since An = {n, n + 1, . . . }, (∥7.30∥) does not
hold. If we omitted the requirement (∥7.31∥), it would mean that the
metric space is not complete, which is not true. Finally, let us mention
that

lim
n→∞ sup {d(x, y); x, y ∈ An} = lim

n→∞
(
1 + 1

2n+1

) = 1 ̸= 0.

□

7.28. Prove that the metric space l2 is complete.

Solution. Let us consider an arbitrary Cauchy sequence {xn}n∈N in the
space l2. However, every term of this sequence is again a sequence, i.
e., xn = {xkn}k∈N, n ∈ N. Let us mention that, of course, the range of
indeces does not matter � there is no di�erence whether n, k ∈ N or
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7.19. Banach's contraction principle. A mapping F : X → X

on a metric spaceX with metric d is called a contrac-

tion mapping i� there is a real constant 0 ≤ C < 1
such that for all elements x, y in X,

d(F (x), F (y)) ≤ C d(x, y).

Theorem. If F is a contraction mapping on a complete metric

space X, then it has a �xed point, i. e., there is a z ∈ X such that

F(z) = z.

Proof. The proof naturally follows the intuitive idea suggest-

ing that if iterative application of a contractionmapping to an initial

value z0 ∈ X should "accumulate" to some point. Themetric space

X, of course, needs to be complete; otherwise it could happen that

the limit point does not exist in it.

Let us choose an arbitrary z0 ∈ X and consider the sequence

zi , i = 0, 1, . . .

z1 = F(z0), z2 = F(z1), . . . , zi+1 = F(zi), . . .

From the assumptions, we have

d(zi+1, zi) = d(F (zi), F (zi−1))

≤ C d(zi, zi−1) ≤ · · · ≤ Ci d(z1, z0).

The triangle inequality then implies that for all natural numbers j ,

d(zi+j , zi) ≤
j∑
k=1

d(zi+k, zi+k−1)

≤
j∑
k=1

Ci+k−1d(z1, z0) = Ci d(z1, z0)

j∑
k=1

Ck−1

≤ Ci d(z1, z0)

∞∑
k=1

Ck−1 = Ci

1 − C
d(z1, z0).

Now, for every positive (no matter how small) ε, the right-hand

expression is surely less than ε for su�ciently large indeces i, i. e.,

d(zi, zi+j ) ≤ Ci

1 − C
d(z1, z0) ≤ ε.

However, this just says that our sequence zi is a Cauchy sequence.

Thanks to the spaceX being complete, its limit z surely exists, and

all that remains to be proved is F(z) = z.

However, every contraction mapping is clearly continuous.

Therefore,

F(z) = F( lim
n→∞ zn) = lim

n→∞F(zn) = z.

This �nishes the proof. □

7.20. Cantor intersection theorem. For any set A in a metric

space X with metric d, the real number

diamA = sup
x,y∈A

d(x, y)

is called the diameter of the set A. The set A is said to be bounded

i� diamA < ∞.

Theorem. If A1 ⊃ A2 ⊃ · · · ⊃ Ai ⊃ . . . is a non-decreasing

sequence of non-empty closed subsets in a complete metric spaceX

and diamAi → 0, then there is exactly one point x ∈ X belonging

to the intersection of all the sets Ai .
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n, k ∈ N ∪ {0}. Let us introduce helping sequences yk for k ∈ N so
that

yk = {ynk }n∈N = {
xkn
}
n∈N .

If {xn} is a Cauchy sequence in l2, then each of the sequences yk is a
Cauchy sequence in R (the sequences yk are sequences of real num-
bers). It follows from the completeness ofR (with respect to the usual
metric) that all of the sequences yk are convergent. Let us denote their
limits by zk, k ∈ N.

It su�ces to prove that z = {zk}k∈N ∈ l2 and that the sequence
{xn} converges for n → ∞ in l2 just to the sequence z. The sequence
{xn}n∈N ⊂ l2 is a Cauchy sequence; therefore, for every ε > 0, there
is an n(ε) ∈ N with the property that

∞∑
k=1

(
xkm − xkn

)2
< ε, m, n ≥ n(ε), m, n ∈ N.

In particular,
l∑

k=1

(
xkm − xkn

)2
< ε, m, n ≥ n(ε), m, n, l ∈ N,

whence, letting m → ∞, we can obtain
l∑

k=1

(
zk − xkn

)2 ≤ ε, n ≥ n(ε), n, l ∈ N,

i. e. (this time l → ∞)

(7.32)
∞∑
k=1

(
zk − xkn

)2 ≤ ε, n ≥ n(ε), n ∈ N.

Especially, we have
∞∑
k=1

(
zk − xkn

)2
< ∞, n ≥ n(ε), n ∈ N

and, at the same time,
∞∑
k=1

(
xkn
)2
< ∞, n ∈ N,

which follows straight from {xn}n∈N ⊂ l2. Since

∞∑
k=1

(
zkx

k
n

) ≤
√

∞∑
k=1
z2
k ·
√

∞∑
k=1

(
xkn
)2
, n ∈ N

and
∞∑
k=1

(
zk − xkn

)2 =
∞∑
k=1

[
z2
k − 2zkxkn + (

xkn
)2
]
, n ∈ N,

it must be that
∞∑
k=1
z2
k < ∞.

Thus we have proved that z ∈ l2. The fact that {xn} converges for
n → ∞ to z in l2 follows from (∥7.32∥). □

7.29. In the metric space S[−1, 1] with metric given by the norm
∥ · ∥∞, consider the sets

A = {f ∈ S[−1, 1]; f (0) ∈ (0, 2)},

B = {f ∈ S[−1, 1];
1∫

−1

f (x) dx = 0}.

Are these sets open, closed?



CHAPTER 7. CONTINUOUS MODELS

Proof. Let us select one point zi for each set Ai . Since

diamAi → 0, for every positive real number ε, we can �nd an

index n(ε) such that for all Ai with indeces i ≥ n(ε), their diame-

ters are less than ε. However, then for so large indeces i, j , we will

have d(zi, zj ) ≤ ε, and thus our sequence is a Cauchy sequence.

Therefore, it has a limit point z ∈ X, which, of course, must be a

limit point of all the sets Ai , thus it belongs to all of them (since

they are all closed) and so to their intersection.

We have proved the existence of z. Now, it remains to prove its

uniqueness. For that purpose, assume there are points z and y, both

belonging to the intersection of all the sets Ai . Then their distance

must be less than the diameter of the sets Ai , but that converges to

zero. This completes the proof. □

7.21. Theorem (Baire theorem). If X is a complete metric space,

then the intersection of every countable system of

open dense sets Ai is a dense set in the metric space

X.

Proof. Let a system of dense open sets Ai , i = 1, 2 . . . , be
given in X. We want to show that the set A = ∩∞

i=1Ai has a non-

empty intersection with any open set U ⊂ X. We will proceed

inductively, invoking the previous theorem.

Surely there is a z1 ∈ A1 ∩U , but since the setA1 is open, the

closure of an ε1-neighborhood U1 (for su�ciently small ε1) of the

point z1 is contained inA1 as well. Let us denote the closure of this

ε1�ballU1 byB1. Further, let us suppose that the points zi and their

open εi�neighborhoods Ui are already chosen for i = 1, . . . , n.
Since the set An+1 is open and dense in X, there is a point zn+1 ∈
An+1 ∩ Ūn; however, since An+1 ∩ Un is open, the point zn+1
belongs to it together with a su�ciently small εn+1-neighborhood

Un+1. Then, the closures surely satisfy Bn+1 = Ūn+1 ⊂ Ūn, and

so the closed set Bn+1 is contained in An+1 ∩ Ūn. Moreover, we

can assume that εn ≤ 1/n.
If we proceed in this inductive way from the original point z1

and the set B1, we get a non-decreasing sequence of non-empty

closed sets Bn whose diameter approaches zero. Therefore, there

is a point z common to all of these sets, i. e.,

z ∈ ∩∞
i=1Ūi = ∩∞

i=1Bi ⊂ ∩∞
i=1An ∩ U,

which is the statement to be proved. □

7.22. Bounded and compact sets. The following concepts facil-

itated the phrasing of our observations about the real

numbers. They can be reformulated for general met-

ric spaces with almost no changes.:

An interior point of a subset A in a metric space

is such an element of A which belongs to it together with some of

its ε�neighborhoods.

A boundary point of a set A is an element x ∈ X such that

each of its neighborhoods has a non-empty intersection with both

A and the complement X \ A. A boundary point may or may not

belong to the set A itself. A.

An open cover of a set A is a system of open sets Ui ⊂ X,

i ∈ I , such that their union contains the whole of A.
An isolated point of a set A is an element a ∈ A such that one

of its ε�neighborhoods inX has the singleton intersection {a}with
A.

A set A of elements of a metric space is called bounded i� its

diameter is �nite, i. e., there is a real number r such that d(x, y) ≤
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Solution. The interior of a setM is the set of all interior points ofM
and it is usually denoted by M0 . A set M is then open if and only if
M = M0 . Similarly, we de�ne the closure of a setM as the set of all
points having zero distance fromM; it is denoted byM . We can easily
see that a setM is closed if and only ifM = M . Since

A0 = A, A = {f ∈ S[−1, 1]; f (0) ∈ [0, 2]}, B0 = ∅, B = B,

the set A is open and not closed, and, the other way around, the set B
is closed and not open. □
7.30. Let an arbitrary set X ̸= ∅ be given. The mapping d : X ×
X → R de�ned by the formula

d(x, y) := 1, x ̸= y, d(x, y) := 0, x = y

is clearly a metric on X. We talk about the so-called trivial or (more
often) discrete metric space (X, d).

(a) Describe all Cauchy and convergent sequences in (X, d).

(b) Describe all open, closed, and bounded sets in (X, d).

(c) Describe interior, boundary, limit, and isolated points of an
arbitrary set in (X, d).

(d) Describe all compact sets in (X, d).

Solution. The case (a). For an arbitrary sequence {xn}n∈N to be a
Cauchy sequence, it is necessary in this space that there is an index
n ∈ N such that xn = xn+m for allm ∈ N. Any sequencewith this prop-
erty then necessarily converges to a common value xn = xn+1 = · · ·
(we talk about almost stationary sequences). Besides others, we have
proved that the metric space (X, d) is complete.

The case (b). The open 1-neighborhood of any element contains
this element only. Therefore, every singleton set is open. Since the
union of any number of open sets is an open set, every set is open
in (X, d). However, this also means that every set is closed as well.
The fact that the 2-neighborhood of any element coincides with the
whole space implies that every set is bounded in (X, d).

The case (c). Once again, we make use of the fact that the open
1-neighborhood of any element contains this element only. Hence it
follows that every point of any set is both its interior and its isolated
point and that the sets have neither boundary nor limit points.

The case (d). Every �nite set in an arbitrary metric space is appar-
ently compact (it de�nes a compact metric space by restricting the do-
main of d). It follows from the classi�cation of convergent sequences
(see (a)), that no in�nite sequence can be compact in (X, d). □
7.31. Decide whether the set (known as Hilbert cube)

A = {{xn}n∈N ∈ l2; | xn | ≤ 1
n
, n ∈ N

}
is compact in l2. Then, decide the compactness of the set

B = {{xn}n∈N ∈ l∞; | xn | < 1
n
, n ∈ N

}
in the space l∞.

Solution. We know that the space l2 is complete. Every closed subset
of a complete metric space de�nes a complete metric space. The setA
is apparently closed in l2, so it su�ces to show that it is totally bounded,
and we will get its compactness.

Let us begin with the well-known series
∞∑
k=1

1
k2 = π2

6 .
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r for all elements x, y ∈ A. In the other case, the set is said to be
unbounded.

Ametric spaceX is called compact i� every sequence of terms

xi ∈ X has a subsequence converging to some point x ∈ X.
In the case of the real numbers, we mentioned several charac-

terizations of compactness. The concept of bounded-

ness is a bit more complicated in the case of metric

spaces. For any subsets A, B ⊂ X in a metric space

X with metric d, we de�ne their distance

dist(A,B) = sup
x∈A,y∈B

{d(x, y)}.

If A = {x} is a singleton set, we talk about the distance dist(x, B)
of the point x from the setB. We say that ametric spaceX is totally

bounded i� for every positive real number ε, there is a �nite set A

such that

dist(x,A) < ε

for all points x ∈ X. Let us remind that a metric space is bounded
i� the whole X has a �nite diameter.

We can immediately see that a totally bounded space is es-

pecially bounded. Indeed, the diameter of a �nite set is always

�nite, and if A is the set corresponding to ε from the de�nition of

total boundedness, then the distance d(x, y) of two points can al-

ways be bounded by the sum of dist(x,A), dist(y,A), and diamA,

which is a �nite number. In the case of a metric on a subset of a

�nite-dimensional Euclidean space, these concepts coincide since

the boundedness of a set guarantees the boundedness of all coordi-

nates in a �xed orthonormal basis, and this implies the total bound-

edness. (Verify this in detail by yourselves!)

Theorem. The following statements about a metric space X are

equivalent:

(1) X is compact,

(2) every open cover of X contains a �nite cover,

(3) X complete and totally bounded.

Sketch of the proof. If the second statement of the theorem

is satis�ed, the we can easily see that the space X must be totally

bounded. Indeed, it su�ces to choose the cover ofX consisting of

all ε�balls centered at the points x ∈ X. We can choose a �nite

cover from that and the set of centers xi of the balls participating in

this �nite cover already satis�es the condition from the de�nition

of total boundedness.

To prove the implication (2) H⇒ (3), we need to show the

completeness. Let us consider a Cauchy sequence xi .

□

7.23. Compactness on continuous functions. As an example of

the fact that the behavior of compactness may di�er in Euclidean

spaces from that in spaces of functions, we will mention a very

useful theorem, known as Arzela-Askoli theorem.

Theorem. A set M ⊂ C[a, b] is compact if and only if it is

bounded, closed, and equicontinuous.
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Therefore, for every ε > 0, there is an n(ε) ∈ N satisfying√
∞∑

k=n(ε)+1

1
k2 <

ε
2 .

>From each of the intervals [−1/n, 1/n] for n ∈ {1, . . . , n(ε)}, we
can choose �nitely many points xn1 , . . . , x

n
m(n) so that we would have

for any x ∈ [−1/n, 1/n] that

min
j∈{1,...,m(n)}

∣∣∣ x − xnj

∣∣∣ < ε√
5n
.

Let us consider such sequences {yn}n∈N from l2 whose terms with in-
deces n > n(ε) are zero, and at the same time,

y1 ∈ {x1
1 , . . . , x

1
m(1)

}
, . . . , yn(ε) ∈

{
x
n(ε)

1 , . . . , x
n(ε)

m(n(ε))

}
.

There are only �nitely many such sequences and they create an ε-net
for A since√

ε2

5 + ε2

52 + · · · + ε2

5n(ε) + ε
2 < ε ·

√
1

1− 1
5

− 1 + ε
2 = ε.

Since ε > 0 is arbitrary, the set A is totally bounded, which implies
its compactness.

It is very simple to determine whether the setB is compact. Every
compact set must be closed, but the set B is not. Its closure is

B = {{xn}n∈N ∈ l∞; | xn | ≤ 1
n
, n ∈ N

}
.

The set B is compact. The proof of this fact is much simpler than for
the set A, thus we leave it as an exercise for the reader. □

D. Integral operators

The convolution is one of the tools for smoothing functions:

7.32. Determine the convolution f1 ∗ f2 where

f1(x) = 1
x

for x ̸= 0

f2(x) =
{
x for x ∈ [0, 1]
0 otherwise

Solution. The value of the convolution at a point t is given by the
integral

∫∞
−∞ f1(x)f2(t − x) dx. The integrated function is non-zero

if the second factor is non-zero, i. e., if (t−x) ∈ [−1, 1], i. e., x ∈ [t−
1, t+1]. The value of the convolution at the point t can be interpreted
as the integral mean of the function f1 over the interval (t − 1, t + 1).
When integrating over this interval, we have to distinguish whether
the number 0 belongs to it. If the interval contains zero, the integral
must be split into two improper integrals. However, the value of the
smaller one can be subtracted thanks to the function 1

x
being odd, so

the integral
∫ t+1

1−t
1
x

dx remains (think out why the formula works for
negative numbers t as well). Thus, we get:

f1 ∗ f2(t) =
{ ∫ t+1

t−1
1
x

dx = ln | t+1
t−1 | for t ∈ (−∞,−1] ∪ [1,∞],∫ 1+t

1−t
1
x

dx = ln | 1+t
1−t | for t ∈ [−1, 1].

□
Now, let us try to calculate the convolution of two functions both

of which have a �nite support.
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7.24. Proof of theorem 7.8 about Fourier series. The general

context of metrics and convergence allows us now to get

back to the proof of the theorem in which we got a �rst

idea about piecewise and other convergences of Fourier se-

ries. However, we do not care about necessary conditions

for convergence, and many other formulations can be found in lit-

erature. On the other hand, our theorem 7.8 was quite simple and

concerned a good deal of useful cases.

Firstly, it is good to realize how convergences may di�er with

respect to di�erent Lp norms. For the sake of simplicity, we will

always work in the completion of the space S0
c or S

1
c with respect

to the corresponding norm, without thinking about what the spaces

actually look like (even though they could be described quite easily

with the help of Kurzweil integral).

Hölder's inequality (applied to functions f and constant 1)
yields the �rst of the following bounds on S0 [a, b]:∫ b

a

|f (x)|dx ≤ |a − b|1/q
(∫ b

a

|f (x)|p dx
)1/p

≤ |a − b|1/qC1/q
(∫ b

a

|f (x)| dx
)1/p

,

where p > 1 and 1/p + 1/q = 1, C ≥ |f (x)| on the whole

interval [a, b] (such a uniform bound by a constant always exists

if f ∈ S0 [a, b]). The second bound follows immediately from the

bound |f (x)|p ≤ Cp−1 |f (x)| and the relation 1 − 1/p = 1/q.
Thus it is apparent from the �rst bound that Lp�convergence

fn → f is, for any p > 1, always stronger than L1�convergence

(and with a merely modi�ed bound, we can derive an even stronger

proposition, namely that Lq�convergence is stronger than Lp�

convergence whenever q > p; try this by yourselves). However, to

apply the second bound, we have to require uniform boundedness

of the sequence of functions fn, i. e. the bound for the functions fn
by a constant C must be independent of n. Then we can assert that

|fn(x)−f (x)| ≤ 2C, and our bound implies that L1�convergence

is stronger than Lp�convergence.

Therefore, all our Lp�norms on our space S
0 [a, b] are equiv-

alent with regard to convergence of uniformly bounded sequences

of functions.

The most di�cult (and most interesting) part is to prove the

�rst statement of the theorem 7.8, which is in literature often ref-

erenced as Dirichlet condition (it is deemed to be derived as early

as in 1824). First, we prove how this property of piecewise con-

vergence implies the statements (2) and (3) of the theorem to be

proved. Without loss of generality, we can assume that we are

working on the interval [−π, π ], i. e. with period T = 2π .
As the �rst step, we prepare simple bounds for the coe�cients

of the Fourier series. A bound-of-course is

|an| ≤ 1
π

∫ π

−π
|f (x)| dx,

and the same for all the coe�cients bn since both cos(x) and sin(x)
are bounded by 1 in absolute value. However, if f is a continuous

function in S1 [a, b], we can integrate by parts, thus obtaining

an(f ) = 1
π

∫ π

−π
f (x) cos(nx)dx

= 1
nπ

[f (x) sin(nx)]π−π − 1
nπ

∫ π

−π
f ′(x) sin(nx) dx
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7.33. Determine the convolution f1 ∗ f2 where

f1(x) =
{

1 − x2 for x ∈ [−1, 1],
0 otherwise,

f2(x) =
{
x for x ∈ [0, 1],
0 otherwise.

Solution. The value of the convolution f1 ∗ f2 at a point t is given by
the integral over all real numbers of the product of the function f1(x)

and the function f2(t − x) with respect to the variable x (see 7.13).
Thus, this value is zero if either of the values f1(x) and f2(t − x) is
zero for any real x. On the other hand, the value of the convolution can
be non-zero at a point t only if there are numbers x such that f1(x) ̸=
0 ̸= f2(t − x). By the de�nitions of the given functions, this occurs if
there are numbers x ∈ [−1, 1] (f1(x) ̸= 0) such that (t − x) ∈ [0, 1]
(f2(t−x) ̸= 0). I. e., f1∗f2(t) can be non-zero if [t−1, t+1]∩[0, 1] ̸=
∅. This happens for t ∈ [−1, 2]. We integrate over x belonging to the
intersection of the intervals [t − 1, t + 1] and [0, 1]. Further, this
intersection depends on t ∈ [−1, 2]:

a) for t ∈ [−1, 0], we have [t − 1, t + 1] ∩ [0, 1] = [0, t + 1],
b) for t ∈ [0, 1], we have [t − 1, t + 1] ∩ [0, 1] = [0, 1],
c) for t ∈ [1, 2], we have [t − 1, t + 1] ∩ [0, 1] = [t − 1, 1].

According to the intersection of these intervals, we then have: a)∫ ∞

−∞
f1(x)f2(t − x) dx =

∫ t+1

0
f1(x)f2(t − x) dx

=
∫ t+1

0
(1 − x2 )(t − x) dx = −1

4
t4 + t2 + 2

3
t − 1

4
,

b) ∫ ∞

−∞
f1(x)f2(t − x) =

∫ 1

0
f1(x)f2(t − x)

=
∫ 1

0
(1 − x2 )(t − x) dx = 2

3
t − 1

4
,

c) ∫ ∞

−∞
f1(x)f2(t − x) =

∫ 1

t−1
f1(x)f2(t − x)

=
∫ 1

t−1
(1 − x2 )(t − x) dx = 1

12
t4 − t2 + 4

3
t.

Altogether, we get:

f1 ∗ f2(t) =


− 1

4 t
4 + t2 + 2

3 t − 1
4 for t ∈ [−2,−1],

2
3 t − 1

4 for t ∈ [−1, 1],
1
12 t

4 − t2 + 4
3 t for t ∈ [1, 2]

0 otherwise.

□
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= 1
n
bn(f

′).

We write an(f ) for the corresponding coe�cient of the function

f , and so on.

Thus we can see that the "smoother" a function is, the more

rapidly the Fourier coe�cients approach zero. Iterating this pro-

cedure, we really obtain a bound for functions f in Sk+1 [−π, π]
with continuous derivatives up to order k inclusive

|an(f )| ≤ 1
nk+1π

∫ π

−π
|f (k+1)(x)|dx,

and the same for bn(f ). In other words, for su�ciently smooth

functions f , the nk�multiples of their Fourier coe�cients an and

bn are bounded by the L1-norm of their k�th derivative f (k).

Let us thus consider a continuous function f in the space

S1 [a, b] such that the partial sums of its Fourier series converge

pointwise to f . Then we can assert that

|sN (x)− f (x)| =
∣∣∣∣ ∞∑
k=N+1

(ak cos(kx)+ bk sin(kx))
∣∣∣∣

≤
∞∑

k=N+1

(|ak| + |bk|).

The right-hand side can further be estimated by the coe�cients a′
n

and b′
n of the derivative f ′ (invoking Hölder's inequality for the

Lp and Lq norms for in�nite series with p = q = 2, see 7.15, and
Bessel's inequality for general Fourier series, see 7.5.(2))

|sN (x) − f (x)| ≤
∞∑

k=N+1

1
k
(|a′

k| + |b′
k|)

≤
(

2
∞∑

k=N+1

1
k2

)1/2( ∞∑
k=N+1

(|a′
k|2 + |b′

k|2)
)1/2

≤ √
2
(∫ ∞

N

1
x2 dx

)1/2 1√
π

∥f ′∥2

=
(√

2√
π

∥f ′∥2

)
· 1√

N
.

Thus we have obtained not only a proof of the uniform convergence

of our series to the anticipated value, but also a bound for the speed

of the convergence:

sup
x∈R

|sN (x)− f (x)| ≤
(√

2√
π

∥f ′∥2

)
· 1√

N
.

This proves the statement 7.8.(2), supposing the Dirichlet condi-

tion 7.8.(1) holds.

7.25. L2�convergence. In the next step of our proof, we will de-

riveL2�convergence of Fourier series under the con-

dition of uniform convergence. The proof utilizes the

common technique of approximation objects which

are not continuous by ones which are. We will de-

scribe it without further details. Interested readers should be able

to �ll in the gaps by themselves without any di�culties. First, we

will formulate the statement we need in general:

Lemma. A subset of continuous functions f in S0 [a, b] on a �nite
interval [a, b] is a dense subset in this space with respect to the

L2�norm.
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7.34. Determine the convolution f1 ∗ f2 of the functions

f1 =
{

1 − x for x ∈ [−2, 1],
0 otherwise,

f2 =
{

1 for x ∈ [0, 1],
0 otherwise.

⃝
7.35. Find the Fourier transform F(f ) = f̃ of the function

f (t) = sgn t, t ∈ (−1, 1) ; f (t) = 0, t ∈ R∖ (−1, 1) ,

i. e., f (0) = 0, f (t) = 1 for t ∈ (0, 1) and f (t) = −1 for t ∈ (−1, 0).

Solution. The Fourier transform of the given function is

F(f )(ω) = 1√
2π

∞∫
−∞

f (t) e−iωt dt =

1√
2π

1∫
−1

sgn t [cos (ωt) − i sin (ωt)] dt.

Since the product of any two odd functions is an even function, the
product of an even function and an odd function is an odd function
and since the integral of an odd function over the interval [−1, 1] is 0
(if this integral exists at all) and the integral of an even function over
the interval [−1, 1] is twice the integral over [0, 1], we further get

F(f )(ω) = 2√
2π

1∫
0

−i sin (ωt) dt = 2i√
2π

[
cos(ωt)
ω

]1

0
= i

√
2
π

cos ω−1
ω

.

If we directly used the known expression of the Fourier transform
of an odd function f , we would obtain more easily that

F(f )(ω) = −2i√
2π

∞∫
0
f (t) sin (ωt) dt = −2i√

2π

1∫
0

sin (ωt) dt = · · · =

i

√
2
π

cos ω−1
ω

.

□

7.36. Describe the Fourier transform F(f ) of the function
f (t) = e−at2 , t ∈ R,

where a > 0.

Solution. Our task is to calculate

F(f )(ω) = 1√
2π

∞∫
−∞

e−at2 e−iωt dt.

Di�erentiating (with respect to ω) and then integrating by parts (for
F ′ = −it e−at2 , G = e−iωt ) gives

(F(f )(ω))′ = 1√
2π

∞∫
−∞

−it e−at2 e−iωt dt =
1√
2π

(
lim
t→∞

i
2a e

−at2 −iωt − lim
t→−∞

i
2a e

−at2 −iωt −
∞∫

−∞
i(−iω)

2a e−at2 e−iωt dt
)

=

1√
2π

(
i

2a lim
t→∞ e−at2 − i

2a lim
t→−∞ e−at2 −

∞∫
−∞

ω
2a e

−at2 e−iωt dt
)

=

− ω
2a

(
1√
2π

∞∫
−∞

e−at2 e−iωt dt
)

= − ω
2a F(f )(ω).



CHAPTER 7. CONTINUOUS MODELS

The idea of the proof can be seen well at the example of ap-

proximation of Heaviside's function h on the interval [−π, π ]. For
every δ satisfying π > δ > 0, we de�ne the function fδ as x/δ for
|x| ≤ δ and fδ(x) = h(x) otherwise. Apparently, all the functions

fδ are continuous since the point of discontinuity was overcome by

a convenient linear function on an interval whose size is controlled

by δ. It can be calculated very easily that ∥h − fδ∥2 → 0 as the

function f is bounded in absolute value, and so the contribution

of the integration over a decreasing interval has to approach zero.

All discontinuity points of a general function f can be cared

for in exactly the same way. There are only �nitely many of them,

and so all of the considered functions are limit points of sequences

of continuous functions.

Now, our proof is already simple because for the given func-

tion f , the distance of the partial sums of its Fourier series can be

bounded with the help of a continuous approach fε in this way (all

norms in this paragraph are the L2 norms):

∥f − sN (f )∥ ≤ ∥f − fε∥ + ∥fε − sN (fε)∥ + ∥sN (fε)− sN (f )∥
and the particular summands on the right-hand side can be con-

trolled.

The �rst one of them is at most ε, and according to the assump-

tion of uniform convergence for continuous functions, the second

summand can be bounded equally tightly. It is good to notice that

the third one is the size of the partial sum of the Fourier series for

f − fε. Thus we have

∥f − fε − sN (f − fε)∥ ≤ ∥f − fε∥.
Therefore, (thanks to the triangle inequality)

∥sN (f − fε)∥ ≤ 2∥f − fε∥ ≤ 2ε.

Altogether, we have bounded the whole distance for su�ciently

close continuous functions and su�ciently large numbersN by the

number 4ε. This veri�es the L2 convergence we wanted to prove.

7.26. Dirichlet kernel. Finally, we get to the proof of the �rst

statement of theorem 7.8. It follows straight from

the de�nition of the Fourier series F(t) for a function

f (t), using its expression with the complex exponen-

tial in 7.7, that the partial sums sN (t) can be written
as

sN (t) = 1
T

N∑
k=−N

∫ T/2

−T/2
f (x) e−iωkx eiωkt dx,

where T is the period we are working with and ω = 2π/T . This
expression can be rewritten as

sN (t) =
∫ T/2

−T/2
KN (t − x)f (x) dx,

and the function

KN (y) = 1
T

N∑
k=−N

eiωky

is called Dirichlet kernel. Let us notice that the sum is a piece of a

geometric series with common ratio eiωy . Thus it can be expressed
explicitly for all y ̸= 0 in the following way (both the numerator
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Therefore, let us look for functions y(ω) = F(f )(ω)which satisfy
the di�erential equation

(7.33) y′ = − ω

2a
y.

Writing y′ = dy/dω, we have
dy

dω
= − ω

2a y, i. e. 1
y
dy = − ω

2a dω,

unless the function y equals zero (apparently, y ≡ 0 is a solution of
(∥7.33∥)). Integration yields

ln | y | = −ω2

4a − ln |C |, i. e. y = ± 1
C
e− ω2

4a ,

whereC ∈ R∖{0}. Including the zero solution as well, we can express
all the solutions of the di�erential equation (∥7.33∥) as the functions

y(ω) = K e− ω2
4a , K ∈ R.

Let us supplement the determination of the constant K for which
we get F(f )(ω). Later (in connection with the so-called normal dis-
tribution in statistics), we will learn that

∞∫
−∞

e−x2
dx = √

π,

whence it follows that
∞∫

−∞
e−at2 dt = 1√

a

∞∫
−∞

e−x2
dx =

√
π√
a
.

Therefore,

F(f )(0) = 1√
2π

√
π√
a

= 1√
2a

and F(f )(0) = K e0 = K.

Altogether, we have

F(f )(ω) = 1√
2a
e− ω2

4a .

□

7.37. Determine the function f whose Fourier transform is the func-
tion

f̃ (ω) = 1√
2π

sin ω
ω
, ω ̸= 0.

Solution. The inverse Fourier transform gives

f (t) = 1
2π

∞∫
−∞

sin ω
ω

eiωt dω =

1
2π

(
0∫

−∞
sin ω
ω

eiωt dω +
∞∫
0

sin ω
ω

eiωt dω

)
.

If we substitute −ω for ω in the integral over the interval (−∞, 0], we
will obtain

f (t) = 1
2π

(∞∫
0

sin ω
ω

e−iωt dω +
∞∫
0

sin ω
ω

eiωt dω

)
=

1
2π

∞∫
0

sin ω
ω

[cos (ωt) − i sin (ωt) + cos (ωt) + i sin (ωt)] dω =
1
π

∞∫
0

sin ω
ω

cos (ωt) dω.

Let us mention that the previous expression can be obtained already
from the fact that the function y = sin ω

ω
with maximal domain is even.

Using the identity

sin x · cos (xy) = 1
2

(
sin
[
x(1 + y)

] + sin
[
x(1 − y)

] )
, x, y ∈ R,
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and the denominator are multiplied by − e−iωy/2 to be able to sub-
stitute the real-valued function sin):

KN (y) = 1
T

e−iNωy − ei(N+1)ωy

1 − eiωy

= 1
T

− e−i(N+1/2)ωy + ei(N+1/2)ωy

eiωy/2 − e−iωy/2

= 1
T

sin((N + 1/2)ωy)
sin(ωy/2)

.

At the point y = 0, of course, we see that KN (0) = 1
T
(2N + 1).

It is apparent from the last expression that KN (y) is an even

function, and using l'Hospital's rule, we can calculate quickly that

it is continuous everywhere. Since all the partial sums of the series

for the constant function f (x) = 1 also equal 1, we get from the

de�nition of the Dirichlet kernel that∫ T/2

−T/2
KN (x)dx = 1.

In the case of periodic functions, the integrals over intervals whose

length equals the period are independent of the choice of the mar-

ginal points. Hence, changing the coordinates, we can also use the

expression

sN (x) =
∫ T/2

−T/2
KN (y)f (x + y) dy

for the partial sums.

Finally, we are fully prepared. First, we will focus on the case

when the function f is continuous and di�erentiable at the point

x. We want to prove that in this case, the Fourier series F(x) con-

verges to the value f (x) at the point x. We get

sN (x)− f (x) =
∫ T/2

−T/2
(f (x + y)− f (x))KN (y) dy.

The integrated expression can be rewritten into a form which re-

minds Fourier coe�cients of convenient functions:

f (x + y)− f (x)

sin(ωy/2)
sin((N + 1/2)ωy) =

= φx(y)(cos(ωy/2) sin(Nωy)+ sin(ωy/2) cos(Nωy)),

where we used the denotation

φx(y) = f (x + y)− f (x)

sin(ωy/2)

for y ̸= 0, while φx(0) = f ′(x). Let us notice that we needed the
di�erentiability and continuity of f at the point x in this step of

the proof.

Now, we can truly perceive the di�erence sN (x)−f (x) as the
sum of Fourier coe�cients bN (ψ1) and aN (ψ2) where

ψ1(y) = T

2
φx(y) cos(ωy/2), ψ2(y) = T

2
φx(y)sin(ωy/2).

However, this means that asN increases, this expression bN (ψ1)+
aN (ψ2) necessarily converges to zero (see 7.5.(2)).

For the end, we will look at the convergence in the case when

the function f or its derivative has a discontinuity point at x =
0. Since the function belongs to S1 , it is already continuous and

di�erentiable on a neighborhood of the point x = 0 (outside the
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which, besides others, follows from the sum formulae (for the sine
function), we get

f (t) = 1
2π

(∞∫
0

sin[ω(1+t) ]
ω

dω +
∞∫
0

sin[ω(1−t) ]
ω

dω

)
.

The substitutions u = ω (1 + t) , v = ω (1 − t) then give

f (t) = 1
2π

(∞∫
0

sin u
u
du−

∞∫
0

sin v
v
dv

)
= 0, t > 1;

f (t) = 1
2π

(∞∫
0

sin u
u
du+

∞∫
0

sin v
v
dv

)
= 1

π

∞∫
0

sin u
u
du, t ∈ (−1, 1);

f (t) = 1
2π

(
−

∞∫
0

sin u
u
du+

∞∫
0

sin v
v
dv

)
= 0, t < −1.

Thus we have proved that the function f is zero for | t | > 1 and con-
stant (necessarily non-zero) for | t | < 1. (All the way, we assume that
the inverse Fourier transform exists.)

Let us determine the function value f (0). The function

g(t) = 1, | t | < 1; g(t) = 0, | t | > 1

satis�es

F(g)(ω) = 1√
2π

1∫
−1

e−iωt dt = 2√
2π

1∫
0

cos (ωt) dt = 2√
2π

sin ω
ω
.

Hence it follows that f (0) = g(0)/2 = 1/2. Let us emphasize enu-
meration of the integral

∞∫
0

sin u
u
du = π

2 ,

which we have obtained as well. □

7.38. Solve the integral equation
∞∫
0
f (x) sin (xt) dt = e−x, x > 0

for an unknown function f .

Solution. If we multiply both sides of the equation by the number√
2/π , we obtain just the sine Fourier transform on the left-hand side.

Therefore, it su�ces to apply the inverse transform to the equation.
Thus we get

f (t) = 2
π

∞∫
0
e−x sin (xt) dx, t > 0.

Integrating by parts twice, we can obtain∫
e−x sin (xt) dx = e−x

1+t2 [− sin (xt) − t cos (xt) ] + C,

hence
∞∫
0
e−x sin (xt) dx =

lim
x→∞

(
e−x

1+t2 [− sin (xt) − t cos (xt) ]
)

− e0

1+t2 (−t) = t

1+t2 .

Therefore, the function

f (t) = 2
π

t

1+t2 , t > 0.

is the solution of the equation. □
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point itself). Let us split the f into its even part f1 and its odd part

f2, i. e.,

f (x) = 1
2
(f (x)+ f (−x))+ 1

2
(f (x)− f (−x)).

The value f1(0) at the point x = 0 is then de�ned as

1
2
( lim
y→0+

f (y)+ lim
y→0−

f (y)).

Then we can easily verify that the even part f1(x) is continuous

and di�erentiable at the point x = 0 (thanks to existence of the

one-sided limits), and so on the entire neighborhood of this point.

We are surely not surprised by the fact that the odd part satis�es

f2(0) = 0, and so does the Fourier series which contains only the
terms with sin(nωx).

Thus we can refer to the previous continuous case and obtain,

for the Fourier series F(x) of our function f , the identity

F(0) = F1(0)+ F2(0) = 1
2

(
lim
y→0+

f (y)+ lim
y→0−

f (y)
)+ 0,

which we wanted to prove.

In the case of discontinuity at a general point, we can proceed

similarly, and the whole proof has come to an end (so has the proof

of the statements (2) and (3) of theorem 7.8 where we required that

the Dirichlet condition be true).

3. Integral operators

7.27. Integral operators. In the case of �nite-dimensional vector

spaces, we can perceive the vectors as mappings from

a �nite set of �xed generators into the space of coor-

dinates. The sums of vectors and the scalar multiples

of vectors were then given by the corresponding oper-

ations with such functions. Then we worked with the vector spaces

of functions of a real variable in the same way when their values

were scalars (or vectors as well).

The simplest linear mapping α between vector spaces mapped

vectors to scalars (the so-called linear forms). It was de�ned as

the sum of products of coordinates xi of vectors with �xed values

αi = α(ei) at the generators ei , i. e. by one-row matrices:

(x1, . . . , xn)
T 7→ (α1, . . . , αn) · (x1, . . . , xn)

T .

More complicated mappings, with values lying in the same space,

were then given similarly by square matrices. We can approach

linear operations on spaces of functions in an analogous way.

For the sake of simplicity, we will work with the real vector

space S of all piecewise continuous real-valued functions having

a compact support and de�ned on the whole R or on an interval

I = [a, b]. Linear mappings S → R will be called (real) lin-

ear functionals. Examples of such functionals can be given in two

di�erent ways � by evaluating the function's values (or its deriva-

tives') at some �xed points or in terms of integration.

We can, for instance consider the functional L given by evalu-

ating the function at a sole �xed point x0 ∈ I , i. e.,
L(f ) = f (x0).

Or, we can have the functional given by integration and a �xed

function g(x), i. e.,

L(f ) =
∫ b

a

f (x)g(x) dx.
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7.39. Fourier transform and di�raction. Light intensity is a physi-
cal quantity which expresses the transmission of energy by waves. The
intensity of a general light wave is de�ned as the time-averaged mag-
nitude of the Poynting vector, which is the vector product of mutually
orthogonal vectors of electric and magnetic �elds. A monochromatic
plane wave spreading in the direction of the y-axis satis�es

I = cε0
1
τ

∫ τ

0
E2
y dt,

where c is the speed of light and ε0 is the vacuum permittivity. The
monochromatic wave is described by the harmonic function Ey =
ψ(x, t) = A cos(ωt−kx). The numberA is the maximal amplitude of
the wave, ω is the angular frequency, and for any �xed t, the so-called
wave length λ is the prime period. The number k then represents the
speed k = 2π

λ
at which the wave propagates. We have

I = cε0
1
τ

∫ τ

0
E2
y dt = cε0

1
τ

∫ τ

0
A2 cos2(ωt − kx) dt

= cε0A
2 1
τ

∫ τ

0

1 + cos(2(ωt − kx))

2
dt

= 1
2
cε0A

2 1
τ

[
t + sin(2(ωt − kx))

2ω

]τ
0

= 1
2
cε0A

2 1
τ

(
τ + sin(2(ωτ − kx))− sin(2(−kx))

2ω

)
= 1

2
cε0A

2(1 + sin(2(ωτ − kx))− sin(2(−kx))
2ωτ

) .= 1
2
cε0A

2

The second term in the parentheses can be neglected since it is
always less than 2

2ωτ = T
2πτ < 10−6 for real detectors of light, so it is

much inferior to 1. The light intensity is directly proportional to the
squared amplitude.

A di�raction is such a deviation from straight-line propagation of
light which cannot be explained as the result of a refraction or re�ec-
tion (or the change of the ray's direction in a medium with continu-
ously varying refractive index). The di�raction can be observed when
a lightbeam propagates through a bounded space. The di�raction phe-
nomena are strongest and easiest to see if the light goes through open-
ings or obstacles whose size is roughly the wavelength of the light.
In the case of the Fraunhofer di�raction, with which we will deal in
the following example, a monochromatic plane wave goes through a
very thin rectangular opening and projects on a distant surface. For
instance, we can highlight a spot on the wall with a laser pointer. The
image we get is the Fourier transform of the function describing the
permeability of the shade - opening.

Let us choose the plane of the di�raction shade as the coordinate
plane z = 0. Let a plane wave A exp(ikz) (independent of the point
(x, y) of landing on the shade) hit this plane perpendicularly. Let
s(x, y) denote the function of the permeability of the shade, then the
resulting waves falling onto the projection surface at a point (ξ, η) can
be described as the integral sum of the waves (Huygens-Fresnel prin-
ciple) which have gone through the shade and propagate through the
medium from all points (x, y, 0) (as a spherical wave) into the point
(ξ, η, z):
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The function g(x) in the previous example is a function which

weighs the particular values representing the function f (x) in the

de�nition of the Riemann integral. The simplest case of such a

functional is, of course, the Riemann integral itself, i. e. the case

of g(x) = 1 for all points x.

We can get a good image from the choice

g(x) =
{

0 if |x| ≥ ε
1
2ε if |x| < ε.

for any ε > 0. The integral of the function g overR equals one, and

our linear functional can be perceived as a (uniform) averaging of

the values of the function f over the ε�neighborhood of the origin.

Similarly, we can work with the function

g(x) =
{

0 if |x| ≥ ε

e
1

x2−ε2 + 1
ε2 if |x| < ε

with which worked in the paragraph 6.6. This function is smooth

on thewholeRwith a compact support on the interval (−ε, ε). Our
functional has the meaning of a weighted combination of the val-

ues, but this time, the weights of the input values decrease rapidly

as their distance from the origin increases. Surely, the integral of

g over the whole R is �nite, yet it is not equal to one. Dividing g

by this integral would lead to a functional which would have the

meaning of a non-uniform averaging of a given function f .

There is another quite common instance, the so-called Gauss-

ian function

g(x) = 1
π

e−x2
,

which also has a unit integral over the whole R (we will verify this

later). This time, all the input values x in the corresponding "av-

erage" have a non-zero weight, yet this weight becomes insigni�-

cantly small as the distance from the origin increases.

We could observe another examplewith a unit integral over the

whole a while ago when we were discussing the Dirichlet kernels

g(x) = KN (x) for Fourier series.

7.28. Function convolution. Integral functionals from the pre-

vious paragraph can easily be modi�ed to obtain a

"steamed averaging" of the values of a given function

f near a given point y ∈ R:

Ly(f ) =
∫ ∞

−∞
f (x)g(y − x) dx

Convolution of functions of a real variable

The free parameter y in the de�nition of the functional Ly(f )

can be perceived as a new independent variable, and our operation

Ly actually maps functions to functions again, f 7→ f̃ :

f̃ (y) = Ly(f ) =
∫ ∞

−∞
f (x)g(y − x) dx.

This operation is called the convolution of functions f and g, de-

noted f ∗ g.
The convolution is mostly de�ned for real or complex func-

tions on R with a compact support.
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ψ(ξ, η) = A

∫∫
R2
s(x, y)e−ik(ξx+ηy) dx dy

.

ψ(ξ, η) = A

∫ p/2

−p/2

∫ q/2

−q/2
e−ik(ξx+ηy) dy dx

ψ(ξ, η) = A

∫ p/2

−p/2
e−ikξx dx

∫ q/2

−q/2
e−ikηy dy = A

[
e−ikξx

−ikξ
]p/2

−p/2

[
e−ikηy

−ikη
]q/2

−q/2

= A
2 sin(kξp/2)

kξ

2 sin(kηq/2)
kη

= Apq
sin(kξp/2)
kξp/2

sin(kηq/2)
kηq/2

The graph of the function f (x) = sin x
x

looks as follows:

The graph of the function ψ(ξ, η) = sin ξ
ξ

sin η
η

then does:

And the di�raction we are describing:
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By the transformation t = z− x, we can easily calculate that

(f ∗ g)(z) =
∫ ∞

−∞
f (x)g(z− x) dx

= −
∫ −∞

∞
f (z− t)g(t) dt = (g ∗ f )(z).

Thus the convolution, considered a binary operation

∗ : Sc × Sc → Sc
of pairs of functions having compact supports, is commutative.

Similarly, convolutions can be considered with integration over a

�nite interval; we only have to guarantee that the functions partic-

ipating in them be well-de�ned. Especially, this can be done for

periodic functions with integrating over an interval whose length

equals the period.

The convolution is an extraordinarily useful tool for modeling

the way in which we observe the data of an experiment or the in-

�uence of a medium through which information is transferred (for

instance, an analog audio or video signal a�ected by noise, and

so on) The input value f is the transferred information and the

function g is chosen so that it would express the in�uence of the

medium or the technical procedure used for the signal processing

or the processing of any other data.

7.29. Gibbs phenomenon. Actually, we have already seen a use-

ful case of convolution. In paragraph 7.26, we in-

terpreted the partial sum of the Fourier series for

a function f as a convolution with Dirichlet kernel

KN (y) = ∑T/2
−T/2 eiωky .

This interpretation allows us to explain the so-called Gibbs

phenomenon mentioned in paragraph 7.9.

7.30. Fourier transform. The convolution is one of many exam-

ples of a general integral operators on spaces of func-

tions

L(f )(y) =
∫ b

a

f (x)k(y, x) dx.

The function k(y, x), dependent on two variables,

k : R2 → R,

is called the kernel of the integral operator L. The domain of such

functionals must be chosen in view of the properties of the partic-

ular kernels so that the used integral would exist at all.

The theory of integral operators with kernels and equations

they contain is very useful and interesting at the same time. How-

ever, we do not have enough space for it here. We will focus only

on an extraordinarily important case, the so-called Fourier trans-

form F, which has deep connections with Fourier series.
Let us remind that a function f (t), given by its converging

Fourier series, equals

f (t) =
∞∑

n=−∞
cn eiωnt ,

where the numbers cn are complex Fourier coe�cients, ωn =
n2π/T with period T , see paragraph 7.7.

Having �xed T , the expression1ω = 2π/T describes just the

change of the frequency caused by n being increased by one. Thus

it is just the discrete step by which we change the frequencies when
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Since limx→0
sin x
x

= 1, the intensity at the middle of the image is
directly proportional to I0 = A2p2q2 . The Fourier transform can be
easily scrutinized if we aim a laser pointer through a subtle opening
between the thumb and the index �nger; it will be the image of the
function of its permeability. The image of the last picture can be seen if
we create a good rectangular opening by, for instance, gluing together
some stickers with sharp edges.

7.40. Find the solution to the so-called equation of heat conduction
(equation of di�usion)

ut(x, t) = a2 uxx(x, t), x ∈ R, t > 0
satisfying the initial condition lim

t→0+
u(x, t) = f (x).

Notes: The symbol ut = ∂u
∂t

stands for the partial derivative of
the the u with respect to t (i. e., di�erentiating with respect to t and
considering x to be constant), and similarly, uxx = ∂2 u

∂x2 denotes the
second partial derivative with respect to x (i. e., twice di�erentiating
with respect to x while considering t to be constant). The physical in-
terpretation of this problem is as follows: We are trying to determine
the temperature u(x, t) in an thermally isolated and homogeneous bar
of in�nite length (the range of the variable x) if the initial temperature
of the bar is given as the function f . The section of the bar is constant
and the heat can spread in it by conduction only. The coe�cient a2

then equals the quotient α
cϱ
, where α is the coe�cient of thermal con-

ductivity, c is the speci�c heat and ϱ is the density. In particular, we
assume that a2 > 0.
Solution. We apply the Fourier transform to the equation, with respect
to variable x. We have

F (ut) (ω, t) = 1√
2π

∞∫
−∞

ut(x, t) e−iωx dx =(
1√
2π

∞∫
−∞

u(x, t) e−iωx dx
) ′

,

where di�erentiated with respect to t, i. e.,

F (ut) (ω, t) = (F (u) (ω, t)) ′ = (F (u))t (ω, t).
At the same time, we know that
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calculating the coe�cients of the Fourier series. The coe�cient

1/T in the formula

cn = 1
T

∫ T/2

−T/2
f (t) e−iωnt dt

then equals 1ω/2π , so the series for f (t) can be rewritten as

f (t) =
∞∑

n=−∞

1
2π

(
1ω

∫ T/2

−T/2
f (x) e−iωnx dx eiωnt

)
.

Now, let us imagine the values ωn for all n ∈ Z as the chosen

representatives for small intervals [ωn, ωn+1] of length1ω. Then,
our expression in the big inner parentheses in the previous formula

for f (t) actually describes the summands of the Riemann sums for

the improper integral

1
2π

∫ ∞

−∞
g(ω) eiωt dω,

where g(ω) is a function which takes, at the points ωn, the values

g(ωn) =
∫ T/2

−T/2
f (x) e−iωnx dx.

We are working with piecewise continuous functions with a com-

pact support, thus our function f is integrable in absolute value

over the whole R. Letting T → ∞, the norm 1ω of our subinter-

vals in the Riemann sum gets �ner. At the same time, in the last

expression, we obtain the integral

g(ω) =
∫ ∞

−∞
f (x) e−iωx dx.

The previous reasonings show that there is quite a large set of

Riemann integrable functions f on R for which we

can de�ne a pair of mutually inverse integral opera-

tors:

Fourier transform

For every piecewise continuous real or complex function f on

R with a compact support, we de�ne

F(f )(ω) = f̃ (ω) = 1√
2π

∫ ∞

−∞
f (t) e−iωt dt.

This function f̃ is called the Fourier transform of the function f .

The previous reasonings also show that we will have

f (t) = F−1 (f̃ )(t) = 1√
2π

∫ ∞

−∞
f̃ (ω) eiωt dω.

This says that the Fourier transform F just de�ned has an inverse

operation F−1 , which is called inverse Fourier transform.

Let us notice that both the Fourier transform and its inverse

are integral operators with almost identical kernels

k(ω, t) = e±iωt .

Of course, there transforms are meaningful for much greater do-

mains. Interested readers are referenced to specialized literature.
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F
(
a2 uxx

)
(ω, t) = a2 F (uxx) (ω, t) = −a2ω2 F (u) (ω, t).

Denoting y(ω, t) = F (u) (ω, t), we get to the equation
yt = −a2ω2 y.

We already solved a similar di�erential equation when we were calcu-
lating Fourier transforms, so it is now easy for us to determine all of
its solutions

y(ω, t) = K(ω) e−a2ω2t , K(ω) ∈ R.
It remains to determineK(ω). The transformation of the initial condi-
tion gives

F (f ) (ω) = lim
t→0+

F (u) (ω, t) = lim
t→0+

y(ω, t) = K(ω) e0 = K(ω),

hence

y(ω, t) = F (f ) (ω) e−a2ω2t , K(ω) ∈ R.
Now, using the inverse Fourier transform, we can return to the original
di�erential equation with solution

u(x, t) = 1√
2π

∞∫
−∞

y(ω, t) eiωx dω =
1√
2π

∞∫
−∞

F (f ) (ω) e−a2ω2t eiωx dω =
1√
2π

∞∫
−∞

(
1√
2π

∞∫
−∞

f (s) e−iωs ds
)

e−a2ω2t eiωx dω =
1√
2π

∞∫
−∞

f (s)

(
1√
2π

∞∫
−∞

e−a2ω2t e−iω(s−x) dω
)
ds.

Computing the Fourier transform F(f ) of the function f (t) =
e−at2 for a > 0, we have obtained (while relabeling the variables)

1√
2π

∞∫
−∞

e−cp2
e−irp dp = 1√

2c
e− r2

4c , c > 0.

According to this formula (consider c = a2t > 0, p = ω, r = s − x),
we have

1√
2π

∞∫
−∞

e−a2ω2t e−iω(s−x) dω = 1√
2a2t

e− (s−x)2

4a2 t .

Therefore,

u(x, t) = 1
2a

√
πt

∞∫
−∞

f (s) e− (x−s)2

4a2t ds.

□

7.41. Determine the Laplace transform L(f )(s) of the function
(a) f (t) = eat ;
(b) f (t) = c1 ea1t + c2 ea2t ;
(c) f (t) = cos (bt) ;
(d) f (t) = sin (bt) ;
(e) f (t) = cosh (bt) ;
(f) f (t) = sinh (bt) ,

where the values b ∈ R and c1, c2 ∈ C are arbitrary and the positive
number s ∈ R is greater than the real parts of the numbers a, a1, a2 ∈
C and it is also greater than b in the problems (e) and (f).

Solution. The case (a). It follows directly from the de�nition of the
Laplace transform that
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7.31. Simple properties. The Fourier transform changes the lo-

cal and global behavior of functions in an interesting way. Let

us begin with a simple example in which we �nd a function

f (t) which is transformed to the indicator function of the interval

[−�,�], i. e., f̃ (ω) = 0 for |ω| > �, and f̃ (ω) = 1 for |ω| ≤ �.

The inverse transform F−1 gives

f (t) = 1√
2π

∫ �

−�
eiωt dω = 1√

2π

[
1
it

eiωt
]�

−�

= 2√
2πt

1
2i
(ei�t − e−i�t )

= 2�√
2π

sin(�t)
�t

.

Thus, except for a multiplicative constant and the scaling of the

input variable, it is the very important function sinc(x) = sin x
x

.

Straight calculation of the limit at zero (l'Hospital's rule) gives

f (0) = 2�(2π)−1/2, the closest zero points are at t = ±π/� and

the function drops to zero quite rapidly outside the origin x = 0.
This function is caught in the picture by a wavy curve for � = 20.
Simultaneously, the area where our function f (t) keeps waving

more rapidly as � increases is also depicted by a curve.

t

32

y

1

20

0

15

10

-1

5

0
-2

-5

-3

Omega = 20.000

We can see the indicator function of the interval [−�,�] is
Fourier-transformed to the function f , which has takes signi�cant

positive values near zero, and the value taken at zero is a �xed

multiple of�. Therefore, as� increases, the f concentrates more

and more near the origin.

Further, we will derive the Fourier transform of the derivative

f ′(t) for a function f . We keep supposing that f has a compact

support, i. e., especially both F(f ′) and F(f ) really exist. Let us
use integration by parts:

F(f ′)(ω) = 1√
2π

∫ ∞

∞
f ′(t) e−iωt dt

= 1√
2π

[
e −iωt f (t)]∞

−∞ + iω√
2π

∫ ∞

−∞
f (t) e−iωt dt

= iωF(f )(ω).

Thus we can see that Fourier transform converts the (limit) opera-

tion of di�erentiation to the (algebraic) operation of a simple mul-

tiplication by the variable. Of course, this formula can be iterated,

obtaining

F(f ′′)(ω) = −ω2F(f ), . . . ,F(f (n)) = inωnF(f ).
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L (f ) (s) =
∞∫
0
eat e−st dt =

∞∫
0
e−(s−a)t dt =

lim
t→∞

(
e−(s−a)t

−(s−a)
)

− e0

−(s−a) = 1
s−a .

The case (b). Using the result of the above case and the linearity
of improper integrals, we obtain

L (f ) (s) = c1

∞∫
0
ea1t e−st dt + c2

∞∫
0
ea2t e−st dt = c1

s−a1
+ c2

s−a2
.

The case (c). Since

cos (bt) = 1
2

(
eibt + e−ibt) ,

the choice c1 = 1/2 = c2, a1 = ib, a2 = −ib in the previous variant
gives

L (f ) (s) =
∞∫
0

( 1
2e
ibt + 1

2e
−ibt) e−st dt = 1

2(s−ib) + 1
2(s+ib) = s

s2+b2 .

The cases (d), (e), (f). Analogously, the choices

(d) c1 = −i/2, c2 = i/2, a1 = ib, a2 = −ib;
(e) c1 = 1/2 = c2, a1 = b, a2 = −b;
(f) c1 = 1/2, c2 = −1/2, a1 = b, a2 = −b

lead to

(d) L (f ) (s) = b

s2+b2 ;
(e) L (f ) (s) = s

s2−b2 ;
(f) L (f ) (s) = b

s2−b2 .

□

7.42. Using the relation

(7.34) L
(
f ′) (s) = s L (f ) (s)− lim

t→0+
f (t),

derive the Laplace transforms of the functions y = cos t and y = sin t.
Solution. First, let us realize that from (∥7.34∥), it follows that

L
(
f ′′) (s) = s L

(
f ′) (s)− lim

t→0+
f ′(t) =

s

(
sL (f ) (s)− lim

t→0+
f (t)

)
− lim

t→0+
f ′(t) =

s2L (f ) (s)− s lim
t→0+

f (t)− lim
t→0+

f ′(t).

Therefore,

−L (sin t) (s) = L (− sin t) (s) = L
(
(sin t) ′′

)
(s) =

s2L (sin t) (s)− s lim
t→0+

sin t − lim
t→0+

cos t = s2L (sin t) (s)− 1,

whence we get

−L (sin t) (s) = s2L (sin t) (s)− 1, i. e. L (sin t) (s) = 1
s2+1 .

Now, invoking (∥7.34∥), we can easily determine
L (cos t) (s) = L

(
(sin t) ′

)
(s) = s 1

s2+1 − lim
t→0+

sin t = s

s2+1 .

□

7.43. For s > −1, calculate the Laplace transform L (g) (s) of the
function

g(t) = t e−t .
Further, for s > 1, calculate the Laplace transform L (h) (s) of the
function
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7.32. The relation to convolutions. There is another extremely

important property, the relation between convolutions and Fourier

transforms. Let us calculate the transform of the convolution

h = f ∗ g, where, as usual, we assume that the functions have
compact supports. We will switch the order of integration, which

is a step whose correctness will be veri�ed later in di�erential and

integral calculus, see ??. In the next little step, we will introduce

the substitution t − x = u.

F(h)(ω) = 1√
2π

∫ ∞

−∞

(∫ ∞

−∞
f (x)g(t − x) dx

)
e−iωt dt

= 1√
2π

∫ ∞

−∞
f (x)

(∫ ∞

−∞
g(t − x) e−iωt dt

)
dx

= 1√
2π

∫ ∞

−∞
f (x)

(∫ ∞

−∞
g(u) e−iω(u+x) du

)
dx

= 1√
2π

(∫ ∞

−∞
f (x) e−iωx dx

)
·
(∫ ∞

−∞
g(u) e−iωu du

)
= √

2πF(f ) · F(g)
A similar calculation shows the reverse statement, i. e., the fact that

Fourier transform of a product is the convolution of the transforms,

up to a constant.

F(f · g) = 1√
2π

F(f ) ∗ F(g).

As we mentioned above, the convolution f ∗ g very often mod-

els the process of our observation of some quantity f . Using the

Fourier transform and its inverse, we can now easily recognize the

original values of this quantity if the convolution kernel g is known.

We just calculate F(f ∗ g) and divide it by the image F(g). This
yields the Fourier transform of the original function f , which can

be obtained explicitly using the inverse Fourier transform. We talk

about deconvolution.

7.33. Dirac delta�function. Now, let us return to the �rst exam-

ple of the inverse transform to the indicator function f� of the in-

terval [−�,�]. Let � approach in�nity and denote by
√

2πδ(t)
the coveted limit "function" for F−1 (f�)(t). The inverse image

of a product with an arbitrary image F(g) can be expressed using
convolution:

F−1 (f� · F(g))(z) = 1√
2π

∫ ∞

−∞
g(t)F−1 (f�)(z− t) dt.

As � goes to ∞, the left-hand expression transforms to

F−1 (F(g))(z) = g(z), while on the right-hand side, we get

g(z) =
∫ ∞

−∞
g(t)δ(z− t) dt.

The wanted δ(t) thus looks as a "function" which takes zero every-

where except the single point t = 0 where it "takes such an in�nite

value" that integrating the product of δ(t) and any integrable func-

tion g gives just the value of g at the point t = 0. Of course, it is not
a function in the common sense, but it is an object used quite often.

It is called the Dirac function δ and it can be described correctly

as an instance of the so-called distribution. Since we do not have

enough space and time, we will not pay further attention to distri-

butions. We only mention that the Dirac δ can be imagined as a

unit impulse at a single point. Its Fourier transform is the constant

function F(δ)(ω) = 1√
2π
.
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h(t) = t sinh t.

Solution. Integrating by parts, we obtain

L (g) (s) =
∞∫
0
t e−t e−st dt =

∞∫
0
t e−(s+1)t dt = lim

t→∞

(
t e−(s+1)t

−(s+1)

)
− 0 −

∞∫
0

e−(s+1)t

−(s+1) dt = −
(

lim
t→∞

e−(s+1)t

(s+1)2 − e0

(s+1)2

)
= 1

(s+1)2 .

Di�erentiating the Laplace transform of a general function −f (i.
e., an improper integral) with respect to the parameter s gives(∞∫

0
−f (t) e−st dt

) ′
=

∞∫
0

−f (t) (e−st)′ dt =
∞∫
0
t f (t) e−st dt.

This means that the derivative of the Laplace transform L(−f )(s) is
the Laplace transform of the function tf (t). The Laplace transform of
the function y = sinh t has already been determined as the function
y = 1

s2−1 . Therefore,

L (h) (s) =
(
− 1
s2−1

)′ = 2s
(s2−1)2 .

Let us notice that we could also have determined L (g) (s) this way.
□

The basic Laplace transforms are enumerated in the following ta-
ble:

y(t) L(y)(s)
eat 1

s−a
teat 1

(s−a)2
tn eat n!

(s−a)n+1

sinωt ω

s2+ω2

cosωt s

s2+ω2

eat sinωt ω

(s−a)2+ω2

eat(cosωt + a
ω

sinωt) s

(s−a)2+ω2

t sinωt 2ωs
(s2+ω2)2

sinωt − ωt cosωt 2ω3

(s2+ω2)2

7.44. Prove the 4th and 5th rows of the table using Euler's formula
eiωt = cosωt + i sinωt.
Solution.

L(cosωt)(s)+ iL(sinωt)(s) = L(eiωt)(s)

=
∫ ∞

0
eiωte−st dt =

∫ ∞

0
e(iω−s)t dt

= − 1
s − iω

[
e(iω−s)t

]∞

0

= − 1
s − iω

( lim
t→∞

eiωt

est
− 1) = 1

s − iω
= s + iω

(s − iω)(s + iω)

= s

s2 + ω2
+ i

ω

s2 + ω2

□

7.45. Let L(y)(s) denote the Laplace transform of a function y(t).
Using integration by parts, prove that

Solution.

(7.35) L(y′ )(s) = sL(y)(s)− y(0)
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On the other hand, many functions which are not integrable in

absolute value on R are Fourier-transformed to expressions with

Dirac δ. For instance,

F(cos(nt))(ω) =
√
π

2
(δ(n− ω)+ δ(n+ ω)),

which can easily be seen from the calculation of the Fourier trans-

form of the function f� cos(nx) and then be letting� approach∞.

.

We can get the Fourier transform of the sine function in a sim-

ilar way, we can also take advantage of the fact that the transform

of the derivative of this function will di�er only by a multiple of

the imaginary unit and the variable.

These transforms are a base for Fourier analysis of signals: If

a signal is a pure sinusoid of a given frequency, then this is recog-

nized in the Fourier transform as two single-point impulses right

at the positive and negative value of the frequency. If the signal

is a linear combination of several such pure signals, we obtain the

same linear combination of single-point impulses. However, since

we always process a signal in a �nite time interval only, we actu-

ally get not single-point impulses, but rather a wavy curve similar

to the function sinc with a strong maximum at the value of the cor-

responding frequency. The size of this maximum also yields the

information about the original amplitude of the signal.

7.34. Fourier sine a cosine transform. If we apply the Fourier

transform to an odd function f (t), i. e., f (−t) = −f (t), the
contribution in the integration of the product of f (t) and the func-

tion cos(±ωt) cancels for positive and negative values of t. Thus
straight calculation gives

F(f )(ω) = −2i√
2π

∫ ∞

0
f (t) sinωt dt.

The resulting function is odd again, hence by the same reason, the

inverse transform can determined in a similar way:

F̃(f )(ω) = 2i√
2π

∫ ∞

0
f (t) sinωt dt.

Omitting the imaginary unit i gives mutually inverse transforms,

which are called the Fourier sine transform for odd functions:

f̃s(ω) =
√

2
π

∫ ∞

0
f (t) sin(ωt) dt,

f (t) =
√

2
π

∫ ∞

0
f̃s(t) sin(ωt) dt.

Similarly, one can de�ne theFourier cosine transform for even

functions:

f̃c(ω) =
√

2
π

∫ ∞

0
f (t) cos(ωt) dt,

f (t) =
√

2
π

∫ ∞

0
f̃s(t) sinωt dt.

7.35. Laplace transforms. The Fourier transform cannot be ap-

plied to functions which are not integrable in absolute value over

the entire R (at least, we do not obtain true functions). The so-

called Laplace transform acts quite similarly as the Fourier one

and is �awless in this sense:

L(f )(s) = f̄ (s) =
∫ ∞

0
f (t) e−st dt.
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L(y′′ )(s) = s2L(y)− sy(0)− y′ (0)
and, by induction:

L(y(n) )(s) = snL(y)(s)−
n∑
i=1

sn−i y(i−1) (0).

□

7.46. Find a function y(t) satisfying the di�erential equation

y′′ (t)+ 4y(t) = sin 2t

and the initial conditions y(0) = 0 and y′ (0) = 0.
Solution. From the previous example ∥8.149∥:

s2L(y)(s)+ 4L(y)(s) = L(sin 2t)(s)

At the same time,

L(sin 2t)(s) = 2
s2 + 4

,

i. e.,

L(y)(s) = 2
(s2 + 4)2

.

The inverse transform gives

y(t) = 1
8 sin 2t − 1

4 t cos 2t.

□

7.47. Find a function y(t) satisfying the di�erential equation

y′′ (t)+ 6y′ (t)+ 9y(t) = 50 sin t

and the initial conditions y(0) = 1 and y′ (0) = 4.
Solution. The Laplace transform gives

s2L(y)(s)− s − 4 + 6(sL(y)(s)− 1)+ 9L(y)(s) = 50L(sin t)(s),

i. e.,

(s2 + 6s + 9)L(y)(s) = 50
s2 + 1

+ s + 10,

L(y)(s) = 50
(s2 + 1)(s + 3)2

+ s + 10
(s + 3)2

.

Decomposing the �rst term into partial fractions, we get

50
(s2 + 1)(s + 3)2

= As + B

s2 + 1
+ C

s + 3
+ D

(s + 3)2
,

so

50 = (As + B)(s + 3)2 + C(s2 + 1)(s + 3)+D(s2 + 1).

Substituting s = −3, we obtain

50 = 10D so D = 5,

and confronting the coe�cients at s3

0 = A+ C, so A = −C.
Confronting the coe�cients at s then yields

0 = 9A+ 6B + C = 8A+ 6B, so B = 4
3
C.

Confronting the absolute terms, we get

50 = 9B+3C+D = 12C+3C+5 so C = 3, B = 4, A = −3.
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The integral operator L has a rapidly reducing kernel if s is a pos-

itive real number. Therefore, the Laplace transform is usually per-

ceived as a mapping of suitable functions on the interval [0,∞) to

the function on the same or shorter interval. The imageL(p) exists,
for example, for every polynomial p(t) and all positive numbers s.

In an analogous way as in the case of the Fourier transform,

we can get the formula for the Laplace transform of a di�erentiated

function for s > 0 using integration by parts:

L(f ′(t))(s) =
∫ ∞

0
f ′(t) e−st dt

= [f (t) e−st ]∞0 + s

∫ ∞

0
f (t) e−st dt

= −f (0)+ sL(f )(s).
The properties of the Laplace transform andmanymore transforms

used especially in technical practice can be found in specialized

literature.

4. Discrete transforms

The Fourier analysis of signals mentioned in the previous para-

graph used to be realized by special analog circuits in radio tech-

nology, for instance. Nowadays, we work only with discrete data

when processing signals by computer circuits. Let us assume that

there is a �xed (tiny) sample interval τ given in a (discrete) time

variable and that our signal repeats with periodNτ (for a very large

natural numberN ), which is the maximal period which can be rep-

resented in our discrete model.
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Since
s + 10
(s + 3)2

= s + 3 + 7
(s + 3)2

= 1
s + 3

+ 7
(s + 3)2

,

we have

L(y)(s) = −3s+4
s2+1 + 3

s+3 + 5
(s+3)2 + 1

s+3 + 7
(s+3)2

= −3s
s2+1 + 4

s2+1 + 4
s+3 + 12

(s+3)2 .

Hence, using the inverse Laplace transform, we get the solution in the
form

y(t) = −3 cos t + 4 sin t + 4e−3t + 12te−3t .

□

7.48. Find the Laplace transform of Heaviside's function H(t) and
shifted Heaviside's function Ha(t) = H(t − a):

H(t) =


0 for t < 0,
1
2 for t = 0,
1 for t > 0.

Solution.

L(H(t))(s) =
∫ ∞

0
H(t)e−st dt =

∫ ∞

0
e−st dt

=
[
−e

−st

s

]∞

0
= − 1

s
(0 − 1) = 1

s
,

L(Ha(t))(s) = L(H(t − a))(s) =
∫ ∞

0
H(t − a)e−st dt =

∫ ∞

a

e−st dt

=
∫ ∞

0
e−s(t+a) dt = e−asL(H(t))(s) = e−as

s
.

□

7.49. Show that

(7.36) L(f (t) ·Ha(t))(s) = e−asL(f (t + a))(s)

Solution.

L(f (t) ·Ha(t))(s) =
∫ ∞

0
f (t)H(t − a)e−st dt =

∫ ∞

a

f (t)e−st dt

=
∫ ∞

0
f (t + a)e−s(t+a) dt = e−as

∫ ∞

0
f (t + a)e−st dt

= e−asL(f (t + a))(s).

□

7.50. Solution. Find a function y(t) satisfying the di�erential equa-
tion and the initial conditions:

y′′ (t)+ 4y(t) = f (t), y(0) = 0, y′ (0) = −1,

where the function f (t) is piecewise continuous:

f (t) =
{

cos(2t) for 0 ≤ t < π,

0 for t ≥ π.

This problem is amodel of undamped oscillation of a spring (excluding
friction and other phenomena like non-linearities in the toughness of
the spring and so on) which is initiated by an outer force during the
initial period only and then ceases.
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The function f (t) can be written as a linear combination of Heav-
iside's function u(t) and its shift, i. e.,

f (t) = cos(2t)(u(t)− uπ (t)).

Since

L(y′′ )(s) = s2L(y)− sy(0)− y′ (0) = s2L(y)+ 1,

we get, making use of the previous examples 7 and 8, the right-hand
sides to the calculation of the Laplace transform

s2L(y)+ 1 + 4L(y) = L(cos(2t)(u(t)− uπ (t)))

= L(cos(2t) · u(t))− L(cos(2t) · uπ (t))
= L(cos(2t))− e−πsL(cos(2(t + π))

= (1 − e−πs )
s

s2 + 4
.

Hence,

L(y) = − 1
s2 + 4

+ (1 − e−πs )
s

(s2 + 4)2
.

The inverse transform then yields the solution in the form

y(t) = − 1
2 sin(2t)+ 1

4 t sin(2t)+ L−1
(
e−πs

s

(s2 + 4)2

)
.

According to (∥7.36∥),
L−1

(
e−πs

s

(s2 + 4)2

)
= 1

4L
−1(e−πsL(t sin(2t)))

= (t − π) sin(2(t − π)) ·Hπ (t).
Since Heaviside's function is zero for t < π and equals 1 for t > π ,
we get the solution in the form

y(t) =
{

− 1
2 sin(2t)+ 1

4 t sin(2t) for 0 ≤ t < π
π−2

4 sin(2t) for t ≥ π

□

7.51. Find a function y(t) satisfying the di�erential equation

y′′ (t) = cos (πt) − y(t), t ∈ (0,+∞)

and the initial conditions y(0) = c1, y′ (0) = c2.

Solution. First, let us emphasize that from the theory of ordinary dif-
ferential equations, it follows that this problem has a unique solution.
Further, let us remind that

L
(
f ′′) (s) = s2L (f ) (s)− s lim

t→0+
f (t)− lim

t→0+
f ′(t)

and

L (cos (bt)) (s) = s

s2+b2 , b ∈ R.
Applying the Laplace transform to the given di�erential equation thus
gives

s2L (y) (s)− sc1 − c2 = s

s2+π2 − L (y) (s),
i. e.,

(7.37) L (y) (s) = s(
s2 + 1

) (
s2 + π2

) + c1s

s2 + 1
+ c2

s2 + 1
.

It su�ces to �nd a function y satisfying (∥8.12∥). Partial fraction de-
composition gives

s(
s2+1

)(
s2+π2

) = 1
π2 −1

(
s

s2+1 − s

s2+π2

)
.
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Therefore, from the expression of L (cos (bt)) (s) mentioned above
and the proved equality

L (sin t) (s) = 1
s2+1 ,

we already obtain the wanted solution

y(t) = 1
π2 −1 (cos t − cos (πt))+ c1 cos t + c2 sin t.

□

7.52. Solve the system of di�erential equations

x′′ (t)+x′ (t) = y(t)−y′′ (t)+e t , x′ (t)+2x(t) = −y(t)+y′ (t)+e−t

with initial conditions x(0) = 0, y(0) = 0, x′ (0) = 1, y′ (0) = 0.
Solution. Once again, we apply the Laplace transform. Together with

L
(
e±t) (s) = 1

s∓1 ,

this transforms the �rst equation to

s2L (x) (s)− s lim
t→0+

x(t)− lim
t→0+

x′ (t)+ sL (x) (s)− lim
t→0+

x(t) =

L (y) (s)−
(
s2L (y) (s)− s lim

t→0+
y(t)− lim

t→0+
y′ (t)

)
+ 1

s−1

and the second one to

sL (x) (s)− lim
t→0+

x(t)+ 2L (x) (s) =
−L (y) (s)+ sL (y) (s)− lim

t→0+
y(t)+ 1

s+1 .

If we enumerate the limits (according to the initial conditions), we get
the linear equations

s2L (x) (s)− 1 + sL (x) (s) = L (y) (s)− s2L (y) (s)+ 1
s−1

and

sL (x) (s)+ 2L (x) (s) = −L (y) (s)+ sL (y) (s)+ 1
s+1

with a unique solution

L (x) (s) = 2s−1
2(s−1)(s+1)2

, L (y) (s) = 3s
2
(
s2−1

)2 .

Once again, we use partial fraction decomposition, obtaining

L (x) (s) = 1
8

1
s−1 + 3

4
1

(s+1)2
− 1

8
1
s+1 = 3

4
1

(s+1)2
+ 1

4
1

s2−1 .

Since we have already calculated that

L
(
t e−t) (s) = 1

(s+1)2
, L (sinh t) (s) = 1

s2−1 ,

L (t sinh t) (s) = 2s(
s2−1

)2 ,

we get

x(t) = 3
4 t e

−t + 1
4 sinh t, y(t) = 3

4 t sinh t.

The reader can verify that these functions x and y are really the wanted
solution. We strongly recommend to perform the veri�cation (for
instance for the reason that the Laplace transforms of the functions
y = et , y = sinh t and y = t sinh t were obtained only for s > 1). □

7.53. Find the solution to the following system of di�erential equa-
tions:

x′ (t) = −2x(t)+ 3y(t)+ 3t2 ,
y′ (t) = −4x(t)+ 5y(t)+ et , x(0) = 1, y(0) = −1

Solution.

L(x′ )(s) = L(−2x + 3y + 3t2 )(s),
L(y′ )(s) = L(−4x + 5y + et)(s).
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The left-hand sides can be written using (∥8.11∥), and the right-hand
ones can be rewritten thanks to linearity of the operator L. Since
L(3t2 )(s) = 6

s3 and L(et)(s) = 1
s−1 , we get the system of linear equa-

tions

sL(x)(s)− 1 = −2L(x)(s)+ 3L(y)(s)+ 6
s3 ,

sL(y)(s)+ 1 = −4L(x)(s)+ 5L(y)(s)+ 1
s−1 .

After rearrangements, we get A(s)x̂(s) = b(s) in matrices, where we
denoted

A(s) =
(
s + 2 −3

4 s − 5

)
, x̂(s) =

(
L(x)(s)
L(y)(s)

)
and b(s) =

(
1 + 6

s3

−1 + 1
s−1

)
.

Cramer's rule says that

L(x)(s) = |A1|
|A| , L(y)(s) = |A2|

|A| , where

|A| =
∣∣∣∣s + 2 −3

4 s − 5

∣∣∣∣ = s2 − 3s + 2,

|A1| =
∣∣∣∣ 1 + 6

s3 −3
−1 + 1

s−1 s − 5

∣∣∣∣ = (s − 5)(1 + 6
s3 )+ 3(−1 + 1

s−1)

|A2| =
∣∣∣∣s + 2 1 + 6

s3

4 −1 + 1
s−1

∣∣∣∣ = (s + 2)(−1 + 1
s−1)− 4 − 24

s3 .

Hence

L(x)(s) = 1
(s − 1)(s − 2)

(
(s − 5)(s3 + 6)

s3
− 3

s − 2
s − 1

)
,

L(y)(s) = 1
(s − 1)(s − 2)

(
(s + 2)(2 − s)

s − 1
− 4s3 + 24

s3

)
.

Using partial fraction decomposition, we can express the Laplace im-
ages of the solution

L(x)(s) = − 39
2s2 − 3

(s−1)2 + 28
s−1 − 21

4(s−2) − 15
s3 − 87

4s ,

L(x)(s) = − 18
s2 − 3

(s−1)2 + 27
s−1 − 7

s−2 − 12
s3 − 21

s

and then we arrive at the solutions of Cauchy's problem with the in-
verse transformation:

x(t) = − 39
2 t − 3tet + 28et − 21

4 e
2t − 15

2 t
2 − 87

4 ,

y(t) = −18t − 3tet + 27et − 7e2t − 6t2 − 21.
□

7.54. Discrete cosine transform. The fundamental feature of JPEG
compression of data is the so-called discrete cosine transform. That is
given by an orthogonal matrix C = (ckl)

n
k,l=1 de�ned as follows:

ckl = αkl cos
(
(2k − 1)(l − 1)π

2n

)
where αk1 = 1√

n
αkl =

√
2
n
for l > 1. The vector representing the data

is then decomposed orthogonally and some basis vectors (columns of
the matrix C ) are dropped. This produces a reduction of data rea-
sonably approximating the original set. The inverse transform is easy.
Since C is orthogonal, it is given by multiplication by the transposed
matrix.

Show that for n = 2, the matrix C equals 1√
2

(
1 1
1 −1

)
and that it

is orthogonal. Calculate the orthogonal decomposition of vector (3, 4)
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with respect to the basis formed by the columns of the matrix and de-
termine the eigenvalues and eigenvectors.

Solution. Let us calculate

CCT = 1
2

(
1 1
1 −1

)
.

(
1 1
1 −1

)
= 1

2

(
2 0
0 2

)
= 1.

Thus, the matrix C is really orthogonal and its columns create an or-
thonormal basis e1 = ( 1√

2
, 1√

2
), e2 = ( 1√

2
,− 1√

2
). The coe�cients of

the orthogonal decomposition of the vector u = (3, 4) can be obtained
easily by applying the transposed matrix

CT u = 1√
2

(
1 1
1 −1

)(
3
4

)
= 1√

2

(
7

−1

)
Therefore, the orthogonal decomposition has the following form:(

3
4

)
= 7√

2

(
1√
2

1√
2

)
− 1√

2

(
1√
2

− 1√
2

)
The characteristic polynomial of thematrixC is (λ+ 1√

2
)(λ− 1√

2
)− 1

2 =
0, so the eigenvalues are λ1,2 = ±1 (an orthogonal matrix cannot have
any others). The corresponding eigenvectors are determined by the
respective equations

( 1√
2

− 1)x + 1√
2
y = 0, ( 1√

2
+ 1)x + 1√

2
y = 0.

So these are, for instance, the vectors ( 1√
2
, 1 − 1√

2
), ( 1√

2
,−1 − 1√

2
)

(which are orthogonal automatically). □
Remark. Try to draw a picture of the action of the mapping deter-
mined by the matrix A on some vector in the plane.

7.55. Discrete cosine transform 2. Show that the symmetric matrix

1
2


0 1 . . . 0 0
1 0 . . . 0 0
...

...

0 0 . . . 0 1
0 0 . . . 1 0


has eigenvalues λl = cosφl , where φl = lπ

n+1 with 1 ≤ l ≤ n, and

that the corresponding eigenvectors
√

2
n+1(sinφl, sin 2φl,

... sin nφl)
form an orthonormal basis.

Solution. First, we calculate the k-th coordinate of the vector

1
2

√
2

n+ 1


0 1 . . . 0 0
1 0 . . . 0 0
...

...

0 0 . . . 0 1
0 0 . . . 1 0




sinφl
sin 2φl
...

sin nφl


Using the sine sum formula, we obtain

1
2

√
2

n+ 1
(sin(k − 1)φl + sin(k + 1)φl) =

√
2

n+ 1
sin kφl cosφl,

so the given vector is really an eigenvector corresponding to eigenvalue
cosφl . Since there are n distinct eigenvalues (which is the dimension),
these eigenvectors form a basis. It only remains to verify that the eigen-
vectors are orthogonal and normed. □
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E. Additional exercises to the whole chapter

7.56. Expand the function sin2(x) on the interval [−π, π ] into the Fourier series. ⃝
7.57. Expand the function cos2(x) on the interval [−π, π ] into the Fourier series. ⃝
7.58. Determine the convolution of the functions f1 and f2, where

f1 =
{

1 for x ∈ [−1, 0]
0 otherwise

f2 =
{
x for x ∈ [0, 1]
0 otherwise

⃝
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Key to the exercises

7.4. x, − 3
π2 x + sin(x); the projection does not change the function 1

2 sin(x) since it already lies in the space.

7.5. cos(x), 4
π

cos(x) + x. The projection does not change the function 1
3 cos(x) since it already lies in the

space.

7.34.

f1 ∗ f2(t) =


t − t2

2 + 4 for t ∈ [−2,−1]
1 − t + 1

2 for t ∈ [−1, 1]
t2

2 − 2t + 2 for t ∈ [1, 2]
0 otherwise

7.56. 1
2 − 1

2 cos(2x).

7.57. 1
2 + 1

2 cos(2x).

7.58. Determine the convolution of the functions f1 and f2, where

f1 ∗ f2(t) =


(t+1)2

2 for t ∈ [−1, 0]
1−t2

2 for t ∈ [0, 1]
0 otherwise



At the very beginning of our journey through the mathemati-

cal countryside, we have seen that it is not di�cult to work with

more parameters simultaneously since vectors can be manipulated

as easily as scalars. We only have to think things out well. Now,

once again, we will deal with situations when the mathematically

expressed relations depend on more (yet still �nitely many) param-

eters. We will see that there is no need of brand new ideas; it will

often do to reduce the problems we encounter to the ones we are

able to solve.

At the same time, we can �nally return to the discussion of

situations when the function values are described in terms of in-

stantaneous changes � i. e., we will stop for a while to look at

ordinary and partial di�erential equations. At the very end, we

will introduce the so-called variation problems.

As usual, we will try to comment on the discrete variants of

our approaches or problems on the �y.

1. Functions and mappings on Rn

8.1. Multivariate functions. For the modeling of processes (or

objects in graphics) in practice, we can seldom do

with functionsR → R of one variable. At least, func-

tions dependent on parameters are necessary, and the

dependence of the change of the results on the parameters is often

more important than the result itself. Therefore, we will consider

the functions

f (x1, x2, . . . , xn) : Rn → R,
and we will try to extend our methods for monitoring the values

and their changes for this situation. We call them functions of more

variables or, more compactly, multivariate functions.

We will often work with the cases n = 2 or n = 3 so that

the concepts being introduced would be easier to understand, and

we will, in these cases, use the letters x, y, z instead of numbered

variables. This means that a function f de�ned in the "plane" R2

will be denoted

f : R2 ∋ (x, y) 7→ f (x, y) ∈ R,
and, similarly, in the "space" R3

f : R3 ∋ (x, y, z) 7→ f (x, y, z) ∈ R.
Just like in the case of univariate functions, we talk about the do-

main A ⊂ Rn on which the function in question is de�ned. When

examining a function given by a concrete formula, the �rst task is

often to �nd the largest domain on which the formula makes sense.

CHAPTER 8

Continuous models with more variables

one variable is not enough?

� never mind, just recall vectors!

A. Multivariate functions

8.1. Determine the domain of the function R2 → R which is given
by the following formula:

a)
xy

y(x3 + x2 + x + 1)
,

b)
ln(x2 − y2 ),

c)
ln(−x2 − y2 ),

d)
arcsin(2 sgn(χQ(x)),

where χQ denotes the indicator function of the rational num-
bers,

e)

f (x, y, z) =
√

ln x · arcsin(y2 z).

Solution. a) The formula correctly expresses a value if and only if
the denominator of the fraction is non-zero. Therefore, the formula
de�nes a function on the set R2 \ {(x, 0), (−1, y), x, y ∈ R}.
b) The formula is correct i� the argument of the logarithm is positive,
i. e., |x| > |y|. Therefore, the domain of this function is {(x, y) ∈
R, |x| > |y|}. You can see the graph of this function in the picture.
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It is also useful to consider the graph of a multivariate func-

tion, i. e., a subset Gf ⊂ Rn × R = Rn+1, de�ned by

Gf = {(x1, . . . , xn, f (x1, . . . , xn)); (x1, . . . , xn) ∈ A},
whereA is the domain of f . For instance, the graph of the function

de�ned in the plane by the formula

f (x, y) = x + y

x2 + y2

is quite a nice surface, caught in the picture. The maximal domain

of this function consists of all the points of the plane except for the

origin (0, 0).

3
2

1
0 y-4

-3 -1
-2

-2

-1 0
-2

0

1x 2

2

-3
3

4

When de�ning the function, and especially when drawing its

graph, we used �xed coordinates in the plane. If we �x the value

of either of the coordinates, only one variable remains. Fixing the

value of x, for example, we get the mapping

R → R3, y 7→ (x, y, f (x, y)),

i. e., a curve in the space R3. Curves are vector functions of one

variable, with which we have already worked, namely in chapter

six (see 6.14). The images of the curves for some �xed values of

the coordinates x and y are depicted by lines in the picture.

The curves c : R → Rn are, besides multivariate functions,
the easiest examples of mappings F : Rm → Rn, which we will

get to shortly.

In the case of functions of one variable, we built the entire

di�erential and integral calculi upon the concepts of convergence,

open neighborhoods, continuity, and so on. In the second part of

chapter seven, these concepts were generalized for the so-called

metric spaces, rather than only for the Euclidean spaces Rn.
Before going on with the following paragraphs, it is appropri-

ate to recall these parts, or to look for the concepts and results there

when necessary. We present a bit of a summary here.
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c) This formula is again a composition of a logarithm and a polyno-
mial of two variables. However, the polynomial −x2 − y2 takes on
only non-positive real values, where the logarithm is unde�ned (as a
function R → R).
d) This formula correctly de�nes a value i� the argument of the arc
sine lies in the interval [−1, 1], which is broken by exactly those pairs
(x, y) ∈ R2 whose �rst component is rational. The formula thus de-
�nes a function on the set {(x, y), x ∈ R \ Q}.
e) The argument of the square root must be non-negative, the argument
of the natural logarithm must be positive, and the argument of the arc
sine must be from [−1, 1]. □

B. The topology of En

8.2. A known fact about the space En is that the shortest path be-
tween a pair of points is a line segment. However, many more metrics
can be de�ned on the space Rn (or on its subsets). For instance, con-
sidering a map of a state as a subset of R2, the distance of two points
may be de�ned as the time necessary to get from one of the points to
the other by public transport or on foot. In France, for example, the
shortest paths between most pairs of points in this metric are far from
line segments.

8.3. Show that every non-empty proper subset of En has a boundary
point (which need not lie in it).

Solution. Let U ⊂ En be a non-empty subset with no boundary point.
Consider a point X ∈ U , a point Y ∈ U ′ := En \ U , and the line
segmentXY ⊂ En. Intuitively, going fromX to Y along this segment,
we must once get fromU toU ′, and this can happen only at a boundary
point (everyone who has ever been to a foreign country is surely well
acquainted with this fact). Formally, letA be the point ofXY for which
|XA| = sup{|XZ|, XZ ∈ U} (apparently, there is exactly one such
point on the segment XY ). This point is a boundary point of U : it
follows from the de�nition of A that any line segment XB (with B ∈
XA) is contained in U ; in particular, B ∈ U . However, if there were
a neighborhood of A contained in U , then there would exist a part
of the line segment XY longer than XA which would be contained
in U , which contradicts the de�nition of the point A. Therefore, any
neighborhood of the pointA contains a point fromU as well as a point
from En \ U . □
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8.2. Euclidean spaces. A Euclidean space En is perceived as a

set of points inRn without any choice of coordinates,
and its direction space Rn is considered to be the

vector space of all increases that can be added to the

points of the space En.

Moreover, a standard scalar product

u · v =
n∑
i=1

xiyi,

is selected on Rn, where u = (x1, . . . , xn) and v = (y1, . . . , yn)

are arbitrary vectors. This gives a metric on En, i. e., a function

describing the distance ∥P − Q∥ of pairs of points P , Q by the

formula

∥P −Q∥2 = ∥u∥2 =
n∑
i=1

x2
i ,

where u is the vector which yields the point P when added to the

point Q. In the plane E2, for instance, the distance of the points

P1 = (x1, y1) and P2 = (x2, y2) is given by

∥P1 − P2∥2 = (x1 − x2)
2 + (y1 − y2)

2.

Metrics de�ned in this manner satisfy the triangle inequality

for every triple of points P ,Q, R:

∥P −R∥ = ∥(P −Q)+ (Q−R)∥ ≤ ∥(P −Q)∥ + ∥(Q−R)∥,
see 3.25(1) in geometry, or the axioms of a metric in 7.12, or the

same inequality (5.4) for scalars. The concepts de�ned for real and

complex scalars and discussed for metric spaces in detail thus can

be carried over (extended) with no problem for the points Pi of any

Euclidean space:

The topology of Euclidean spaces

• a Cauchy sequence: a sequence of pointsPi such that for every

�xed ε > 0, ∥Pi−Pj∥ < ε holds for all indeces but for �nitely

many exceptional values i, j ;

• a convergent sequence: a sequence of points Pi converges to

a point P i� for every �xed ε > 0, ∥Pi − P ∥ < ε holds for

all but �nitely many indeces i; the point P is then called the

limit of the sequence Pi ;

• a limit point P of a set A ⊂ En: there exists a sequence of

points in A converging to P and di�erent from P ;

• a closed set: contains all of its limit points;

• an open set: its complement is closed;

• an open δ�neighborhood of a point P : the setOδ(P ) = {Q ∈
En; ∥P −Q∥ < δ}, δ ∈ R, δ > 0;

• a boundary point P of a set A: every δ�neighborhood of P

has non-empty intersection with both A and the complement

En \ A;
• an interior point P of a set A: there exists a δ�neighborhood

of P which lies inside A;

• a bounded set: lies inside some δ�neighborhood of one of its

points (for a su�ciently large δ);

• a compact set: both closed and bounded.

The reader should make an appropriate e�ort to read the para-

graphs 3.25, 5.14�5.17, 7.14�7.16, and 7.22 as

well as try to think out/recall the de�nitions and

connections of all these concepts.
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8.4. Prove that the only non-empty clopen (both closed and open)
subset of En is En itself.

Solution. It follows from the above exercise ∥8.3∥ that every non-
empty proper subset U of En has a boundary point. If U is closed,
then it is equal to its closure; therefore, it contains all of its boundary
points. However, an open set (by de�nition) cannot contain a boundary
point. □

8.5. Show that the space En cannot be written as the union of (at
least two) disjoint non-empty open sets.

Solution. Suppose that En can be expressed thus, i. e., En = ∪
i∈I
Ui ,

where I is an index set. Let us �x a set U from this union. Then,
we can write En = U ∪ U , where both U and U (being a union of
open sets) are open. However, they are also complements of open sets;
therefore, they are closed as well. This contradicts the result of the
previous exercise ∥8.4∥. □

8.6. Prove or disprove: a union of (even in�nitely many) closed sub-
sets of En is a closed subset of En .

Solution. The proposition does not hold in general. As a counterex-
ample, consider the union

∞∪
i=3

[
1
i
, 1 − 1

i

]
of closed subsets of R, which is equal to the open interval (0, 1). □

8.7. Prove or disprove: an intersection of (even in�nitely many) open
subsets of En is an open subset of En .

Solution. The proposition does not hold in general. As a counterex-
ample, consider the intersection

∞∩
i=2

(
1 − 1

i
, 1 + 1

i

)
of open subsets of R, which is equal to the closed singleton {1}. □

8.8. Consider the graph of a continuous function f : R2 → R as
a subset of E3. Determine whether this subset is open, closed, and
compact, respectively.

Solution. The subset is not open since any neighborhood of a point
[x0, y0, f (x0, y0)] contains a segment of the line x = x0, y = y0.
However, there is a unique point of the graph of the function on this
segment, and that is the point [x0, y0, f (x0, y0)].

The continuity of f implies that the subset is closed �wewill show
that every convergent sequence of points of the graph of f converges
to a point which also lies in the graph: If such a sequence is conver-
gent in E3, then it must converge in every component, so the sequence
{[xn, yn]}∞n=1 is convergent in R2. Let us denote this limit by [a, b].
Then, it follows from the de�nition of continuity that its function val-
ues at the points [xn, yn] must converge to the value f (a, b). However,
this means that the sequence {[xn, yn, f (xn, yn)]}∞n=1 converges to the
point [a, b, f (a, b)], which belongs to the graph of the function f .
Therefore, the graph is a closed set.
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It should be clear straight from the de�nitions that sequences

of points Pi have the properties mentioned in the �rst and second

items if and only if these properties are possessed by the real se-

quences obtained from the particular coordinates of the points Pi
in every Cartesian coordinate system. Therefore, it also follows

from Lemma 5.12 that every Cauchy sequence of points in En is

convergent. Especially, En is always a complete metric space.

8.3. Compact sets. Our games with open, closed, or compact sets

could seem useless in the case of the real line E1 since in the end,

we almost always talked about intervals.

In the case of metric spaces in the second part of chapter seven,

it probably was, on the other hand, too complicated. However, the

same approach is quite easy in the case of Euclidean spaces Rn.
It is also very useful and important (and it is, of course, a special

case of general metric spaces).

Just like in the case of E1, we de�ne the open cover of a set (i.

e., a system of open sets containing the given set), and the Theorem

5.17 holds as well (with mere reformulations):

Theorem. Subsets A ⊂ En of Euclidean spaces satisfy:

(1) A is open if and only if it is a union of a countable (or �nite)

system of δ�neighborhoods,

(2) every point a ∈ A is either interior or boundary,

(3) every boundary point ofA is either an isolated or a limit point

of A,

(4) A is compact if and only if every in�nite sequence contained

in it has a subsequence converging to a point in A,

(5) A is compact if and only if each of its open covers contains a

�nite subcover.

Proof. The proof from 5.17 can be reused without changes

in the case of propositions (1)�(3), yet now the con-

cepts have to be perceived in a di�erent way, and

the "open intervals" are substituted with multidimen-

sional δ�neighborhoods of appropriate points.

However, the proof of the fourth and �fth propositions has to

be adjusted properly. Therefore, it is a good idea to go through the

proof of the corresponding propositions for general metric spaces

in 7.22 while noticing the parts which can be simpli�ed for Eu-

clidean spaces. □

8.4. Curves in En. Almost all of our discussion about limits,

derivatives, and integrals of functions in chapters

5 and 6 concerned functions of a real variable and

real or complex values since we used only the tri-

angle inequality valid for the magnitudes of the real and complex

numbers. We already noticed back then that this argument can be

carried over to any functions of a real variable with values in a

Euclidean space Rn, and we introduced several tools for the work
with curves in paragraphs 6.14�6.17.

Therefore, let us remind that for every (parametrized) curve1,

i. e., a mapping c : R → Rn in an n�dimensional space, we can

work with the concepts which simply extend our reasonings from

the univariate functions:

• a limit: limt→t0 c(t) ∈ Rn

1In geometry, one often makes a distinction between a curve as a subset of

En and its parametrization R → Rn. When we say the word "curve", we will

exclusively mean the parametrized curve.
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The subset is closed, yet it is not compact since it is not bounded
(its orthogonal projection onto the coordinate plane xy is the whole
R2. (A subset of En is compact i� it is both closed and bounded.) □

C. Tangent lines, tangent planes, graphs of multivariate

functions

8.9. A car is moving at velocity given by the vector (0, 1, 1). At the
initial time t = 0, it is situated at the point [1, 0, 0]. The acceleration
of the car in time t is given by the vector (− cos t,− sin t, 0). Describe
the dependency of the position of the car upon the time t.

Solution. As we have already discussed in paragraph 8.4, we got
acquainted with the means of solving this type of problem as early
as in chapter 6. Notice that the "integral curve" C(t) from the the-
orem of paragraph 8.4 starts at the point (0, 0, 0) (in other words,
C(0) = (0, 0, 0)). In the a�ne space Rn, we can move it so that it
starts at an arbitrary point, and this does not change its derivative (this
is performed by adding a constant to every component in the para-
metric equation of the curve). Therefore, up to the movement, this
integral curve is determined uniquely (nothing else than constants can
be added to the components without changing the derivative). When
we integrate the curve of acceleration, we get the curve of velocity
(− sin t, cos t − 1, 0). Considering the initial velocity as well, we ob-
tain the velocity curve of the car: (− sin t, cos t, 1) (we shifted the
curve of the vector (0, 1, 1), i. e., so that now the velocity curve at
time t = 0 agrees with the given initial velocity). Further integra-
tion leads to the curve (cos t − 1, sin t, t). Shifting this of the vector
(1, 0, 0) then �ts with the initial position of the car. Therefore, the car
moves along the curve [cos t, sin t, t] (this curve is called a helix). □

8.10. Determine both the parametric and implicit equations of the
tangent line to the curve c : R → R3, c(t) = (c1(t), c2(t), c3(t)) =
(t, t2 , t3 ) at the point which corresponds to the parameter's value t =
1.
Solution. The value t = 1 corresponds to the point c(1) = [1, 1, 1].
The derivatives of the particular components are c′1(t) = 1, c′2(t) = 2t,
c3(t) = 3t2 . The values of the derivatives at the point t = 1 are 1, 2,
3. Therefore, the parametric equations of the tangent line are:

x = c′1(1)s + c1(1) = t + 1,
y = c′2(1)s + c2(1) = 2t + 1,
z = c′3(1)s + c3(1) = 3t + 1.

In order to get the implicit equations (which are not given canonically),
we eliminate the parameter t, thereby obtaining:

2x − y = 1,
3x − z = 2. □

8.11. The set of di�erentiable functions. We can notice that multi-
variate polynomials are di�erentiable on the whole of their do-
main. Similarly, the composition of a di�erentiable univariate
function and a di�erentiable multivariate function leads to a dif-

ferentiable multivariate function. For instance, the function sin(x+y)
is di�erentiable on the wholeR2; ln(x+y) is a di�erentiable function
on the set of points with x > y (an open half-plane, i. e., without the
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• a derivative: c′(t0) = limt→t0
1

|t−t0| · (c(t)− c(t0)) ∈ Rn

• an integral:
∫ b
a
c(t)dt ∈ Rn.

We can also notice that both the limit and the derivative of

curves make sense in an a�ne space even without selecting the

coordinates (where the limit is again a point in the original space,

while the derivative is a vector in the direction space!). In the case

of an integral, we will have to consider curves in the vector space

Rn. The reason for this can be seen even in the case of one dimen-
sion, where we need to know the origin to be able to see the "area

under the graph of a function".

Once again, it is apparent straight from the de�nition that

limits, derivatives, and integrals can be calculated by particular

n-coordinate components in Rn, and their existence can be deter-

mined in the same way.

We can also directly formulate the analogy of the connection

between the Riemann integral and the antiderivative for curves (see

6.25):

Proposition. Let c be a curve in Rn, continuous on an interval

[a, b]. Then its Riemann integral
∫ b
a
c(t)dt exists. Moreover, the

curve

C(t) =
∫ t

a

c(s)ds ∈ Rn

is well-de�ned, di�erentiable, and it holds thatC′ (t) = c(t) for all

values t ∈ [a, b].

It is worse with the mean value theorem and, in general, with

Taylor's theorem, see 5.38 and 6.4. We can apply them in a se-

lected coordinate system to the particular coordinate functions of

a di�erentiable function c(t) = (c1(t), . . . , cn(t)) on a �nite inter-

val [a, b]. In the case of the mean value theorem, for instance, we
get the existence of numbers ti such that

ci(b)− ci(a) = (b − a) · c′i(ti).
However, these numbers ti will be distinct in general, so we cannot

express the di�erence vector of the marginal points c(b) − c(a)

as a multiple of the derivative of the curve at a single point. For

example, in the plane E2, we thus get for the di�erentiable curve

c(t) = (x(t), y(t)) that

c(b)− c(a) = (x′ (ξ)(b − a), y′ (η)(b − a))

= (b − a) · (x′ (ξ), y′ (η))
for two (di�erent, in general) values ξ, η ∈ [a, b]. However, this
reasoning is still su�cient for the following bound:

Lemma. If c is a curve inEn with continuous derivative on a com-

pact interval [a, b], then we have for all a ≤ s ≤ t ≤ b that

∥c(t)− c(s)∥ ≤ √
n(maxr∈[a,b] ∥c′(r)∥) · |t − s|.

Proof. Direct application of the mean value theorem gives

for appropriate points ri inside the interval [s, t] the following:

∥c(t)− c(s)∥2 =
n∑
i=1

(ci(t)− ci(s))
2 ≤

n∑
i=1

(c′i(ri)(t − s))2

≤ (t − s)2
n∑
i=1

maxr∈[s,t] c
′
i(r)

2

≤ n(maxr∈[s,t], i=1,...,n |c′i(r)|)2(t − s)2

≤ nmaxr∈[s,t] ∥c′(r)∥2(t − s)2.
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boundary line). The proofs of these propositions are left as an exercise
on limit compositions.

Remark.Notation of partial derivatives The partial derivative of a
function f : Rn → R in variables x1, . . . , xn with respect to the vari-
able x1 will be denoted by both

∂f

∂x1
and the shorter expression fx1 . In

the exercise part of the book, we will rather keep to the latter notation.
On the other hand, the notation ∂f

∂x1
better catches the fact that this is a

derivative of f in the direction of the vector �eld ∂
∂x1

(you will learn
what a vector �eld is in paragraph 8.34).

8.12. Determine the domain of the function f : R2 → R, f (x, y) =
x2 √

y. Calculate the partial derivatives where they are
de�ned on this domain.

Solution. The domain of the function in question
inR2 is the half-plane {(x, y), y ≥ 0}. In order to determine the partial
derivative with respect to a given variable, we consider the other vari-
ables to be constants in the formula that de�nes the function. Then, we
simply di�erentiate the expression as a univariate function. We thus
get:

fx = 2xy a fy = 1
2
x2

√
y
.

The partial derivatives exist at all points of the domain except for
the boundary line y = 0. □

8.13. Determine the derivative of the function f : R3 → R,
f (x, y, z) = x2yz at the point [1,−1, 2] in the direction v =
(3, 2,−1).
Solution. The directional derivative can be calculated in two ways.
The �rst one is to derive it directly from the de�nition (see paragraph
8.5). The second one is to use the di�erential of the function; see
8.6 and theorem 8.7. Since the given function is a polynomial, it is
di�erentiable on the whole R3.

Let us go from the de�nition:

fv(x, y, z) = lim
t→0

1
t

[f (x + 3t, y + 2t, z− t)− f (x, y, z)] =

= lim
t→0

1
t

[(x + 3t)2(y + 2t)(z− t)− x2yz] =

= lim
t→0

1
t

[t (6xyz+ 2x2 z− x2y)+ t2 (. . . )] =
= 6xyz+ 2x2 z− x2y.

We have thus derived the derivative in the direction of the vector
(3, 2,−1) as a function of three real variables which determine the
point at which we are interested in the value of the derivative. Evalu-
ating this for the desired point thus leads to fv(1,−1, 2) = −7.

In order to compute the directional derivative from the di�erential
of the function, we �rst have to determine the partial derivatives of the
function:

fx = 2xyz, fy = x2 z, fz = x2y.

It follows from the note beyond theorem 8.7 that we can express
fv(1,−1, 2) = 3fx(1,−1, 2)+ 2fy(1,−1, 2)+



CHAPTER 8. CONTINUOUS MODELS WITH MORE VARIABLES

□

An important concept is the one of a tangent vector to a curve

c : R → En at a point c(t0) ∈ En, which is de�ned as the vector in
the direction Rn given by the derivative c′(t0) ∈ Rn. The straight

line T given parametrically by

T : c(t0)+ t · c′(t0)
is called the tangent line to the curve c at the point t0. Unlike the

tangent vector, the tangent line T , being a non-parametrized line,

is independent of the parametrization of the curve c since thanks

to the chain rule, changing the parametrization leads to the same

tangent vector, up to multiple.

8.5. Partial derivatives. For every function f : Rn → R and an

arbitrary curve c : R → Rn, we can consider their

composition (f ◦ c)(t) : R → R. This composite
function F ◦ c expresses the behavior of the function
f along the curve c. The simplest case is when we

use straight lines.

directional and partial derivatives

De�nition. We say that f : Rn → R has derivative in the direc-

tion of a vector v ∈ Rn at a point x ∈ En i� the derivative dvf (x)

of the composite mapping t 7→ f (x + tv) at the point t = 0, i. e.,

dvf (x) = lim
t→0

1
t
(f (x + tv)− f (x)).

The value dvf is also called a directional derivative.

The special choice of the lines in the direction of the axes of

the coordinate system yields the so-called partial derivatives of the

function f , which are denoted by
∂f
∂xi

, i = 1, . . . , n, or (without
referring to the function) as operations ∂

∂xi
.

For functions in the plane, we thus get

∂

∂x
f (x, y) = lim

t→0

1
t
(f (x + t, y)− f (x, y))

∂

∂y
f (x, y) = lim

t→0

1
t
(f (x, y + t)− f (x, y)).

Especially, we can see that the partial di�erentiation with respect

to a given variable is just the casual one-variable di�erentiation

while considering the other variables to be constants.

8.6. The di�erential of a function f : Rn → R. However, we
will not do with partial or directional derivatives for a

good approximation of the behavior of a function by

linear expressions. We would probably expect that a

"di�erentiable" function of more variables composed

with any di�erentiable curve again yields di�erentiable functions

of one variable, which we have known well.

However, let us look at the functions in the plane given by the

formulae

g(x, y) =
{

1 if yx = 0
0 otherwise

h(x, y) =
{

1 if y = x2 ̸= 0
0 otherwise

.
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+ (−1)fz(1,−1, 2) =
= 3 · (−4)+ 2 · 2 + (−1) · (−1) = −7. □

8.14. Determine the derivative of the function f : R3 → R,

f (x, y, z) = cos(x2y)
z

at the point [0, 0, 2] in the direction of the vector
(1, 2, 3).
Solution. The domain of this function isR3 except for the plane z = 0.
The following calculations will be considered only on this domain.
The function in question is di�erentiable at the point [0, 0, 2] (this
follows from the note ∥8.11∥). We can determine the value of the
examined directional derivative by 8.6, using partial derivatives.

First, we determine the partial derivatives of the given function (as
we have already mentioned in exercise ∥8.12∥, in order to determine
the partial derivative with respect to x, we di�erentiate it as a univari-
ate function (in x) and use the chain rule; similarly for other partial
derivatives):

fx = −2xy sin(x2y)

z
, fy = −x

2 sin(x2y)

z
, fz = −cos(x2y)

z2
.

Evaluating this expression at the particular values, we obtain

fx(0, 0, 2)+ 2 · fy(0, 0, 2)+ 3 · fz(0, 0, 2) =
1 · 0 + 2 · 0 + 3 ·

(
−1

4

)
= −3

4
.

□

8.15. Having a function f : Rn → R with di�erential df (x) and a
point x ∈ Rn, determine a unit direction v ∈ Rn in which the direc-
tional derivative dv(x) is maximal.

Solution. According to the note beyond theorem 8.4, we are maximiz-
ing the function fv(x) = v1fx1(x) + v2fx2(x) + · · · + vnfxn(x) in
dependence on the variables v1, . . . , vn which are bound by the con-
dition v2

1 + · · · + v2
n = 1. We have already solved this type of prob-

lem in chapter 3, when we talked about linear optimization (viz ∥??∥).
The value fv(x) can be interpreted as the scalar product of the vectors
(fx1, . . . , fxn) and (v1, . . . , vn). And this product is maximal if the
vectors are of the same direction. The vector v can thus be obtained
by normalizing the vector (fx1, . . . , fxn). In general, we say the the
function grows maximally in the direction (fx1, . . . , fxn). Then, this
vector is called the gradient of the function f . In paragraph 8.19, we
will recall this idea and go into further details. □

8.16. Determine whether the tangent plane to the graph of the func-
tion f : R × R+ → R, f (x, y) = x · ln(y) at the point [1, 1

e
] goes

through the point [1, 2, 3] ∈ R3.

Solution. First of all, we calculate the partial derivatives: fx(x, y) =
ln(y), fy(x, y) = x

y
; their values at the point [1, 1

e
] are −1, e; further

f (1, 1
e
) = −1. Therefore, the equation of the tangent plane is

z = f

(
1,

1
e

)
+ fx

(
1,

1
e

)
(x − 1)+ fy

(
1,

1
e

)(
y − 1

e

)
= −1 − x + ey.

The given point does not satisfy this equation, so it does not lie in the
tangent plane. □
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Apparently, neither of them extends all smooth curves going

through the point (0, 0) to smooth functions. On the other hand,

both partial derivatives of g at (0, 0) exist and no other directional
derivatives do, while h has all directional derivatives at the point

(0, 0), and we even have dvh(0) = 0 for all directions v, so this is

a linear dependence on v ∈ R2.

We can also imagine a function f which, along the lines

(r cos θ, r sin θ)with a �xed angle θ , takes the values k(θ)r, where
k(θ) is a periodic odd function of the angle θ , with period 2π . All
of its directional derivatives dvf at (0, 0) exist, yet these will not be
linear expressions depending on the directions v for general func-

tions k(θ).

Therefore, we will imitate the case of univariate functions as

thoroughly as possible, and we will forbid such a pathological be-

havior of functions directly by a de�nition:

Differential

De�nition. A function f : Rn → R is di�erentiable at a point x

i� all of the following three conditions hold:

(1) the directional derivatives dvf (x) at the point x exist for all

vectors v ∈ Rn,
(2) dvf (x) is linearly dependent on the increase of v,

(3) limv→0
1

∥v∥
(
f (x + v)− f (x)− dvf (x)

) = 0.
The linear expression dvf (in a vector variable v) is called a di�er-

ential of the function f evaluated at the increase of v.

In words, we require that the increases of the function f at the

point x be well approximated by linear functions of increases of

the variable quantities.

It follows directly from the de�nition of directional derivatives

that the di�erential can be de�ned solely by the property (3). In-

deed, if there is a linear form df (x) such that the increases v at

the point x satisfy the property (3) with dvf (x) = df (x)(v), then

df (x)(v) is apparently just the directional derivative of the func-

tion f at the point x, so the properties (1) and (2) are automatically

satis�ed.

Let us examine what we can say about the di�erential of a

function f (x, y) in the plane, supposing both partial

derivatives
∂f
∂x
,
∂f
∂y

exist and are continuous in a neigh-

borhood of a point (x0, y0).

To this purpose, consider any smooth curve t 7→
(x(t), y(t)) with x0 = x(0), y0 = y(0). Using the mean value

theorem for univariate functions in both summands separately, we

obtain that

1
t

(
f (x(t), y(t))− f (x0, y0)

) =
1
t

(
f (x(t), y(t))−f (x0, y(t))

)+ 1
t

(
f (x0, y(t))−f (x0, y0)

)
= 1

t
(x(t)− x0) · ∂f

∂x
(x(ξ), y(t))+ 1

t
(y(t)− y0) · ∂f

∂y
(x0, y(η))

for suitable numbers ξ and η between 0 and t.

Especially, for every sequence of numbers tn converging to

zero, we can get the corresponding sequences of numbers ξn and

ηn which also converge to zero and all will satisfy the above ex-

pression.

Letting t → 0, we get thanks to continuity of the partial

derivatives that (see the test for convergence of a function using
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8.17. Determine the parametric equation of the tangent line to the
intersection of the graphs of the functions f : R2 → R, f (x, y) =
x2 + xy − 6, g : R×R+ → R, g(x, y) = x · ln(y) at the point [2, 1].

Solution. The tangent line to the intersection is the intersection of the
tangent planes at the given point. The plane that is tangent to the graph
of f and goes through the point [2, 1] is

z = f (2, 1)+ fx(2, 1)(x − x0)+ fy(2, 1)(y − y0)

= 5x + 2y − 12.

The tangent plane to the graph of g is then

z = f (2, 1)+ gx(x, y)(2, 1)(x − x0)+ g(x, y)y(2, 1)(y − y0)

= 2y − 2.

The intersection line of these two planes is given parametrically as
[2, t, 2t − 2], t ∈ R.
Another solution. The normal to the surface given by the equation
f (x, y, z) = 0 at the point b = [2, 1, 0] is (fx(b), fy(b), fz(b)) =
(5, 2,−1); the normal to the surface given by g(x, y, z) = 0 at the
same point is (0, 2,−1). The tangent line is perpendicular to both nor-
mals; we can thus obtain a vector it is parallel to as the vector product
of the normals, which is (0, 5, 10). Since the tangent line goes through
the point [2, 1, 0], its parametric equation is [2, 1 + t, 2t], t ∈ R. □

8.18. Determine all second partial derivatives of the function f
given by f (x, y, z) = √

xy ln z.

Solution. First, we determine the domain of the given function: the
argument of the square root must be non-negative, and the argument of
the natural logarithm must be positive. Therefore, Df = {(x, y, z) ∈
R3, (z ≥ 1&(xy > 0)) ∨ (0 < z < 1)&(xy < 0)}.

Now, we calculate the �rst partial derivatives with respect to each
of the three variables:

fx = y ln(z)
2
√
xy ln(z)

, fy = x ln(z)
2
√
xy ln(z)

, fz = xy

2z
√
xy ln(z)

.

Each of these three partial derivatives is again a function of three
variables, so we can consider (�rst) partial derivatives of these func-
tions. Those are the second partial derivatives of the function f . We
will write the variable with respect to which we di�erentiate as a sub-
script of the function f .

fxx = − y2 ln2 z

4(xy ln z)
3
2
,

fxy = − xy ln2 z

4(xy ln z)
3
2

+ ln z
2
√
xy ln z

,

fxz = − xy2 ln z

4z(xy ln z)
3
2

+ y

2z
√
xy ln z

,

fyy = − x2 ln2 z

4(xy ln z)
3
2
,

fyz = − x2y ln z

4z(xy ln z)
3
2

+ x

2z
√
xy ln z

,
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subsequences of the input values, 5.23, and Theorem 5.22 about

the limits of sums and products of functions)

d

dt
f (x(t), y(t))|t=0 = x′ (0)∂f

∂x
(x0, y0)+ y′ (0)∂f

∂y
(x0, y0),

which is a pleasant extension of the theorem on di�erentiation of

composite functions of one variable for vector-valued functions.

Of course, the special choice of parametrized straight lines

(x(t), y(t)) = (x0 + tξ, y0 + tη)

transforms our calculation, with v = (ξ, η), to the equality

dvf (x0, y0) = ∂f

∂x
(x0, y0)ξ + ∂f

∂y
(x0, y0)η,

and this formula can be expressed in the nice way in which we

described coordinate expressions of linear functions on vector

spaces:

df = ∂f

∂x
dx + ∂f

∂y
dy.

In other words, the directional derivative dvf is indeed a linear

function Rn → R on the increases, with coordinates given by the

partial derivatives.

Similarly, we can now prove that the assumption of continuous

partial derivatives at a given point guarantees the approximation

properties of the di�erential as well.

We will consider general multivariate functions straightaway:

8.7. Theorem. Let f : En → R be a function of n variables

which has continuous partial derivatives in a neighborhood of the

a point x ∈ En. Then its di�erential df at the point x exists and

its coordinate expression is given by the formula

df = ∂f

∂x1
dx1 + ∂f

∂x2
dx2 + · · · + ∂f

∂xn
dxn.

Proof. This theorem can be derived analogously to the pro-

cedure described above, for the case n = 2. We only

have to be careful in details and �nish the reasoning

about the approximation properties. Just like above,

we consider a curve

c(t) = (c1(t), . . . , cn(t)),

c(0) = (0, ..., 0) and a point x ∈ Rn, and we express the di�erence
f (x + c(t))− f (x) for the composite function f (c(t)) as follows:

f (x1 + c1(t), . . . , xn + cn(t))− f (x1, x2 + c2(t), . . . )

+ f (x1, x2 + c2(t), . . . ))− f (x1, x2, . . . , xn + cn(t))

...

+ f (x1, x2, . . . , xn + cn(t))− f (x1, x2, . . . , xn).

Now, we can apply the mean value theorem to all of the n sum-

mands, thus obtaining (similarly to the case of two variables)

(c1(t)− c1(0))
∂f

∂x1
(x1 + c1(θ1), x2 + c2(t), . . . , xn + cn(t))

+ (c2(t)− c2(0))
∂f

∂x2
(x1, x2 + c2(θ2), . . . , xn + cn(t))

...

+ (cn(t)− cn(0))
∂f

∂xn
(x1, x2, . . . , xn + c1(θn)),
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fzz = − x2y2

4z2(xy ln z)
3
2

− xy

2z2
√
xy ln z

.

By the theorem about interchangeability of partial derivatives (see
8.10), we know that fxy = fyx , fxz = fzx , fyz = fzy . Therefore,
it su�ces to compute the mixed partial derivatives (the word "mixed"
means that we di�erentiate with respect to more than one variable) just
for one order of di�erentiation. □

D. Taylor polynomials

8.19. Write the second-order Taylor expansion of the function f :
R2 → R, f (x, y) = ln(x2 + y2 + 1) at the point [1, 1].
Solution. First, we compute the �rst partial derivatives:

fx = 2x
x2 + y2 + 1

, fy = 2y
x2 + y2 + 1

,

then the Hessian:

Hf (x, y) =
(

2y2−2x2+2
(x2+y2+1)2 − 4xy

(x2+y2+1)2

− 4xy
(x2+y2+1)2

2x2−2y2+2
(x2+y2+1)2

)
.

The value of the Hessian at the point [1, 1] is( 2
9 − 4

9− 4
9

2
9

)
.

Altogether, we get that the second-order Taylor expansion at the point
[1, 1] is

T2(x, y) = f (1, 1)+ fx(1, 1)(x − 1)+ fy(1, 1)(y − 1)+
+1

2
(x − 1, y − 1)Hf (1, 1)

(
x − 1
y − 1

)
= ln(3)+ 2

3
(x − 1)+ 2

3
(y − 1)+ 1

9
(x − 1)2 −

−4
9
(x − 1)(y − 1)+ 1

9
(y − 1)2

= 1
9
(x2 + y2 + 8x + 8y − 4xy − 14)+ ln(3).

□
Remark. In particular, we can see that the second-order Taylor expan-
sion of an arbitrary di�erentiable function at a given point is a second-
order polynomial.

8.20. Determine the second-order Taylor polynomial of the function
f : R2 → R2, f (x, y) = xy cos y at the point [π, π ]. Decide
whether the tangent plane to the graph of this function at the point
[π, π, f (π, π)] goes through the point [0, π, 0].
Solution. As in the above exercises, we �nd out that

T (x, y) = 1
2
π2y2 − xy − π3y + 1

2
π4.

The tangent plane to the graph of the given function at the point [π, π ]
is given by the �rst-order Taylor polynomial at the point [π, π ]; its
general equation is thus

z = −πy − πx + π2,

and this equation is satis�ed by the given point [0, π, 0]. □
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for appropriate values θi , 0 ≤ θi ≤ t. This is a �nite sum, so the

same reasoning as in the case of two variables veri�es that

d

dt
f (x + c(t))t=0 = c′1(0)

∂f

∂x1
(x)+ · · · + c′n(0)

∂f

∂xn
(x).

The special choice of the curves c(t) = x + tv for a directional

vector v veri�es the statement about existence and linearity of the

directional derivatives at x.

At the same time, we can apply the mean value theorem in the

same way to the di�erence

f (x + v)− f (x) = dvf (x + θv)

= v1
∂f

∂x1
(x + θv)+ · · · + vn

∂f

∂xn
(x + θv)

with an appropriate θ , 0 ≤ θ ≤ 1, where the latter equality holds
according to the formula for directional derivatives derived above,

for su�ciently small v's thanks to the continuity of the partial

derivatives in a neighborhood of the point x.

Since all the partial derivatives are continuous at the point x,

we know that for an arbitrarily small ε > 0, there is a neighborhood
U of the origin in Rn such that for w ∈ U , all partial derivatives
∂f
∂xi
(x+w) di�er from ∂f

∂xi
(x) by less than ε. Thus we get the bound

1
∥w∥

(
f (x + w)− f (x)− dwf (x + θw)

) ≤ n

∥w∥∥w∥ε,

so the approximation property of the di�erential is satis�ed as well.

□

8.8. A plane tangent to the graph of a function. The linear ap-

proximation of the function behavior by its di�eren-

tial can, similarly to the case of univariate functions,

be expressed with respect to its graph. We will just

work with hyperplanes instead of tangent lines.

For the case of a function on E2 and a �xed point (x0, y0) ∈
E2, consider the plane in E3 given by the equation

z = f (x0, y0)+ df (x0, y0)(x − x0, y − y0)

= f (x0, y0)+ ∂f

∂x
(x0, y0)(x − x0)+ ∂f

∂y
(x0, y0)(y − y0).

We have already seen that the increase of the function values of

a di�erentiable function f : En → R at points x + tv and x is

always expressed in terms of the directional derivative dvf at a

suitable point between them. Therefore, this is the only plane out

of those which contain the point (x0, y0) having the property that

all derivatives, and so the tangent lines of all curves

c(t) = (x(t), y(t), f (x(t), y(t)))

as well lie in it. It is called the tangent plane to the graph of the

function f .

Two tangent planes to the graph of the function

f (x, y) = sin(x) cos(y)

are shown in the picture. The diagonal line is the image of the

curve c(t) = (t, t, f (t, t)).
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8.21. Determine the third-order Taylor polynomial of the function f :
R3 → R, f (x, y, z) = x3y + xz2 + xy + 1 at the point [0, 0, 0]. ⃝
8.22. Determine the second-order Taylor polynomial of the function
f : R2 → R, f (x, y) = x2 sin y+ y2 cos x at the point [0, 0]. Decide
whether the tangent plane to the graph of this function at the point
[0, 0, 0] goes through the point [π, π, π ]. ⃝
8.23. Determine the second-order Taylor polynomial of the function
ln(x2y) at the point [1, 1]. ⃝
8.24. Determine the second-order Taylor polynomial of the function
f : R2 → R,

f (x, y) = tan(xy + y)

at the point [0, 0]. ⃝

E. Extrema of multivariate functions

8.25. Determine the stationary points of the function f : R2 → R,
f (x, y) = x2y + y2x − xy and decide which of these points are local
extrema and of which type.

Solution. The �rst derivatives are fx = 2xy + y2 − y, fy = x2 +
2xy−x. If we set both partial derivatives equal to zero simultaneously,
the system has the following solution: {x = y = 0}, {x = 0, y = 1},
{x = 1, y = 0}, {x = 1/3, y = 1/3}, which are four stationary points
of the given function.

The Hessian of the function f is

(
2y 2x + 2y − 1

2x + 2y − 1 2x

)
.

Its values at the stationary points are, respectively,(
0 −1

−1 0

)
,

(
1 1
1 0

)
,

(
0 1
1 1

)
,

( 2
3

1
3

1
3

2
3

)
.

Therefore, the �rst three Hessians are inde�nite, and the last one
is positive de�nite. The point [1/3, 1/3] is thus a local minimum. □

8.26. Determine the point in the plane x + y + 3z = 5 lying in R3

which is closest to the origin of the coordinate system. First, do this
by applying the methods of linear algebra; then, using the methods of
di�erential calculus.

Solution. It is the intersection point of the perpendicular going
through the point [0, 0, 0] to the plane. The normal to the plane is
(t, t, 3t), t ∈ R. Substituting into the equation of the plane, we get the
intersection point [5/11, 5/11, 15/11].

Alternatively, we can minimize the distance (or its square) of the
plane's points from the origin, i. e., the function

(5 − y − 3z)2 + y2 + z2.

Setting the partial derivatives equal to zero, we get the system

3y + 10z− 15 = 0
2y + 3z− 5 = 0,

whose solution is as above. Since we know that the minimum exists
and is the only stationary point, we need not calculate the Hessian any
more. □
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For the case of functions of n variables, the tangent plane is

de�ned as an analogy to the tangent plane to an area

in the three-dimensional space. Instead of being puz-

zled by a great deal of indeces, it will be useful to re-

call a�ne geometry, where we already worked with

the so-called hyperplanes, see paragraph 4.3.

A tangent (hyper)plane to the graph of a function at a point

De�nition. A tangent hyperplane to the graph of a function f :
Rn → R at a point x ∈ Rn is the nadr containing the point

(x, f (x)) with direction which is the graph of the linear mapping

df (x) : Rn → R, i. e. the di�erential at the point x ∈ En.
The de�nition takes advantage of the fact that the directional

derivative dvf is given by the increase in the tangent (hyper)plane

corresponding to the increase of the input vector v.

Many analogies with the univariate functions follow from

these reasonings. In particular, a di�erentiable function f on En
has zero di�erential at a point x ∈ En if and only if its composi-

tion with any curve going through this point has a stationary point

there, i. e., is neither increasing, nor decreasing in the linear ap-

proximation.

In other words, the tangent plane at such a point is parallel to

the hyperplane of the variables (i. e., its direction is En ⊂ En+1,

having added the last coordinate set to zero). Of course, this does

not mean that f should have a local extremum at such a point. Just

like in the case of univariate functions, this depends on the values

of higher derivatives.

8.9. Derivatives of higher orders. The operation of di�erentia-

tion can be iterated similarly to the case of univariate

functions. This time, we can choose di�erent direc-

tions for each iteration.

If we �x an increase v ∈ Rn, the enumeration
of the di�erentials at this increase de�nes a (di�erential) operation

on di�erentiable functions f : En → R

f 7→ dvf = df (v),

and the result is again a function df (v) : En → R. If this function
is di�erentiable as well, we can repeat this procedure with another

increase, and so on. In particular, we can work with iterations of

partial derivatives. For second-order partial derivatives, we write(
∂

∂xj
◦ ∂

∂xi

)
f = ∂2

∂xi∂xj
f = ∂2f

∂xi∂xj
.

In the case of the repeated choice i = j , we also write(
∂

∂xi
◦ ∂

∂xi

)
f = ∂2

∂x2
i

f = ∂2f

∂x2
i

.
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8.27. Determine the local extrema of the function

f (x, y) = x2 + arctan2 x + ∣∣ y3 + y
∣∣ , x, y ∈ R.

Solution. The function f can be written as the sum f1 + f2, where

f1(x) = x2 + arctan2x, x ∈ R, f2(y) = ∣∣ y3 + y
∣∣ , y ∈ R.

If the function f has a local extremum at a point, then it does so with
respect to an arbitrary subset of its domain. In other words, if the
function has, for instance, a maximum at a point [a, b] and we set
y = b, then the univariate function f (x, b) of x must have a maximum
at the point x = a. Let us thus �x an arbitrary y ∈ R. For this �xed
value of y, we get a univariate function, which is a shift of the function
f1. This means that its maxima and minima are at the same points.
However, it is easy to �nd the extrema of the function f1. We can just
realize that this function is even (it is the sum of two even functions,
and the function y = arctan2 x is the product of two odd functions) and
increasing for x ≥ 0 (the composition as well as the sum of increasing
functions is again an increasing function). Therefore, it has a unique
extremum, and that is a minimum at the point x = 0. Similarly, for any
�xed value of x, f is a shift of the function f2, and f2 has a minimum
at the point y = 0, which is its only extremum. We have thus proved
that f can have a local extremum only at the origin. Since

f (0, 0) = 0, f (x, y) > 0, [x, y] ∈ R2 ∖ {[0, 0]},
the function f has a strict local (even global) minimum at the point
[0, 0]. □

8.28. Examine the local extrema of the function

f (x, y) = (
x + y2

)
e

x
2 , x, y ∈ R.

Solution. This function has partial derivatives of all orders on the
whole of its domain. Therefore, local extrema can occur only at sta-
tionary points, where both the partial derivatives fx , fy are zero. Then,
it can be determined whether the local extremum occurs by computing
the second derivatives.

We can easily determine that

fx(x, y) = e
x
2 + 1

2

(
x + y2

)
e

x
2 , fy(x, y) = 2y e

x
2 , x, y ∈ R.

A stationary point [x, y] must satisfy

fy(x, y) = 0, i. e. y = 0,

and, further,

fx(x, y) = fx(x, 0) = e
x
2
(
1 + 1

2x
) = 0, i. e. x = −2.

We can see that there is a unique stationary point, namely [−2, 0].
Now, we calculate the HessianHf at this point. If this matrix (the

corresponding quadratic form) is positive de�nite, the extremum is a
strict local minimum. If it is negative de�nite, the extremum is a strict
local maximum. Finally, if the matrix is inde�nite, there will be no
extremum at the point. We have

fxx(x, y) = 1
2 e

x
2
(
2 + 1

2

(
x + y2

))
, fyy(x, y) = 2 e

x
2 ,

fxy(x, y) = fyx(x, y) = y e
x
2 , x, y ∈ R.

Therefore,

Hf (−2, 0) =
(
fxx (−2, 0) fxy (−2, 0)
fyx (−2, 0) fyy (−2, 0)

)
=
(

1/2e 0
0 2/e

)
.
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We proceed in the same way with further iterations and talk about

partial derivatives of order k

∂k f

∂xi1 . . . ∂xik
.

More generally, we can also iterate (assuming the function is suf-

�ciently di�erentiable) any directional derivatives; for instance,

dv ◦ dwf for two �xed increases v,w ∈ Rn.
k�times differentiable functions

We say that a function f : En → R is k�times (continuously)

di�erentiable at a point x i� all partial derivatives up to order k (in-

clusive) exist in a neighborhood of the point x and are continuous

at this point.

We say that f is k�di�erentiable i� it is k�times (continu-

ously) di�erentiable at all points of its domain.

>From now on, we will always work with continuously di�er-

entiable functions unless explicitly stated otherwise.

To show all of this in the simplest form, we will once again

work in the plane E2, supposing the second-order partial deriva-

tives are continuous. In the plane as well as in the space, iterated

derivatives are often denoted by mere indeces referring to the vari-

able names, for example:

fx = ∂f

∂x
, fxx = ∂2f

∂x2 , fxy = ∂2f

∂x∂y
, fyx = ∂2f

∂y∂x
.

We will show that if certain senseful conditions are satis�ed,

the partial derivatives commute, i. e., we need not

care about the order in which we di�erentiate.

Since we suppose that the partial derivatives ex-

ist and are continuous, the limits

fxy(x, y) = lim
t→0

1
t

(
fx(x, y + t)− fx(x, y)

)
= lim
t→0

1
t

(
lim
s→0

1
s

(
f (x + s, y + t)− f (x, y + t)

− f (x + s, y)+ f (x, y)
))

exist. However, since the limits can be expressed by any choice of

values tn → 0 and sn → 0 and the limits of the corresponding

sequences, we will also have that

fxy(x, y) = lim
t→0

1
t2

((
f (x + t, y + t)− f (x, y + t)

)
− (
f (x + t, y)− f (x, y)

))
,

and this limit value is continuous at (x, y).

Let us consider the expression from which we take the last

limit to be a function φ(x, y, t), and let us try to express it in

terms of partial derivatives. For a temporarily �xed t, we denote

g(x, y) = f (x + t, y) − f (x, y). Then the expression in the last

big parentheses is, by the mean value theorem, equal to

g(x, y + t)− g(x, y) = t · gy(x, y + t0)

for a suitable t0 which lies between 0 and t (the value of t0 depends
on t).
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We should recall that the eigenvalues of a diagonal matrix are exactly
the values on the diagonal. Further, positive de�niteness means that
all the eigenvalues are positive. Hence it follows that there is a strict
local minimum at the point [−2, 0]. □

8.29. Find the local extrema of the function

f (x, y, z) = x3 + y2 + z2

2 − 3xz− 2y + 2z, x, y, z ∈ R.

Solution. The function f is a polynomial; therefore, it has partial
derivatives of all orders. It thus su�ces to look for its stationary points
(the extrema cannot be elsewhere). In order to �nd them, we di�eren-
tiate f with respect to each of the three variables x, y, z and set the
derivatives equal to zero. We thus obtain

3x2 − 3z = 0, i. e., z = x2 ,

2y − 2 = 0, i. e., y = 1,
and (utilizing the �rst equation)

z − 3x + 2 = 0, i. e., x ∈ {1, 2}.
Therefore, there are two stationary points, namely [1, 1, 1] and
[2, 1, 4]. Now, we compute all second-order partial derivatives:

fxx = 6x, fxy = fyx = 0, fxz = fzx = −3,
fyy = 2, fyz = fzy = 0, fzz = 1.

Having this, we are able to evaluate the Hessian at the stationary
points:

Hf (1, 1, 1) =
 6 0 −3

0 2 0
−3 0 1

 , Hf (2, 1, 4) =
12 0 −3

0 2 0
−3 0 1

 .
Now, we need to know whether these matrices are positive def-

inite, negative de�nite, or inde�nite in order to determine whether
and which extrema occur at the corresponding points. Clearly, the
former matrix (for the point [1, 1, 1]) has eigenvalue λ = 2. Since its
determinant equals −6 and it is a symmetric matrix (all eigenvalues
are real), the matrix must have a negative eigenvalue as well (because
the determinant is the product of the eigenvalues). Therefore, the ma-
trix Hf (1, 1, 1) is inde�nite, and there is no extremum at the point
[1, 1, 1].

We will use the so-called Sylvester's criterion for the latter ma-
trixHf (2, 1, 4). According to this criterion, a real-valued symmetric
matrix

A =


a11 a12 a13 · · · a1n
a12 a22 a23 · · · a2n
a13 a23 a33 · · · a3n
...

...
...

. . .
...

a1n a2n a3n · · · ann


is positive de�nite if and only if all of its leading principal minors A,
i. e. the determinants

d1 = ∣∣a11
∣∣ , d2 =

∣∣∣∣a11 a12
a12 a22

∣∣∣∣ , d3 =
∣∣∣∣∣∣
a11 a12 a13
a12 a22 a23
a13 a23 a33

∣∣∣∣∣∣ , . . . , dn = |A |,
are positive. Further, it is negative de�nite i�

d1 < 0, d2 > 0, d3 < 0, . . . , (−1)ndn > 0.
The inequalities
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Now, gy(x, y) = fy(x + t, y) − fy(x, y), so we can write φ

as

φ(x, y, t) = 1
t
gy(x, y + t0)

= 1
t

(
fy(x + t, y + t0)− fy(x, y + t0)

)
.

Another application of the mean value theorem yields

φ(x, y, t) = fyx(x + t1, y + t0)

for a suitable t1 between 0 and t. However, if we split the big

parentheses into (f (x + t, y + t) − f (x + t, y)) − (f (x, y +
t) − f (x, y)), we get, by the same procedure with the function

h(x, y) = f (x, y + t)− f (x, y), the expression

φ(x, y, t) = fxy(x + s0, y + s1)

with (in general) di�erent constants s0 and s1. Since we assume

that the second-order partial derivatives are continuous, the limit

for t → 0 must guarantee the wanted equality

fxy(x, y) = fyx(x, y)

at all points (x, y).

The same procedure for functions of n variables proves the

following fundamental result:

Interchangeability of partial derivatives

8.10. Theorem. Let f : En → R be a k-times di�erentiable func-

tion with continuous partial derivatives up to order k (inclusive) in

a neighborhood of a point x ∈ Rn. Then all partial derivatives of
the function f at the point x up to order k (inclusive) are indepen-

dent of the order of di�erentiation.

Proof. The proof for the second order was illustrated above in

the special case when n = 2 . The procedure works

similarly for the general case as well.

Formally, the proof can be led in the following

way: we may assume that for every �xed choice of a pair of coordi-

nates xi and xj , the whole discussion of their interchanging takes

place in a two-dimensional a�ne subspace, i. e., all the other vari-

ables are considered to be constant and take no e�ect in the reason-

ings.

In the case of higher-order derivatives, the proof can be �n-

ished by induction on the order. Indeed, every order of the indeces

i1, . . . , ik can be obtained from a �xed one by several swaps of

adjacent pairs of indeces. □

8.11. Hessian. In the case of �rst-order derivatives, we intro-

duced the di�erential, being the linear form df (x)

which approximates a function f at a point x in the

best way. Similarly, we will now want to understand

the quadratic approximation of a function f : En →
R.
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∣∣12
∣∣ = 12 > 0,

∣∣∣∣12 0
0 2

∣∣∣∣ = 24 > 0,

∣∣∣∣∣∣
12 0 −3
0 2 0

−3 0 1

∣∣∣∣∣∣ = 6 > 0,

imply that the matrixHf (2, 1, 4) is positive de�nite � there is a strict
local minimum at the point [2, 1, 4]. □

8.30. Find the local extrema of the function

z = (
x2 − 1

) (
1 − x4 − y2

)
, x, y ∈ R.

Solution. Once again, we calculate the partial derivatives zx , zy and
set them equal to zero. This leads to the equations

−6x5 + 4x3 + 2x − 2xy2 = 0,
(
x2 − 1

)
(−2y) = 0,

whose solutions [x, y] = [0, 0], [x, y] = [1, 0], [x, y] = [−1, 0]. (In
order to �nd these solutions, it su�ces to �nd the real roots 1,−1 of
the polynomial −6x4 + 4x2 + 2 using the substitution u = x2 . Now,
we compute the second-order partial derivatives

zxx = −30x4 + 12x2 + 2 − 2y2 , zxy = zyx = −4xy, zyy = −2
(
x2 − 1

)
and evaluate the Hessian at the stationary points:

Hz (0, 0) =
(

2 0
0 2

)
, Hz (1, 0) = Hz (−1, 0) =

(−16 0
0 0

)
.

We can see that the �rst matrix is positive de�nite, so the function has
a strict local minimum at the origin.

However, the second and third matrices are negative semide�nite.
Therefore, the knowledge of second partial derivatives in insu�cient
for deciding whether there is an extremum at the points [1, 0] and
[−1, 0]. On the other hand, we can examine the function values near
these points. We have

z (1, 0) = z (−1, 0) = 0, z (x, 0) < 0 for x ∈ (−1, 1).
Further, consider y dependent on x ∈ (−1, 1) by the formula y =√

2
(
1 − x4

)
, so that y → 0 for x → ±1. For this choice, we get

z
(
x,

√
2
(
1 − x4

)) = (
x2 − 1

) (
x4 − 1

)
> 0, x ∈ (−1, 1).

We have thus shown that in arbitrarily small neighborhoods of the
points [1, 0] and [−1, 0], the function z takes on both higher and lower
values than the function value at the corresponding point. Therefore,
these are not extrema. □

8.31. Decide whether the polynomial

p(x, y) = x6 + y8 + y4x4 − x6y5

has a local extremum at the stationary point [0, 0].
Solution. We can easily verify that the partial derivatives px and py
are indeed zero at the origin. However, each of the partial derivatives
pxx , pxy , pyy is also equal to zero at the point [0, 0]. The Hessian
Hp (0, 0) is thus both positive and negative semide�nite at the same
time. However, a simple idea can lead us to the result: We can notice
that p(0, 0) = 0 and

p(x, y) = x6
(
1 − y5

)+ y8 + y4x4 > 0
for [x, y] ∈ R × (−1, 1) ∖ {[0, 0]}. Therefore, the given polynomial
has a local minimum at the origin. □
8.32. Determine local extrema of the function f : R3 → R,
f (x, y, z) = x2y + y2 z+ x − z on R3. ⃝
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Hessian

De�nition. If f : Rn → R is a twice di�erentiable function, we

call the symmetric matrix of functions

Hf (x) =
(
∂2f

∂xi∂xj
(x)

)
=


∂2 f
∂x1∂x1

(x) . . .
∂2 f
∂x1∂xn

(x)

...
. . .

...
∂2 f
∂xn∂x1

(x) . . .
∂2 f
∂xn∂xn

(x)


the Hessian of the function f at the point x.

We have already seen from the previous reasonings that zero-

ing the di�erential at a point (x, y) ∈ E2 guarantees stationary

behavior along all curves going through this point. The Hessian

Hf (x, y) =
(
fxx(x, y) fxy(x, y)

fxy(x, y) fyy(x, y)

)
plays the role of the second derivative. For every parametrized

straight line

c(t) = (x(t), y(t)) = (x0 + ξ t, y0 + ηt),

the univariate functions

α(t) = f (x(t), y(t))

β(t) = f (x0, y0)+ ∂f

∂x
(x0, y0)ξ + ∂f

∂y
(x0, y0)η

+ 1
2

(
fxx(x0, y0)ξ

2 + 2fxy(x0, y0)ξη + fyy(x0, y0)η
2
)

will share the same derivatives up to the second order (inclusive)

at the point t = 0 (calculate this on your own!). The function β

can be written in terms of vectors as

β(t) = f (x0, y0)+ df (x0, y0) ·
(
ξ

η

)
+ 1

2
(ξ η) ·Hf (x0, y0) ·

(
ξ

η

)
or β(t) = f (x0, y0)+ df (x0, y0)(v)+ 1

2Hf (x0, y0)(v, v), where

v = (ξ, η) is the increase given by the derivative of the curve c(t),

and the Hessian is used as a symmetric 2�form.
This is an expression which looks like Taylor's theorem for

univariate functions, namely the quadratic approximation of a func-

tion by Taylor's polynomial of degree two. The following picture

shows both the tangent plane and this quadratic approximation for

two distinct points and the function f (x, y) = sin(x) cos(y).
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8.12. Taylor's theorem. The multidimensional version of Tay-

lor's theorem is once again an example of amathemat-

ical statement where the most di�cult part is �nding

the right formulation. The proof is quite simple then.
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8.33.

Determine the local extrema of the function f : R3 → R,
f (x, y, z) = x2y − y2 z+ 4x + z on R3. ⃝
8.34. Determine the local extrema of the function f : R3 → R,
f (x, y, z) = xz2 + y2 z− x + y on R3. ⃝
8.35. Determine the local extrema of the function f : R3 → R,
f (x, y, z) = y2 z− xz2 + x + 4y on R3. ⃝
8.36. Determine the local extrema of the function f : R2 → R,
f (x, y) = x2y + x2 + 2y2 + y on R2 ⃝
8.37. Determine the local extrema of the function f : R2 → R,
f (x, y) = x2y + 2y2 + 2y on R2. ⃝
8.38. Determine the local extrema of the function f : R2 → R,
f (x, y) = x2 + xy + 2y2 + y on R2. ⃝
8.39. Determine the local extrema of the function f : R2 → R,
f (x, y) = x2 + xy − 2y2 + y on R2. ⃝

F. Implicitly given functions and mappings

8.40. Let F : R2 → R be a function, F(x, y) = xy sin
(
π
2 xy

2
)
.

Show that the equality F(x, y) = 1 implicitly de�nes a function f :
U → R on a neighborhoodU of the point [1, 1] so that F(x, f (x)) =
1 for x ∈ U . Determine f ′(1).
Solution. The function is di�erentiable on the whole R2, so it is such
on any neighborhood of the point [1, 1]. Let us evaluate Fy at [1, 1]:

Fy(x, y) = x sin
(π

2
xy2

)
+ πx2y2 cos

(π
2
xy2

)
,

so Fy(1, 1) = 1 ̸= 0. Therefore, it follows from theorem 8.18 that the
equation F(x, y) = 1 implicitly determines on a neighborhood of the
point (1, 1) a function f : U → R de�ned on a neighborhood of the
point (number) 1. Moreover, we have

Fx(x, y) = y sin
(π

2
xy2

)
+ π

2
xy3 cos

(π
2
xy2

)
,

so the derivative of the function f at the point 1 satis�es

f ′(1) = −Fx(1, 1)
Fy(1, 1)

= −1
1

= −1. □

Remark. Notice that although we are unable to explicitly de�ne the
function f from the equation F(x, f (x)) = 1, we are able to deter-
mine its derivative at the point 1.

8.41. Considering the function F : R2 → R,
F(x, y) = ex sin(y)+ y − π/2 − 1

, show that the equation F(x, y) = 0 implicitly de�nes the variable
y to be a function of x, y = f (x), on a neighborhood of the point
[0, π/2]. Compute f ′(0).
Solution. The function is di�erentiable in a neighborhood of the point
[0, π/2]; moreover, Fy = ex cos y + 1, F(0, π/2) = 1 ̸= 0, so the
equation indeed de�nes a function f : U → R on a neighborhood of
the point [0, π/2]. Further, we have Fx = ex sin y, Fx(0, π/2) = 1,
and its derivative at the point 0 satis�es:

f ′(0) = −Fx(0, π/2)
Fy(0, π/2)

= −1
1

= −1. □
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We will proceed in the direction mentioned

above, and we will introduce a notation for the particular parts of

Dkf approximations of higher orders for functions f : En → Rn.
It will alwyas be k�linear expressions in the increases, and we

will be interested only in their enumeration at a k-tuple of same

values.

We have already discussed the di�erential D1f = df (the

�rst order) and the Hessian D2f = Hf (the second order). In

general, for functions f : En → R, points x = (x1, . . . , x2) ∈ En,
and increases v = (ξ1, . . . , ξn), we set

Dkf (x)(v) =
∑

1≤i1,...,ik≤n

∂k f

∂xi1 . . . ∂xik
(x1, . . . , xn) · ξi1 · · · ξik .

An illustrative example (making use of the symmetry of the partial

derivatives) is, for E2, the third-order expression

D3f (x, y)(ξ, η) = ∂3f

∂x3 ξ
3 + 3

∂3f

∂x2 ∂y
ξ2η

+ 3
∂3f

∂x∂y2 ξη
2 + ∂3f

∂y3 η
3,

and, in general,

Dkf (x, y)(ξ, η) =
k∑
ℓ=0

(
k

ℓ

)
∂k f

∂xk−ℓ ∂yℓ
ξ k−ℓηℓ.

Taylor expansion with remainder

Theorem. Let f : En → R be a k�times di�erentiable function

in a neighborhood Oδ(x) of a point x ∈ En. For every increase

v ∈ Rn of size ∥v∥ < δ, there exists a number θ , 0 ≤ θ ≤ 1, such
that

f (x + v) = f (x)+D1f (x)(v)+ 1
2!
D2f (x)(v)+

· · · + 1
(k − 1)!

Dk−1f (x)(v)+ 1
k!
Dkf (x + θ · v)(v).

Proof. For an increase v ∈ Rn, we consider the parametrized
straight line c(t) = x + tv in En, and we examine the

function φ : R → R de�ned by the composition φ(t) =
f ◦ c(t). Taylor's theorem for univariate functions claims

that (see Theorem 6.4)

φ(t) = φ(0)+ φ′ (0)t + . . .

+ 1
(k − 1)!

φ(k−1) (0)tk−1 + 1
k!
φ(k) (θ)tk .

Therefore, it remains to verify that step-by-step di�erentiation of

the composite function φ yields just the wanted relation. This can

be done quite easily by induction on the order k.

For k = 1, Taylor's theorem coincides with the corollary of

themean value theorem applied to the directional derivative, which

we have already used several times. When deriving it, we used the

formula

d

dt
φ(t) = ∂f

∂x1
(x(t)) · x′1(t)+ · · · + ∂f

∂xn
(x(t)) · x′n(t),
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8.42. Let

F(x, y, z) = sin(xy)+ sin(yz)+ sin(xz).

Show that the equation F(x, y, z) = 0 implicitly de�nes a function
z(x, y) : R2 → R on a neighborhood of the point [π, 1, 0] ∈ R3 so
that F(x, y, z(x, y)) = 0.

Determine zx(π, 1) and zy(π, 1).

Solution. Wewill calculateFz = y cos(yz)+x cos(xz),Fz(π, 1, 0) =
π + 1 ̸= 0, and the function z(x, y) is de�ned by the equation
F(x, y, z(x, y)) = 0 on a neighborhood of the point [π, 1, 0]. In or-
der to �nd the values of the wanted partial derivatives, we �rst need to
calculate the values of the remaining partial derivatives of the function
F at the point [π, 1, 0].

Fx(x, y, z) = y cos(xy)+ z cos(xz) Fx(π, 1, 0) = −1,
Fy(x, y, z) = x cos(xy)+ z cos(yz) Fy(π, 1, 0) = −π,

odkud

zx(π, 1) = −Fx(π, 1, 0)
Fz(π, 1, 0)

= 1
π + 1

,

zy(π, 1) = −Fy(π, 1, 0)
Fz(π, 1, 0)

= π

π + 1
.

□

8.43. Having the mapping F : R3 → R2, F(x, y, z) =
(f (x, y, z), g(x, y, z)) = (ex sin y, xyz), show that the equation
F(x, c1(x), c2(x)) = (0, 0) de�nes a curve c : R → R2 on a
neighborhood of the point [1, π, 1]. Determine the tangent vector to
this curve at the point 1.

Solution. Wewill calculate the square matrix of the partial derivatives
of the mapping F with respect to y and z:

H(x, y, z) =
(
fy fz
gy gz

)
=
(
x cos y ex sin y 0

xz xy

)
.

Hence, H(1, π, 1) =
(−1 0

1 π

)
and detH(1, π, 1) = −π ̸= 0.

Now, it follows from the implicit mapping theorem (see 8.18) that the
equation F(x, c1(x), c2(x)) = (0, 0) on a neighborhood of the point
[1, π, 1] determines a curve (c1(x), c2(x)) de�ned on a neighborhood
of the point [1, π ]. In order to �nd its tangent vector at this point, we
need to determine the )column) vector (fx, gx) at this point:(

fx
gx

)
=
(

sin y ex sin y

yz

)
,

(
fx(1, π, 1)
gx(1, π, 1)

)
=
(

0
π

)
.

The wanted tangent vector is thus(
(c1)x(1)
(c2)x(1))

)
=

(
fy(1, π, 1) fz(1, π, 1)
gy(1, π, 1) gz(1, π, 1)

)−1 (
fx(1, π, 1
gx(1, π, 1)

)
=

=
(−1 0

1 π

)−1 (0
π

)
=
(−1 0

1
π

1
π

)
=
(

0
1

)
.

□
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which holds for every continuously di�erentiable curve and func-

tion f . This means that

D1f (c(t))(v) = D1f (c(t))(c′(t))
for all t in a neighborhood of zero. Wewill proceed accordingly for

functions Dℓf . We can write c′(t) instead of the increase v, and

we will remember that further di�erentiation of c(t) leads identi-

cally to zero everywhere, i. e., c′′(t) = 0 for all t (since it is a

parametrized straight line).

We suppose that

Dℓf (x)(v) =
∑

1≤i1,...,iℓ≤n

(
∂ℓf

∂xi1 . . . ∂xiℓ
(x1(t), . . . , xn(t))

· x′i1(t) · · · x′iℓ(t)
)
,

let us calculate this for ℓ+ 1. By the formula for �rst-order di�er-
entiation in a given direction, which has been derived, and the rule

for the derivative of a product (see Theorem 5.33), di�erentiation

of the composite function gives

d

dt
Dℓf (c(t))(c′(t)) =

= d

dt

∑
1≤i1,...,iℓ≤n

(
∂ℓf

∂xi1 . . . ∂xiℓ
(x1(t), . . . , xn(t))

· x′i1(t) · · · x′iℓ(t)
)

=
∑

1≤i1,...,iℓ≤n

( n∑
j=1

∂ℓ+1f

∂xi1 . . . ∂xiℓ∂xj
(x1(t), . . . , xn(t))

· x′j (t) · x′i1(t) · · · x′iℓ(t)
)

+ 0,

which is indeed the wanted formula for the order ℓ + 1. Taylor's
theorem now follows from the enumeration at the point t = 0 and

substituting into the equality for φ at the beginning of this proof.

□

8.13. Local extrema of multivalued functions. Now, we will try

to examine the local maxima and minima of func-

tions on En using the di�erential and the Hessian.

Just like in the case of univariate functions, we say

that an interior point x0 ∈ En of the domain of a

function f is a (local) maximum or minimum i� there is a neigh-

borhood U of its such that for all points x ∈ U , the function value
satis�es f (x) ≤ f (x0) or f (x) ≥ f (x0), respectively. If equality

holds for no x ̸= x0 in the previous inequalities, we talk about a

strict extremum.

For the sake of simplicity, we will suppose that our function

f has continuous both �rst-order and second-order partial deriva-

tives on its domain. A necessary condition for existence of an ex-

tremum at a point x0 is that the di�erential be zero at this point, i.

e., df (x0) = 0. Indeed, if df (x0) ̸= 0, then there is a direction v
in which we have dvf (x0) ̸= 0. However, then the function value
is increasing at one side of the point x0 along the line x0 + tv and

it is decreasing on the other side, see (5.32).

An interior point x ∈ En of the domain of a function f at

which the di�erential df (x) is zero is called a stationary point of

the function f .
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G. Constrained optimization

We will begin with a somewhat atypical optimization problem.

8.44. A betting o�ce accepts bets on the outcome of a tennis match.
Let the odds laid against player A winning be a : 1 (i. e., if a bettor
bets x dollars on the event that player A wins and this really happens,
then the bettor wins ax dollars) and, similarly, let the odds laid against
player B winning be b : 1 (fees are neglected). What is the necessary
and su�cient condition for (positive real) numbers a and b so that a
bettor cannot guarantee any pro�t regardless the actual outcome of the
match? (For instance, if the odds were laid 1.5 : 1 against the win of
A and 5 : 1 against the win of B, then the bettor could bet 3 dollars
on B winning and 7 dollars on A winning and pro�t from this bet in
either case).

Solution. Let the bettor haveP dollars. The bet amount can be divided
to kP and (1 − k)P dollars, where k ∈ (0, 1). The pro�t is then akP
dollars (if player A wins) or b(1 − k)P dollars (if B does). The bettor
is always guaranteed to win the lesser of these two amounts; the total
pro�t (or loss) is obtained by subtracting the bet P , then. Since each
of a, b, P is a positive real number, the function akP is increasing,
and the function b(1 − k)P is decreasing with respect to k. For k = 0,
b(1 − k)P is greater; for k = 1, akP is. The minimum of the two
numbers akP and b(1 − k)P is thus maximal for a k ∈ (0, 1), namely
for the value k0 which satis�es ak0P = b(1−k0)P , whence k0 = b

a+b .
Therefore, the betting o�ce must choose a, b so that ak0P = b(1 −
k0)P < P , which is equivalent to ak0 < 1, i. e., ab < a + b. □

We managed to solve this constrained optimization problem even
without using the di�erential calculus. However, we will not be able
to do so in the following problems.

8.45. Find the extremal values of the function

h(x, y, z) = x3 + y3 + z3

on the unit sphere S in R3 given by the equation

F(x, y, z) = x2 + y2 + z2 − 1

as well as on the circle which is the intersection of this sphere with the
plane

G(x, y, z) = x + y + z.

Solution. First, we will look for stationary points of the function h
on the sphere S. Computing the corresponding gradients (for instance,
gradh(x, y, z) = (3x2 , 3y2 , 3z2)) , we get the system

0 = 3x2 − 2λx,

0 = 3y2 − 2λy,

0 = 3z2 − 2λz,

0 = x2 + y2 + z2 − 1

consisting of four equations in four variables. Before trying to solve
this system, we can estimate how many local constrianed extrema we
should anticipate the function to have. Surely, h(P ) is in absolute
value equal to at most 1, and this happens at all intersection points
of the coordinate axes with S. Therefore, we are likely to get 6 local



CHAPTER 8. CONTINUOUS MODELS WITH MORE VARIABLES

We will again, for a while, work with a simple function in E2
in order to illustrate our conclusions directly. Let us consider the

function f (x, y) = sin(x) cos(y) which has been discussed and

caught in many pictures, namely in paragraphs 8.9 a 8.8.

The shape of this function resembles well-known egg plates,

so it is apparent that we can �nd a lot of extrema, but also many

more stationary point which, in fact, will not be extrema (the little

"saddles" noticeable in the picture).

00
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66
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Therefore, let is calculate the �rst derivatives, and then the neces-

sary second-order ones:

fx(x, y) = cos(x) cos(y), fy(x, y) = − sin(x) sin(y),

and both derivatives will be zero for two sets of points

(1) cos(x) = 0, sin(y) = 0, that is (x, y) = ( 2k+1
2 π, ℓπ), for any

k, ℓ ∈ Z
(2) cos(y) = 0, sin(x) = 0, that is (x, y) = (kπ, 2ℓ+1

2 π), for any

k, ℓ ∈ Z.
The second partial derivatives are

Hf (x, y) =
(
fxx fxy
fxy fyy

)
(x, y)

=
(− sin(x) cos(y) − cos(x) sin(y)

− cos(x) sin(y) − sin(x) cos(y)

)
.

We thus get the following Hessians in our two sets of stationary

points:

(1) Hf (kπ + π
2 , ℓπ) = ±

(
1 0
0 1

)
, where the sign − occurs

when k and ℓ have the same parity (remainder upon division

by two), and the sign + occurs in the other case;

(2) Hf (kπ, ℓπ + π
2 ) = ±

(
0 1
1 0

)
, where, again, the sign − oc-

curs occurs when k and ℓ have the same parity, and the sign +
occurs in the other case;

Now, if we look at the proposition of Taylor's theorem for or-

der k = 2, we get, in a neighborhood of one of the stationary points
(x0, y0),

f (x, y) = f (x0, y0)+
+ 1

2
Hf (x0 + θ(x − x0), y0 + θ(y − y0))(x − x0, y − y0),

where Hf is now considered a quadratic form evaluated at the in-

crease (x − x0, y − y0). Since the Hessian of our function is

continuous (i. e., continuous partial derivatives up to order two,

inclusive) and the matrices of the Hessian are non-degenerate, the

local maximum occurs if and only if our point (x0, y0) belongs to

the former group with k and ℓ of the same parity. On the other
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extrema. Further, inside every eighth of the sphere given by the coordi-
nate planes, there may or may not be another extremum. The particular
quadrants can be easily parametrized, and the function h (considered
a function of two parameters) can be analyzed by standard means (or
we can have it drawn in Maple, for example).

Actually, solving the system (no matter whether algebraically or
in Maple again) leads to a great deal of stationary points. Besides the
six points we have already talked about (two of the coordinates equal
to zero and the other to ±1) and which have λ = ± 3

2 , there are also
the points

P± = ±
(√

3
3
,

√
3

3
,

√
3

3

)
,

for example, where a local extremum indeed occurs.
If we restrict our interest to the points of the circleK, wemust give

another functionG another free parameter η representing the gradient
coe�cient. This leads to the bigger system

0 = 3x2 − 2λx − η,

0 = 3y2 − 2λy − η,

0 = 3z2 − 2λz − η,

0 = x2 + y2 + z2 − 1,
0 = x + y + z.

However, since a circle is also a compact set, hmust have both a global
minimum and maximum on it. Further analysis is left to the reader. □

8.46. Determine whether the function f : R3 → R, f (x, y, z) =
x2y has any extrema on the surface 2x2 + 2y2 + z2 = 1. If so, �nd
these extrema and determine their types.

Solution. Since we are interested in extrema of a continuous function
on a compact set (ellipsoid) � it is both closed and bounded in R3

� the given function must have both a minimum and maximum on it.
Moreover, since the constraint is given by a continuously di�erentiable
function and the examined function is di�erentiable, the extrema must
occur at stationary points of the function in question on the given set.
We can build the following system for the stationary points:

2xy = 4kx,
x2 = 4ky,
0 = 2kz.

This system is satis�ed by the points [± 1√
3
, 1√

6
, 0] and [± 1√

3
,− 1√

6
, 0].

The function takes on only two values at these four stationary points.
Ir follows from the above that the �rst and second stationary points are
maxima of the function on the given ellipsoid, while the other two are
minima. □

8.47. Decide whether the function f : R3 → R, f (x, y, z) = z −
xy2 has any minima and maxima on the sphere

x2 + y2 + z2 = 1.

If so, determine them.
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hand, if the parities are di�erent, then the point from the former

group happens to be a point of a local minimum.

On the other hand, the Hessian of the latter group of points

is always positive at some increases and negative at other ones.

Therefore, the entire function f behaves in this manner in a small

neighborhood of the given point.

In order to formulate the general statement about the Hessian

and the local extrema at stationary points, we have to

remember the discussion about quadratic forms from

the paragraphs 4.31�4.32 in the chapter on a�ne ge-

ometry. There, we introduced the following attributes

for a quadratic form h : En → R:
• positively de�nite i� h(u) > 0 for all u ̸= 0
• positively semide�nite i� h(u) ≥ 0 for all u ∈ V
• negatively de�nite i� h(u) < 0 for all u ̸= 0
• negatively semide�nite i� h(u) ≤ 0 for all u ∈ V
• inde�nite i� h(u) > 0 and f (v) < 0 for appropriate u, v ∈ V .

We also invented some methods which allow us to �nd out whether

a given form has any of these properties.

The Taylor expansion with remainder immediately yields the

following proposition:

Theorem. Let f : En → R be a twice continuously di�erentiable

function and x ∈ En be a stationary point of the function f . Then
(1) f has a strict local minimum at x if Hf (x) is positively de�-

nite,

(2) f has a strict local minimum at x if Hf (x) is negatively de�-

nite,

(3) f does not have an extremum at x if Hf (x) is inde�nite.

Proof. The Taylor second-order expansion with remainder

applied to out function f (x1, . . . , xn), an arbitrary

point x = (x1, . . . , xn), and any increase v =
(v1, . . . , vn), such that both x and x + v lie in the

domain of the function f , says that

f (x + v) = f (x)+ df (x)(v)+ 1
2
Hf (x + θ · v)(v)

for an appropriate real number θ , 0 ≤ θ ≤ 1. Since we suppose
that the di�erential is zero, we get

f (x + v) = f (x)+ 1
2
Hf (x + θ · v)(v).

By our assumption, the quadratic form Hf (x) is continuously de-

pendent on the point x, and the de�niteness or inde�niteness of

quadratic forms can be determined by the sign of the major subde-

terminants of the matrixHf , see Sylvester's criterion in paragraph

4.32. However, the determinant itself is a polynomial expression in

the coe�cients of the matrix, hence a continuous function. There-

fore, the non-zeroness and signs of the examined determinants are

the same in a su�ciently small neighborhood of the point x as at

the point x itself.

In particular, for positively de�nite Hf (x), we have guaran-

teed that, at a stationary point x, f (x + v) > f (x) for su�ciently

small v, so this is a sharp minimum of the function f at the point

x. The case of negative de�niteness is analogous. If Hf (x) is in-

de�nite, then there are directions v, w in which f (x + v) > f (x)

and f (x + w) < f (x), so there is no extremum at the stationary

point in question. □
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Solution. We are looking for solutions of the system

x = −ky2 ,

y = −2kxy,
z = k.

The second equation implies that either y = 0 or x = − 1
2k . The �rst

possibility leads to the points [0, 0, 1], [0, 0,−1]. The second one
cannot be satis�ed (substituting into the equation of the sphere, we get
the equation

1
4k2

+ 1
2k2

+ k2 = 1,

which has no solution. The function has a maximum and minimum,
respectively, at the two computed points on the given sphere. □

8.48. Determine whether the function f : R3 → R, f (x, y, z) =
xyz, has any extrema on the ellipsoid given by the equation

g(x, y, z) = kx2 + ly2 + z2 = 1, k, l ∈ R+.

If so, calculate them.

Solution. First, we build the equations which must be satis�ed by the
stationary points of the given function on the ellipsoid:

∂g

∂x
= λ

∂f

∂x
: yz = 2λkx,

∂g

∂y
= λ

∂f

∂y
: xz = 2λly,

∂g

∂z
= λ

∂f

∂z
: xy = 2λz.

We can easily see that the equation can only be satis�ed by a triple of
non-zero numbers. Dividing pairs of equations and substituting into
the ellipse's equation, we get eight solutions, namely the stationary
points x = ± 1√

3k
, y = ± 1√

3l
, z = ± 1√

3
. However, the function

f takes on only two distinct values at these eight points. Since it is
continuous and the given ellipsoid is compact, f must have both a
maximum and minimum on it. Moreover, since both f and g are con-
tinuously di�erentiable, these extrema must occur at stationary points.
Therefore, it must be that four of the computed stationary points are
local maxima of the function (of value 1

3
√

3kl
) and the other four are

minima (of value − 1
3
√

3kl
). □

8.49. Determine the global extrema of the function

f (x, y) = x2 − 2y2 + 4xy − 6x − 1
on the set of points [x, y] that satisfy the inequalities

(8.1) x ≥ 0, y ≥ 0, y ≤ −x + 3.

Solution. We are given a polynomial with continuous partial deriva-
tives on a compact (i. e. closed and bounded) set. Such a function
necessarily has both a minimum and a maximum on this set, and this
can happen only at stationary points or on the boundary. Therefore, it
su�ces to �nd stationary points inside the set and the ones on a �nite
number of open (or singleton) parts of the boundary, then evaluate f
at these points and choose the least and the greatest values. Notice
that the set of points determined by the inequalities (∥8.1∥) is clearly
a triangle with vertices at [0, 0], [3, 0], [0, 3].
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Let us notice that the theorem yields no result if the Hessian of

the examined function is degenerate, yet not inde�nite at the point

in question. The reason is again the same as in the case of univari-

ate functions. In these cases, there are directions in which both the

�rst and second derivatives vanish, so at this level of approxima-

tion, we cannot determine whether the function behaves like t3 or

±t4 until we calculate the higher-order derivatives in the necessary

directions at least.

At the same time, we can notice that even at those points where

the di�erential is non-zero, the de�niteness of the Hessian Hf (x)

has similar consequences as the non-zeroness of the second deriv-

ative of a univariate function. Indeed, for a function f : Rn → R,
the expression

z(x + v) = f (x)+ df (x)(v)

de�nes a tangent hyperplane to the graph of the function f in the

space Rn+1, so Taylor's theorem of order two with remainder, as

used in the proof, shows that when the Hessian is positively de�-

nite, all the values of the function f lie in a su�ciently small neigh-

borhood of the point x above the values of the tangent hyperplane,

i. e., the whole graph is above the tangent hyperplane in a su�-

ciently small neighborhood. In the case of negative de�niteness,

it is the other way round. Finally, when the Hessian is inde�nite,

the graph of the function goes from one side of the hyperplane to

the other, but this happens, in general, along objects of lower di-

mension in the tangent hyperplane, so we have no straightforward

generalization of in�exion points.

8.14. The di�erential of mappings. The concepts of a derivative

and a di�erential can be easily extended to mappings

F : En → Em. Having selected the Cartesian coordi-

nate system on both sides, this mapping is an ordinary

m�tuple

F(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

of functions fi : En → R. We say that F is a di�erentiable or

k�times di�erentiable mapping i� the corresponding property is

shared by all the functions f1, . . . , fm.

Differential and Jacobian matrix

The di�erentials dfi(x) of the particular functions fi give a

linear approximation of the increases of their values for the map-

ping

F(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)).

Therefore, we can expect that they will also give a coordinate ex-

pression of the linear mapping D1F(x) : Rn → Rm between the

direction spaces, which linearly approximates the increases of our

mapping. The resulting matrix

D1F(x) =


df1(x)

df2(x)
...

dfm(x)

 =


∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xn

...
...

. . .
...

∂fm

∂x1

∂fm

∂x2
. . .

∂fm

∂xn

 (x)
is called the Jacobian matrix of the mapping F at a point x.

The linear mapping D1F(x) de�ned on the increases v =
(v1, . . . , vn) by identically denoted the Jacobian matrix is called
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Let us determine the stationary points inside this triangle as the
solution of the equations fx = 0, fy = 0. Since

fx(x, y) = 2x + 4y − 6, fy(x, y) = 4x − 4y,
these equations are satis�ed only by the point [1, 1]. The boundary
suggests itself to be expressed as the union of three line segments given
by the choice of pairs of vertices. First, we consider x = 0, y ∈
[0, 3], when f (x, y) = −2y2 − 1. However, we know the graph of
this (univariate) function on the interval [0, 3] It is thus not di�cult to
�nd the points at which global extrema occur. They are the marginal
points [0, 0], [0, 3]. Similarly, we can consider y = 0, x ∈ [0, 3], also
obtaining the marginal points [0, 0], [3, 0]. Finally, we get to the line
segment y = −x + 3, x ∈ [0, 3]. Making some rearrangements, we
get

f (x, y) = f (x,−x + 3) = −5x2 + 18x − 19, x ∈ [0, 3].
We thus need to �nd the stationary points of the polynomial p(x) =
−5x2 + 18x − 19 from the interval [0, 3]. The equation p′(x) = 0, i.
e., −10x + 18 = 0, is satis�ed by x = 9/5. This means that in the
last case, we obtained one more point (besides the marginal points),
namely [9/5, 6/5], where a global extremum may occur. Altogether,
we have these points as "suspects":

[1, 1], [0, 0], [0, 3], [3, 0],
[ 9

5 ,
6
5

]
with function values

−4, −1, −19, −10, − 14
5 ,

respectively. We can see that the function f takes on the greatest value
−1 at the point [0, 0] and the least value −19 at the point [0, 3]. □
8.50. Determine whether the function f : R3 → R, f (x, y, z) =
y2 z has any extrema on the line segment given by the equations
2x + y + z = 1,
x − y + 2z = 0 and the constraint x ∈ [−1, 2]. If so, �nd
these extrema and determine their types. Justify all of your decisions.

Solution. We are looking for the extrema of a continuous function on
a compact set. Therefore, the function must have both a minimum and
a maximum on this set, and this will happen either at the marginal
points of the segment or at those where the gradient of the examined
function is a linear combination of the gradients of the functions that
give the constraints. First, let us look for the points which satisfy the
gradient condition:

0 = 2k + l,

2yz = k − l,

y2 = k + 2l,
2x + y + z = 1,
x − y + 2z = 0.

The solution is [x, y, z] = [ 2
3 , 0,− 1

3 ] and [x, y, z] = [ 4
9 ,

2
9 ,− 1

9 ]
(of course, the variables k and l can also be computed, but we are
not interested in them). The marginal points of the given line seg-
ment are [−1, 5

3 ,
4
3 ] and [2,− 4

3 ,− 5
3 ]. Considering these four points,

the function takes on the greatest value at the �rst marginal point
(f (x, y, z) = 100

27 ), which is its maximum on the given segment, and it
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the di�erential of the mapping F at a point x in the domain i� we

have

lim
v→0

1
∥v∥

(
F(x + v)− F(x)−D1F(x)(v)

) = 0.

Several times, we have already used the fact that the de�nition

of Euclidean distance guarantees that the limits of values in En ex-

ist if and only if the limits of the particular coordinate components

do. Direct application of Theorem 8.5 about existence of the dif-

ferential for functions of n variables to the particular coordinate

functions of the mapping F thus leads to the following proposition

(prove this in detail by yourselves!):

Corollary. Let F : En → Em be a mapping such that all of

its coordinate functions have continuous partial derivatives in a

neighborhood of a point x ∈ En. Then the di�erential D1F(x)

exists, and it is given by the Jacobian matrix D1F(x).

8.15. Transformation of coordinates. A mapping F : En →
En which has an inverse mapping G : En → En
de�ned on the whole of F 's image is called a trans-

formation. Such a mapping can be perceived as a

change of coordinates. We usually require that both F and G be

(continuously) di�erentiable mappings.

Just like in the case of vector spaces, the choice of our "point

of view", i. e. the choice of coordinates, can simplify or deteriorate

our comprehension of the examined object. The change of coordi-

nates is now being discussed in a much more general form than in

the case of a�ne mappings in the fourth chapter. Sometimes, the

term "curvilinear coordinates" is used in this general sense. A very

illustrative example is the change of the most usual coordinates in

the plane to the so-called polar ones, i. e., the position of a point

P is given by its distance r = √
x2 + y2 from the origin and the

angle φ = arctan(y/x) between the ray from the origin to it and

the x-axis (if x ̸= 0).

15/62/31/21/31/6
0

2*Pi

11/6*Pi

5/3*Pi

3/2*Pi

4/3*Pi

7/6*Pi

Pi

5/6*Pi

2/3*Pi

1/2*Pi

1/3*Pi

1/6*Pi

0

The change from polar coordinates to the standard ones is

Ppolar = (r, φ) 7→ (r cosφ, r sinφ) = PCartesian

It is apparent that it is necessary to limit the polar coordinates to an

appropriate subset of points (r, φ) in the plane so that the inverse
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takes the least value at the second marginal point (f (x, y, z) = − 80
27 ),

which is thus its minimum there. □

8.51. Find the maximal and minimal values of the polynomial

p(x, y) = 4x3 − 3x − 4y3 + 9y
on the set

M = {
[x, y] ∈ R2; x2 + y2 ≤ 1

}
.

Solution. This is again the case of a polynomial on a compact set;
therefore, we can restrict our attention to stationary points inside or on
the boundary of M and the "marginal" points on the boundary of M.
However, the only solutions of the equations

px(x, y) = 12x2 − 3 = 0, py(x, y) = −12y2 + 9 = 0
are the points[

1
2 ,

√
3

2

]
,

[
1
2 ,−

√
3

2

]
,

[
− 1

2 ,
√

3
2

]
,

[
− 1

2 ,−
√

3
2

]
,

which are all on the boundary of M. This means that p has no ex-
tremum insideM. Now, it su�ces to �nd the maximum and minimum
of p on the unit circle k : x2 + y2 = 1. The circle k can be expressed
parametrically as

x = cos t, y = sin t, t ∈ [−π, π ].
Thus, instead of looking for the extrema ofp onM, we are now seeking
the extrema of the function

f (t) := p(cos t, sin t) = 4 cos3 t − 3 cos t − 4 sin3 t + 9 sin t
on the interval [−π, π ]. For t ∈ [−π, π ], we have

f ′(t) = −12 cos2 t sin t + 3 sin t − 12 sin2 t cos t + 9 cos t,
In order to determine the stationary points, we must express the func-
tion f ′ in a form from which we will be able to calculate the inter-
section of its graph with the x-axis. To this purpose, we will use the
identity

1
cos2 t

= 1 + tan2 t,

which is valid provided both sides are well-de�ned. We thus obtain

f ′(t) =
cos3 t

[−12tan t + 3
(
tan t + tan3 t

) − 12tan2 t + 9
(
1 + tan2t

)]
for t ∈ [−π, π ] with cos t ̸= 0. However, this condition does not
exclude any stationary points since sin t ̸= 0 if cos t = 0. Therefore,
the stationary points of f are those points t ∈ [−π, π ] for which

−4 tan t + tan t + tan3 t − 4 tan2 t + 3 + 3 tan2 t = 0.
The substitution s = tan t leads to
s3 − s2 − 3s + 3 = 0, i. e. (s − 1)

(
s − √

3
) (
s + √

3
)

= 0.

Then, the values

s = 1, s = √
3, s = −√

3
respectively correspond to

t ∈ {− 3
4 π,

1
4 π}, t ∈ {− 2

3 π,
1
3 π}, t ∈ {− 1

3 π,
2
3 π}.

Now, we evaluate the function f at each of these points as well as at
the marginal points t = −π , t = π . Sorting them, we get

f
(− 1

3 π
) = −1 − 3

√
3 < f

(− 3
4 π
) = −3

√
2 < f

(− 2
3 π
) =

1 − 3
√

3 < −1,
f (−π) = f (π) = −1 < 0,

f
( 2

3 π
) = 1 + 3

√
3 > f

( 1
4 π
) = 3

√
2 > f

( 1
3 π
) = −1 + 3

√
3 > 0.
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mapping would exist. The Cartesian image of lines in polar coor-

dinates with constant coordinates r or φ is shown in the picture

above.

The following theorem formulates a very useful generalization

of the chain rule for univariate functions. Except for the concept of

the di�erential itself, which is a bit complicated, it is actually the

same as the one we have already seen in the case of one variable.

The Jacobian matrix for univariate functions is in fact a single num-

ber, namely the derivative of the function at a given point, so the

multiplication of Jacobian matrices is simply the multiplication of

the derivatives of the outer and inner components of the function.

There is, of course, another special case: the formulae we have de-

rived for the derivative of a composition of multivariate functions

with a curve.

The differential of a composite mapping

8.16. Theorem. Let F : En → Em and G : Em → Er be two dif-

ferentiable mappings, where the domain of G contains the whole

image of F . Then, the composite mapping G ◦ F is also di�eren-

tiable , and its di�erential at any point form the domain of F is

given by the composition of di�erentials

D1(G ◦ F)(x) = D1G(F(x)) ◦D1F(x).

The corresponding Jacobian matrix is given by the product of the

corresponding Jacobian matrices.

Proof. In paragraph 8.5 and in the proof of Taylor's the-

orem, we derived how di�erentiation of mappings com-

posed from functions and curves behaves This proves the

special cases of this theorem for n = r = 1. The general
case can be proved analogously, we just have to work with

more vectors now.

Let us �x an arbitrary increase v and calculate the directional

derivative for the composition G ◦ F at a point x ∈ En. This

actually means to determine the di�erentials for the particular co-

ordinate functions of the mapping G composed with F . For the

sake of simplicity, we will write g ◦ F for any one of them.

dv(g ◦ F)(x) = lim
t→0

1
t

(
g(F (x + tv))− g(F (x))

)
.

The expression in parentheses can, from the de�nition of the dif-

ferential of g, be expressed as

g(F (x + tv))− g(F (x) = dg(F (x))(F (x + tv)− F(x))

+ α(F (x + tv)− F(x)),

where α is a function de�ned on a neighborhood of the point F(x)

which is continuous and satis�es limv→0
1

∥v∥α(v) = 0. Substitu-
tion into the equality for the directional derivative yields

dv(g ◦ F)(x) = lim
t→0

1
t

(
dg(F (x))(F (x + tv)− F(x))

+ α(F (x + tv)− F(x))
)

= dg(F (x))

(
lim
t→0

1
t

(
F(x + tv)− F(x)

))
+ lim
t→0

1
t

(
α(F (x + tv)− F(x))

)
= dg(F (x)) ◦D1F(x)(v)+ 0,
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Therefore, the global minimum of the function f is at the point t =
−π/3 , while the global maximum is at t = 2π/3.

Now, let us get back to the original function p. Since we know
the values cos

(− 1
3 π
) = 1

2 , sin
(− 1

3 π
) = −

√
3

2 , cos
( 2

3 π
) = − 1

2 ,

sin
( 2

3 π
) =

√
3

2 , we can deduce that the polynomial p takes on the

minimal value −1 − 3
√

3 (the same as f , of course) at the point
[1/2,−√

3/2] and the maximal value 1 + 3
√

3 at [−1/2,
√

3/2].
□

8.52. At which points does the function

f (x, y) = x2 − 4x + y2

take on global extrema on the setM : | x | + | y | ≤ 1?
Solution. Expressing f in the form

f (x, y) = (x − 2)2 − 4 + y2 ,

we can see that the global maximum and minimum occur at the same
points as for the function

g(x, y) := √
(x − 2)2 + y2 , [x, y] ∈ M,

since neither shifting the function nor applying the increasing function
v = √

u for u ≥ 0 changes the points of extrema (of course, they can
change their values). However, we know that the function g gives the
distance of a point [x, y] from the point [2, 0]. Since the set M is
clearly a square with vertices [1, 0], [0, 1], [−1, 0], [0,−1], the point
ofM that is closest to [2, 0] is the vertex [1, 0], while the most distant
one is [−1, 0]. Altogether, we have obtained that the minimal value of
f occurs at the point [1, 0] and the maximal one at [−1, 0]. □

8.53. Compute the local extrema of the function y = f (x) given
implicitly by the equation

3x2 +2xy+x = y2 +3y+ 5
4 , [x, y] ∈ R2 ∖

{[
x, x − 3

2

] ; x ∈ R
}
.

Solution. In accordance with the theoretical part (see 8.18), let us
denote

F(x, y) = 3x2 + 2xy + x − y2 − 3y − 5
4 ,

[x, y] ∈ R2 ∖
{[
x, x − 3

2

] ; x ∈ R
}

and calculate the derivative

y′ = f ′(x) = −Fx (x,y)

Fy (x,y)
= − 6x+2y+1

2x−2y−3 .

We can see the this derivative is continuous on the whole set in ques-
tion. In particular, the function f is de�ned implicitly on this set (the
denominator is non-zero).

A local extremummay occur only for those x, y which satisfy y′ =
0, i. e., 6x+2y+1 = 0. Substituting y = −3x−1/2 into the equation
F(x, y) = 0, we obtain −12x2 + 6x = 0, which leads to

[x, y] = [
0,− 1

2

]
, [x, y] = [ 1

2 ,−2
]
.

We can also easily compute that

y′′ = (
y′ )′ = −

(
6+2y′)(2x−2y−3)−(6x+2y+1)

(
2−2y′)

(2x−2y−3)2
.

Substituting x = 0, y = −1/2, y′ = 0 and x = 1/2, y = −2, y′ = 0,
we obtain

y′′ = − 6(−2)−0
4 > 0 for [x, y] = [

0,− 1
2

]
and

y′′ = − 6(+2)−0
4 < 0 for [x, y] = [ 1

2 ,−2
]
.
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where we made use of the properties of the function α and the fact

the a linear mapping between �nite-dimensional spaces are always

continuous.

Thus, we have proved the theorem for the particular functions

g1, . . . , gr of the mapping G. The whole theorem now follows

from matrix multiplication. □

Now, we can illustrate, by a simple example, the usage of our

concept of transformation and the theorem about dif-

ferentiation of composite mappings. We have seen

that the polar coordinates are given from the Carte-

sian ones by the transformation F : R2 → R2 which,

in coordinates (x, y) and (r, φ), is written as follows (for instance,

on the domain of all point in the �rst quadrant except for the points

having x = 0):

r =
√
x2 + y2 , φ = arctan

y

x
.

Consider a function gt : E2 → R which can be expressed as

g(r, φ, t) = sin(r − t)

in polar coordinates. Such a function can approximate the waves

on a water surface after a point impulse in the origin at the time t,

see the picture (there, t = −π/2). While it was easy to de�ne it

in polar coordinates, it would have been much harder in Cartesian

ones.

Now, let us compute the derivative of this function in Carte-

sian coordinates. Using our theorem, we get

∂g

∂x
(x, y, t) = ∂g

∂r
(r, φ)

∂r

∂x
(x, y)+ ∂g

∂φ
(r, φ)

∂φ

∂x
(x, y)

= cos(
√
x2 + y2 − t)

x√
x2 + y2

+ 0

and, similarly,

∂g

∂y
(x, y, t) = ∂g

∂r
(r, φ)

∂r

∂y
(x, y)+ ∂g

∂φ
(r, φ)

∂φ

∂y
(x, y)

= cos(
√
x2 + y2 − t)

y√
x2 + y2

.

8.17. The inverse mapping theorem. If the �rst derivative of a

univariate function is non-zero, its sign determines

whether the function is increasing or decreasing.

Then, the function must have this property in a neigh-

borhood of the point in question, and so an inverse

function exists in the selected neighborhood. The derivative of the
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We have thus proved that the implicitly given function has a strict local
minimum at the point x = 0 and a strict local maximum at x = 1/2.
□

8.54. Find the local extrema of the function z = f (x, y) given on
the maximum possible set by the equation

(8.2) x2 + y2 + z2 − xz− yz+ 2x + 2y + 2z− 2 = 0.

Solution. Di�erentiating (∥8.2∥) with respect to x and y gives
2x + 2zzx − z − xzx − yzx + 2 + 2zx = 0,
2y + 2zzy − xzy − z − yzy + 2 + 2zy = 0.

Hence we get that

(8.3)
zx = fx(x, y) = z − 2x − 2

2z− x − y + 2
,

zy = fy(x, y) = z − 2y − 2
2z− x − y + 2

.

We can notice that the partial derivatives are continuous at all points
where the function f is de�ned. This implies that the local extrema
can occur only at stationary points. These points satisfy

zx = 0, i. e. z − 2x − 2 = 0,
zy = 0, i. e. z − 2y − 2 = 0.

We have thus two equations, which allow us to express the dependency
of x and y on z. Substituting into (∥8.2∥), we obtain the points

[x, y, z] =
[
−3 + √

6,−3 + √
6,−4 + 2

√
6
]
,

[x, y, z] =
[
−3 − √

6,−3 − √
6,−4 − 2

√
6
]
.

Now, we need the second derivatives in order to decidewhether the
local extrema really occur at the corresponding points. Di�erentiating
zx in (∥8.3∥), we obtain

zxx = fxx(x, y) = (zx−2)(2z−x−y+2)−(z−2x−2)(2zx−1)
(2z−x−y+2)2

,

with respect to x, and

zxy = fxy(x, y) = zy (2z−x−y+2)−(z−2x−2)
(
2zy−1

)
(2z−x−y+2)2

,

with respect to y. We need not calculate zyy since the variables x and y
are interchangeabel in (∥8.2∥) (if we swap x and y, the equation is left
unchanged). Moreover, the x- and y-coordinates of the considered
points are the same; hence zxx = zyy . Now, we evaluate that at the
stationary points:

fxx

(
−3 + √

6,−3 + √
6
)

= fyy

(
−3 + √

6,−3 + √
6
)

= − 1√
6
,

fxy

(
−3 + √

6,−3 + √
6
)

= fyx

(
−3 + √

6,−3 + √
6
)

= 0,

fxx

(
−3 − √

6,−3 − √
6
)

= fyy

(
−3 − √

6,−3 − √
6
)

= 1√
6
,

fxy

(
−3 − √

6,−3 − √
6
)

= fyx

(
−3 − √

6,−3 − √
6
)

= 0.

As for the Hessian, we have

Hf
(
−3 + √

6,−3 + √
6
)

=
(− 1√

6
0

0 − 1√
6

)
,

Hf
(
−3 − √

6,−3 − √
6
)

=
(

1√
6

0
0 1√

6

)
.
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inverse function is then the multiplicative inverse of the derivative

of the original function.

Interpreting this situation for a mapping E1 → E1 and lin-

ear mappings R → R as their di�erentials, the non-zeroness is a

necessary and su�cient condition for the di�erential to be invert-

ible. In this way, we obtain a statement which is valid for �nite-

dimensional spaces in general:

The inverse mapping theorem

Theorem. Let F : En → En be a di�erentiable mapping on a

neighborhood of a point x0 ∈ En, and let the Jacobian matrix

D1f (x0) be invertible. Then in some neighborhood of the point

x0, the inverse mapping F
−1 exists, and its di�erential at the point

F(x0) is the inverse mapping to the di�erentialD
1F(x0), i. e., it is

given by the inverse matrix to the Jacobian matrix of the mapping

F at the point x0.

Proof. First, we should try to verify that the theorem makes

sense and is expectable. If we supposed that the in-

verse mapping existed and was di�erentiable at the

point F(x0), di�erentiation of composite functions

enforces the formula

idRn = D1(F−1 ◦ F)(x0) = D1(F−1) ◦D1F(x0),

which veri�es the formula at the end of the theorem. Therefore, we

know right from the beginning which di�erential for F−1 to look

for.

In the next step, we will suppose that the inverse mapping F−1

exists in a neighborhood of the point F(x0) and that it

is continuous. We are to verify the existence of the dif-

ferential. Since F is di�erentiable in a neighborhood

of x0, it follows that

F(x)− F(x0)−D1F(x0)(x − x0) = α(x − x0)

with function α : Rn → 0 satisfying limv→0
1

∥v∥α(v) = 0.
To verify the approximation properties of the linear mapping

(D1F(x0))
−1, it su�ces to calculate the following limit for y =

F(x) approaching y0 = F(x0):

lim
y→y0

1
∥y − y0∥

(
F−1(y)− F−1(y0)− (D1F(x0))

−1(y − y0)
)
.

Substitution into the previous equality gives

lim
y→y0

1
∥y − y0∥

(
x − x0−

(D1F(x0))
−1(D1F(x0)(x − x0)+ α(x − x0))

)
= lim
y→y0

−1
∥y − y0∥ (D

1F(x0))
−1(α(x − x0))

= (D1F(x0))
−1 lim

y→y0

−1
∥y − y0∥ (α(x − x0)),

where the last equality follows from the fact that linear map-

pings between �nite-dimensional spaces are always continuous,

and thanks to invertibility of the di�erential, performing it before

the limit process has no impact upon existence of the limit.
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Apparently, the �rst Hessian is negative de�nite, while the second one
is positive de�nite. This means that there is a strict local maximum of

the function f at the point
[
−3 + √

6,−3 + √
6
]
, and there is a strict

local minimum at the point
[
−3 − √

6,−3 − √
6
]
. □

8.55. Determine the strict local extrema of the function

f (x, y) = 1
x

+ 1
y
, x ̸= 0, y ̸= 0

on the set of points that satisfy the equation 1
x2 + 1

y2 = 4.

Solution. Since both the function f and the function given implicitly
by the equation 1

x2 + 1
y2 −4 = 0 have continuous partial derivatives of

all orders on the setR2 ∖ {[0, 0]}, we should look for stationary points,
i. e., for the solution of the equations Lx = 0, Ly = 0 for

L(x, y, λ) = 1
x

+ 1
y

− λ
(

1
x2 + 1

y2 − 4
)
, x ̸= 0, y ̸= 0.

We thus get the equations

− 1
x2 + 2λ

x3 = 0, − 1
y2 + 2λ

y3 = 0,

which lead to x = 2λ, y = 2λ. Considering the set of points in
question, the constraint x = y gives the stationary points

(8.4)

[√
2

2
,

√
2

2

]
,

[
−

√
2

2
,−

√
2

2

]
.

Now, let us examine the second di�erential of the function L. We
can easily compute that

Lxx = 2
x3 − 6λ

x4 , Lxy = 0, Lyy = 2
y3 − 6λ

y4 , x ̸= 0, y ̸= 0,

whence it follows that

d2L(x, y) = ( 2
x3 − 6λ

x4

)
dx2 +

(
2
y3 − 6λ

y4

)
dy2 .

Di�erentiating the constraint 1
x2 + 1

y2 = 4, we get

− 2
x3 dx − 2

y3 dy = 0, i. e. dy2 = y6

x6 dx
2 .

Therefore,

d2L(x, y) =
[

2
x3 − 6λ

x4 +
(

2
y3 − 6λ

y4

)
y6

x6

]
dx2 .

In fact, we are considering a one-dimensional quadratic form whose
positive (negative) de�niteness at a stationary point means that there
is a minimum (maximum) at that point. Realizing that the stationary
points had x = 2λ, y = 2λ, mere substitution yields

d2L
(√

2
2 ,

√
2

2

)
= −4

√
2 dx2 , d2L

(
−

√
2

2 ,−
√

2
2

)
= 4

√
2 dx2 ,

which means that there is a strict local maximum of the function f at

the point
[√

2/2,
√

2/2
]
, while at the point

[
−√

2/2,−√
2/2

]
, there

is a strict local minimum. The corresponding values are:

(8.5) f

(√
2

2
,

√
2

2

)
= 2

√
2, f

(
−

√
2

2
,−

√
2

2

)
= −2

√
2.

Now, we will demonstrate a quicker way how to obtain the result.
We know (or we can easily calculate) the second partial derivatives of
the function L, i. e., the Hessian with respect to the variables x and y:

HL (x, y) =
(

2
x3 − 6λ

x4 0
0 2

y3 − 6λ
y4

)
.
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Let us notice that we are almost done with the proof. The limit

at the end of our expression is, thanks to the properties of the func-

tion α, zero if the magnitudes ∥F(x) − F(x0)∥ are greater than

C∥x − x0∥ for some constant C. This is a bit stronger property

than F−1 being continuous; in literature, this property of a func-

tion is called Lipschitz continuity. So, now it remains "merely" to

prove the existence of a Lipschitz-continuous inverse mapping to

the mapping F .

To simplify the reasonings to come, we will transform the

general case to a statement which is a bit more sim-

ple. Especially, we can achieve x0 = 0 ∈ Rn,

y0 = F(x0) = 0 ∈ Rn by a convenient choice of

Cartesian coordinates, which is without loss of gen-

erality.

Composing themappingF with any linearmappingG yields a

di�erentiable mapping again, and we know this changes the di�er-

ential. The choiceG(x) = (D1F(0))−1(x) givesD1(G◦F)(0) =
idRn . Therefore, we can assume that

D1F(0) = idRn .

Now, having these assumptions, let us consider the mapping

K(x) = F(x) − x. This mapping is di�erentiable, too, and its

di�erential at 0 is apparently zero.

By The Taylor expansion with remainder of the particular co-

ordinate functions Ki and the de�nition of Euclidean distance, we

get for any continuously di�erentiable mapping K in a neighbor-

hood of the origin of Rn the bound
∥K(x)−K(y)∥ ≤ C

√
n∥x − y∥,

where C is bounded by the maximum of all absolute values of the

partial derivatives in the Jacobian matrix of the mapping K in the

neighborhood in question.2

Since the di�erential of the mapping K at the point x0 = 0
is zero in our case, we can, selecting a su�ciently small neighbor-

hood U of the origin, achieve the bound

∥K(x)−K(y)∥ ≤ 1
2
∥x − y∥.

Further, substituting for the de�nition K(x) = F(x) − x and in-

voking the triangle inequality ∥(u − v) + v∥ ≤ ∥u− v∥ + ∥v∥, i.
e., ∥u∥ − ∥v∥ ≤ ∥u− v∥ as well, we get

∥y − x∥ − ∥F(x)− F(y)∥ ≤ ∥F(x)− F(y)+ y − x∥
≤ 1

2
∥y − x∥.

Hence, �nally,

1
2
∥x − y∥ ≤ ∥F(x)− F(y)∥.

With this bound, we have reached a great advancement: if x ̸=
y in our neighborhood U of the origin, then we also must have

F(x) ̸= F(y). Therefore, our mapping is bijective. Let us write

F−1 for its inverse de�ned on the image of U . For this function,

our bound says that

∥F−1(x)− F−1(y)∥ ≤ 2∥x − y∥,
so this mapping is not only continuous, but also Lipschitz-

continuous, as we needed in the previous part of the proof.

2It immediately follows from this reasoning that a function which has contin-

uous partial derivatives on a compact set is Lipschitz-continuous on it as well.
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The evaluation
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)
then tells us that the quadratic form is negative de�nite for the former
stationary point (there is a strict local maximum) and positive de�nite
for the latter one (there is a strict local minimum).

We should be aware of a potential trap in this "quicker" method
in the case we obtain an inde�nite form (matrix). Then, we cannot
conclude that there is not an extremum at that point since as we have
not included the constraint (which we did when computing d2L), we
are considering a more general situation. The graph of the function f
on the given set is a curve which can be de�ned as a univariate function.
This must correspond to a one-dimensional quadratic form. □

8.56. Find the global extrema of the function

f (x, y) = 1
x

+ 1
y
, x ̸= 0, y ̸= 0

on the set of points that satisfy the equation 1
x2 + 1

y2 = 4.

Solution. This exercise is to illustrate that looking for global extrema
may be much easier than for local ones (cf. the above exercise) even in
the case when the function values are considered on an unbounded set.
First, we would determine the stationary points (∥8.4∥) and the values
(∥8.5∥) the same way as above. Let us emphasize that we are looking
for the function's extrema on a set that is not compact, so we will not
do with evaluating the function at the stationary points. The reason is
that the function f may not have an extremum on the considered set �
its range might be an open interval. However, we will show that this
is not the case here.

Let us thus consider | x | ≥ 10. We can realize that the equation
1
x2 + 1

y2 = 4 can be satis�ed only by those values y for which | y | ≥
1/2. We have thus obtained the bounds

−2
√

2 < − 1
10 − 2 ≤ f (x, y) ≤ 1

10 + 2 < 2
√

2, if | x | ≥ 10.
At the same time, we have (interchanging x and y leads to the same
task)

−2
√

2 < − 1
10 − 2 ≤ f (x, y) ≤ 1

10 + 2 < 2
√

2, if | y | ≥ 10.
Hence we can see that the function f must have global extrema

on the considered set, and this must happen inside the square ABCD
with vertices A = [−10,−10], B = [10,−10], C = [10, 10], D =
[−10, 10].

The intersection of the "hundred times reduced" square with
vertices at Ã = [−1/10,−1/10], B̃ = [1/10,−1/10], C̃ =
[1/10, 1/10], D̃ = [−1/10, 1/10] and the given set is clearly the
empty set. Therefore, the global extrema are at points inside the com-
pact set bounded by these two squares. Since f is continuously dif-
ferentiable on this set, the global extrema can occur only at stationary
points. We thus must have

fmax = f
(√

2
2 ,

√
2

2

)
= 2

√
2, fmin = f

(
−

√
2

2 ,−
√

2
2

)
= −2

√
2.
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It could seem that we are done with the proof, yet it is not

true. To �nish the proof completely, we still have to

show that the mapping F restricted to a su�ciently

small neighborhood is not only bijective, but also that

it maps open neighborhoods of zero onto open neigh-

borhoods of zero. 3

Let us choose δ so small that the neighborhood V = Oδ(0)
lies in U with its boundary, and, at the same time, the Jacobian

matrix of the mapping is invertible on the whole V . This surely

can be done since the determinant is a continuous mapping. Let B

denote the boundary of the set V (i. e., the corresponding sphere).

Since B is compact and F is continuous, the function

ρ(x) = ∥F(x)∥
has both a maximum and a minimum on B. Let us denote a =
1
2 minx∈B ρ(x) and consider any y ∈ Oa(0). Of course, a > 0. We

want to show that there is at least one x ∈ V such that y = F(x),

which will prove the whole inverse mapping theorem.

To this purpose, consider the function (y is our �xed point)

h(x) = ∥F(x)− y∥2.

Again, the image h(V ) ∪ h(B) must have a minimum. First, we
show that this minimum cannot occur for x ∈ B. Indeed, we have
F(0) = 0, hence h(0) = ∥y∥ < a. At the same time, by our def-

inition of a, the distance of y from F(x) for x ∈ B is at least a

for y ∈ Oa(0) (since a was selected to be half the minimum of the

magnitude of F(x) on the boundary). Therefore, the minimum oc-

curs inside V , and it must be at a stationary point z of the function

h. However, this means that for all j = 1, . . . , n, we have

∂h

∂xj
(z) =

n∑
i=1

2(fi(z)− yi)
∂fi

∂xj
(z) = 0.

This system of equations can be considered a system of linear equa-

tions with variables ξi = fi(z)−yi and coe�cients given by twice

the Jacobian matrixD1F(z). For every z ∈ V , such a system has a

unique solution, and that is zero since we suppose that the Jacobian

matrix is invertible.

Thus, we have found the wanted point x = z ∈ V satisfying,

for all i = 1, . . . , n, the equality fi(z) = yi , i. e., F(z) = y. □
8.18. The implicit function theorem. Our next goal is to ap-

ply the inverse mapping theorem for work with im-

plicitly de�ned functions. For the beginning, let us

consider a di�erentiable function F(x, y) de�ned

in the plane E2, and let us look for those point (x, y) at which

F(x, y) = 0.
An example of this can be the usual (implicit) de�nition of

straight lines and circles:

F(x, y) = ax + by + c = 0

F(x, y) = (x − s)2 + (y − t)2 − r2 = 0, r > 0.

While in the �rst case, the function given by the �rst formula is (for

b ̸= 0)
y = f (x) = −a

b
x − c

b
for all x; in the other case, for any point (x0, y0) satisfying the

equation of the circle and such that y0 ̸= t (these are the marginal

3In literature, there are many examples of mappings which, for instance, con-

tinuously and bijectively map a line segment onto a square.
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□

8.57. Determine the maximal and minimal values of the function
f (x, y, z) = xyz on the setM given by the conditions

x2 + y2 + z2 = 1, x + y + z = 0.

Solution. It is not hard to realize thatM is a circle. However, for our
problem, it is su�cient to know thatM is compact, i. e. bounded (the
�rst condition of the equation of the unit sphere) and closed (the set
of solutions of the given equations is closed since if the equations are
satis�ed by all terms of a converging sequence, then it is satis�ed by
its limit as well). The function f as well as the constraint functions
F(x, y, z) = x2 + y2 + z2 − 1, G(x, y, z) = x + y + z have continu-
ous partial derivatives of all orders (since they are polynomials). The
Jacobi constraint matrix is(

Fx(x, y, z) Fy(x, y, z) Fz(x, y, z)

Gx(x, y, z) Gy(x, y, z) Gz(x, y, z)

)
=
(

2x 2y 2z
1 1 1

)
.

Its rank is reduced (less than 2) if and only if the vector (2x, 2y, 2z)
is a multiple of the vector (1, 1, 1), which gives x = y = z, and thus
x = y = z = 0 (by the second constraint). However, the setM does
contain the origin. Therefore, we may look for stationary points using
the method of Lagrange multipliers. For

L(x, y, z, λ1, λ2) = xyz− λ1
(
x2 + y2 + z2 − 1

)− λ2 (x + y + z) ,

the equations Lx = 0, Ly = 0, Lz = 0 give

yz− 2λ1x − λ2 = 0,
xz− 2λ1y − λ2 = 0,

xy − 2λ1z − λ2 = 0,
respectively. Subtracting the �rst equation from the second one and
from the third one leads to

xz− yz− 2λ1y + 2λ1x = 0,

xy − yz− 2λ1z + 2λ1x = 0,
i. e.,

(x − y) (z+ 2λ1) = 0,

(x − z) (y + 2λ1) = 0.

The last equations are satis�ed in these four cases:

x = y, x = z; x = y, y = −2λ1;
z = −2λ1, x = z; z = −2λ1, y = −2λ1,

thus (including the constraintG = 0)

x = y = z = 0; x = y = −2λ1, z = 4λ1;
x = z = −2λ1, y = 4λ1; x = 4λ1, y = z = −2λ1.

Except for the �rst case (which clearly cannot happen), including the
constraint F = 0 yields

(4λ1)
2 + (−2λ1)

2 + (−2λ1)
2 = 1, i. e. λ1 = ± 1

2
√

6
.

Altogether, we get the points[
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points of the circle in the direction of the coordinate x), we can

�nd a neighborhood of the point x0 in which either

y = f (x) = t +
√
(x − s)2 − r ,

or

y = f (x) = t −
√
(x − s)2 − r ,

according to which semicircle the point (x0, y0) belongs to. Hav-

ing the picture of the situation drawn, the reason is clear: we cannot

describe both the semicircles simultaneously by a single function

y = f (x). The marginal points of the interval [s − r, s + r] are
more amazing. They also satisfy the equation of the circle, yet we

have at them that Fy(s± r, t) = 0, which describes the position of
the tangent line to the circle at these points, parallel to the y-axis.

Indeed, we cannot �nd neighborhoods of these points in which the

circle could be described as a function y = f (x).

Moreover, the derivatives of our function y = f (x) = t +√
(x − s)2 − r2 at points where it is de�ned can be expressed in

terms of partial derivatives of the function F :

f ′(x) = 1
2

2(x − s)√
(x − s)2 − r2

= x − s

y − t
= −Fx

Fy
.

If we interchange the roles of the variables x and y and we will

want to �nd a dependency x = f (y) such that F(f (y), y) = 0,
then we will succeed in neighborhoods of points (s ± r, t) with no
problem. Let us notice that the partial derivative Fx is non-zero at

these points.

Our observation thus (for mere two examples) says: for a func-

tion F(x, y) and a point (a, b) ∈ E2 such that F(a, b) = 0,
there is a unique function y = f (x) satisfying F(x, f (x)) = 0
if we have Fy(a, b) ̸= 0. In this case, we can even compute

f ′(a) = −Fx(a, b)/Fy(a, b). We will prove that actually, this

proposition is always true. The last statement about derivatives

can be remembered (and is quite comprehensible if things are thor-

oughly understood) from the expression for the di�erential of the

function g(x) = F(x, y(x)) and the di�erential dy = f ′(x)dx

0 = dg = Fxdx + Fydy = (Fx + Fyf
′(x))dx.

We could work analogously with the implicit expressions

F(x, y, z) = 0, where we can look for a function g(x, y) such

that F(x, y, g(x, y)) = 0. As an example, consider the function

f (x, y) = x2 + y2 , whose graph is a circular paraboloid centered

at the point (0, 0). This can be de�ned implicitly by the equation

0 = F(x, y, z) = z− x2 − y2 .

Before formulating the result straight for the general situation, we

can notice which dimensions could/should appear in the prob-

lem. If we wanted to �nd, for this function F , a curve c(x) =
(c1(x), c2(x)) in the plane such that

F(x, c(x)) = F(x, c1(x), c2(x)) = 0,

then we succeed as well (even for all initial conditions x = a), yet

the result will not be unique for a given initial condition. In fact,

it su�ces to consider an arbitrary curve on the circular paraboloid

whose projection onto the �rst coordinate has non-zero derivative.

Then we consider x to be the parameter of the curve, and c(x) is

chosen to be its projection onto the plane yz.
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We will not verify that these really are stationary points. The only
important thing is that all stationary points are among these six.

We are looking for the global maximum and minimum of the con-
tinuous function f on the compact setM. However, the global extrema
(we know they exist) can occur only at points of local extrema with
respect to M. And the local extrema can occur only at the aforemen-
tioned points. Therefore, it su�ces to evaluate the function f at these
points. Thus we �nd out that the wanted maximum is

f
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while the minimum is
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□
8.58. Find the extrema of the function f : R3 → R, f (x, y, z) =
x2 + y2 + z2, on the plane x + y − z = 1 and determine their types.

Solution. We can easily build the equations that describe the linear
dependency between the normal to the constraint surface and the ex-
amined function:

x = k, y = k z = −k, k ∈ R.
The only solution is the point [ 1

3 ,
1
3 ,− 1

3 ]. Further, we can notice that
the function is increasing in the direction of (1,−1, 0), and this direc-
tion lies in the constraint plane. Therefore, the examined function has
a minimum at this point.
Another solution. Wewill reduce this problem to �nding the extrema
of a two-variable function onR2. Since the constraint is linear, we can
express z = x + y − 1. Substituting this into the given function then
yields a real-valued function of two variables: f (x, y) = x2 + y2 +
(x + y − 1)2 = 2x2 + 2xy + y2 − 2x − 2y + 1. Setting both partial
derivatives equal to zero, we get the linear equation

4x + 2y − 2 = 0, 4y + 2x − 2 = 0,

whose only solution is the point [ 1
3 ,

1
3 ]. Since it is a quadratic func-

tion with positive coe�cients at the unknowns, it is unbounded onR2.
Therefore, there is a (global) minimum at the obtained point. Then,
we can get the corresponding point [ 1

3 ,
1
3 ,− 1

3 ] in the constraint plane
from the linear dependency of z. □
8.59. Find the extrema of the function x+ y : R3 → R on the circle
given by the equations x + y + z = 1 and x2 + y2 + z2 = 4.
Solution. The "suspects" are those points which satisfy

(1, 1, 0) = k · (1, 1, 1)+ l · (x, y, z), k, l ∈ R.
Clearly, x = y(= 1/l). Substituting this into the equation of the circle
then leads to the two solutions[
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.
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Therefore, we expect that one function of m+ 1 variables de-

�nes implicitly a hypersurface inRm+1 whichwewant

to express (at least locally) as the graph of a function

of m variables. We can anticipate that n functions of

m + n variables will de�ne an intersection of n hy-

persurfaces in Rm+n, which is, in "most" cases, a m�dimensional
object.

Let us thus consider a di�erentiable mapping

F = (f1, . . . , fn) : Rm+n → Rn.

The Jacobian matrix of this mapping will have n rows and m + n

columns, and we can write it symbolically as

D1F = (D1
xF,D

1
yF)

=


∂f1
∂x1

. . .
∂f1
∂xm

...
. . .

...
∂fn

∂x1
. . .

∂fn

∂xm

∂f1
∂xm+1

. . .
∂f1
∂xm+n

...
. . .

...
∂fn

∂xm+1
. . .

∂fn

∂xm+n

 ,
where (x1, . . . , xm+n) ∈ Rm+n is written as (x, y) ∈ Rm × Rn,
D1
xF is a matrix of n rows and the �rst m columns in the Jaco-

bian matrix, while D1
yF is a square matrix of order n, with the

remaining columns. The multidimensional analogy to the previ-

ous reasoning with the non-zero partial derivative with respect to

y is the condition that the matrix D1
yF is invertible.

The implicit mapping theorem

Theorem. Let F : Rm+n → Rn be a di�erentiable mapping in an
open neighborhood of a point (a, b) ∈ Rm×Rn = Rm+n at which
F(a, b) = 0, and detD1

yF ̸= 0. Then there exists a di�erentiable
mapping G : Rm → Rn de�ned on an neighborhood U of the

point a ∈ Rm with image G(U) which contains the point b and

such that F(x,G(x)) = 0 for all x ∈ U .

Moreover, the Jacobian matrix D1G of the mapping G is, in

the neighborhood of the point a, given by the product of matrices

D1G(x) = −(D1
yF)

−1(x,G(x)) ·D1
xF(x,G(x)).

Proof. For the sake of comprehensibility, we �rst show the

proof for the simplest case of the equation F(x, y) =
0 with a function F of two variables. At �rst sight, it

will be quite complicated because it will be presented

in a waywhich can be extended for the general dimen-

sions as the theorem states.

We extend the function F to

F̃ : R2 → R2, (x, y) 7→ (x, F (x, y)).

The Jacobian matrix of the mapping F̃ is

D1F̃ (x, y) =
(

1 0
Fx(x, y) Fy(x, y)

)
.

It follows from the assumption Fy(a, b) ̸= 0 that the same holds

in a neighborhood of the point (a, b) as well, so the function F̃ is

invertible in this neighborhood, by the inverse mapping theorem.

Therefore, let us take the uniquely de�ned di�erentiable inverse

mapping F̃−1 in a neighborhood of the point (a, 0).
Now, let us denote by π : R2 → R the projection onto the sec-

ond coordinate, and consider the function f (x) = π ◦ F̃−1(x, 0).
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Since every circle is compact, it su�ces to examine the function values
at these two points. We �nd out that there is a maximum of the consid-
ered function on the given circle at the former point and a minimum
at the latter one. □
8.60. Find the extrema of the function f : R3 → R, f (x, y, z) =
x2 + y2 + z2, on the plane 2x + y − z = 1 and determine their types.

⃝
8.61. Find the maximum of the function f : R2 → R, f (x, y) = xy

on the circle with radius 1 which is centered at the point [x0, y0] =
[0, 1]. ⃝
8.62. Find the minimum of the function f : R2 → R, f = xy on the
circle with radius 1 which is centered at the point [x0, y0] = [2, 0].
⃝
8.63. Find the minimum of the function f : R2 → R, f = xy on the
circle with radius 1 which is centered at the point [x0, y0] = [2, 0].
⃝
8.64. Find the minimum of the function f : R2 → R, f = xy on the
ellipse x2 + 3y2 = 1. ⃝
8.65. Find the minimum of the function f : R2 → R, f = x2y on
the circle with radius 1 which is centered at the point [x0, y0] = [0, 0].

⃝
8.66. Find the maximum of the function f : R2 → R, f (x, y) = x3y

on the circle x2 + y2 = 1. ⃝
8.67. Find the maximum of the function f : R2 → R, f (x, y) = xy

on th ellipse 2x2 + 3y2 = 1. ⃝
8.68. Find the maximum of the function f : R2 → R, f (x, y) = xy

on the ellipse x2 + 2y2 = 1. ⃝

H. Volumes, areas, centroids of solids

8.69. Find the volume of the solid which lies in the half-plane z ≥ 0,
the cylinder x2 + y2 ≤ 1, and the half-plane

a) z ≤ x,
b) x + y + z ≤ 0.
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This function is well-de�ned and di�erentiable. We must verify

that the expression

F(x, f (x)) = F(x, π(F̃−1(x, 0)))

evaluates to zero in a neighborhood of the point x = a. It follows

directly from the de�nition of F̃ (x, y) = (x, F (x, y)) that its in-

verse is of the form F̃−1(x, y) = (x, πF̃−1(x, y)). Therefore, we

can resume the previous calculation:

F(x, f (x)) = π(F̃ (x, π(F̃−1(x, 0)))) =
= π(F̃ (F̃−1(x, 0))) = π(x, 0) = 0.

This proves the �rst part of the theorem, and it remains to compute

the derivative of the function f (x). This derivative can, once again,

be obtained by invoking the inverse mapping theorem, using the

matrix (D1F̃ )−1.

The following result can be easily veri�ed by multiplying the

matrices. (It can also be computed directly using the explicit for-

mula for the inverse matrix in terms of the determinant and the

algebraically adjoint matrix, see paragraph 2.23)(
1 0

Fx(x, y) Fy(x, y)

)−1

= (Fy(x, y))
−1
(
Fy(x, y) 0

−Fx(x, y) 1

)
.

By the de�nition f (x) = πF̃−1(x, 0), we are interested in the �rst
entry of the second row of this matrix, which is just the Jacobian

matrix D1f . In our simple case, it is exactly the wanted scalar

−Fx(x, f (x))/Fy(x, f (x)).
The general proof is exactly the same, there is no need to

change any of the mentioned formulae (the partici-

pating objects just get the "vector" sense), except for

the last computation of the derivative of the function.

There, the corresponding parts of the Jacobian matrix

D1
xF andD1

yF will appear, instead of the particular partial deriva-

tives Of course, we need to work with vectors and matrices, rather

than scalars.

For the calculation of the Jacobian matrix of the mapping G,

we will once again use the computation of an inverse matrix, yet

the procedure from paragraph 2.23 is not very advantageous. It is

much better to get inspired by the case in dimension m + n = 2
and to divide the matrix

(D1F̃−1) =
(

idRm 0
D1
xF(x, y) D1

yF(x, y)

)−1

=
(
A B

C D

)
into blocks of m and n rows and columns (i. e., A, for instance, is

of typem×m, while C is of type n×m). Now, we can determine
the matricesA, B, C,D from the de�nition equality for an inverse:(

idRm 0
D1
xF(x, y) D1

yF(x, y)

)
·
(
A B

C D

)
=
(

idRm 0
0 idRn

)
.

Apparently, it follows from here that A = idRm , B = 0, D =
(D1

yF)
−1, and, �nally,D1

xF+D1
yF ·C = 0. From the last equality,

we get the desired relation

D1G = C = −(D1
yF)

−1 ·D1
xF.

This proves the theorem. □
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Solution. a) The volume can be calculated with ease using cylindric
coordinates. There, the cylinder is determined by the inequality r ≤ 1;
the half-plane z ≤ x by z ≤ r cosφ, then. Altogether, we get

V =
∫ 1

0

∫ π
2

− π
2

∫ r cos φ

0
r dz dφ dr = 2

3
.

b) We will reduce this problem to one that is completely analo-
gous to the above part by rotating the solid around the z-axis by the
angle π/4 (be it in the positive or the negative direction). Apply-

ing the rotation matrix

√
2/2 −√

2/2 0√
2/2

√
2/2 0

0 0 1

, the original inequality
x+ y+ z ≤ 0 is transformed to

√
2x′ + z′ ≤ 0 in the new coordinates.

Now, it is easy to express the integral that corresponds to the volume
of the examined solid:

V = ∫ 1
0

∫ 3π
2

π

2

∫ 0
−√

2r cos φ r dz dφ dr = 2
√

2
3

. We need not

have computed the result as we did; instead, we could notice that the
solid from part (a) di�ers only by homothety with coe�cient

√
2 in

the direction of the y-axis. See also note ∥8.79∥. □

8.70. Find the volume of the solid inR3 which is given by x2 +y2 +
z2 ≤ 1, 3x2 + 3y2 ≥ z2, x ≥ 0.
Solution.

First, we should realize what the examined solid looks like. It is a
part of a ball which lies outside a given cone (see the picture).

The best way to determine the volume is probably to subtract half
the volume of the sector given by the cone from half the ball's volume
(note that the volume of the solid does not change if we replace the
condition x ≥ 0 with z ≥ 0 � the sector is cut either "horizontally"
or "vertically", but always to halves). We will calculate in spherical
coordinates.

x = r cos(φ) sin(ψ),
y = r sin(φ) sin(ψ),
z = r cos(ψ),

φ ∈ [0, 2π), ψ ∈ [0, π), r ∈ (0,∞).
The Jacobian of this transformation R3 → R3 is r2 sin(ψ).
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8.19. The gradient of a function. As we have seen in the

previous paragraph, if F is a continuously dif-

ferentiable function of n variables, the de�nition

F(x1, . . . , xn) = b with a �xed value b ∈ R de�nes

a subset M ⊂ Rn which often has the properties of

an (n − 1)�dimensional hypersurface. To be more precise, if the

vector of the partial derivatives

D1F =
(
∂f

∂x1
, . . . ,

∂f

∂xn

)
is non-zero, we can describe the set M locally as the graph of a

continuously di�erentiable function of n−1 variables. In this con-
nection, we also talk about level sets Mb. The vector D

1F ∈ Rn
is called the gradient of the function F . In technical and physical

literature, it is also often denoted as gradF .
Since Mb is given by a constant value of the function F , the

derivatives of the curves lying in M will surely have the property

that the di�erential dF always evaluates to zero on them. Indeed,

for every such a curve, we have F(c(t)) = b, hence

d

dt
F (c(t)) = dF(c′(t)) = 0.

On the other hand, we can consider a general vector

v = (v1, . . . , vn) ∈ Rn and the magnitude of the corresponding

directional derivative

|dvF | =
∣∣∣∣ ∂f∂x1

v1 + · · · + ∂f

∂xn
vn

∣∣∣∣ = cosφ∥D1F∥∥v∥,

where φ is the angle of the vector v from the gradient F , see the

discussion about angles of vectors and straight lines in the fourth

chapter (de�nition 4.18).

Hence it follows that the partial derivatives that are zero are

exactly those which are perpendicular to the gradient, while the di-

rection given by the gradient is the direction in which the function

f increases most rapidly.

Therefore, it is clear that the tangent plane to a non-empty level

setMb in a neighborhood of its point with non-zero gradientD
1F

is determined by the orthogonal complement to the gradient, and

the gradient itself is the so-called normal vector of the hypersur-

faceMb.

For instance, considering a sphere in R3 with radius r > 0,
centered at (a, b, c), i. e., given by the equation

F(x, y, z) = (x − a)2 + (y − b)2 + (z− c)2 = r2 ,

we get the normal vectors at a point P = (x0, y0, z0) as a non-zero

multiple of the gradient, i. e., a multiple of

D1F = (2(x0 − a), 2(y0 − b), 2(z0 − c)),

and the tangent vectors will be exactly the vectors perpendicular to

the gradient. Therefore, the tangent plane to a sphere at the point

P can always be described implicitly in terms of the gradient by

the equation

0 = (x0 − a)(x − x0)+ (y0 − b)(y − y0)+ (z0 − c)(z− z0).

This is a special case of the following general formula:
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First of all, let us determine the volume of the ball. As for the inte-
gration bounds, it is convenient to express the conditions that bind the
solid in the coordinates we will work in. In the spherical coordinates,
the ball is given by the inequality

x2 + y2 + z2 = r2 ≤ 1.

First, let us �nd the integration bounds for the variable φ. If we denote
by πφ the projection onto the φ-coordinate in the spherical coordinates
(πφ(φ, θ, r) = φ), then the image of the projection πφ of the solid in
question gives the integration bounds for the variable φ. We know that
πφ(ball) = [0, 2π) (the equation r2 ≤ 1 does not contain the variable
φ, so there are no constraints on it, and it takes on all possible values;
this can also easily be imagined in space).

Having the bounds of one of the variables determined, we can pro-
ceed with the bounds of other variables. In general, those may de-
pend on the variables whose bounds have already been determined
(although this is not the case here). Thus, we choose arbitrarily a
φ0 ∈ [0, 2π), and for this φ0 (�xed from now on), we �nd the intersec-
tion of the solid (ball) and the surface φ = φ0 and its projection πψ
on the variable ψ. Similarly like for φ, the variable ψ is not bounded
(either by the inequality r2 ≤ 1 or the equality φ = φ0), so it can take
on all possible values, ψ ∈ [0, π).

Finally, let us �x a φ = φ0 and a ψ = ψ0. Now, we are looking
for the projection πr(U) of the object (line segment) U given by the
constraints r2 ≤ 1, φ = φ0, ψ = ψ0 on the variable r. The only
constraint for r is the condition r2 ≤ 1, so r ∈ (0, 1].

Note that the integration bounds of the variables are independent
of each other, so we can perform the integration in any order. Thus,
we have

Vkoule =
∫ 1

0

∫ 2π

0

∫ π

0
r2 sin(ψ) dψ dφ dr = 4

3
π.

Now, let us compute the volume of the spherical sector given by
x2 +y2 +z2 ≤ 1 and 3x2 +3y2 ≥ z2. Again, we express the conditions
in the spherical coordinates: r2 ≤ 1, 3 sin2(ψ) ≥ cos2(ψ), i. e.,
tan(ψ) ≥ 1√

3
. Just like in the case of the ball, we can see that the

variables occur independently in the inequalities, so the integration
bounds of the variables will be independent of each other as well. The
condition r2 ≤ 1 implies r ∈ (0, 1]; from tan(ψ) ≥ 1√

3
, we have

ψ ∈ [0, π6 ]. The variable φ is not restricted by any condition, so φ ∈
[0, 2π ].

Vsector =
∫ 2π

0

∫ 1

0

∫ π
6

0
r2 sinψ dψ dr dφ = 2 − √

3
3

π,

altogether,

V = Vball − Vsector = 2
3
π − 2 − √

3
3

π = π√
3
.

We could also have computed the volume directly:

V =
∫ π

0

∫ 1

0

∫ 5π
6

π
6

r2 sinψ dψ dr dφ = π√
3
.
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Tangent hyperplane to an implicitly given hypersurface

Theorem. For a function F(x1, . . . , xn) of n variables and a point

P = (a1, . . . , an) in a level setMb of the function F such thatMb

is the graph of a function of (n − 1) variables in a neighborhood

of the point P , the implicit equation for the tangent hypersurface

toMb is

0 = ∂f

∂x1
(P ) · (x1 − a1)+ · · · + ∂f

∂xn
(P ) · (xn − an).

Proof. The statement is apparent from the previous reason-

ings. The tangent hyperplane must be (n − 1)�dimensional, so
its direction space is given as the kernel of the linear form given

by the gradient (zero values of the corresponding linear mapping

Rn → R given by multiplying the column of coordinates by the

row vector gradF ). Clearly, The selected point P satis�es our

equation. □

8.20. A model of illumination of 3D objects. Let us consider il-

lumination of a three-dimensional object where we know the direc-

tion v of the light falling onto the two-dimensional surface of this

object, i. e. a setM given implicitly by an equation F(x, y, z) = 0.
The light intensity of a point P ∈ M is de�ned as I cosφ, where
φ is the angle between the normal line toM and the vector which

is opposite to the �ow of the light. As we have seen, the normal

line is determined by the gradient of the function F . The sign of

our expression then says which side of the surface is illuminated.

For example, consider an illumination with intensity I0 in the

direction of the vector v = (1, 1,−1) (i. e. "downward askew"),

and let the ball given by the equation F(x, y, z) = x2 + y2 +
z2 − 1 ≤ 0 be the object of our interest. Then, for a point P =
(x, y, z) ∈ M on the surface, we get intensity

I (P ) = gradF · v
∥ gradF∥∥v∥I0 = −2x − 2y + 2z

2
√

3
I0.

We can notice that, as anticipated, the point which is illuminated

with the (full) intensity I0 is the point P = 1√
3
(−1,−1, 1) on the

surface of the ball.

8.21. Tangent and normal spaces. Now, we extend our reason-

ings about tangent and normal lines to general di-

mensions. Having a mapping F : Rm+n → Rn,
with coordinate functions fi , we can also consider

the n equations for n+m variables

fi(x1, . . . , xm+n) = bi, i = 1, . . . , n,

expressing the equality F(x) = b for a vector b ∈ Rn.
Then, assuming that the conditions of the implicit function

theorem hold, the set of all solutions (x1, . . . , xm+n) ∈ Rm+n is
(at least locally) the graph of a mapping G : Rm → Rn.

For a �xed choice b = (b1, . . . , bn), the set of all solutions

is, of course, the intersection of all hypersurfaces M(bi, fi) cor-

responding to the particular functions fi . The same must hold

for tangent directions, while normal directions are generated by

particular gradients. Therefore, if D1F is the Jacobian matrix

of a mapping which implicitly de�nes a set M and a point P =
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In cylindric coordinates

x = r cos(φ),
y = r sin(φ),
z = z

with Jacobian r of this transformation, the calculation of the volume
as the di�erence of the two solids considered above looks as follows:

V = 2
3
π −

∫ 2π

0

∫ 1
2

0

∫ 1

0
r dz dr dφ = π√

3
.

Note that we cannot compute the volume of the solid directly in the
cylindric coordinates. Thus, we must split it into two solids de�ned by
the conditions r ≤ 1

2 and r ≥ 1
2 , respectively.

V = V1 + V2

=
∫ 2π

0

∫ 1
2

0

∫ √
3r

0
r dz dr dφ +

∫ 2π

0

∫ 1

1
2

∫ √
1−r2

0
r dz dr dφ

= π√
3
.

□
Another alternative is to compute it as the volume of a solid of

revolution, again splitting the solid into the two parts as in the previ-
ous case (the part "under the cone" and the part "under the sphere".
However, these solids cannot be obtained by rotating around one of
the axes. The volume of the former part can be calculated as the dif-
ference between the volumes of the cylinder x2 +y2 ≤ 1

4 , 0 ≤ z ≤
√

3
2

and the cone's part 3x2 + 3y2 ≤ z2, 0 ≤ z ≤
√

3
2 . The volume of the

latter one is then the di�erence between the volumes of the solid that
is created by rotating the part of the arc y = √

(1 − x2 ), 1
2 ≤ x ≤ 1

around the z-axis and the cylinder x2 + y2 ≤ 1
4 , 0 ≤ z ≤

√
3

2 .

V = V1 + V2

=
(
π

√
3

8
− π

√
3

24

)
+
(
π

∫ √
3

2

0
(1 − r2 ) dr − π

√
3

8

)

= π
√

3
4

+ π

4
√

3
= π√

3
.

8.71. Calculate the volume of the spherical segment of the ball x2 +
y2 + z2 = 2 cut by the plane z = 1.
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(a1, . . . , am+n) ∈ M such thatM is the graph of a mapping in the

neighborhood of the point P ,

D1F =


∂f1
∂x1

. . .
∂f1
∂xm+n

...
. . .

...
∂fn

∂x1
. . .

∂fn

∂xm+n

 ,
then the a�ne subspace inRm+n which contains exactly all tangent
lines going through the point P is given implicitly by the following

equations:

0 = ∂f1

∂x1
(P ) · (x1 − a1)+ · · · + ∂f1

∂xn
(P ) · (xm+n − am+n)

...

0 = ∂fn

∂x1
(P ) · (x1 − a1)+ · · · + ∂fn

∂xn
(P ) · (xm+n − am+n).

This subspace is called the tangent space to the (implicitly given)

m�dimensional surfaceM at the point P .

The normal space at the point P is the a�ne subspace gener-

ated by the pointP and the gradients of all the functions f1, . . . , fn
at the point P , i. e. the rows of the Jacobian matrix D1F .

As an illustrative simple example, we can calculate the tangent

and normal spaces to a conic section in R3. Let us consider the

equation of a cone with vertex at the origin,

0 = f (x, y, z) = z−
√
x2 + y2 ,

and a plane, given by

0 = g(x, y, z) = z− 2x + y + 1.

The point P = (1, 0, 1) belongs to both the cone and the plane,

so the intersectionM of these surfaces is a curve (draw a picture!).

Its tangent line at the point P is given by the following equations:

0 = − 1

2
√
x2 + y2

2x

∣∣∣∣∣
x=1,y=0

· (x − 1)

− 1

2
√
x2 + y2

2y

∣∣∣∣∣
x=1,y=0

· y + 1 · (z− 1)

= −x + z

0 = −2(x − 1)+ y + (z− 1) = −2x + y + z+ 1,

while the plane perpendicular to our curve, containing the point P ,

is given parametrically by the expression

(1, 0, 1)+ τ(−1, 0, 1)+ σ(−2, 1, 1)

with parameters τ and σ .

8.22. Bound extrema. Now, we will approach the �rst really

serious application of the di�erential calculus of

more variables. The typical task of optimization is

to �nd the extrema of values depending on several

(yet �nitely many) parameters, given some further

conditions on the mutual relations between the parameters.

The problem often has m+ n parameters which are bound by

n conditions. In the language of our di�erential calculus, we are

thus looking for the extrema of a di�erentiable function h on the set

M of points given implicitly by an equation F(x1, . . . , xm+n) = 0.
However, we have already prepare e�cient procedures for this.
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Solution. We iwll compute the integral in spherical coordinates. The
segment can be perceived as a spherical sector without the cone (with
vertex at the point [0, 0, 0] and the circular base z = 1, x2 + y2 = 1).
In these coordinates, the sector is the product of the intervals [0,

√
2]×

[0, 2π)×[0, π/4]. We thus integrate in the given bounds, in any order:

∫ 2π

0

∫ √
2

0

∫ π
4

0
r2 sin(θ) dθ dr dφ = 4

3
(
√

2 − 1)π.

In the end, we must subtract the volume of the cone. That is equal to
1
3πR

2H (where R is the radius of the cone's base and H is its height;
both are equal to 1 in our case), so the total volume is

Vsector − Vcone = 4
3
(
√

2 − 1)− 1
3
π = 1

3
π(4

√
2 − 5).

The volume of a general spherical segment with height h in a ball
with radius R could be computed similarly:

V = Vsector − Vcone

=
∫ 2π

0

∫ arccos
(

R−h
R

)
0

∫ R

0
r2 sin(θ) dr dθ dφ

−1
3
π(2Rh− h2)(R − h)

= 1
3
πh2(3R − h).

□

8.72. Find the volume of the part of the cylinder x2 +z2 = 16 which
lies inside the cylinder x2 + y2 = 16.



CHAPTER 8. CONTINUOUS MODELS WITH MORE VARIABLES

For every curve c(t) ⊂ M going through P = c(0), we must
have that h(c(t)) is an extremum of this univariate function. There-

fore, the derivative must satisfy

d

dt
h(c(t))|t=0 = dc′(0)h(P ) = dh(P )(c′(0)) = 0.

However, this means that the di�erential of the function h at the

pointP is zero along all tangent increases toM atP . This property

is equivalent to stating that the gradient of h lies in the normal

subspace (more precisely, in its direction space). Such points P ∈
M are called stationary points of the function H with respect to

bindings given by F .

As we have seen in the previous paragraph, the normal space

to our setM is generated by the rows of the Jacobian matrix of the

mapping F , so the stationary points are determined equivalently

by the following proposition:

Lagrange multipliers

Theorem. Let F = (f1, . . . , fn) : Rm+n → Rn be a di�eren-

tiable function in a neighborhood of a pointP , F(P ) = 0. Further,
letM be given implicitly by an equation F(x, y) = 0, and let the

rank of the matrixD1F at the point P be n. Then P is a stationary

point of a continuously di�erentiable function h : Rm+n → Rwith

respect to the conditionsF if and only if there exist real parameters

λ1, . . . , λn such that

gradh = λ1 grad f1 + · · · + λn grad fn.

Let us notice that the method of Lagrange multipliers is an al-

gorithmic one. Therefore, let us take a look at the

numbers of unknowns and equations: the gradients

are vectors ofm+n coordinates, so the request of the
theorem givesm+n equations. The variables are, on one side, the
coordinates x1, . . . , xm+n of the wanted stationary points P with

respect to the bindings, and, on the other hand, the n parameters λi
in the linear combination. Now it remains to state that the point P

belongs to the implicitly given setM, which leads to n more equa-

tions. Altogether, we have 2n+m equations for 2n+m variables,

so we can expect that the solution will be given by a discrete set of

points P (i. e., each one of them will be an isolated point).

8.23. Arithmetic mean�geometric mean inequality. As an ex-

ample of practical application of the Lagrange multipliers, we will

prove the inequality

1
n
(x1 + · · · + xn) ≥ n

√
x1 · · · xn

for any n positive real numbers x1, . . . , xn. Further, we will prove

that the inequality holds with equality if and only if all the xi's are

equal.

Let us thus take the sum x1 + · · · + xn = c to be the binding

condition for a (non-speci�ed) non-negative constant c. We will

look for the maxima and minima of the function

f (x1, . . . , xn) = n
√
x1 · · · xn

with respect to our binding condition and the assumption x1 >

0,. . . , xn > 0.
The normal vector to the hyperplane de�ned by the condition

is (1, . . . , 1). Therefore, the function f can have an extremum only
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Solution. We will compute the integral in Cartesian coordinates.
Since the solid is symmetric, it su�ces to integrate over the �rst octant
(interchanging x and −x does not change the equation of the solid;
the same holds for y and for z). The part of the solid that lies in
the �rst octant is given by the space under the graph of the function
z(x, y) = √

16 − x2 and over the quarter-disc x2 + y2 ≤ 16, x ≥ 0,
y ≥ 0. Therefore, the volume of the whole solid is equal to

V = 8
∫ 4

0

∫ √
16−x2

0
4√

16 − x2
dy dx = 128. □

Remark. Note that the projection of the considered solid onto both
the plane y = 0 and the plane z = 0 is a circle with radius 4, yet the
solid is not a ball.

8.73. Find the volume of the part of the cylinder x2 +y2 = 4 bounded
by the planes z = 0 and z = x + y + 2.
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at those points where its gradient is a multiple of this normal vec-

tor. Thus, we get the following system of equations for the wanted

points:
1
n

1
xi

n
√
x1 · · · xn = λ,

for i = 1, . . . , n and λ ∈ R.
Apparently, this system has a unique solution x1 = · · · = xn

in the examined set. If we allowed the variables xi to be zero as

well, then our set M would be compact, so the function f would

have to have both a maximum and a minimum there. However, f

is apparently minimal if and only if at least one of the values xi is

zero; so the function necessarily has a strict maximum at our point

with xi = c
n
, i = 1, . . . , n.

The value of the geometric mean is then smaller at all other

points with the given sum c of coordinates, which proves the in-

equality.

2. Integration for the second time

Now, we will return to the process of integration, which was

partially described in the second part of chapter six. Wewill not go

into details; instead, we will concentrate on extension of this pro-

cess quantities dependent on several variables, or on parameters.

8.24. Integrals dependent on parameters. When integrating a

function f (x, y1, . . . , yn) of n + 1 variables with

respect to a single variable x, then the result will be

a function F(y1, . . . , yn) of the remaining variables.

In problems from practice, we often deal with the task to ex-

amine such a function F . We can, for instance, look for the volume

or area of a body which depends on parameters, and determine the

minimal and maximal values (with additional bindings as well).

We know from the �rst part of this chapter that we have tools built

upon partial derivatives of functions for this purpose. Therefore, it

would be great if we could interchange the operations of di�erenti-

ation and integration, which we will prove shortly. We begin with

examination of continuous dependency upon parameters.

Theorem. For a continuous function f (x, y1, . . . , yn) de�ned for

all x lying in a �nite interval [a, b] and all (y1, . . . , yn) from a

neighborhood U of a point c = (c1, . . . , cn) ∈ Rn, consider the
integral

F(y1, . . . , yn) =
∫ b

a

f (x, y1, . . . , yn) dx.

Then the function F(y1 . . . , yn) is also continuous in the neighbor-

hood U of the point c.

Proof. To verify the �rst proposition, it is surely su�cient

to recall the de�nition of the Riemann integral and the al-

ready veri�ed fact that a function which is continuous on

a compact set is actually uniformly continuous.

Let us thus choose a neighborhoodW of a �xed point

y so that we would have for all ȳ ∈ W and all x ∈ [a, b] that

|f (x, ȳ)− f (x, y)| < ε

for a selected (small) positive ε. The Riemann integral is, for any

continuous function, evaluated by approximations by �nite sums

(equivalently: upper, lower, or Riemann sums with arbitrary rep-

resentatives ξi , see paragraph 6.25 in the sixth chapter). However,
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Solution. Wewill work in cylindric coordinates given by the equations
x = r cos(φ), y = r sin(φ), z = z. The Jacobian of this transforma-
tion is J = r. The solid can be divided into two parts: above and below
the plane z = 0, whose volumes will be denoted by V1 and V2, respec-
tively. Further, we can notice that one part of the solid with volume
V1 is a pyramid with vertices [0, 0, 0], [0, 0, 2], [−2, 0, 0], [0,−2, 0].
Thus, we will further split this solid (above z = 0) into two parts,
whose volumes we will calculate separately.

V1 − Vpyramid =
∫ π

−π/2

(∫ 2

0
[r sinφ + r cosφ + 2]r dr

)
dφ,

= 6π + 16
3
,

Vpyramid = 4
3

Further,

V1 − V2 =
∫ π

−π

∫ 2

0
r2 (sin(φ)+ cos(φ))+ 2r dr dφ = 8π,

so V1 + V2 = 4π + 40
3 . □

Remark. During the calculation, we made use of the fact that integrat-
ing a function of two variables over an area inR2 yields the di�erence
of the volume of the solid in R3 determined by the graph of the inte-
grated function and lying above z = 0 and the one lying below z = 0.

8.74. Find the volume of the solid in R3 which is given by the inter-
section of the sphere x2 + y2 + z2 = 4 and the cylinder x2 + y2 = 1.

Solution. Thanks to symmetry, it su�ces to compute the volume of
the part that lies in the �rst octant. We will integrate in cylindric coor-
dinates given by the equations x = r cos(φ), y = r sin(φ), z = z with
Jacobian J = r, and it is the space between the plane z = 0 and the
graph of the function z = √

4 − x2 − y2 = √
4 − r2 . Therefore, we
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for the chosen parameters ȳ and y, none of the sums can di�er by

more than∣∣∣∣k−1∑
i=0

f (ξi, ȳ)(xi+1 − xi)−
k−1∑
i=0

f (ξi, y)(xi+1 − xi)

∣∣∣∣
≤
k−1∑
i=0

∣∣f (ξi, ȳ)− f (ξi, y)
∣∣(xi+1 − xi)

< ε(b − a).

Hence it follows that the limit values F(y) and F(ȳ) cannot di�er

by more than ε(b − a) either, so the function is continuous. □

8.25. Integration of multivariate functions. In the case of uni-

variate functions, integration was motivated by the

idea of the area under the graph of a given function

of one variable. Now, we will consider the volume

of the part of the three-dimensional space which lies under the

graph of a function z = f (x, y) of two variables, and the mul-

tidimensional analogues in general. Back then, we chose small

intervals [xi, xi+1] of length1xi which divided the whole interval
over which we integrated. Then, we selected their representatives

ξi , and we approximated the corresponding part of the area by the

area of the rectangle with height given by the value f (ξi) at the

representative, i. e. the expression f (ξ)1xi .

In the case of functions of two variables, we will work with

divisions in both and the values representing the height of the graph

above the particular little rectangles in the plane.

However, the �rst thing we must do is to determine the in-

tegration domain, i. e. the area we wish to integrate our func-

tion f over. As an example, let us take a look at the function

z = f (x, y) = √
1 − x2 − y2 , whose graph is, inside the unit

disc, the unit sphere. Therefore, integrating this function over the

unit disc yields the volume of the unit semi-ball.

The simplest approach is to consider only those integration

domains M which are given by products of intervals, i. e. given

by ranges x ∈ [a, b] and y ∈ [c, d]. In this context, we talk about
a multidimensional interval. IfM is a di�erent bounded set in R2,

we work with a su�ciently large area [a, b] × [c, d], rather than
with the set itself, and we adjust our function so that f (x, y) = 0
for all points lying outside M. Considering the above case of the

unit ball, we would thus integrate over the set M = [−1, 1] ×
[−1, 1] the function

f (x, y) =
{√

1 − x2 − y2 for x2 + y2 ≤ 1
0 otherwise.

The de�nition of the Riemann integral then faithfully follows

our procedure from paragraph 6.24. We can do this for an arbitrary

�nite number of variables.

Riemann integral

The Riemann integral of a real-valued function f de�ned on

a multidimensional interval I = [a1, b1]× [a2, b2]× . . .× [an, bn]
exists if for every choice of a sequence of divisions 4 (we are di-

viding the multidimensional interval in all variables contempora-

neously) and the representatives of the particular little cubes ξi1...in ,

with the maximum size among all used intervals approaching zero,
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can directly write is as the double integral

V = 8
∫ π/2

0

∫ 1

0
r
√

4 − r2 dr dφ = 2
3
(8 − 3

√
3)π.

□

8.75. Find the volume of the solid in R3 which is given by the inter-
section of the sphere x2 +y2 + z2 = 2 and the paraboloid z = x2 +y2 .

Solution. Once again, we will work in cylindric coordinates:

V =
∫ 2π

0

∫ 1

0

∫ √
2−r2

r2
r dz dr dφ = 4

√
2π

3
− 7π

6
.

□

8.76. Find the volume of the solid in R3 which is bounded by the
elliptic cylinder 4x2 + y2 = 1 and the planes z = 2y and z = 0, lying
above the plane z = 0.

Solution. Thanks to symmetry, it is advantageous to work in the co-
ordinates x = 1

2r cos(φ), y = r cos(φ), z = z with Jacobian J = 1
2r.

The equation of the elliptic cylinder in these coordinates is r2 = 1.
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the integral sums

S4,ξ =
∑
i1...in

f (ξi1...in)1xi1...in

(here, we write1xi1...in for the product of the sizes of the particular

intervals from the division de�ning the little cube with the corre-

sponding indeces) always converge to the value

S =
∫
S

f (x1, . . . , xn) dx1 . . . dxn,

independent of the selected sequence of divisions and representa-

tives.

The function f is then said to be Riemann-integrable over I .

As a relatively simple exercise, you can prove in detail that

every Riemann-integrable function over an interval I

must be bounded there. The reason is the same as

in the case of univariate functions: we control the

norms of the divisions used in the de�nition somewhat

roughly.

The situation is much worse if we try to integrate in this way

over unbounded intervals, because, unlike integrals in one variable,

we cannot replace the wanted result uniquely with the limit of in-

tegrals over bounded areas, see ?? below. Therefore, we will fur-

ther talk about integration of functions over Rn only for functions
whose support is compact, i. e. functions which take zero outside

a bounded interval I .

A bounded setM ⊂ Rn is said to be Riemann measurable i�
its indicator function, de�ned by

χM(x1, . . . , xn) =
{

1 for (x1, . . . , xn) ∈ S
0 for all other points in Rn,

is Riemann-integrable over Rn.
For any Riemann-measurable setM and a function f de�ned

at all points ofM, we can consider the function f̃ = χM · f as a

function de�ned on the whole Rn, and this function f̃ apparently

has a compact support. The Riemann integral of the function f

over the setM is de�ned by∫
M

f dx1 . . . dxn =
∫
Rn

f̃ dx1 . . . dxn,

supposing the right-hand integral exists.

This de�nition of the Riemann integral does not provide rea-

sonable instructions how to compute the values of integrals. How-

ever, it immediately leads to the following basic properties of the

Riemann integral (cf. Theorem 6.24):

8.26. Theorem. The set of Riemann-integrable real-valued func-

tions over an interval I ⊂ Rn is a vector space over the real scalars,
and the Riemann integral is a linear form there.

If the integration domain S is given as a disjoint union of

�nitely many Riemann-measurable domains Si , the integral over

a function f over S is given by the sums of the integrals over the

particular domains Si .

Proof. All the properties follows directly from the de�nition

of the Riemann integral and the properties of convergent sequences

of real numbers, just like in the case of univariate functions. We

advise to think out the details by yourselves. □
Now, let us rewrite the theorem into usual equalities:
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Thus, the wanted volume is

V =
∫ π

0

∫ 1

0
r sin(φ)

1
2
r dr dφ

=
∫ π

0

∫ 1

0
r2 sin(φ) dr dφ =

∫ π

0

1
3

sin(φ) dφ = 2
3
.

□

8.77. Find the volume of the solid in R3 which is bounded by the
paraboloid 2x2 + y2 = z and the plane z = 2.

Solution. Similarly to the above problem, we choose "special" coor-
dinates which respect the symmetry of the solid: x = 1√

2
r cos(φ),

y = r sin(φ), z = z with Jacobian J = 1√
2
r. The equation of the

paraboloid in these coordinates is z = r2 , so the volume of the solid
is equal to

V = 4
∫ π/2

0

∫ √
2

0

∫ 2

r2

1√
2
r dz dr dφ

= 2
√

2
∫ π/2

0

∫ √
2

0
2r − r3 dr dφ = 2

√
2
∫ π/2

0
dφ

= √
2π.

□

8.78. Calculate the volume of the ellipsoid x2 + 2y2 + 3z2 = 1.

Solution. We will consider the coordinates

x = r cos(φ) sin(θ),
y = 1√

2
r sin(φ) sin(θ),

z = 1√
3
r cos(θ).

The corresponding Jacobian is 1√
6
r2 sin(θ), so the volume is

V =
∫ 2π

0

∫ π

0

∫ 1

0

1√
6
r2 sin(θ) dr dθ dφ = 4

3
√

6
π.
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Finite additivity and linearity

The �rst part says that a linear combination (over scalars in

R) of Riemann-integrable functions fi : I → R, i = 1, . . . , k is
always a Riemann-integrable function, and it can be computed as

follows:∫
I

(
a1f1(x1, . . . , xn)+ · · · + akfk(x1, . . . , xn)

)
dx1 . . . dxn

= a1

∫
I

f1(x1, . . . , xn) dx1 . . . dxn+

· · · + ak

∫
I

fk(x1, . . . , xn) dx1 . . . dxn.

The second part then says that for disjoint Riemann-measurable

setsM1 andM2 and for a function f : Rn → Rwhich is Riemann-

integrable over both these sets, we have that∫
M1∪M2

f (x1, . . . , xn) dx1 . . . dxn

=
∫
M1

f (x1, . . . , xn) dx1 . . . dxn+∫
M2

f (x1, . . . , xn) dx1 . . . dxn.

8.27. Multiple integrals. We will see in a while that Riemann-

integrable functions especially involve the cases

when the integration domainM can be de�ned by a

continuous function dependency of the coordinates

of boundary points so that, given the �rst coordinate x, we can

de�ne the range of the next coordinate by two functions, i. e.,

y ∈ [φ(x), ψ(x)], then the range of the next coordinate by

z ∈ [η(x, y), ζ(x, y)], and so on for all of the other coordinates.
We can indeed do this in the case of our ball from the in-

troductory example: for x ∈ [−1, 1], we de�ne the range for y

as y ∈ [−√
1 − x2 ,

√
1 − x2 ]. The volume of the ball can then

be computed by integration of the mentioned function f , or we

can integrate the indicator function of the ball, i. e. the func-

tion which takes one on the area S ⊂ R3 which is de�ned by

z ∈ [−√1 − x2 − y2 ,
√

1 − x2 − y2 ].
The following theorem is fundamental for this. It transforms

the computation of a Riemann integral to a gradual computation

of several univariate integrals (while the other variables are con-

sidered to be parameters, which can thus appear in the integration

bounds as well).

Multiple integrals

Theorem. Let M ⊂ Rn be a bounded set given, as above, by

continuous functions ψi , ηi

M = {(x1, . . . , xn); x1 ∈ [a, b], x2 ∈ [ψ2(x1), η2(x1)], . . . ,
xn ∈ [ψn(x1, . . . , xn−1), ηn(x1, . . . , xn−1)]},

and f be a function which is continuous onM. Then the Riemann

integral of the function f over the setM exists and is given by the
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□

8.79. Remark. Note that if the transformation the coordinates is lin-
ear (and a�ne), then the space is deformed "uniformly". This means
that the volume of an arbitrary solid is changed proportionally to the
change of the volume of an in�nitesimal volume element, which is the
Jacobian. Therefore, if we consider the volume of the ball with a given
radius r to be known, (in this case, r = 1), we can infer directly that
the volume of the ellipsoid is V = 1√

6
· 4

3π = 4
3
√

6
π .

8.80. Find the volume of the solid which is bounded by the parabo-
loid 2x2 + 5y2 = z and the plane z = 1.
Solution. We choose the coordinates

x = 1√
2
r cos(φ),

y = 1√
5
r sin(φ),

z = z.

The determinant of the Jacobian is r√
10
, so the volume is

V =
∫ 2π

0

∫ 1

0

∫ 1

r2

r√
10

dz dr dφ = π

2
√

10
.

□

8.81. Find the volume of the solid which lies in the �rst octant and
is bounded by the surfaces y2 + z2 = 9 and y2 = 3x.
Solution. In cylindric coordinates,

V =
∫ π/2

0

∫ 3

0

∫ r2
3 cos2(φ)

0
r dx dr dφ = 27

16
π.

□

8.82. Find the volume of the solid inR3 which is bounded by the cone
part 2x2 + y2 = (z− 2)2, z ≥ 2 and the paraboloid 2x2 + y2 = 8 − z.

Solution. First of all, we �nd the intersection of the given surfaces:

(z− 2)2 = −z+ 8, z ≥ 2;
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formula∫
M

f (x1, x2, . . . , xn) dx1 . . . dxn =
∫ b

a

(∫ η2(x1)

ψ2(x1)
. . .(∫ ηn(x1,...,xn−1)

ψn(x1,...,xn−1)
f (x1, x2, . . . , xn) dxn

)
. . . dx2

)
dx1

Proof. First of all, we will go through the proof for the case

of two variables, and then we will see that there is no

need of further ideas in the general case.

Consider an interval I = [a, b] × [c, d]
containing our set M = {(x, y); x ∈ [a, b], y ∈

[ψ(x), η(y)]} and divisions 4 of the interval I with representa-

tives ξij .

The corresponding integral sum is

S4,ξ =
∑
i,j

f (ξij )1xij

=
∑
i

(∑
j

f (ξ(ij))1yj

)
1xi,

where we write 1xij for the product of the sizes 1xi and 1xj of

the intervals which correspond to the choice of the representative

ξij .

Now, let us assume that wework only with choices of represen-

tatives ξij which all share the same �rst coordinate xi . If we leave

the division of the interval [a, b] and re�ne only the division of

[c, d], the values of the inner sum of our expression will approach

the value of the integral

Si =
∫ η(xi )

φ(xi )

f (xi, y) dy,

which surely exists since the function f (xi, y) is continuous.

Moreover, we thus obtain a function which is continuous in the

free parameter xi , see 8.24. Therefore, further re�nement of the

division of the interval [a, b] leads, in limit, to the desired formula∑
i

Si1xi → S =
∫ b

a

(∫ η(y)

ψ(x)

f (x, y) dy

)
dx.

It remains to deal with the case of general choices of represen-

tatives of general divisions4. However, since we are working with

a continuous function f on a compact set, it is actually uniformly

continuous there. Therefore, if we select a small real number ε > 0
beforehand, we can always, for the norm of a division, �nd a bound

δ > 0 so that the values of the function f for the general choices

xij di�ers by no more than ε from the choices used above. The

limit processes thus result in the same for general Riemann sums

S4,ξ as we saw above.

Now, the general case can be proved easily by induction. In

the case of n = 1, the result is trivial. The presented rea-

soning can easily be transformed for a general induction

step, writing (x2, . . . , xn) instead of y, having x1 instead

of x, and perceiving the particular little cubes of the di-

visions as (n − 1)-dimensional cubes Cartesian-multiplied by the
last interval. In the last-but-one step of the proof, we just use the

induction hypothesis, rather than the simple one-dimensional in-

tegration. The �nal argument about uniform continuity remains
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therefore, z = 4, and the equation of the intersection is 2x2 + y = 4.
The substitution x = 1√

2
r cos(φ), y = r sin(φ), z = z transforms the

given surfaces to the form r2 = (z− 2)2, z ≥ 2, and r2 = 8 − z, i. e.,
z = r+2 for the former surface and z = 8−r2 for the latter. Altogether,
the projection of the given solid onto the coordinate φ is equal to the
interval [0, 2π]. Having �xed a φ0 ∈ [0, 2π ], the projection of the
intersection of the solid and the plane φ = φ0 onto the coordinate r
equals (independently of φ0) the interval [0, 2]. Having �xed both r0
and φ0, the projection of the intersection of the solid and the line r =
r0, φ = φ0, onto the coordinate z is equal to the interval [r0 +2, 8−r20 ].
The Jacobian of the considered transformation is J = 1√

2
r, so we can

write

V =
∫ 2π

0

∫ 2

0

∫ 8−r2

r+2

r√
2

dz dr dφ = 16
√

2
3

π.

□

8.83. Find the volume of the solid which lies inside the cylinder y2 +
z2 = 4 and the half-space x ≥ 0 and is bounded by the surface y2 +
z2 + 2x = 16.
Solution. In cylindric coordinates,

V =
∫ 2π

0

∫ 2

0

∫ 8− r2
2

0
r dx dr dφ = 28π.

□

8.84. The centroid of a solid. The coordinates (xt , yt , zt) of the cen-
troid of a (homogeneous) solid T with volume V in R3 are given by
the following integrals:

xt =
∫∫∫

T

x dx dy dz,

yt =
∫∫∫

T

y dx dy dz,

zt =
∫∫∫

T

z dx dy dz.

The centroid of a �gure in R2 or other dimensions can be com-
puted analogously.

8.85. Find the centroid of the part of the ellipse 3x2 +2y2 = 1 which
lies in the �rst quadrant of the plane R2.

Solution. First, let us calculate the volume of the given ellipse. The
transformation x = 1√

3
x′ , y = 1√

2
y′ with Jacobian 1√

6
leads to

S =
∫ 1√

3

0

∫ √
1−3x2

2

0
dy dx = 1√

6

∫ 1

0

∫ √
1−x2

0
dy′ dx′ = π

4
√

6
.

The other integrals we need can be computed directly in Cartesian co-
ordinates x and y:

Tx =
∫ 1√

3

0

∫ √
1−3x2

2

0
x dy dx =

∫ 1√
3

0
x

√
1 − 3x2

2
dx =

= 1
2

∫ 1
3

0

√
1 − 3t

2
dt =

√
2

18
,
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the same. We advise to go through this proof in detail as an exer-

cise. □

Fubini's theorem

8.28. Corollary. For a multidimensional intervalM = [a1, b1] ×
[a2, b2] × . . . × [an, bn] and a continuous function

f (x1, . . . , xn) onM, the multiple Riemann integral

∫
M

f (x1, . . . , xn) dx1 . . . dxn

=
∫ b1

a1

∫ b2

a2

. . .

∫ bn

an

f (x1, . . . , xn) dx1 . . . dxn

is independent of the order in which the integrations are per-

formed.

Proof. In the case of a multidimensional interval M in the

previous theorem, any order of integration expresses the areaM in

the required form. Therefore, the order of integration has no e�ect

upon the result of the integral. □

The possibility of changing the order of integration inmultiple

integrals is extremely useful. We have already taken advantage of

this result, namely when studying the connection of Fourier trans-

forms and convolutions, see paragraph 7.9.

Our simple derivation of Fubini's theorem builds upon the sim-

ple properties of Riemann integration and the continuity of the in-

tegrated function. Fubini, in fact, proved this result in a muchmore

general context of integration, while the theoremwe have just intro-

duced was used by mathematicians like Cauchy at least a century

before Fubini.

We can also notice that we have de�ned no concept of an im-

proper integral for unbounded multivariate functions. You can ver-

ify that it is quite impossible to do this in a reasonable way, just

consider the following example of two multiple integrals:∫ 1

0

(∫ 1

0

x − y

(x + y)3
dy

)
dx = 1

2∫ 1

0

(∫ 1

0

x − y

(x + y)3
dx

)
dy = −1

2
.

The reason can be felt already from the properties of non-

absolutely converging series. There, rearranging the summands

can lead to an arbitrary result.

The situation is a bit better if we calculate the Riemann in-

tegral of a bounded Riemann-integrable function f (x) with non-

compact support over the whole Rn. If there is a universal bound∣∣∣∣ ∫
I

f (x) dx

∣∣∣∣ ≤ C

with a constant C independent of the choice of an n�dimensional

interval I , then it is possible to de�ne∫
Rn

f (x) dx = lim
r→∞

∫
Ir

f (x) dx,

where Ir = {(x1, . . . , xn); |xj | < r, j = 1, . . . , n}, and the result
is, of course, bounded by the same constant C. In this case as well,
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Ty =
∫ 1√

3

0

∫ √
1−3x2

2

0
y dy dx = 1

2

∫ 1√
3

0

1 − 3x2

2
dx =

= 1
4

∫ 1√
3

0
(1 − 3x2 ) dx =

√
3

18
.

Therefore, the coordinates of the centroid are [ 4
√

3
9π ,

2
√

2
π

]. □

8.86. Find the volume and the centroid of a homogeneous cone of
height h and circular base with radius r.

Solution. Positioning the cone so that the vertex is at the origin and
points downwards, we have in cylindric coordinates that

V = 4
∫ π/2

0

∫ r

0

∫ h

h
r
ρ

ρ dz dρ dφ = 1
3
πhr2 .

Apparently, the centroid lies on the z-axis. For the z-coordinate, we
get

z = 1
V

∫
ku�ºel

zdV = 1
V

∫ π/2

0

∫ r

0

∫ h

h
r
ρ

zρ dz dρ dφ = 3
4
h.

Thus, the centroid lies 1
4h over the center of the cone's base. □

8.87. Find the centroid of the solid which is bounded by the parab-
oloid 2x2 + 2y2 = z, the cylinder (x + 1)2 + y2 = 0, and the plane
z = 0.

Solution. First, we will compute the volume of the given solid. Again,
we use the cylindric coordinates (x = r · cosφ, y = r · sinφ, z = z),
where the equation of the paraboloid is z = 2r2 and the equation of
the cylinder reads r = −2 cos(φ). Moreover, taking into account the
fact that the plane x = 0 is tangent to the given cylinder, we can easily
determine the bounds of the integral that corresponds to the volume of
the examined solid:

V =
∫ 3π

2

π
2

∫ −2 cos φ

0

∫ 2r2

0
r dz dr dφ

=
∫ 3π

2

π
2

∫ −2 cos φ

0
2r3 dr dφ

=
∫ 3π

2

π
2

8 cos4 πφ = 3π,

where the last integral can be computed using themethod of recurrence
from 6.22.

Now, let us �nd the centroid. Since the solid is symmetric with
respect to the plane y = 0, the y-coordinate of the centroid must be
zero. Then, the remaining coordinates xT and zT of the centroid can
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Fubini's theorem holds in the form∫
Rn

f (x) dx =
∫ ∞

−∞
. . .

(∫ ∞

−∞
f (x) dx1

)
. . . dxn.

8.29. Notes about integration.

The Riemann integral of multivariate functions be-

haves even worse than we have seen in the case of func-

tions of one variable in the sixth chapter. Therefore, more

sophisticated approaches to integrations have been devel-

oped, which are derived from the concept of the measure of a set.

Let us take a quick look at this problem.

We can consider the strict analogy of the lower and upper Rie-

mann integrals for univariate functions. This means taking in�ma

or suprema, respectively, over the correspondingmultidimensional

interval, instead of the function values at the representatives in the

Riemann sums. For bounded functions, we always get well-de�ned

values this way, and if we do this for the indicator function χM of a

�xed setM, we get the so-called inner and outer Riemann measure

of the setM. Apparently, the inner measure is the limit of the areas

given by the sum of the volumes of all intervals from our divisions

which are inside M, and, on the other hand, the outer measure is

given by the sum of the volumes of intervals coveringM. It follows

directly from the de�nition that a setM is Riemann-measurable if

and only if its lower and upper measures are equal.

The sets whose outer measure is zero are, of course, Riemann-

measurable. We call them measure-zero sets or null sets. It can be

shown quite easily that Riemann-integrable functions are exactly

those bounded functions with compact support whose set of dis-

continuity points has measure zero. Surely, this de�nition makes

the measure �nitely additive, i. e., a disjoint union of �nitely many

measurable sets is again a measurable set, and its measure is given

by the sum of the measures of the sets being united. However, un-

like in the case of one variable, now it does not hold that a count-

able disjoint union of measurable sets is measurable, so we must

expect problems with limit approaches, as we have seen in the case

of one variable.

If we restrict ourselves to the vector space Sc(Rn) of all contin-
uous functions with compact support, we can proceed in the same

way as in the seventh chapter, i. e., we can de�ne, for functions

f ∈ Sc(Rn), their norms

∥f ∥p =
(∫

Rn

|f (x1, . . . , xn)|p dx1 . . . dxn

)1/p

for all values 1 ≤ p < ∞. Thanks to the Riemann integral hav-

ing been de�ned in terms of divisions, the properties of the norm

can be veri�ed in the same way as for univariate functions, using

Hölder's and Minkowski's inequalities.

We thus get the metric spacesLp. As we have known from the

general theory, its completion exists (and it is determined uniquely,

up to isometry), and it can be shown that it will again be a space

of functions. Moreover, a more general theory of integration can

be developed so that the norms on these complete spaces would

be given by the same formulae as above. However, we will not go

deeper into these parts of mathematical analysis here.
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be computed by the following integrals:

xT = 1
V

∫ ∫ ∫
B

x dx dy dz

= 1
V

∫ 2r2

0

∫ 3π
2

π
2

∫ −2 cos φ

0
r2 cosφ dz dr dφ

= 1
V

∫ 3π
2

π
2

∫ −2 cos φ

0
2r4 cosφ dr dph

= 1
V

∫ 3π
2

π
2

−64
5

cos6 φ dφ = −4
3
,

where the last integral was computed by 6.22 again.
Analogously for the z-coordinate of the centroid:

zT = 1
V

∫ 2r2

0

∫ 3π
2

π
2

∫ −2 cos φ

0
zr cosφ dz dr dφ = 20

9
.

The coordinates of the centroid are thus [− 4
3 , 0, 20

9 ]. □

8.88. Find the centroid of the homogeneous solid in R3 which lies
between the planes z = 0 and z = 2, bounded by the cones x2 + y2 =
z2 and x2 + y2 = 2z2.

Solution. The problem can be solved in the same way as the previous
ones. It would be advantageous to work in cylindric coordinates.

However, we can notice that the solid in question is an "annular
cone": it is formed by cutting out a cone K1 with base radius 4 of a
cone K2 with base radius 8, of common height 2.

The centroid of the examined solid can be determined by the
"rule of lever": the centroid of a system of two solids is the weighted
arithmetic mean of of the particular solids' centroids, weighed by the
masses of the solids. We found out in exercise ∥8.86∥ that the centroid
of a homogeneous cone is situated at quarter its height. Therefore, the
centroids of both cones lie at the same point, and this points thus must
be the centroid of the examined solid as well. Hence, the coordinates
of the wanted centroid are [0, 0, 3

2 ]. □

8.89. Find the volume of the solid in R3 which is bounded by the
cone part x2 + y2 = (z− 2)2 and the paraboloid x2 + y2 = 4 − z.

Solution. We build the corresponding integral in cylindric coordi-
nates, which evaluates as follows:

V =
∫ 2π

0

∫ 1

0

∫ 4−r2

r+2
r dz dr dφ = 5

6
π.

□

8.90. Find the volume of the solid in R3 which lies under the cone
x2 + y2 = (z− 2)2, z ≤ 2 and over the paraboloid x2 + y2 = z.

Solution.

V =
∫ 2π

0

∫ 1

0

∫ 2−r

r2
r dz dr dφ = 5

6
π.

Note that the considered solid is symmetric with the solid from the pre-
vious exercise ∥8.89∥ (the center of the symmetry is the point [0, 0, 2]).
Therefore, it must have the same volume. □
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8.30. Di�erentiation with respect to parameters. Now, we can

�nally deal with the promised dependency of in-

tegrals upon parameters. The following result is

highly applicable. For instance, we can use it when

examining integral transforms, which we talked about in the sec-

ond part of chapter seven.

Now, our previous results about extrema of multivariate func-

tions also have a direct application for minimization of areas or

volumes of objects de�ned in terms of functions dependent on pa-

rameters.

Differentiation with respect to parameters

Theorem. For a continuous function f (x, y1, . . . , yn) de�ned for

all x from a �nite interval [a, b] and for all (y1, . . . , yn) lying in

some neighborhood U of a point c = (c1, . . . , cn) ∈ Rn, consider
the integral

F(y1, . . . , yn) =
∫ b

a

f (x, y1, . . . , yn) dx.

If there exists a continuous partial derivative
∂f
∂yj

on a neighbor-

hood of the point c, then ∂F
∂yj
(c) exists as well, and we have

∂F

∂yj
(c) =

∫ b

a

∂f

∂yj
(x, c1, . . . , cn) dx.

Proof. Thanks to the considered continuity of all functions,

we can easily utilize our knowledge about univariate

antiderivatives, and the result will be a simple conse-

quence of Fubini's theorem. Since all the other pa-

rameters yj play only the passive role of a constant

parameter in our reasonings, we can assume without loss of gener-

ality that there is only one parameter y.

Let us denote

G(y) =
∫ b

a

∂f

∂y
(x, y) dx, F (y) =

∫ b

a

f (x, y) dx

and compute, invoking Fubini's theorem, the antiderivative

H(y) =
∫ y

y0

G(y) dy =
∫ b

a

(∫ y

y0

∂f

∂y
(x, y) dy

)
dx

= F(y)− F(y0).

Finally, di�erentiating with respect to y yields

G(y) = ∂H

∂y
(y) = ∂F

∂y
(y),

which is what we have wanted to prove. □

8.31. Change of coordinates at integration. When calculating

integrals of univariate functions, we used coordinate

transformations as an extraordinarily powerful tool.

The situation is very similar in the case of functions

of more variables.

First, let us recall (with an appropriate interpretation for the

subsequent generalization) the transformation for a single variable.

The integrated expression f (x) dx describes the area of a rectangle

de�ned by a (linearized) increase of the variable x and by the value
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8.91. Find the centroid of the surface bounded by the parabola y =
4 − x2 and the line y = 0. ⃝
8.92. Find the centroid of the circular sector corresponding to the an-
gle of 60◦ that was cut out of a disc with radius 1. ⃝
8.93. Find the centroid of the semidisc x2 + y2 = 1, y ≥ 0. ⃝
8.94. Find the centroid of the circular sector corresponding to the an-
gle of 120◦ that was cut out of a disc with radius 1. ⃝
8.95. Find the volume of the solid inR3 which is given by the inequal-
ities z ≥ 0, z− x ≤ 0, and (x − 1)2 + y2 ≤ 1. ⃝
8.96. Find the volume of the solid inR3 which is given by the inequal-
ities z ≥ 0, z− y ≤ 0. ⃝
8.97. Find the volume of the solid bounded by the surface

3x2 + 2y2 + 3z2 + 2xy − 2yz− 4xz = 1.

⃝
8.98. Find the volume of the part ofR3 lying inside the ellipsoid 2x2 +
y2 + z2 = 6 and in the half-space x ≥ 1. ⃝

8.99. The area of the graph of a real-valued function f (x, y) in

variables x and y. The area of the graph of a function of two variables
over an area S in the plane xy is given by the integral

P =
∫
S

√
1 + f 2

x + f 2
y dx dy.

Considering the cone x2 + y2 = z2. �nd the area of the part of its
lateral surface which lies above the plane z = 0 and inside the cylinder
x2 + y2 = y.

Solution. The wanted area can be calculated as the area of the graph
of the function z = √

x2 + y2 over the discK: x2 − (y− 1
2)

2. We can
easily see that

fx = x

x2 + y2
, fy = y

x2 + y2
,

so the area is expressed by the integral∫∫
K

√
1 + f 2

x + f 2
y dx dy =

∫∫
K

√
2 dx dy =

= √
2
∫ π

0

∫ sin π

0
r dr dφ =

√
2

2

∫ π

0
sin2 φ

=
√

2π
4
.

□

8.100. Find the area of the parabola z = x2 +y2 over the disc x2 +y2 ≤
4. ⃝
8.101. Find the area of the part of the plane x + 2y + z = 10 that lies
over the �gure given by (x − 1)2 + y2 ≤ 1 and y ≥ x. ⃝

In the following exercise, we will also apply our knowledge of the
theory of Fourier transforms from the previous chapter.
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f (x). If we transform the variable by a relation x = u(t), then the

linearized increase can be expressed as

dx = du

dt
dt,

and so the corresponding contribution for the integral is given by

f (u(t))
du

dt
dt,

where we either suppose that the sign of the derivative u′(t) is pos-
itive, or we interchange the bounds of the integral, so that the sign

takes no e�ect in the result.

Intuitively, the procedure for n variables is quite similar.

We only have to use our knowledge about the volume of paral-

lelepipeds from linear algebra.

We use, for Riemann integrals in the Riemann sums, an ap-

proximation which takes the volume (area) of a small multidimen-

sional interval and multiplies it by the value of the function at the

representative point. If we transform the coordinates, we not only

get the function value at the representative point in a new coordi-

nate expression, but we also have to account for the change of the

area or volume of the corresponding small multidimensional inter-

val. Once again, this is the case of a linear approximation of a

change, which we know well � this is actually an action of the

linear approximation of the used transformation, i. e. an action of

the Jacobian matrix, see 8.14. The change of the volume is then

given (in absolute value) by the determinant of this matrix (see our

discussion of this topic in linear algebra, especially 4.22).

Transformation of coordinates

Theorem. Let G(t1, . . . , tn) : Rn → Rn, (x1, . . . , xn) =
G(t1, . . . , tn), be a continuously di�erentiable mapping, N =
G(M) and M be Riemann-measurable sets, and f : M → R a

continuous function. Then,∫
M

f (x1, . . . , xn) dx1 . . . dxn =

=
∫
N

f (G(t1, . . . , tn))
∣∣det(D1G(t1, . . . , tn))

∣∣ dt1 . . . dtn.
Proof. Since we are working with a continuous function f

and a di�erentiable change of coordinates, the inte-

grals on both sides of the equality to be proved ap-

parently exist. Therefore, we only need to prove that

their values are indeed equal.

Let us denote our composite function by

g(t1, . . . , tn) = f (G(t1, . . . , tn)),

and choose a su�ciently large n-dimensional interval I containing

N and its division4. The entire proof is nothing more than a more

exact writing of the discussion presented above.

First, let us notice two things: The images of the boundaries of

our interval Ii1...in are di�erentiable objects (sides, edges, etc.); in

particular, they will again be Riemann-measurable sets. For each

little part Ii1...in of our division 4, the integral f over Ji1...in =
G(Ii1...in) surely exists.

Further, if we �x the center ti1...in of the interval Ii1...in , then we

get the linear image of this interval (note that we map the interval
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8.102. Fourier transform and di�raction. Light intensity is a physi-
cal quantity which expresses the transmission of energy by waves. The
intensity of a general light wave is de�ned as the time-averaged mag-
nitude of the Poynting vector, which is the vector product of mutually
orthogonal vectors of electric and magnetic �elds. A monochromatic
plane wave spreading in the direction of the y-axis satis�es

I = cε0
1
τ

∫ τ

0
E2
y dt,

where c is the speed of light and ε0 is the vacuum permittivity. The
monochromatic wave is described by the harmonic function Ey =
ψ(x, t) = A cos(ωt−kx). The numberA is the maximal amplitude of
the wave, ω is the angular frequency, and for any �xed t, the so-called
wave length λ is the prime period. The number k then represents the
speed k = 2π

λ
at which the wave propagates. We have

I = cε0
1
τ

∫ τ

0
E2
y dt = cε0

1
τ

∫ τ

0
A2 cos2(ωt − k x) dt =

= cε0A
2 1
τ

∫ τ

0

1 + cos(2(ωt − k x))

2
dt =

= 1
2
cε0A

2 1
τ

[
t + sin(2(ωt − k x))

2ω

]τ
0 =

= 1
2
cε0A

2 1
τ

(
τ + sin(2(ωτ − k x))− sin(2(−k x))

2ω

) =

= 1
2
cε0A

2(1 + sin(2(ωτ − k x))− sin(2(−k x))
2ωτ

) .= 1
2
cε0A

2

The second term in the parentheses can be neglected since it is
always less than 2

2ωτ = T
2πτ < 10−6 for real detectors of light, so it is

much inferior to 1. The light intensity is directly proportional to the
squared amplitude.

A di�raction is such a deviation from straight-line propagation of
light which cannot be explained as the result of a refraction or re�ec-
tion (or the change of the ray's direction in a medium with continu-
ously varying refractive index). The di�raction can be observed when
a lightbeam propagates through a bounded space. The di�raction phe-
nomena are strongest and easiest to see if the light goes through open-
ings or obstacles whose size is roughly the wavelength of the light.
In the case of the Fraunhofer di�raction, with which we will deal in
the following example, a monochromatic plane wave goes through a
very thin rectangular opening and projects on a distant surface. For
instance, we can highlight a spot on the wall with a laser pointer. The
image we get is the Fourier transform of the function describing the
permeability of the shade - opening.

Let us choose the plane of the di�raction shade as the coordinate
plane z = 0. Let a plane wave A exp(ikz) (independent of the point
(x, y) of landing on the shade) hit this plane perpendicularly. Let
s(x, y) denote the function of the permeability of the shade, then the
resulting waves falling onto the projection surface at a point (ξ, η) can
be described as the integral sum of the waves (Huygens-Fresnel prin-
ciple) which have gone through the shade and propagate through the
medium from all points (x, y, 0) (as a spherical wave) into the point
(ξ, η, z):
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shifted to the origin with the linear mapping given by the Jacobian

matrix, and the result is then added to the image of the center)

Ri1...in = G(ti1...in)+D1G(ti1...in)(Ii1...in − ti1...in),

an n-dimensional parallelepiped. If our division is very �ne, this

parallelepiped di�ers only a bit from the image Ji1,...in . Exactly

speaking, thanks to the uniform continuity of the mapping G, we

can, for an arbitrarily small ε > 0, �nd a norm of the division such

that we will have for all �ner divisions that

G(ti1...in)+ (1 + ε)D1G(t1, . . . tn)(Ii1...in) ⊃ Ji1...ik .

However, then the n-dimensional volumes will also satisfy

voln(Ji1...in) ≤ (1 + ε)n voln(Ri1...in)

= (1 + ε)n
∣∣detG(ti1...ik )

∣∣ voln(Ii1...in).

Now, we are able to bound the whole integral from above:∫
M

f (x1, . . . , xn) dx1 . . . dxn =

=
∑
i1...in

∫
Ji1 ...in

f (x1, . . . , xn) dx1 . . . dxn

≤
∑
i1...in

( sup
(t1,...,tn)∈Ii1 ...in

g) voln(Ji1...in)

≤ (1 + ε)n
∑
i1...in

( sup
(t1,...,tn)∈Ii1...in

g)
∣∣detG(ti1...ik )

∣∣ voln(Ii1...in).

Letting the norms of the divisions approach zero, the left-hand

value remains the same, while on the right side, we obtain the Rie-

mann integral. Instead of the equality to be proved, we get the

inequality:∫
M

f (x1, . . . , xn) dx1 . . . dxn

≤
∫
N

f (G(t1, . . . , tn))
∣∣det(D1G(t1, . . . , tn))

∣∣ dt1 . . . dtn.
However, now we can repeat the same reasoning so that we in-

terchange G and G−1, the integration domainsM and N , and the

functions f and g. We thus immediately obtain the other inequal-

ity: ∫
N

g(t1, . . . , tn)
∣∣det(D1G(t1, . . . , tn))

∣∣ dt1 . . . dtn
≤
∫
M

f (x1, . . . , xn)
∣∣det(D1G(G−1(x1, . . . , xn)))

∣∣∣∣det(D1G−1(x1, . . . , xn))
∣∣ dx1 . . . dxn

=
∫
M

f (x1, . . . , xn)) dx1 . . . dxn,

which �nishes the proof. □

8.32. An example in two dimensions. The coordinate transfor-

mations are quite transparent for the integral of a con-

tinuous function f (x, y) of two variables. Consider

the di�erentiable transformation

G(s, t) = (x(s, t), y(s, t)).

Denoting g(s, t) = f (x(s, t), y(s, t)), we get∫
G(N)

f (x, y) dxdy =
∫
N

g(s, t)

∣∣∣∣∂x∂s ∂y∂t − ∂x

∂t

∂y

∂s

∣∣∣∣ dsdt.
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ψ(ξ, η) = A

∫∫
R2
s(x, y)e−ik(ξx+ηy) dx dy

.

ψ(ξ, η) = A

∫ p/2

−p/2

∫ q/2

−q/2
e−ik(ξx+ηy) dy dx

ψ(ξ, η) = A

∫ p/2

−p/2
e−ikξx dx

∫ q/2

−q/2
e−ikηy dy =

= A

[
e−ikξx

−ikξ
]p/2

−p/2

[
e−ikηy

−ikη
]q/2

−q/2
=

= A
2 sin(k ξp/2)

kξ

2 sin(k ηq/2)
kη

= Apq
sin(k ξp/2)
kξp/2

sin(k ηq/2)
kηq/2

The graph of the function f (x) = sin x
x

looks as follows:

The graph of the function ψ(ξ, η) = sin ξ
ξ

sin η
η

then does:

And the di�raction we are describing:
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As a truly simple example, we can calculate the integral of the

indicator function of a disc with radius R (i. e. its area) and the

integral of the function f (t, θ) = cos(t) de�ned in polar coordi-

nates inside a circle with radius 1
2π (i. e. the volume hidden under

such a "cap placed above the origin", see the picture).

-1,5

-1

-0,5

0

0,2

0,4

0

0,6

0,8

y 1
-1,50,5

-1
-0,51

0
0,5

11,5
x1,5

First, we determine the Jacobian matrix of the transformation

x = r cos θ , y = r sin θ

D1G =
(

cos θ −r sin θ
sin θ r cos θ

)
.

Hence, the determinant of this matrix is equal to

detD1G(r, θ) = r(sin2 θ + cos2 θ) = r.

Therefore, we can calculate directly for the disc S which is the

image of the rectangle (r, θ) ∈ [0, R] × [0, 2π] = T . We thus get

the area of the disc:∫
S

dxdy =
∫ 2π

0

∫ R

0
rdr dθ =

∫ R

0
2πrdr = πR2.

The integration of the function f will be very similar, using multi-

ple integration and integration by parts:∫
S

f dxdy =
∫ 2π

0

∫ π/2

0
r cos rdr dθ = π2 − 2π.

8.33. Curve integrals. We often cannot do with integrals over

open subsets in Rn because our quantities are given
only on objects which are similar to curves or sur-

faces in R3. The previous reasoning about changes

of coordinates when computing integrals clari�ed the intuitive

imagination that our process of integration is the sum of volumes

of small linearized parallelepipeds multiplied by the value of the

integrated function. Extending this idea, we could de�ne integra-

tion over such multidimensional surfaces in Rn directly. However,
we will �rst relieve the integration of dependency on coordinates,

and then we will transform it to the well-known integration on Rn.
Recall the calculation of the length of a curve by univariate

integrals, which was discussed in paragraph 6.7 on page 353. The

curve was parametrized as a mapping c(t) : R → Rn, and the size
of the tangent vector ∥c′(t)∥was expressed in the Euclidean vector
space. This procedure was given by the universal relation for an

arbitrary tangent vector, i. e., we actually found ρ : Rn → R
which gave the true size when evaluated at c′(t). This mapping

satis�ed ρ(a v) = |a|ρ(v) since we ignored the orientation of the
curve given by our parametrization. If we wanted a signed length,

respecting the orientation, then our mapping ρ would be linear on

every one-dimensional subspace L ⊂ Rn.
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Since limx→0
sin x
x

= 1, the intensity at the middle of the image is
directly proportional to I0 = A2p2q2 . The Fourier transform can be
easily scrutinized if we aim a laser pointer through a subtle opening
between the thumb and the index �nger; it will be the image of the
function of its permeability. The image of the last picture can be seen if
we create a good rectangular opening by, for instance, gluing together
some stickers with sharp edges.

I. Applications of Stoke's theorem � Green's theorem

8.103. Compute ∫
c

(x − y)dx + x dy,

where c is the positively oriented curve represented by the perimeter
of the square ABCD with vertices A = [2, 2];B = [−2, 2];C =
[−2,−2];D = [2,−2].

Solution. Using Green's theorem (see 8.44), we reduce the given
curve integral to an area (multiple) integral. The integral is of the form∫
c

f (x, y) dx + g(x, y) dy, where f (x, y) = x − y and g(x, y) = x.

The needed partial derivatives of the functions f (x, y) and g(x, y) are
thus fy(x, y) = −1 and gx(x, y) = 1. All of the functions f (x, y),
g(x, y), fy(x, y), and gx(x, y) are continuous on R2, so we can use
Green's theorem:∫
c

(x − y) dx + x dy =
∫∫
D

(1 + 1) dx dy == 2
∫∫
D

dx dy =

= 2

2∫
−2

2∫
−2

dx dy = 2
[
x
]2

−2 · [y]2
−2 = 32.

□

8.104. Compute ∫
c

x4 dx + xy dy,

where c is the positively oriented curve going through the verticesA =
[0, 0];B = [1, 0];C = [0, 1].
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Now, we will proceed in a much similar way. Let us consider

a di�erentiable curve c(t) in Rn, t ∈ [a, b] and assume that a dif-
ferentiable function f is de�ned on a neighborhood of its values.

The di�erential of this function gives, for every tangent vector, the

increase of the function in the given direction. It is expressed by

the di�erential of the composite mapping f ◦ c by
d(f ◦ c)(t) = ∂f

∂x1
(c(t))c′1(t)+ · · · + ∂f

∂xn
(c(t))c′n(t).

We can thus try to de�ne the value of the integral in this way (we

keep writing df symbolically to emphasize which object is inte-

grated, just like we wrote dx in the case of univariate integrals)∫
M

f dvolM =
∫ b

a

(
∂f

∂x1
(c(t))c′1(t)+ · · · + ∂f

∂xn
(c(t))c′n(t)

)
dt,

and we can immediately verify that the change of the parametriza-

tion of the curve has no e�ect upon the value. Indeed, writing

c(t) = c(ψ(s)), a = ψ(ã), b = ψ(b̃), our procedure yields∫ b̃

ã

(
∂f

∂x1
(c(ψ(s)))c′1(ψ(s))+ . . .

+ ∂f

∂xn
(c(ψ(s)))c′n(ψ(s))

)
dψ

ds
ds,

and the theorem about coordinate transformations for univariate

integrals gives just the same value if we have
dψ
ds
> 0, i. e., if we

keep the orientation of the curve, and the same value up to sign if

the derivative of the transformation is negative.

Precisely speaking, we have learned to integrate the di�eren-

tial df of a function over curves. However, it may be the case that

the connection with integration of functions is not apparent. We

clearly cannot get the length of the curve if we select a constant

function with value one for f . We need a geometric point of view

to explain this. The size of a vector is given by a quadratic form,

rather than a linear one. However, if we take the square root of

the values of a (positively de�nite) quadratic form, we get a linear

form (up to sign, see above). We will get back to these connections

shortly.

8.34. Vector �elds and linear forms. In the previous paragraph,

the parametrization of a curve was used to obtain a tangent vector

c′(t) ∈ Rn for every point in the image M of the curve. We thus

have a mapping X : M → M × Rn, c(t) 7→ (c(t), c′(t)). We talk

about the vector �eld X along the curveM.

In general, we de�ne a vector �eld X on an open set U ⊂
Rn as assigning the vector X(x) ∈ Rn in the direction space of

the Euclidean space Rn to every of its points x in the considered

domain.

If a vector �eldX on an open setU ⊂ Rn is given, then we can
de�ne for every di�erentiable function f on U its derivative in the

direction of the vector �eldX in terms of the directional derivative

by the formula

X(f ) : U → R, X(f )(x) = dX(x)f.

Therefore, if we have, in coordinates, X(x) = (X1(x), . . . Xn(x)),

then

X(f )(x) = X1(x)
∂f

∂x1
(x)+ · · · +Xn(x)

∂f

∂xn
(x).

The simplest vector �elds will have all coordinate functions equal

to zero except for one function Xi which will be constantly equal
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Solution. The curve c is the boundary of the triangle ABC. The in-
tegrated functions are continuously di�erentiable on the whole R2, so
we can use Green's theorem:

∫
c

x4 dx + xy dy =
∫∫
D

y dx dy =
1∫

0

−x+1∫
0

y dx dy =

=
1∫

0

[
y2

2

]−x+1

0
dx =

1∫
0

[
x2 − 2x + 1

2

]
dx =

= 1
2

[
x3

3
− 2x2

2
+ x

]1

0
= 1

6
.

□

8.105. Calculate∫
c

(xy + x + y) dx + (xy + x − y) dy,

where c is the circle with radius 1 centered at the origin.

Solution. Again, the prerequisites of Green's theorem are satis�ed, so
we can use Green's theorem, which now gives

∫
c

(xy + x + y) dx + (xy + x − y) dy

=
∫∫
D

y + 1 − x − 1 dx dy

=
1∫

0

2π∫
0

r2 (sinφ − cosφ) dr dφ =

=
1∫

0

r2 dr

2π∫
0

sinφ − cosφdφ = 1
3

[− cosφ − sinφ
]2π

0 = 0.

□

8.106. Compute
∫
c

(2e2x sin y−3y3 )dx+(e2x cos y+ 4
3x

3 )dy, where

c is the positively oriented ellipse 4x2 + 9y2 = 36.

Solution. : We will use Green's theorem, choosing the linear deforma-
tion of polar coordinates x = 3r cosφ, φ ∈ [0, 2π ],
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to one. Such a �eld then corresponds to the partial derivative with

respect to the variable xi . This is also matched by the common

notation

X(x) = X1(x)
∂

∂x1
+ · · · +Xn(x)

∂

∂xn
.

The set of all possible tangent vectors at the points of an open sub-

setU ∈ Rn is called the tangent space T U . The vector space of all
vectors at a point x is denoted by TxU . We use the notation X (U)
for the set of all smooth vector �elds on U . Vector �elds ∂

∂xi
can

be perceived as generators of X (U), admitting smooth functions

as the coe�cients in linear combinations.

When we studied the vector spaces, we found out as early as

in the second chapter that we need the so-called linear forms. They

were de�ned in paragraph 2.39 on page 103. The same idea sug-

gests itself now. The linear form on the direction space Rn of

our Euclidean space Rn assigned to a point x ∈ Rn is a linear

mapping de�ned on the tangent space TxU . Having a mapping

η : U ⊂ Rn → Rn∗ on an open subset U , we talk about a linear

form η on U .

Every di�erentiable function f on an open subset U ⊂ Rn
de�nes a linear form df on U . We use the notation �1(U) for the

set of all smooth linear forms on U .

It is apparent that in the coordinates (x1, . . . , xn), we can use

the di�erentials of the particular coordinate functions to express

every linear form η as

η(x) = η1(x)dx1 + · · · + ηn(x)dxn,

where ηi(x) are uniquely determined functions. Such a form η is

evaluated at a vector �eld X(x) = X1(x)
∂
∂x1

+ · · · +Xn(x) ∂
∂xn

by

η(X(x)) = η1(x)X1(x)+ · · · + ηn(x)Xn(x).

If the form η is the di�erential of a function f , we get just the

expression X(f )(x) = df (X(x)) used above.

Let us notice that we have actually de�ned the integral of any

linear form over (non-parametrized) curvesM in terms of an arbi-

trary parametrization c(t)∫
M

η =
∫ b

a

η(c(t))(c′(t)) dt,

since although we worked with the function di�erential back then,

we actually veri�ed that the value of the integral was independent

of the choice of parametrization for any linear form.

We can also notice that we need not write any symbol denoting

which concept of a volume we are integrating with respect to. It is

given by the de�nition of a linear form.

8.35. k�dimensional surfaces and k�forms. Instead of

parametrized curves, we will now work with dif-

ferentiable mappings φ : V ⊂ Rk → Rn, k ≤ n, with

injective di�erential dφ(u) at every point of its open

domain V . Such mappings are called immersions.

A subset M ⊂ Rn is called a manifold of dimension r i� ev-

ery point x ∈ M has a neighborhood U which is the image of such

an immersion φ : V ⊂ Rk → M ⊂ Rn which can be extended

to a mapping φ̃ : V × Ṽ → Rn which is a di�eomorphism and

φ̃−1 (M) = V × {0}. This de�nition, which might seem compli-

cated at the �rst sight, is illustrated by a picture. Manifolds can be

typically given by implicit mappings, see paragraph 8.18 and the

discussion in 8.19.

506

y = 2r sinφ r ∈ [0, 1],
leading to (the Jacobian of the transformation is 6r):∫

c

(2e2x sin y − 3y3 )dx + (e2x cos y + 4
3
x3 ) dy =

=
∫∫
D

2e2x cos y + 4x2 − (2e2x cos y − 9y2 ) dx dy =

=
1∫

0

2π∫
0

6r
[
4(3r cosφ)2 + 9(2r sinφ)2

] =

= 216

1∫
0

r3 dr

2π∫
0

dφ = 216 · [r4
4

]1
0 · 2π = 108π.

□

8.107. Compute∫
c

(ex lny − y2x)dx +
(
ex

y
− 1

2
x2y

)
dy,

where c is the positively oriented circle (x − 2)2 + (y − 2)2 = 1.
Solution.∫

c

(ex lny − y2x)dx + (
ex

y
− 1

2
x2y)dy =

=
∫∫
D

ex

y
− xy − ex

y
+ 2xy dx dy =

=
1∫

0

2π∫
0

r(r cosφ + 2) · (r sinφ + 2) dr dφ =

=
1∫

0

2π∫
0

r3 sinφ cosφ + 2r2 (sinφ + cosφ)+ 4r dr dφ =

= 1
4

2π∫
0

sinφ cosφ dφ + 2
3

2π∫
0

sinφ + cosφ dφ + 4π =

= 1
3

[sin2 φ

2

]2π
0 + [− cosφ + sinφ

]2π
0 + 4π = 4π.

□
8.108. Calculate the integral∫

c

(ex sin y − xy2 )dx +
(
ex cos y − 1

2
x2y

)
dy,

where c is the positively oriented circle x2 + y2 + 4x + 4y + 7 = 0.
⃝
8.109. Compute∫

c

(3y − esin x) dx + (7x +
√
y4 + 1) dy,
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The mapping φ from the de�nition is called a local

parametrization of the manifold M. The tangent space TM to the

manifold M is the collection of vector subspaces TxM ⊂ TxRn
which contain all vectors which are tangent to the curves in M.

Clearly, every parametrization φ de�nes a di�eomorphism

φ∗ : T V → T φ(V ) ⊂ TM, φ∗(c′(t)) = d

dt
φ(c(t)).

This de�nition is independent of the choice of the curve represent-

ing the vector c′(t) because we need to know only the �rst deriva-

tives when calculating the right-hand derivatives.

Our de�nitions are a straightforward generalization of the con-

cepts of a curve and a surface in the plane or the space and of

their tangent lines or planes. We have excluded curves and sur-

faces which are self-intersecting and even those which are self-

approaching. For instance, we can surely imagine a curve rep-

resenting the numeral 8 parametrized with a mapping φ with

everywhere-injective di�erential. However, we will be unable to

satisfy the second property in a neighborhood of the point where

the two branches of the curve meet.

To be able to talk about a volume on k-dimensional manifolds

in linear approximations, as we did with curves, we need objects

which will be linear at every point in k distinct vector arguments

and will assign a number to them. Moreover, we will require that

interchanging any pair of arguments swap the sign, in accordance

with the orientations. We have already met such objects, namely

in paragraph 2.44 on page 107, and mainly when calculating the

volumes of parallelepipeds using determinants in paragraph 4.22

on page 223.

Exterior differential forms

De�nition. The vector space of all k�linear antisymmetric forms

on a tangent space TxU , U ⊂ Rn, will be denoted by 3k(TxRn)∗.
In short, we talk about an exterior k�form at the point x.

The assignment of a k�form η(x) to every point x ∈ U from

an open subset in Rn de�nes an exterior di�erential k�form on U .

The set of smooth exterior k�forms on U is denoted �k(U).

Now, let us consider a smooth parametrization φ : V → M of

a manifold M, an η(φ(u)) ∈ 3k(Tφ(u)Rn), and choose arbitrarily
k vectors X1(u), . . . , Xk(u) in the tangent space TuV . Just like in

the case of linear forms, we can evaluate the form η at the images

of the vectors Xi using the parametrization φ. This operation is

called the pullback of the form η by φ.

φ∗ (η(φ(u)))(X1(u), . . . , Xk(u))

= η(φ(u))(φ∗(X1(u)), . . . , φ∗(X1(u))).

We can compute directly from the de�nition that, for instance,

φ∗ (dxi)
( ∂
∂uk

) = dxi
(
φ∗
( ∂
∂uk

)) = ∂φi

∂uk
,

and so

(8.1) φ∗ (dxi) = ∂φi

∂u1
du1 + · · · + ∂φi

∂un
dun.

Another immediate consequence of the de�nition is the relation

for pullbacks of an arbitrary k�form by composing two di�eomor-

phisms. Verify the following equality by yourselves!

(8.2) (φ ◦ ψ)∗α = ψ∗ (φ∗α
)
.
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where c is the positively oriented circle x2 + y2 = 9. ⃝
8.110. Compute the integral∫

c

(
1
x

+ 2xy − y3

3
) dx + (

1
y

+ x2 + x3

3
) dy,

where c is the positively oriented boundary of the set D = {(x, y) ∈
R2 : 4 ≤ x2 + y2 ≤ 9, x√

3
≤ y ≤ √

3x}. ⃝
8.111. Remark. An important corollary ofGreen's theorem is the for-
mula for computing the area D that is bounded by a curve c.

m(D) = 1
2

∫
c

−y dx + x dy.

8.112. Compute the area given by the ellipse x2

a2 + y2

b2 = 1.

Solution. Using the formula ∥8.111∥ and the transformation x =
a cos t, y = b sin t, we get for t ∈ [0, 2π ] that

m(D) = 1
2

∫
c

−y dx + x dy =

= 1
2

2π∫
0

a cos t · b cos tdt − 1
2

2π∫
0

b sin t · (−a sin t)dt =

= 1
2
ab

2π∫
0

cos2 tdt + 1
2
ab

2π∫
0

sin2 tdt =

= 1
2
ab

2π∫
0

cos2 t + sin2 tdt = 1
2
ab2π = πab,

which is indeed the well-known formula for the area of an ellipse with
semi-axes a and b.

□
8.113. Find the area bounded by the cycloid which is given paramet-
rically as ψ(t) = [a(t − sin t); a(1 − cos t)], for a ≥ 0, t ∈ (0, 2π),
and the x-axis.

Solution. Let the curves that bound the area be denoted by c1 and c2.
As for the area, we get

m(D) = 1
2

∫
c1

−y dx + x dy + 1
2

∫
c2

−y dx + x dy.

Now, we will compute the mentioned integrals step by step. The
parametric equation of the curve c1 (a segment of the x-axis) is
(t; 0); t ∈ [0; 2aπ ], so we obtain for the �rst integral that

1
2

∫
C1

−y dx + x dy = 1
2

∫ 2aπ

0
0 · 1 dt +

∫ 2aπ

0
t · 0dt = 0.

The parametric equation of the curve c2 is ψ(t) ∈
(a(t − sin t), a(1 − cos t)); t ∈ [2π; 0].
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A smooth k�form η on a k�dimensional submanifold is such

a mappingM → 3k(TxM)
∗ that the pullback of this form by any

parametrization yields a smooth exterior k�form on V . We will

use the notation �k(M) for the set of all smooth exterior k�forms

onM.

8.36. Outer product of exterior forms. Given a k�form α ∈
3kRn∗ and an ℓ�form β ∈ 3kRn∗, we can cre-
ate a (k+ ℓ)�form α∧β by all possible permu-

tations σ of the arguments.

We just have to alternate the arguments in all possible orders

and take the right sign each time:

(α ∧ β)(X1, . . . , Xk+ℓ) =
1
k!ℓ!

∑
σ∈6k+ℓ

sign(σ )α(Xσ(1) , Xσ(k) )β(Xσ(k+1) , Xσ(k+ℓ) ).

It is clear from the de�nition that α ∧ β is indeed a (k + ℓ)�form.

In the simplest case of 1�forms, the de�nitions says that

(α ∧ β)(X, Y ) = (
α(X)β(Y )− α(Y )β(X)

)
.

In the case of a 1�form α and a k�form β, we get

(α ∧ β)(X0, X1, . . . , Xk) =
k∑
j=0

(−1)jα(Xj )β(X0, . . . , X̂j , . . . , Xk),

where that hat indicates omission of the corresponding argument.

The outer product of �nitely many form is de�ned analogously (ei-

ther directly by a similar formula, or we can notice that the outer

product of two forms is associative � think this out by yourselves!).

We will use the same notation for forms in�k(M). Just as we

had generators ∂
∂xi

of all vector spaces in X (Rn), all linear forms
in �1(Rn) are generated by the forms dxi . Their outer products

εi1...ik = dxi1 ∧ · · · ∧ dxik
with k-tuples of indeces i1 < i2 < · · · < ik generate the whole

space �k(Rn). Indeed, interchanging a pair of adjacent forms in

the product merely changes the sign, so the whole expression is

identically zero if an index appears twice. Therefore, every k�form

α is given uniquely by functions αi1...ik (x)

α(x) =
∑

i1<···<ik
αi1...ik (x)dxi1 ∧ · · · ∧ dxik .

We can also notice that 0�forms�0(Rn) are, by the de�nition,
functions on Rn. The outer product of a 0�form f and a k�form α

is just the multiple of the form α by the function f .

Verify that the pullback of the outer product by a di�eomor-

phism φ : V → U satis�es

φ∗ (α ∧ β) = φ∗α ∧ φ∗β.

8.37. Integration of exterior forms on Rn. Exterior n�forms on
Rn have a unique behavior as we have a single non-decreasing se-
quence of n indeces ik = k at our disposal. Therefore, the whole

space �n(Rn) is generated by a single form ε12···n and it can be

identi�ed with the space of functions f (x). Each of these func-

tions de�nes, at every point x ∈ Rn, the in�nitesimal calculation
of the volume by the n�form

(8.3) ω(x) = f (x)dx1 ∧ · · · ∧ dxn,
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The formula for the area expects a positively oriented curve,
which means for the considered parametric equation that we are
moving against the parametrization direction, i. e. from the upper
bound to the lower one.

We thus get for the area of the cycloid that

1
2

∫
c2

−y dx + x dy = 1
2

0∫
2π

a(t − sin t) · a(sin t) dt−

− 1
2

0∫
2π

a(1 − cos t) · a(1 − cos t) dt =

=1
2
a2

2π∫
0

t sin t − sin2 t − 1 + 2 cos t − cos2 t dt =

=1
2
a2

0∫
2π

t sin t + 2 cos t − 2 dt =

=1
2
a2[−t cos t − sin t + 2 cos t − 2]0

2π = 3πa2.

□

J. Applications of Stoke's theorem � the Gauss�Ostrogradsky

theorem

8.114. Compute I = ∫∫
S

x3 dy dz + y3 dx dz + z3 dx dy,where S

is given by the sphere x2 + y2 + z2 = 1.

Solution. It is advantageous to work in spherical coordinates
x = ρ sinφ cosψ ρ = [0, 1],
y = ρ sinφ sinψ φ = [0, π ],
z = ρ cosφ ψ = [0, 2π].

The Jacobian of this transformation is −ρ2 sinφ.
The given integral is then equal to

I =
∫∫
S

x3 dy dz + y3 dx dz + z3 dx dy =

=
∫∫∫
V

3x2 + 3y2 + 3z2 dx dy dz =

= 3

1∫
0

2π∫
0

π∫
0

ρ2 sinφ
(
ρ2 sin2 φ cos2 ψ + ρ2 sin2 φ sin2 ψ+

+ρ2 cos2 φ
)

dρ dφ dψ =

= 3

1∫
0

2π∫
0

π∫
0

ρ4 sinφ
(
sin2 φ

(
cos2 ψ + sin2 ψ

) +

+ cos2 φ
)

dρ dφ dψ =
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i. e., f gives, at every point, the scale with which the standard

volume is to be taken. We have thus obtain a new interpretation

of our earlier procedure of integration of functions f on Riemann-

measurable open subsets U ⊂ Rn.
First, we de�ne a form ωRn , giving the standard n�

dimensional volume of parallelograms, i. e., in the standard

coordinates, we will have

ωRn = dx1 ∧ · · · ∧ dxn.
If we want to integrate a function f (x) "in the old fashion", we

consider the form ω = fωRn instead, i. e. ω will have the form

(8.3) in the standard coordinates. We de�ne∫
U

ω =
∫
U

f (x)dx1 ∧ · · · ∧ dxn =
∫
U

f (x) dx1 . . . dxn,

where there is the Riemann integral of a function on the right-hand

side. We can notice, that the n-form on the left-hand side is inde-

pendent of the choice of coordinates.

If we want to express the form ω in di�erent coordinates using

a di�eomorphism φ : V → U , it means we will evaluate ω at a

point φ(u) = x at the values of the vectors φ∗(X1), . . . , φ∗(Xn).
However, this means we will integrate the form φ∗ω in coordi-

nates (u1, . . . , un), and we can easily compute (look at (8.1) in

paragraph 8.35) that

(φ∗ω)(u) = f (φ(u))
(∂φ1

∂u1
du1 + · · · + ∂φ1

∂un
dun

) ∧ . . .

∧ (∂φn
∂u1

du1 + · · · + ∂φn

∂un
dun

)
= f (φ(u)) det(D1φ(u))du1 ∧ · · · ∧ dun.

Substituting into our interpretation of the integral, we get∫
φ∗ (f ω) =

∫
V

f (u) det(D1φ(u))du1 · · · dun,
which is, by the theorem on transformation of variables from para-

graph 8.31, the same value if the determinant of the Jacobian ma-

trix keeps being positive, and the same value up to sign if it is

negative.

Our new interpretation thus yields a geometrical sense for

the integral of an n�form on Rn, supposing the corresponding

Riemann-integral exists in some (hence any) coordinates. This

integration takes into account the orientation of the area we are

integrating over.

8.38. Integration of exterior forms on manifolds. Now, we are

almost ready for the de�nition of an integral of a k�

formy on a k�dimensional oriented manifold. For the

sake of simplicity, we will examine smooth forms ω

with compact support.

First, let us assume that we are given a k�dimensional man-

ifold M ⊂ Rn and one of its local parametrizations φ : V ⊂
Rk → U ⊂ M ⊂ Rn. The choice of the parametrization φ also

�xes the orientation of the manifold U ⊂ M. This orientation

will be the same for those choices which di�er by di�eomorphisms

with positive determinants of their Jacobian matrices. The orien-

tation will be the other one in the case of negative determinants.

Therefore, we apparently have exactly two orientations on every

connected manifold. Fixing either of them, we thereby restrict the

set of parametrizations which are compatible with this orientation.
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= 3

1∫
0

2π∫
0

π∫
0

ρ4 sinφ dρ dφ dψ = 3 ·
[
ρ5

5

]1

0
[ψ]2π

0 [cosφ]π0 =

= 3 · 1
5

· 2π · [−1 − 1] = −12
5
π.

□

8.115. The vector form of the Gauss�Ostrogradsky theorem. The
divergence of a vector �eldF(x, y, z) = f (x, y, z) ∂

∂x
+g(x, y, z) ∂

∂y
+

h(x, y, z) ∂
∂z

is de�ned as divX := fx + gy + hz. Then, the Gauss�
Ostrogradsky theorem can be formulated as follows:∫∫∫

V

divF⃗ (x, y, z) dx dy dz =
∫∫
S

F⃗ (x, y, z) · n⃗(x, y, z) dS,

where n⃗(x, y, z) is the outer unit normal to the surface S at the point
[x, y, z] ∈ S (S is the boundary of the normal domain V ).

8.116. Find the �ow of the vector �eld given by the function F =
(xy2 , yz, x2 z) over the cylinder x2 + y2 = 4, z = 1, z = 3.

Solution. First of all, we compute the divergence of the vector �eld:

divF = ∇ · F = (
∂(xy2 )

∂x
+ ∂(yz)

∂y
+ ∂(x2 z)

∂z
) = y2 + z + x2 .

Therefore, the �ow T of the vector �led is equal to

∫∫∫
V

y2 + z + x2 dx dy dz =

=
2∫

0

2π∫
0

3∫
1

ρ · (ρ2 sin2 φ + z + ρ2 cos2φ) dρ dφ dz =

=
2∫

0

2π∫
0

3∫
1

ρ · (ρ2 (sin2φ + cos2φ)+ z ) dρ dφ dz =

=
2∫

0

2π∫
0

3∫
1

ρ · (ρ2 (sin2φ + cos2φ)+ z ) dρ dφ dz =

=
2∫

0

2π∫
0

3∫
1

ρ3 + ρz dρ dφ dz =

= 2π

2∫
0

3∫
1

ρ3 + ρz dρ dz = 2π

3∫
1

[
ρ4

4
+ ρ2

2
z]2

0 dz =

= 2π

3∫
1

4 + 2z dz = 2π[4z+ z2]3
1 = 2π[12 + 9 − 4 − 1] = 32π.

□
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From now on, we will always proceed in this fashion, and we will

talk about oriented manifolds.

Now, let us select a form ω with compact support inside the

image of a parametrization U ⊂ M of an oriented manifold M.

The form φ∗ (ω) is a smooth k�form on V ⊂ Rk with compact

support. The integral of the form ω onM is de�ned in terms of the

chosen parametrization which is compatible with the orientation

as follows: ∫
M

ω =
∫
Rk

φ∗ (ω).

If we choose a di�erent compatible parametrization φ̃ = φ ◦ ψ
where ψ is a di�eomorphism ψ : W → V ⊂ Rk , we can easily

compute using the same de�nition. Let us denote

φ∗ (ω)(u) = f (u)du1 ∧ · · · ∧ duk.
Invoking the relation (8.2) for the pullback of a form by a composite

mapping, we get∫
M

ω =
∫
Rk

φ̃∗ (ω) =
∫
Rk

ψ∗ (φ∗ω)

=
∫
Rk

ψ∗ (f du1 ∧ · · · ∧ duk
)

=
∫
Rk

f (ψ(v)) det(D1ψ)(v)dv1 · · · dvk.
This is again the same value as

∫
Rk φ

∗ω.
This proves the correctness of our de�nition of the integral∫

M
ω provided the integrated k�form has compact support lying in

the image of a single parametrization.

However, typical manifoldsM are given by implicit equations;

e. g. x2 + y2 + z2 = 1 de�nes the surface of the unit ball, i. e.

the sphere S2 ⊂ R3. If we want to integrate an exterior 2�form on

S2 , we will have to use several parametrizations. Fortunately, our

de�nition of the integral is additive with respect to disjoint unions

of integration domains. Therefore, if we can write

M = U1 ∪ U2 ∪ · · · ∪ Um ∪ B,
where Ui are pairwise disjoint images of parametrizations φi , and

B is a set whose inverse image in any parametrization is a Riemann-

measurable set with measure zero, we can compute∫
M

ω =
∫
U1

ω + · · · +
∫
Um

ω,

and we can easily verify that this value is independent of the choice

of the sets Ui and the parametrizations (in particular, we need not

be worried by the set B since the result of any integration on it is

zero). For example, we can imagine splitting a sphere to the upper

and lower hemispheres, leaving the equator B uncovered.

When calculating in practice, we usually divide the entire man-

ifold into several disjoint areas, and we integrate on each of them

separately. However, we will mention a global de�nition which is

more advantageous from the technical point of view.

8.39. Unit decomposition. Consider a manifold M ⊂ Rn and

one of its covers by open images Ui of parametriza-

tions φi . We can surely �nd a countable cover of each

manifoldM (it su�ces to realize that we can do with

parametrizations which map the origin to points with

rational coordinates in Rn). Furthermore, we can assume that any
point in x ∈ M belongs to only �nitely many sets Ui . Such a cover

is called a locally �nite cover by parametrizations φi .
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8.117. Find the �ow of the vector �eld given by the function F =
(y, x, z2), over the sphere x2 + y2 + z2 = 4.

Solution. The divergence of the given vector �eld is:

divF = ∇ · F = (
∂y

∂x
+ ∂x

∂y
+ ∂z2

∂z
) = 2z.

Thus, the wanted �ow equals

∫∫∫
V

2z dx dy dz =
2∫

0

π∫
0

2π∫
0

ρ2 sinφ · 2ρ cosφ dρ dφ dψ =

= 2

2∫
0

ρ3 dρ

2π∫
0

dψ

π∫
0

sinφ cosφ dφ =

= 2[
ρ4

4
]2
0 · [ψ]2π

0 · [
sin2 φ

2
]π0 =

= 2 · 16
4

· 2π · 0 = 0.

□

K. First-order di�erential equations

8.118. Find all solutions of the di�erential equation

y′ =
√

1−y2

cos2 x

(
1 + cos2 x

)
.

Solution. We are given an ordinary �rst-order di�erential equation in
the form y′ = f (x, y), which is called an explicit form of the equa-
tion. Moreover, we can write it as y′ = f1(x) · f2(y) for continuous
univariate functions f1 and f2 (on certain open intervals), i. e., it is a
di�erential equation with separated variables.

First, we replace y′ with dy/dx and rewrite the di�erential equa-
tion in the form

1√
1−y2 dy = 1+cos2 x

cos2 x
dx.

Since ∫ 1+cos2 x
cos2 x

dx = ∫ 1
cos2 x

+ 1 dx,

we can integrate using the basic formulae, thereby obtaining

(8.6) arcsin y = tan x + x + C, C ∈ R.

However, we must keep in mind that the division by the expression√
1 − y2 is valid only if it is non-zero, i. e., only for y ̸= ±1. Substi-

tuting the constant functions y ≡ 1, y ≡ −1 into the given di�erential
equation, we can immediately see that they satisfy it. We have thus ob-
tained two more solutions, which are called singular. We do not have
to pay attention to the case cos x = 0 since this only loses points of
the domains (but not any solutions).

Now, we will comment on several parts of the computation. The
expression y′ = dy/dx allows us to make many symbolic manipula-
tions. For instance, we have

dz
dy

· dy
dx

= dz
dx
, 1

dy
dx

= dx
dy
.
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Now, recall the smooth variants of indicator functions from

paragraph 6.7. For every pair of positive numbers ε < r, we con-

structed a function fε,r(t) such that fε,r(t) = 1 for |t| < r − ε,

while fε,r(t) = 0 for |t| > r + ε, and 0 ≤ fε,r(t) ≤ 1 everywhere.

At the same time, we had f (t) ̸= 0 if and only if |t| ≤ r + ε.

Now, if we de�ne

χr,ε,x0(x) = fε,r(|x − x0|),
we get a smooth function which takes the value 1 inside the ball

Br−ε (x0), with support exactlyBr+ε (x0), and with values between

0 and 1 everywhere.

Lemma (Whitney's theorem). Every closed setK ⊂ Rn is the set
of all zero points of some smooth function.

Proof. The idea of the proof is quite simple. If K = Rn, the
zero function is convenient, so we can further assume that K ̸=
Rn.

An open set U = Rn \K can be expressed as the union of (at

most) countably many open balls Bri (xi), and for each of them, we

choose a smooth non-negative function fi on Rn whose support

is just Bri (xi), see the function χr,ε,x0 above. Now, we add up all

these functions into an in�nite series

f (x) =
∞∑
k=1

akfk(x),

where the coe�cients ak are selected so small that this series would

converge to a smooth function f (x).

To this purpose, it su�ces to choose ak so that all partial

derivatives of all functions akfk(x) up to order k (inclusive) would

be bounded from above by 2−k . Then, not only the series
∑
k akfk

is bounded from above by the series
∑
k 2−k , hence byWeierstrass

criterion, it converges uniformly on the entire Rn, but we get the
same for all series of partial derivatives, since we can always write

them as

r−1∑
k=0

ak
∂r fk

∂xi1 · · · ∂xir
+

∞∑
k=r

ak
∂r fk

∂xi1 · · · ∂xir
,

where the �rst part is a smooth function as it is a �nite sum of

smooth functions, and the second part can again be bounded from

above by an absolutely converging series of numbers, so this ex-

pression will converge uniformly to
∂r f

∂xi1 ···∂xir .
It is apparent from the de�nition that the function f (x) satis-

�es the conditions of the lemma. □

Unit decomposition on a manifold

Theorem. Consider a manifold M ⊂ Rn and one of its locally

�nite covers by open imagesUi of parametrizations φi . Then, there

exists a system of smooth functions fi on the sets Ui such that for

every point x ∈ M, we have
∑
i fi(x) = 1, and fi(x) ̸= 0 if and

only if x ∈ Ui .
The system of functions fi from the theorem is called the unit

decomposition subordinate to a locally �nite cover of a manifold

by parametrizations.
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The validity of these two formulae is actually guaranteed by the chain
rule theorem and the theorem for di�erentiating an inverse function,
respectively. It was just the facility of the manipulations that inspired
G. W. Leibniz to introduce this notation, which has been in use up to
now. Further, we should realize why we have not written the general
solution (∥8.6∥) in the suggesting form
(8.7) y = sin (tan x + x + C) , C ∈ R.

As we will not mention the domains of di�erential equations (i. e.,
for which values of x the expressions are well-de�ned), we will not
change them by "redundant" simpli�cations, either. It is apparent that
the function y from (∥8.7∥) is de�ned for all x ∈ (0, π)∖{π/2}. How-
ever, for the values of x which are close to π/2 (having �xed C), there
is no y satisfying (∥8.6∥). In general, the solutions of di�erential equa-
tions are curves which may not be expressible as graphs of elementary
functions (on the whole intervals where we consider them). Therefore,
we will not even try to do that. □

8.119. Find the general solution of the equation y′ = (2 − y) tan x.

Solution. Again, we are given a di�erential equation with separated
variables.

We have
dy

dx
= (2 − y) tan x,

− dy

y − 2
= sin x

cos x
dx,

− ln | y − 2 | = − ln | cos x | − ln |C |, C ̸= 0.

Here, the shift obtained from the integration has been expressed
by ln |C |, which is very advantageous (bearing in mind what we want
to do next) especially in those cases when we obtain a logarithm on
both sides of the equation. Further, we have

ln | y − 2 | = ln |C cos x |, C ̸= 0,
| y − 2 | = |C cos x |, C ̸= 0,
y − 2 = C cos x, C ̸= 0,

where we should write ±C (after removing the absolute value). How-
ever, since we consider all non-zero values ofC, it makes no di�erence
whether we write +C or −C. We should pay attention to the fact that
we have made a division by the expression y − 2. Therefore, we must
examine the case y ≡ 2 separately. The derivative of a constant func-
tion is zero, so we have found another solution, y ≡ 2. However, this
solution is not singular since it is contained in the general solution as
the case C = 0. Thus, the correct result is

y = 2 + C cos x, C ∈ R. □

8.120. Find the solution of the di�erential equation

(1 + ex) yy′ = ex

which satis�es the initial condition y(0) = 1.
Solution. If the functions f : (a, b) → R and g : (c, d) → R are
continuous and g(y) ̸= 0, y ∈ (c, d), then the initial problem

y′ = f (x)g(y), y(x0) = y0
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Proof. First, we extend the sets Ui to open sets Ũi using the

extended parametrizations φ̃, from the de�nition of manifold and

its local parametrizations. We can surely do this in such a way that

the sets Ũi keep being a locally �nite cover of an open neighbor-

hood Ũ = ∪iŨi ⊂ Rn of the manifoldM.

For every open set Ũi , we can choose a function gi(x) on the

whole Rn so that gi(x) ̸= 0 exactly for x ∈ Ũi . This can be done
byWhitney's theorem, having been just proved. Now, the function

g(x) = ∑
i gi(x) is well-de�ned for all x ∈ Rn and smooth, thanks

to the cover being locally �nite (for every �xed point x, it is a �nite

sum of non-zero functions on some of its neighborhoods). The

function g(x) is non-zero for all x ∈ M, so we can consider not the

functions gi(x) restricted to M, but rather the functions fi(x) =
gi(x)/g(x), which already have both of the required properties of

the theorem. □

8.40. Integration of k�forms on manifolds. Finally, we are

ready for the de�nition of integral of k�forms on

k�dimensional manifolds. Let us thus consider a

manifold M ⊂ Rn and a form ω ∈ �k(M) having

compact support.

Let us choose a locally �nite cover of the manifold M by

parametrizations φi : Vi → Ui such that the closures of all images

φi(Vi) are compact and, eventually, choose a unit decomposition

fi subordinate to this cover. The integral is de�ned by the formula∫
M

ω =
∫
M

∑
i

fiω =
∑
i

∫
Ui

fiω,

where the right-hand integrals have already been de�ned since

each of the forms fiω has support inside the image under the

parametrization φi . Actually, we can assume that our sum is �nite,

since it su�ces to consider parametrizations covering the compact

support of ω. Hence, it is a well-de�ned number, yet it remains to

verify that the resulting value is independent of our choices.

To this purpose, let us choose another parametrization φ :
V → U of a piece U of the manifoldM, and let us have a look at

the contribution of the integral over U . We get∫
U

ω =
∑
i

∫
Vi∩V

(fi ◦ φ)(φ∗ω) =
∫
V

φ∗ω.

Therefore, if we select a di�erent cover and unit decomposition,

we can do the above reasoning for a common re�nement of these

covers and verify that the expression we have de�ned is actually

independent of all of our choices (think this out in detail!).

8.41. Exterior di�erential of exterior forms. As we have seen,

the di�erential of a function can be interpreted as a mapping

d : �0(Rn) → �1(Rn).

By means of parametrizations, this de�nition can be extended to

functions on manifolds M, where the di�erential is a linear form

onM. The following theorem extends this di�erential to arbitrary

exterior forms on manifoldsM ⊂ Rn.
Exterior differential

Theorem. There is a unique mapping d : �k(M) → �k+1M, for

all manifoldsM ⊂ Rn and k = 0, . . . , k, such that
• d is linear with respect to multiplication by real numbers

• for k = 0, it is a di�erential of functions
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has a unique solution for any x0 ∈ (a, b), y0 ∈ (c, d). This solution is
determined implicitly as

y(x)∫
y0

dt
g(t)

=
x∫
x0

f (t) dt.

In practical problems, we �rst �nd all solutions of the equation and
then select the one which satis�es the initial condition.

Let us compute: (
1 + ex

)
y dy/dx = ex,

y dy = ex

1 + ex
dx,

y2

2
= ln

(
1 + ex

)+ ln |C |, C ̸= 0,

y2

2
= ln

(
C
[
1 + ex

])
, C > 0.

The substitution y = 1, x = 0 then gives
1
2 = ln (C · 2) , i. e. C =

√
e

2 .

We have thus found the solution
y2

2 = ln
(√

e

2 [1 + ex]
)
,

i. e.,

y =
√

2 ln
(√

e

2 [1 + ex]
)

on a neighborhood of the point [0, 1] where y > 0. □

8.121. Find the solution of the di�erential equation

y′ = y2+1
x+1

which satis�es y(0) = 1.
Solution. Similarly to the previous example, we get

dy

y2 + 1
= dx

x + 1
,

arctan y = ln | x + 1 | + C, C ∈ R.

The initial condition (i. e., the substitution x = 0 and y = 1) gives
arctan 1 = ln | 1 | + C, i. e., C = π

4 .

Therefore, the solution of the given initial problem is the function

y(x) = tan
(
ln | x + 1 | + π

4

)
on a neighborhood of the point [0, 1]. □

8.122. Solve

(8.8) y′ = x + y + 1
2x + 2y − 1

.

Solution. Let a function f : (a, b) × (c, d) → R have continu-
ous second-order partial derivatives and f (x, y) ̸= 0, x ∈ (a, b),
y ∈ (c, d). Then, the di�erential equation y′ = f (x, y) can be trans-
formed to an equation with separated variables if and only if∣∣∣∣∣f (x, y) f ′

y(x, y)

f ′
x(x, y) f ′′

xy(x, y)

∣∣∣∣∣ = 0, x ∈ (a, b), y ∈ (c, d).
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• d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ (dβ), where α ∈ �k(M)
• d(df ) = 0 for every function f onM.

The mapping d is called an exterior di�erential.

Proof. The k�form can be written locally in the form

α =
∑

i1<···<ik
ai1···ikdxi1 ∧ · · · ∧ dxik .

If the di�erential d exists, then by the required properties, it must

be equal to

dα =
∑

i1<···<ik
dai1···ikdxi1 ∧ · · · ∧ dxik

=
∑

i1<···<ik

∂ai1···ik
∂xi

dxi ∧ dxi1 ∧ · · · ∧ dxik .

Indeed, the basis linear forms dxi are in fact the di�erentials of the

coordinate functions, so further di�erentiation must lead to zero

by the last property, while we know the di�erential of functions.

Further, we have d(fβ) = df ∧β+f dβ. (Think out the details!).
On the other hand, if we de�ne the di�erential d in coordinates

this way, we can easily verify all of the required properties. (Finish

by yourselves!) □

8.42. Manifolds with boundary. In practical problems, we of-

ten work with manifolds M like an open ball in the three-

dimensional space, for example. At the same time, we are

interested in the boundaries of these manifolds ∂M, which

is a sphere in the case of a ball.

The simplest case is the one of connected curves. It is either a

closed curve (like a circle in the plane), then its boundary is empty,

or the boundary is formed by two points. These points will be

considered including the orientation inherited from the curve, i. e.,

the initial point will be taken with the minus sign, and the terminal

point � with the plus sign.

The curve integral is the easiest one, and we can notice that

integrating the di�erential df of a function along a curveM which

is the image of a parametrization φ : [a, b], then we get directly

from the de�nition that∫
M

df =
∫ b

a

d(f ◦ φ)(t) dt = f (φ(b))− f (φ(a)).

Therefore, the result is independent of not only the selected

parametrization, but also the actual curve. Only the initial and

terminal points matter. Splitting the curve into several consecutive

disjoint intervals, the integral splits into the sum of di�erences of

the values at the splitting points. This sum will be telescoping (i.

e., the middle terms cancel out), resulting in the same value again.

Now, this phenomenon will be discussed in general dimen-

sions. To be able to do this, we need to formalize the concept of

the boundary of a manifold and its orientation. The simplest case

is the half-space M̄ = R− × Rn−1, where R− = {(x1, . . . , xn) ∈
Rn; x1 ≤ 0}. Its boundary is ∂M = {(x1, x2, . . . , xn) ∈ Rn; x1 =
0}. The orientation on this half-space inherited from the standard

orientation is the one determined by the form dx2 ∧ · · · ∧ dxn.
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With a bit of e�ort, it can be shown that a di�erential equation of the
form y′ = f (ax + by + c) can be transformed to an equation with
separated variables, and this can be done by the substitution z = ax+
by + c. Let us emphasize that the variable z replaces y.

We thus set z = x + y, which gives z′ = 1 + y′ . Substitution into
(∥8.8∥) yields

z′ − 1 = z + 1
2z− 1

,

dz

dx
= z + 1

2z− 1
+ 1,

dz

dx
= 3z

2z− 1
,(

2
3

− 1
3z

)
dz = 1 dx,

2
3
z− 1

3
ln | z | = x + C, C ∈ R,

or
2
3 z− 1

3 ln |Cz | = x, C ̸= 0.

Now, we must get back to the original variable y in one of these forms.
The general solution can be written as

2
3 x + 2

3 y − 1
3 ln | x + y | = x + C, C ∈ R,

i. e.,

x − 2y + ln | x + y | = C, C ∈ R.

At the same time, we have the singular solution y = −x, which follows
from the constraint z ̸= 0 of the operations we have made (we have
divided by the value 3z). □

8.123. Solve the di�erential equation

xy′ + y ln x = y ln y.

Solution. Using the substitution u = y/x, every homogeneous di�er-
ential equation y′ = f (y/x) can be transformed to an equation (with
separated variables)

u′ = 1
x
(f (u)− u) , i. e. u′x + u = f (u).

The name of this di�erential equation is comes from the following
de�nition. A function f of two variables is called homogeneous of
degree k i� f (tx, ty) = tk f (x, y). Then, a di�erential equation of
the form

P(x, y) dx +Q(x, y) dy = 0

is a homogeneous di�erential equation i� the functions P and Q are
homogeneous of the same degree k.

For instance, we can discover that the given equation

x dy + (y ln x − y ln y) dx = 0

is homogeneous. Of course, it is not di�cult to write it explicitly in
the form

y′ = y

x
ln y

x
.
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Oriented boundary of a manifold

Let us consider a closed subset M̄ ⊂ Rn such that its interior
M ⊂ M̄ is an oriented k�dimensional manifold with a cover by

compatible parametrizations φi . Further, let us assume that for

every boundary point x ∈ ∂M = M̄ \ M, it has a neighborhood

in M̄ with parametrization φ : V ⊂ R− × Rk−1 → M such that

the points x ∈ ∂M ∩ φ(V ) are just the image of the boundary of

the half-space R− × Rk−1. The subset M̄ with these properties is

called an oriented manifold with boundary.

The restriction of the parametrizations including the boundary

to this boundary ∂M de�nes a structure of a k − 1�dimensional
oriented manifold on ∂M.

8.43. Stokes' theorem. Now, we get to a very important and use-

ful result. The main theorem about the multidimen-

sional analogy of curve and surface integrals will be

formulated for smooth forms and smooth manifolds.

A brief analysis of the proof shows that actually, we

need a once continuously di�erentiable integrated exterior form

and a twice continuously integrable parametrizations of the mani-

fold. In practice, the boundary of the region is often similar as in

the case of the unit cube in R3. I. e., we have discontinuities of the

derivatives on a Riemann-measurable set with measure zero in the

boundary. In such a case, we divide the integration to smooth parts

and add the results up. We can notice that although new pieces

of boundaries come into being, they are adjacent and have oppo-

site orientations in the adjacency regions, so their contribution is

canceled out (just like in the above case of boundary points of a

piecewise di�erentiable curve).

Stokes' theorem

Theorem. Consider a smooth exterior (k − 1)�form ω with com-

pact support on an oriented manifold M̄ with boundary ∂M with

the inherited orientation. Then we have∫
M

dω =
∫
∂M

ω.

Proof. Using an appropriate locally �nite cover of the man-

ifold M̄ and a unit decomposition subordinate to it,

we can express the integrals on both sides as the sum

(even a �nite one, since the support of the considered

fromω is compact) of integrals of forms onRk or the
half-space R− × Rk−1.

We can thus assume without loss of generality that M̄ is the

half-space

M̄ = R− × Rk−1,

and the form ω is a form with compact support on M̄ . Then, ω will

surely be the sum of the forms

ω = ωj (x)dx1 ∧ · · · ∧ ˆdxj ∧ · · · ∧ dxk,
where the hat indicates omission of the corresponding linear form,

and ωj (x) is a smooth function with compact support. Its exterior

di�erential is

dω = (−1)j
∂ωj

∂xj
dx1 ∧ · · · ∧ dxk.
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The substitution u = y/x then leads to

u′x + u = u ln u,
du

dx
x = u (ln u − 1) ,

du

u (ln u − 1)
= dx

x
,

where u (ln u − 1) ̸= 0. Using another substitution, namely t =
ln u − 1, we can integrate∫

du

u (ln u − 1)
=
∫
dx

x
,∫

dt

t
=
∫
dx

x
,

ln | t | = ln | x | + ln |C |, C ̸= 0,
ln | ln u − 1 | = ln |Cx |, C ̸= 0,

ln u − 1 = Cx, C ̸= 0,

ln
y

x
= Cx + 1, C ̸= 0,

y = xeCx+1, C ̸= 0.

The excluded cases u = 0 and ln u = 1 do not lead to two more
solutions sinceu = 0 implies y = 0, which cannot be put into the
original equation. On the other hand, ln u = 1 gives y/x = e, and the
function y = ex is clearly a solution. Therefore, the general solution
is

y = xeCx+1, C ∈ R.

□

8.124. Compute

y′ = − 4x+3y+1
3x+2y+1 .

Solution. In general, we are able to solve every equation of the form

(8.9) y′ = f

(
ax + by + c

Ax + By + C

)
.

If the system of linear equations

(8.10) ax + by + c = 0, Ax + By + C = 0

has a unique solution x0, y0, then the substitution u = x − x0, v =
y − y0 transforms the equation (∥8.9∥) to a homogeneous equation

dv
du

= f
(
au+bv
Au+Bv

)
.

If the system (∥8.10∥) has no solution or has in�nitely many solutions,
the substitution z = ax + by transforms the equation (∥8.9∥) to an
equation with separated variables (often, the original equation is al-
ready such).

In this problem, the corresponding system of equations

4x + 3y + 1 = 0, 3x + 2y + 1 = 0
has a unique solution x0 = −1, y0 = 1. The substitution u = x + 1,
v = y − 1 then leads to the homogeneous equation

dv
du

= − 4u+3v
3u+2v ,
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If j > 1, the form ω on the boundary ∂M evaluates identically to

zero. At the same time, invoking the fundamental theorem about

antiderivatives of univariate functions, we get∫
M

dω = (−1)j
∫
Rk−1

(∫ ∞

−∞
∂ωj

∂xj
dxj

)
dx1 · · · ˆdxj · · · dxk

= (−1)j
∫
Rk−1

[
ωj
]∞
−∞dx1 · · · ˆdxj · · · dxk = 0,

since the function ωj has compact support. So the theorem is true

in this case. However, if j = 1, then we obtain∫
M

dω =
∫
Rk−1

(∫ 0

−∞
∂ω1

∂x1
dx1

)
dx2 · · · · · · dxk

=
∫
Rk−1

ω1(0, x2, . . . , xk)dx2 · · · dxk =
∫
∂M

ω

This �nishes the proof of Stokes's theorem. □

8.44. Notes about application of Stokes' theorem. We have

proved an extraordinarily strong result which covers

several standard integral relations from the classic

vector analysis. For instance, we can notice that by

Stokes' theorem, the integration of the exterior di�er-

ential dω of any (k − 1)�forms over a compact manifold without
boundary is always zero (for example, integrating a 2�form dω

over the sphere S2 ⊂ R3).

Let us look step by step at the cases of Stokes' theorem in lower

dimensions.

The case n = 2, k = 1. We are thus examining a surface M

in the plane, bounded by a curve C = ∂M. If we have ω(x, y) =
f (x, y)dx+g(x, y)dy, then dω = (− ∂f

∂y
+ ∂g
∂x

)
dx∧dy. Therefore,

Stokes' theorem gives the formula∫
C

f (x, y)dx + g(x, y)dy =
∫
M

(
−∂f
∂y

+ ∂g

∂x

)
dx ∧ dy,

which is one of the standard forms of the so-called Green's theo-

rem.

Using the standard scalar product on R2, we can identify the

vector �eld X with a linear form ωX such that ωX(Y ) = ⟨Y,X⟩.
In the standard coordinates (x, y), this just means that the �eld

X = f (x, y) ∂
∂x

+ g(x, y) ∂
∂y

de�nes right the form ω given above.

The integral of ωX over a curve C has the physical interpretation

of the work done by movement along this curve in the force �eld

X. Green's theorem then says, besides others, that if ωX = dF

for some function F , then the work done along a closed curve is

always zero. Such �elds are called potential �elds and the function

F is the potential of the �eld X.

With Green's theorem, we have veri�ed once again that inte-

grating the di�erential of a function along a curve depends solely

on the initial and terminal points of the curve.

The case n = 3, k = 2. We are examining a region inR3, bounded

by a surface S. If ω = f (x, y, z)dy ∧ dz + g(x, y, z)dz ∧ dx +
h(x, y, z)dx∧dy, we get dω = ( ∂f

∂x
+ ∂g
∂y

+ ∂h
∂z

)
dx∧dy∧dz, and

Stokes' theorem says that∫
S

f (x, y, z)dy∧dz+g(x, y, z)dz∧dx+h(x, y, z)dx∧dy

=
∫
M

(
∂f

∂x
+ ∂g

∂y
+ ∂h

∂z

)
dx ∧ dy ∧ dz.
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which can be solved by further substitution z = v/u. We thus obtain

z′u + z = −4 + 3z
3 + 2z

,

dz

du
u = −2z2 + 6z+ 4

3 + 2z
,

2z+ 3
2z2 + 6z+ 4

dz = −du
u

provided z2 + 3z+ 2 ̸= 0. Integrating, we get

1
2

ln
∣∣ z2 + 3z+ 2

∣∣ = − ln | u | + ln |C |, C ̸= 0,

1
2

ln
∣∣ (z2 + 3z+ 2

)
u2
∣∣ = ln |C |, C ̸= 0,

ln
∣∣ (z2 + 3z+ 2

)
u2
∣∣ = lnC2 , C ̸= 0,(

z2 + 3z+ 2
)
u2 = ±C2 , C ̸= 0.

We thus have (
z2 + 3z+ 2

)
u2 = D, D ̸= 0

and returning to the original variables,(
v2

u2
+ 3

v

u
+ 2

)
u2 = D, D ̸= 0,

v2 + 3vu+ 2u2 = D, D ̸= 0,

(y − 1)2 + 3(y − 1)(x + 1)+ 2(x + 1)2 = D, D ̸= 0.

Making simple rearrangements, the general solution can be ex-
pressed as

(x + y) (2x + y + 1) = D, D ̸= 0.

Now, let us return to the condition z2 + 3z + 2 ̸= 0. It follows
from z2 + 3z + 2 = 0 that z = −1 or z = −2, i. e., v = −u or
v = −2u. For v = −u, we have x = u − 1 and y = v + 1 =
−u + 1, which means that y = −x. Similarly, for v = −2u, we
have y = −2u + 1, hence y = −2x − 1. However, both functions
y = −x, y = −2x − 1 satisfy the original di�erential equations and
are included in the general solution for the choice D = 0. Therefore,
every solution is known from the implicit form

(x + y) (2x + y + 1) = D, D ∈ R.

□

8.125. Find the general solution of the di�erential equation(
x2 + y2

)
dx − 2xy dy = 0.

Solution. For y ̸= 0, simple rearrangements lead to

y′ = x2+y2

2xy = 1+( y
x

)2

2 y
x

.

Using the substitution u = y/x, we get to the equation

u′x + u = 1+u2

2u .
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This is the statement of the so-called Gauss�Ostrogradsky theo-

rem.

This theorem also has a very illustrative physical interpreta-

tion. Every vector �eld X = f (x, y, z) ∂
∂x

+ g(x, y, z) ∂
∂y

+
h(x, y, z) ∂

∂z
de�nes an exterior 2�form ωX(x, y, z) =

f (x, y, z)dy ∧ dz + g(x, y, z)dz ∧ dx + h(x, y, z)dx ∧ dy

by substitution for the �rst argument in the standard form of

volume. The integral of this form over a surface can be perceived

so that the integrated 2�form in�nitesimally contributes, at every

point to the integral, the increase equal to the volume of the

parallelepiped given by the �eld X and a little piece of surface. If

we consider the vector �eld to be the velocity of movement of the

particular points of the space, this will be the "�ow rate" through

the given surface. On the right-hand side of the integral, there is an

expression which can be de�ned as d(ωX) = (divX)dx∧dy∧dz.
Gauss�Ostrogradsky theorem says that if divX equals zero

identically, then the total �ow rate through the boundary surface

of the region is zero as well. Such �elds, with divX = 0, are
called solenoidal vector �elds.

The case n = 3, k = 1. In this case, we have a surface M in

R3 bounded by a curve C. If the linear form ω is the di�erential

of some function, we �nd out that the integral over the surface

depends on the boundary curve only. This is the classical Stokes'

theorem. If we use the standard scalar product, just like in the plane,

to identify the vector �eld X = f ∂
∂x

+ g ∂
∂y

+ h ∂
∂z

with the form

ω = f dx + gdx + hdz, we obtain∫
C

f dx + gdx + hdz =
∫
M

dω,

where dω = (
∂h
∂y

− ∂g
∂z

)
dy∧dz+( ∂f

∂z
− ∂g
∂x

)
dz∧dx+( ∂g

∂x
− ∂f
∂y

)
dx∧

dy. This 2�form can again be identi�ed with a single vector �eld

rotX, which yields dω by substitution into the standard form of

volume. This �eld is called the rotation or curl of the vector �eld

X. We can see that in the three-dimensional space, vector �elds

X having the property that ωX = dF for some function F are

given by the condition rotX = 0. They are called conservative (or
potential) vector �elds.

3. Di�erential equations

In this section, we will get back to (vector) functions of one

variable, which will be given and examined in terms of their in-

stantaneous changes. At the end, we will stop for a while to look

at equations containing partial derivatives.

8.45. Linear and non-linear di�erence models. The concept of

derivative was introduced in order to work with in-

stantaneous changes of the examined quantities. In

the introductory chapter, we once de�ned di�erences

for the same reason, and it was just the relations between the values

of the quantities and the changes of them or other quantities which

lead to the so-called di�erence equations. As a motivating intro-

duction to equations containing derivatives of unknown functions,

we will now return to the di�erence equations for a while.

The simplest model was interests of deposits or loans (and the

same for the so-called Malthusian model of populations). The in-

crease was proportional to the value, see 1.10. Considering contin-

uous modeling, the same request leads to an equation connecting
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For u ̸= ±1 and D = −1/C, we have

du

dx
x = 1 + u2 − 2u2

2u
,

2u
1 − u2

du = dx

x
,

− ln
∣∣ 1 − u2

∣∣ = ln | x | + ln |C |, C ̸= 0,

ln
1∣∣ 1 − u2

∣∣ = ln |Cx |, C ̸= 0,

1
1 − u2

= Cx, C ̸= 0,

1 = Cx

(
1 − y2

x2

)
, C ̸= 0,

−D
x

= 1 − y2

x2
, D ̸= 0,

−Dx = x2 − y2 , D ̸= 0.

The condition u = ±1 corresponds to y = ±x. While y ≡ 0 is
not a solution, both the functions y = x and y = −x are solutions and
can be obtained by the choice D = 0. The general solution is thus

y2 = x2 +Dx, D ∈ R. □

8.126. Solve

y′ = x − 2y
x2−1 .

Solution. The given equation is of the form y′ = a(x)y + b(x), i.
e., a non-homogeneous linear di�erential equation (the function b is
not identically equal to zero). The general solution of such an equa-
tion can be obtained using the method of integration factor (the non-
homogeneous equation is multiplied by the expression e− ∫

a(x) dx ) or
the method of variable separation (the integration constant that arises
in the solution of the corresponding homogeneous equations is consid-
ered to be a function in the variable x). We will illustrate both of these
methods on this problem.

As for the former method, we multiply the original equation by the
expression

e
∫ 2

x2−1
dx = e

ln
∣∣∣ x−1
x+1

∣∣∣ = x−1
x+1 ,

where the corresponding integral is understood to stand for any anti-
derivative and where any non-zero multiple of the obtained function
can be considered (that is why we could remove the absolute value).
Thus, consider the equation

y′ x−1
x+1 + 2y

(x+1)2 = x(x−1)
x+1 .

The core of the method of integration factor is that fact that the expres-
sion on the left-hand side is the derivative of y x−1

x+1 . Integrating this
leads to

y x−1
x+1 = ∫

x(x−1)
x+1 dx = x2

2 − 2x + 2 ln | x + 1 | + C, C ∈ R.
Therefore, the solutions are the functions

y = x+1
x−1

(
x2

2 − 2x + 2 ln | x + 1 | + C
)
, C ∈ R.

As for the latter method, we �rst solve the corresponding homoge-
neous equation

y′ = − 2y
x2−1 ,
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the derivative y′ (t) of a function with its value

(8.4) y′ (t) = r · y(t)

with a proportionality constant r.

It is easy to guess the solution of this equation, i. e. a function

y(t) which satis�es the equality identically,

y(t) = C ert

with an arbitrary constant C. This constant can be determined

uniquely be choosing the so-called initial values y0 = y(t0) at

some point t0. If a part of the increase in our model were given by

a constant action independent of the value y or t (like bank charges

or the natural decrease of population as a result of sending some

part of it to slaughterhouses), we could use an equation with a con-

stant s on the right-hand side.

(8.5) y′ (t) = r · y(t)+ s.

Apparently, the solution of this equation is the function

y(t) = C ert − s
r
.

It is very easy to come across this solution if we realize that the

set of all solutions of the equation (8.4) is a one-dimensional vec-

tor space, while the solutions of the equation (8.5) are obtained

by adding any one of its solutions to the solutions of the previous

equation. We can then easily �nd the constant solution y(t) = k

for k = − s
r
.

Similarly, in paragraph 1.13, we managed to create the so-

called logistic model of population growth based upon the assump-

tion that the ratio of the change of the population size p(n+ 1)−
p(n) and its size p(n) is a�ne with respect to the population size

itself. We also wanted the model to behave similarly as the Malthu-

sian one for small values of the population size and to cease grow-

ing when reaching a limit value K. Now, the same relation for the

continuous model can be formulated for a population p(t) depen-

dent on time t by the equality

(8.6) p′(t) = p(t)
(
− r

K
p(t)+ r

)
,

i. e., at the value p(t) = K for a large constant K, the instan-

taneous increase of the function p is indeed zero, while for p(t)

near zero, the ratio of the rate of increase of the population and

its size is close to r, which is often a small number (roughly hun-

dredths) expressing the rate of increase of the population in good

conditions.

It is surely not easy to solve such an equation without knowing

the proper theory (although we will be able to deal with this type

of equations presently). However, as an exercise on di�erentiation,

we can easily verify that the following function is a solution for

every constant C:

p(t) = K

1 + CK e−rt .
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which is an equation with separated variables. We have

dy

dx
= − 2y

x2 − 1
,

dy

y
= − 2

x2 − 1
dx,

ln | y | = − ln | x − 1 | + ln | x + 1 | + ln |C |, C ̸= 0,

ln | y | = ln
∣∣∣∣C x + 1
x − 1

∣∣∣∣ , C ̸= 0,

y = C
x + 1
x − 1

, C ̸= 0,

where we had to exclude the case y = 0. However, the function
y ≡ 0 is always a solution of a homogeneous linear di�erential equa-
tion, and it can be included in the general solution. Therefore, the
general solution of the corresponding homogeneous equation is

y = C(x+1)
x−1 , C ∈ R.

Now, we will consider the constant C to be a function C(x). Di�eren-
tiating leads to

y′ = C′(x) (x+1)(x−1)+C(x) (x−1)−C(x) (x+1)
(x−1)2 .

Substituting this into the original equation, we get
C′(x) (x+1)(x−1)+C(x) (x−1)−C(x) (x+1)

(x−1)2 = x − 2 C(x) (x+1)
(x−1)(x2−1) .

It follows that

C′ (x) = x(x−1)
x+1 ,

i. e.,

C(x) =
∫
x(x − 1)
x + 1

dx,

C(x) = x2

2
− 2x + 2 ln | x + 1 | + C, C ∈ R.

Now, it su�ces to substitute:

y = C(x) x+1
x−1 = x+1

x−1

(
x2

2 − 2x + 2 ln | x + 1 | + C
)
, C ∈ R.

We can see that the result we have obtained here is of the same form
as in the former case. This should not be surprising as the di�erences
between the two methods are insigni�cant and the computed integrals
are the same.

Finally, we can notice that the solution y of an equation y′ =
a(x)y can be found in the same way for any continuous function a.
We thus always have

y = Ce
∫
a(x) dx , C ∈ R.

Similarly, the solution of an equation y′ = a(x)y+b(x)with an initial
condition y(x0) = y0 can be determined explicitly as (provided the
coe�cients, i. e. the functions a and b, are continuous)

y = e
∫ x
x0
a(t) dt

(
y0 + ∫ x

x0
b(t) e− ∫ t

x0
a(s) ds dt

)
.

Let us remark that the linear equation has no singular solution, and the
general solution contains a C ∈ R. □

8.127. Solve the linear equation(
y′ + 2xy

)
ex

2 = cos x.
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Confronting the red graph (left-hand picture) of this function

with the choice K = 100, r = 0, 05, and C = 1 (the �rst two

were used in 1.13 this way, the last one roughly corresponds to the

initial value p(0) = 1) with the right-hand picture (the solution

of the di�erence equation from 1.13 with the same values of the

parameters), we can see that both approaches to population model-

ing indeed yield quite similar results. To compare the output, the

left-hand picture also contains in green the graph of the solution of

the equation (8.4) with the same constant r and initial condition.

8.46. First-order di�erential equations. By an (ordinary) �rst-

order di�erential equation, we usually mean the rela-

tion between the derivative y′ (t) of a function with

respect to the variable t, its value y(t), and the vari-

able itself, which can bewritten in terms of some real-

valued function F : R3 → R as the equality

F(y′ (t), y(t), t) = 0.

The writing resembles implicitly given functions y(t); however,

this time, there is a dependency upon the derivative of the wanted

function y(t).

If the equation is solved at least explicitly with regard to the

derivative, i. e.,

y′ (t) = f (t, y(t))

for some function f : R2 → R, we can imagine graphically what
this equation de�nes. For every value (t, y) in the plane, we can

consider the arrow corresponding to the vector (1, f (t, y)), i. e.,
the velocity with which the point of the graph of the solutionmoves

through the plane in dependence on the free parameter t.

For the equation (8.6), for instance, we get the following pic-

ture (illustrating the solution for the initial condition as above).
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Solution. If we used the method of integration factor, we would only
rewrite the equation trivially since it is already of the desired form �
the expression on the left-hand side is the derivative of y ex

2
. Thus, we

can immediately calculate (
y ex

2
)′ = cos x,

y ex
2 =

∫
cos x dx,

y ex
2 = sin x + C, C ∈ R,

y = e−x2
(sin x + C) , C ∈ R.

□

8.128. Find all non-zero solutions of the Bernoulli equation

y′ − y

x
= 3xy2 .

Solution. The Bernoulli equation

y′ = a(x)y + b(x)yr , r ̸= 0, r ̸= 1, r ∈ R
can be solved by �rst dividing by the term yr and then using the sub-
stitution u = y1−r , which leads to the linear di�erential equation

u′ = (1 − r) [a(x)u+ b(x)] .
In this very problem, the substitution u = y1−2 = 1/y gives

u′ + u
x

= −3x.
Similarly to the previous exercise, we have

u = e− ln | x | [∫ −3x eln | x | dx
]
,

where ln | x | was obtained as an (arbitrary) antiderivative to 1/x.
Furhter,

u = eln 1
| x |
[∫

−3x eln | x | dx
]
,

u = 1
| x |

[∫
−3x | x | dx

]
.

The absolute value can be replaced with a sign that can be can-
celed, i. e., it su�ces to consider

u = 1
x

[∫ −3x2 dx
] = 1

x

[−x3 + C
]
, C ∈ R.

Returning to the original variable, we get

y = 1
u

= x

C−x3 , C ∈ R.
The excluded case y ≡ 0 is a singular solution (which, of course, is
true for every Bernoulli equation with r positive). □

8.129. Interchanging the variables, solve the equation

y dx − (
x + y2 sin y

)
dy = 0.

Solution. When the variable x occurs only in the �rst power in the dif-
ferential equation and y occurs in the arguments of elementary func-
tions, we can apply the so-called method of variable interchange, when
we look for the solution as for a function x of the independent variable
y.

First, we write the equation explicitly:

y′ = y

x+y2 sin y .

This equation is not of any of the previous types, so we rewrite it as
follows:
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Considering these pictures, we can intuitively anticipate that

for every initial condition, there will exist a unique solution of our

equation. However, as we will see, this proposition holds only for

su�ciently smooth functions f .

8.47. Integration of di�erential equations. Before examining

existence of the solutions of the di�erential equations,

we present at least one truly elementary method of so-

lution. It transforms the solution to ordinary integra-

tion, which usually leads to an implicit description of

the solution.
equations with separated variables

Consider a di�erential equation in the form

(8.7) y′ (t) = f (t) · g(y(t))
for two continuous functions of a real variable, f and g.

The solution of this equation can be obtained by integration, i.

e., we �nd the antiderivatives

G(y) =
∫

dy

g(y)
, F (x) =

∫
f (x)dx.

This procedure reliably �nds a solution which satis�es g(y(t)) ̸=
0.

Then, computing the function y(x) from the implicitly given

formulaF(x)+C = G(y)with an arbitrary constantC leads to the

solution, because di�erentiating this equation using the chain rule

for the composite function G(y(x)) indeed leads to 1
g(y)

· y′ (x) =
f (x).

As an example, we can �nd the solution of the equation

y′ (x) = x · y(x).
Direct calculation gives ln |y(x)| = 1

2x
2 + C. Hence it looks (at

least for positive values of y) as

y(x) = e
1
2 x

2+C = D · e
1
2 x

2
,

where D is an arbitrary positive constant now. Let us stop for a

while to examine the resulting formula and signs thoroughly. The
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dy

dx
= y

x + y2 sin y
,

dx

dy
=
(

y

x + y2 sin y

)−1

= x

y
+ y sin y,

x′ = 1
y
x + y sin y.

We have thus obtained a linear di�erential equation. Now, we can
easily compute its general solution

x = −y cos y + Cy, C ∈ R.

□
Further problems concerning �rst-order di�erential equations can

be found on page ??.

L. Practical problems leading to di�erential equations

8.130. A water puri�cation plant with volume 2000 m3 was contam-
inated with lead which is spread in the water with density 10 g/m3.
Water is �owing in and out of the basin at 2 m3/s. In what time does
the amount of lead in the basin decrease below 10 µg/m3 (which is
the hygienic norm for the amount of lead in drinkable water by a reg-
ulation of the European Community) provided the water keeps being
mixed uniformly?

Solution. Let us denote the water's volume in the basin by V (m3),
the speed of the water's �ow by v (m3/s). In an in�nitesimal (in�nitely
small) time unit dt, m

V
· v dt grams of lead runs out of the basin, so we

can construct the di�erential equation

dm = −m
V

· v dt

for the change of the lead's mass in the basin. Separating the variables,
we get the equation

dm
m

= − v

V
dt.

Integration both sides of the equation and getting rid of the logarithms,
we get the solution in the formm(t) = m0e

− v
V
t , wherem0 is the lead's

mass at time t = 0. Substituting the concrete values, we �nd out that
t
.= 6 h 35 min. □

8.131. The speed of transmission of a message in a population con-
sisting of P people is directly proportional to the number of people
who have not heard the message yet. Determine the function f which
describes the dependency of the number of people who have heard
the message on time. Is it appropriate to use this model of message
transmission for small or large values of P ?

Solution. We construct a di�erential equation for f . The speed of the
transmission df

dt
= f ′(t) should be directly proportional to the number

of people who have not heard of it, i. e. the valueP−f (t). Altogether,
df

dt
= k(P − f (t)).
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constant solution y(x) = 0 satis�es our equation as well, and for

negative values of y, we can use the same solution with negative

constants D. In fact, the constant D can be arbitrary, and we have

found a solution satisfying any initial value.
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The picture shows two solutions which demonstrate the insta-

bility of the equation with regard to the initial values: If, for any x0,

we change a tiny y0 from a negative value to a positive one, then the

behavior of the resulting solution changes dramatically. Moreover,

we should notice the constant solution y(x) = 0, which satis�es

the initial condition y(x0) = 0.
Using separation of variables, we can easily solve the non-

linear equation from the previous paragraph which described a lo-

gistic population model. Try this as an exercise.

In the �rst chapter, we paid much attention to the so-called lin-

ear di�erence equations, and their general solution, look-

ing quite awful, was determined in paragraph 1.10 on page

13. Although it was clear beforehand that it will be a one-

dimensional a�ne space of satisfying sequences, it was a

hardly transparent sum, because we needed to take into account all

of the changing coe�cients.

We can thus use this as a source of inspiration for the following

construction of the solution of a general �rst-order linear equation

(8.8) y′ (t) = a(t)y(t)+ b(t)

with continuous coe�cients a(t) ans b(t).

First of all, let us �nd the solution of the homogenized equa-

tion y′ (t) = a(t)y(t). This can be computed easily by separation

of variables, obtaining

y(t) = y0F(t, t0), F (t, s) = e
∫ t
s a(x) dx .

In the case of di�erence equations, we "guessed" the solution, and

then we proved by induction that it was correct. It is even simpler

now, as it su�ces to di�erentiate the correct solution to verify the

statement.

The solution of first-order linear equations

The solution of the equation (8.8) with initial values y(t0) =
y0 is (locally in a neighborhood of t0) given by the formula

y(t) = y0F(t, t0)+
∫ t

t0

F(t, s)b(s) ds,

where F(t, s) = e
∫ t
s a(x) dx .

Verify the correctness of the solution by yourselves (pay

proper attention to the di�erentiation of the integral where t is both

in the upper bound and a free parameter in the integrand).
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Separating the variables and introducing a constantK (the number of
people who know the message at time t = 0 must be P −K), we get
the solution

f (t) = P −Ke−kt ,

where k is a positive real constant.
Apparently, this model makes sense for large values of P only. □

8.132. The speed at which an epidemic spreads in a given closed
population consisting of P people is directly proportional to the prod-
uct of the number of people who have been infected and the number
of people who have not. Determine the function f (t) describing the
number of infected people in time.

Solution. Just like in the previous problem, we construct a di�erential
equation:

df

dt
= k · f (t) (P − f (t)) .

Again, separating the variables and introducing suitable constants K
and L, we obtain

f (t) = K

1 + Le−Kkt
.

□

8.133. The speed at which a given isotope of a given chemical ele-
ment decays is directly proportional to the amount of the given isotope.
The half-life of the isotope of plutonium 239

94 Pu is 24,100 years. Inwhat
time does a hundredth of a nuclear bomb whose active component is
the mentioned isotope disappear?

Solution. Denoting the amount of plutonium by m, we can build a
di�erential equation for the rate of the decay:

dm

dt
= k ·m,

where k is an unknown constant. The solution is thus the function
m(t) = m0e

−kt . Substituting into the equation for half-life(e−kt = 1
2 ),

we get the constant k
.= 2.88 · 105. The wanted time is then approxi-

mately 349 years. □

8.134. The acceleration of an object falling in a constant gravita-
tional �eld with a certain resistance of the environment is given by
the formula

dv

dt
= g − kv,

where k is a constant which expresses the resistance of the environ-
ment. An object was dropped in a gravitational �eld with g = 10
ms−2 at the initial speed of 5 ms−1, the resistance constant is k = 0.5
s−1. What will the speed of the object be in three seconds?

Solution.

v = g

k
−
(g
k

− v0

)
e−kt ,

v(3) = 20 − 15e−
3
2 ms−1 after substitution. □
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Now, we can, for instance, directly solve the equation

y′ (x) = 1 − x · y(x),
this time encountering stable behavior, visible in the following pic-

ture.
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8.48. Transformation of coordinates. Our pictures tend to indi-

cate that di�erential equations can be perceived as

geometric objects (the "directional �eld of the ar-

rows"), so we should be able to look for the solu-

tion by conveniently chosen coordinates. We will get back to this

point of view later; now, we will only show three simple and typ-

ical tricks as they seem from the explicit form of the equations in

coordinates.

We begin with the so-called homogeneous equations of the

form

y′ (t) = f
(y(t)
t

)
.

Considering a transformation z = y
t
, assuming that t ̸= 0, then we

get by the chain rule that

z′(t) = 1
t2

(
t y′ (t)− y(t)

) = 1
t
(f (z)− z),

which is an equation with separated variables.

Another example is the so-called Bernoulli di�erential equa-

tions, which are of the form

y′ (t) = f (t)y(t)+ g(t)y(t)n,

where n ̸= 0, 1. The choice of the transformation z = y1−n leads

to the equation

z′(t) = (1 − n)y(t)−n(f (t)y(t)+ g(t)yn )

= (1 − n)f (t)z(t)+ (1 − n)g(t),

which is a linear equation, which we are able to integrate.

In the end, let us take a look at an extraordinarily impor-

tant equation, the so-called Riccati equation. It is a form of the

Bernoulli equation with n = 2, extended by an absolute term

y′ (t) = f (t)y(t)+ g(t)y(t)2 + h(t).

This equation can also be transformed to a linear equation provided

that we are able to guess a particular solution x(t). Then, we can

use the transformation

z(t) = 1
y(t)− x(t)

.

Verify by yourselves that this transformation leads to the equation

z′(t) = −(f (t)+ 2x(t)g(t)
)
z(t)− g(t).
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8.135. The rate of increase of a population of a certain type of bug
is indirectly proportional to its size. At time t = 0, the population had
100 bugs. In a month, the population doubled. What will the size of
the population be in two months?

Solution. Let us consider a continuous approximation of the number
of bugs, and let their amount be denoted by P . Then, we can build the
following equation:

dP

dt
= k

P
,

P = √
Kt + c . Substituting the given values, we getP(2) = √

7·100,
which is an estimate of the actual number of bugs. □
8.136. Find the equation of the curve with the following properties:
It lies in the �rst quadrant, goes through the point

[
1, 3/4

]
, and its

tangent at any point marks on the positive half-axis y a segment whose
length is the same as the distance of that point from the origin. ⃝
8.137. Consider a chemical compound C isolated in a container. C is
unstable, with half-time of a molecule equal to q time units. If there
wereM moles of the compound C in the container at the beginning (i.
e., at time t = 0), how many moles of it will be there at time t ≥ 0?
⃝
8.138. A 100-gram body lengthens a spring of 5 cm if hung on it.
Express the dependency of its position on time t provided the speed
of the body is 10 cm/s when going through the equilibrium point. ⃝

Further practical problems that lead to di�erential equations can
be found on page ??.

M. Higher-order di�erential equations

8.139. Underdamped oscillation. Now, we will describe a simple
model for the movement of a solid object attached to a point with a
strong spring. If y(t) is the deviation of our object from the point
y0 = y(0) = 0, then we can assume that the acceleration y′′ (t) in
time t is proportional to the magnitude of the deviation, yet with the
other sign. The proportionality constant k is called the spring constant.
Considering the case k = 1, we get the so-called oscillation equation

y′′ (t) = −y(t).
This equation corresponds to the system of equations

x′ (t) = −y(t), y′ (t) = x(t)

from 8.7. The solution of this system is given by

x(t) = R cos(t − τ), y(t) = R sin(t − τ)

with an arbitrary non-negative constant R, which determines the max-
imum amplitude, and a constant τ , which determines the initial phase.

Therefore, in order to determine a unique solution, we need to
know not only the initial position y0, but also the speed of the motion
at that moment. These two pieces of information uniquely determine
both the amplitude and the initial phase.

Moreover, let us imagine that as a result of the properties of the
spring material, there is another force which is directly proportional
to the instantaneous speed of our object, with the other sign than the
amplitude again. This is expressed by one more term with the �rst
derivative, so our equation is now
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Just as we saw in the case of integration of functions (which

is, in fact, the simplest type of equations with separated variables),

the equations usually do not have a solution expressible explicitly

in terms of elementary functions.

Similarly as with standard engineer tables of values of special

functions, books listing the solutions of basic equations were com-

piled as well.4 Today, the wisdom concealed in them is essentially

transferred to software systems like Maple or Mathematica. There,

we can assign any task on ordinary di�erential equations, and we

will get the results in a surprisingly good deal of cases, yet after

all, it will not be possible for most problems.

The way out of this is numerical methods, which try only to ap-

proximate the solutions. However, to be able to use them, we still

need good theoretical starting points regarding existence, unique-

ness, and stability of the solutions.

We begin with the so-called Picard�Lindelöf theorem:

Existence and uniqueness of the solutions of ODEs

8.49. Theorem. Let a function f (t, y) : R2 → R have continuous

partial derivatives on an open set U . Then for every

point (t0, y0) ∈ U ⊃ R2, there exists a maximal inter-

val I = [t0 − a, t0 + b], with positive a, b ∈ R, and
a unique function y(t) : I → R which is a solution of

the equation

y′ (t) = f (t, y(t))

on the interval I .

Proof. Notice that if a function y(t) is a solution of our equa-

tion satisfying the initial condition y(t0) = t0, then it also satis�es

the equation

y(t) = y0 +
∫ t

t0

y′ (t) dt = y0 +
∫ t

t0

f (t, y(t)) dt.

However, the right-hand side of this expression is, up to constant,

the integral operator

L(y)(t) = y0 +
∫ t

t0

f (t, y(t)) dt.

When solving our �rst-order di�erential equations, we are thus

looking for a �xed point of this operator L, i. e., we want to �nd a

function y = y(t) satisfying L(y) = y.

On the other hand, if a Riemann-integrable function y(t) is a

�xed point of the operator L(y), then it immediately follows from

the antiderivative theorem that y(t) indeed satis�es the given dif-

ferential equation, including the initial conditions.

We can quite easily guess for the operator L how much its val-

ues L(y) and L(z) di�er for various arguments y(t) and

z(t). Indeed, thanks to the partial derivatives of the func-

tion f being continuous, we know that f is locally Lips-

chitz. This means that we have the bound

|f (t, y)− f (t, z)| ≤ C|y − z|,
with a constant C if we restrict the values (t, y) to a neighborhood

of the point (t0, y0) with compact closure. We choose an ε > 0
and restrict the value of t to some interval J = [t0 −a0, t0 +b0] so

4E. g., Kamke ...
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y′′ (t) = −y(t)− αy′ (t),
where α is a constant which expresses the magnitude of the damping.
In the following picture, there are the so-called phase diagrams for so-
lutions with two distinct initial conditions, namely with zero damping
on the left, and for the value of the coe�cient α = 0.3 on the right.
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The oscillations are expressed by the y-axis values; the x-axis val-
ues describe the speed of the motion.

8.140. Undamped oscillation. Find the function y(t)which satis�es
the following di�erential equation and initial conditions:

y′′ (t)+ 4y(t) = f (t), y(0) = 0, y′ (0) = −1,

where the function f (t) is piecewise continuous:

f (t) =
{

cos(2t) for 0 ≤ t < π,

0 for t ≥ π.

Solution. This problem is a model of undamped oscillation of a spring
(omitting friction, non-linearities in the toughness of the spring, and
other factors) which is initiated by an outer force.

The function f (t) can be written as a linear combination of Heav-
iside's function u(t) and its shift, i. e.,

f (t) = cos(2t)(u(t)− uπ (t))

Since

L(y′′ )(s) = s2L(y)− sy(0)− y′ (0) = s2L(y)+ 1,

we get, applying the results of the above exercises 7 and 8 to the
Laplace transform of the right-hand side

s2L(y)+ 1 + 4L(y) = L(cos(2t)(u(t)− uπ (t))) =
= L(cos(2t) · u(t))− L(cos(2t) · uπ (t)) =
= L(cos(2t))− e−πsL(cos(2(t + π)) =
= (1 − e−πs )

s

s2 + 4
.

Hence,

L(y) = − 1
s2 + 4

+ (1 − e−πs )
s

(s2 + 4)2
.

Performing the inverse transform, we obtain the solution in the form

y(t) = − 1
2 sin(2t)+ 1

4 t sin(2t)+ L−1
(
e−πs

s

(s2 + 4)2

)
.
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that J×[y0−ε, y0+ε] ⊂ U , and we consider only those functions

y(t) and z(t) which, for t ∈ J , satisfy
max
t∈J |y(t)− y0| < ε, max

t∈J |z(t)− y0| < ε.

Now,we obtain the bound

|(L(y)− L(z))(t)| =
∣∣∣∣∫ t

t0

f (t, y(t))− f (t, z(t)) dt

∣∣∣∣
≤
∫ t

t0

|f (t, y(t))− f (t, z(t))| dt

≤ C

∫ t

t0

|y(t)− z(t)| dt
≤ D|t − t0|

for suitable constants C and D. For a su�ciently small δ > 0, we
thus have

max|t−t0|<δ
|L(y)(t)− L(z)(t)| < max|t−t0|<δ

c |y(t)− z(t)|

for some constant 0 < c < 1. In paragraph 7.19 on page 441, these
operators were called contraction. However, for the assumptions

of the Banach contraction theorem, which guarantees a uniquely

determined �xed point, we need even completeness of the spaceX

of functions on which the operator L works.

In our case, we can notice that merely from the continuity of

the mapping f (t, y), there follows a uniform bound

for all of the functions y(t) considered above and the

values t > s in their domain:

|L(y)(t)− L(y)(s)| ≤
∫ t

s

|f (t, y(t)|dt ≤ d |t − s|

with a universal constant d > 0. Therefore, besides the conditions
mentioned above, we can even restrict ourselves to the subset of

all uniformly continuous functions. This set is already compact,

hence it is a complete set of continuous functions on our interval,

see Arzela-Askoli theorem 7.23. Therefore, there exists a unique

�xed point y(t) of this contraction L, which is the solution of our

equation.

It remains to show the existence of a maximal interval I =
(t0 − a, t0 + b). Let us suppose that we have found a solution y(t)
on an interval (t0, t1), and, at the same time, the limit

y1 = lim
t→t1

y(t)

exists and is �nite. Then, it follows from what has been proved

above that there must exist a solution with initial condition (t1, y1),

in some neighborhood of the point t1, and on the left-hand side of it,

it must coincide with the solution y(t). Therefore, the solution y(t)

can surely be extended on the right-hand side of t1. There are thus

only two possibilities when the solution right of t1 does not exist:

either there is no �nite limit y(t) at t1 from the left, or the limit y1
exists, yet the point (t1, y1) is on the boundary of the domain U of

the function f . In both cases, we indeed have a maximal extension

of the solution right of t0.

The argumentation for the maximal solution left of t0 is anal-

ogous. □
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However, by formula (∥7.36∥), we have
L−1

(
e−πs

s

(s2 + 4)2

)
= 1

4L
−1(e−πsL(t sin(2t)))

= (t − π) sin(2(t − π)) ·Hπ (t).
Since Heaviside's function is zero for t < π and equal to 1 for t > π ,
we get the solution in the form

y(t) =
{

− 1
2 sin(2t)+ 1

4 t sin(2t) for 0 ≤ t < π
π−2

4 sin(2t) for t ≥ π

□

8.141. Find the general solution of the equation

y′′′ − 5y′′ − 8y′ + 48y = 0.

Solution. This is a third-order linear di�erential equation with con-
stant coe�cients since it is of the form

y(n) + a1y
(n−1) + a2y

(n−2) + · · · + an−1y
′ + any = f (x)

for certain constants a1, . . . , an ∈ R. Moreover, we have f (x) ≡ 0, i.
e., the equation is homogeneous.

First of all, we will �nd the roots of the so-called characteristic
polynomial

λn + a1λ
n−1 + a2λ

n−2 + · · · + an−1λ+ an.

Each real root λ with multiplicity k corresponds to the k solutions

eλx, x eλx, . . . , xk−1 eλx

and every pair of complex roots λ = α ± iβ with multiplicity k corre-
sponds to the k pairs of solutions

eαx cos (βx) , x eαx cos (βx) , . . . , xk−1 eαx cos (βx) ,

eαx sin (βx) , x eαx sin (βx) , . . . , xk−1 eαx sin (βx) .

Then, the general solution corresponds to all linear combinations
of the above solutions.

Therefore, let us consider the polynomial

λ3 − 5λ2 − 8λ+ 48
with roots λ1 = λ2 = 4, λ3 = −3. Since we know the roots, we can
deduce the general solution as well:

y = C1e4x + C2x e4x + C3e−3x, C1, C2, C3 ∈ R. □

8.142. Compute

y′′′ + y′′ + 9y′ + 9y = ex + 10 cos (3x) .

Solution. First, we will solve the corresponding homogeneous equa-
tion. The characteristic polynomial is equal to

λ3 + λ2 + 9λ+ 9,
with roots λ1 = −1, λ2 = 3i, λ3 = −3i. The general solution of the
corresponding homogeneous equation is thus

y = C1e−x + C2 cos (3x) + C3 sin (3x) , C1, C2, C3 ∈ R.
The solution of the non-homogeneous equation is of the form

y = C1e−x + C2 cos (3x) + C3 sin (3x) + yp, C1, C2, C3 ∈ R
for a particular solution yp of the non-homogeneous equation.

The right-hand side of the given equation is of a special form. In
general, if the non-homogeneous part is given by a function
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8.50. Iterative approximations of solutions. The proof of the

previous theorem can be reformulated as an iterative

procedure which provides approximate solutions us-

ing step-by-step integration. By a concrete bound for

the constant c from the proof, we can get even straight

bounds for the errors. Try to think this out as an exercise (see the

proof of Banach �xed-point theorem in paragraph 7.19). It can

then be shown quite easily and directly that it is a uniformly con-

vergent sequence of continuous functions, so the limit will again be

a continuous function (without invoking the complicated theorems

from the seventh chapter).

Picard's approximations

The unique solution of the equation

y′ (t) = f (t, y(t))

whose right-hand side f has continuous partial derivatives can be

expressed, on a su�ciently small interval, as the limit of step-by-

step iterations beginning with the constant function (the so-called

Picard's approximation):

y0(t) = y0, yn+1(t) = L(yn), n = 1, . . . .

It is a uniformly converging sequence of continuous functions with

continuous limit y(t).

Let us notice that we actually needed only the Lipschitzness of

partial derivatives of the function, so the theorem holds with this

weaker assumption as well. We will show in the next paragraph

that mere continuity of the function f guarantees the existence of

the solution as well, yet it is insu�cient for the uniqueness.

8.51. Ambiguity of solutions. Let us begin with a really simple

example. Consider the equation

y′ (t) = √|y(t)| .
Separating the variables, we can easily �nd the solution

y(t) = 1
4
(t + C)2,

for positive values y, with an arbitrary constant C and t + C > 0.
For the initial values (t0, y0) with y0 ̸= 0, this is an assignment

matching the previous theorem, so there will also be locally ex-

actly one solution. The solution must apparently keep being non-

decreasing, hence for negative values y0, we get the same solution,

only with the other sign and t + C < 0.
However, for the initial condition (t0, y0) = (t0, 0), we have

not only the already discussed solution continuing to the left of

t0 and to the right, but also the identically zero solution y(t) =
0. Therefore, these two branches can be bound arbitrarily, see the
picture. Nevertheless, the existence of a solution is guaranteed by

the following theorem, known as Peano existence theorem:

Theorem. Consider a function f (t, y) : R2 → R which is contin-

uous on an open set U . Then for every point (t0, y0) ∈ U ⊃ R2,

there exists a continuous solution of the equation

y′ (t) = f (t, y(t))

locally in some neighborhood of t0.

Proof. The proof will be presented only roughly, leaving the

details to the reader. Instead of using Picard's approx-

imations, we will proceed quite naively.
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Pn(x) eαx,

wherePn is a polynomial of degree n, then there is a particular solution
of the form

yp = xk Rn(x) eαx,

where k is the multiplicity of α as a root of the characteristic polyno-
mial and Rn is a polynomial of degree at most n. More generally, if
the non-homogeneous part is of the form

eαx [Pm(x) cos (βx) + Sn(x) sin (βx) ] ,
wherePm is a polynomial of degreem and Sn is a polynomial of degree
n, there exists a particular solution of the form

yp = xk eαx [Rl(x) cos (βx) + Tl(x) sin (βx) ] ,
where k is the multiplicity of α+ iβ as a root of the characteristic poly-
nomial and Rl , Tl are polynomials of degree at most l = max {m, n}.

In our problem, the non-homogeneous part is a sum of two func-
tions in the special form (see above). Therefore, we will look for (two)
corresponding particular solutions using the method of undetermined
coe�cients, and then we will add up these solutions. This will give
us a particular solution of the original equation (as well as the general
solution, then). Let us begin with the function y = ex , which has
particular solution yp1(x) = Aex for some A ∈ R. Since

yp1(x) = y′
p1
(x) = y′′

p1
(x) = y′′′

p1
(x) = Aex,

substitution into the original equation, whose right-hand side contains
only the function y = ex , leads to

20Aex = ex, i. e. A = 1
20 .

For the right-hand side with the function y = 10 cos (3x) , we are
looking for a particular solution in the form

yp2(x) = x [B cos (3x) + C sin (3x)] .
Recall that the number λ = 3i was obtained as a root of the character-
istic polynomial. We can easily compute the derivatives

y′
p2
(x) = [B cos (3x) + C sin (3x)]

+x [−3B sin (3x) + 3C cos (3x)] ,

y′′
p2
(x) = 2 [−3B sin (3x) + 3C cos (3x)]

+x [−9B cos (3x) − 9C sin (3x)] ,

y′′′
p2
(x) = 3 [−9B cos (3x) − 9C sin (3x)]

+x [27B sin (3x) − 27C cos (3x)] .

Substituting them into the equation, whose right-hand side contains
the function y = 10 cos (3x) , we get

−18B cos (3x) − 18C sin (3x) − 6B sin (3x) + 6C cos (3x) =
10 cos (3x) .

Confronting the coe�cients leads to the system of linear equations

−18B + 6C = 10, −18C − 6B = 0
with the only solution B = −1/2 and C = 1/6, i. e.,

yp2(x) = x
[− 1

2 cos (3x) + 1
6 sin (3x)

]
.

Altogether, the general solution is

y = C1e
−x + C2 cos (3x) + C3 sin (3x) + 1

20
ex

−1
2
x cos (3x) + 1

6
x sin (3x) , C1, C2, C3 ∈ R.
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We will construct a solution to the right of the

initial point t0. To this purpose, we select a small step h > 0 and

label the points

tk = t0 + kh, k = 1, 2, . . . .

The value of the derivative f (t0, y0) of the corresponding curve of

the solution (t, y(t)) is de�ned at the initial point (t0, y0), so we

can substitute a parametrized line with the same derivative:

y(0) (t) = y0 + f (t0, y0)(t − t0),

and we label y1 = y(0) (t1). We thus inductively construct the

functions and points

y(k) (t) = yk + f (xk, yk)(t − tk), yk+1 = y(k) (tk+1).

Now, we de�ne yh(t) by gluing the particular linear parts, i. e.,

yh(t) = y(k) (t) for all t ∈ [kh, (k + 1)h].

This is clearly a continuous function, which is called Euler's ap-

proximation of the solution.

Now it "only" remains to prove that the limit of the functions

yh for h approaching zero exists and is a solution.

For this, we need to notice (as we have already

done in the proof of the theorem on uniqueness and

existence of the solution) that, thanks to f (t, y) being

uniformly continuous on the neighborhood U where we are look-

ing for a solution, we have, for any selected ε > 0, a δ such that

|f (t, y)− f (s, z)| < ε,

whenever ∥(t − s, y − z)∥ < δ.

Especially, all of out functions yh are in the set of uniformly

continuous functions on the concerned interval. Therefore, by

Arzela-Askoli theorem (see paragraph 7.23 on page 443), there ex-

ists a sequence of values hn → 0 such that the corresponding se-

quence of functions yhn converges uniformly to a continuous func-

tion y(n). Further, let us write more simply yn(t) = yhn → y(t).

However, for each of the continuous functions yh, we have

only �nitely many points in the interval [t0, t] where it is not dif-
ferentiable, so we can write

yn(t) = y0 +
∫ t

t0

y′n(s) ds.

On the other hand, the derivatives on the particular intervals are

constant, so we can write (here, k is the largest such that t0+khn ≤
t, while yj and tj are the points from the de�nition of the function

yhn)

yn(t) = y0 +
k−1∑
j=0

∫ tj+1

tj

f (tj , yj )ds

+
∫ t

tk

f (tk, yk).

Instead, we would like to see

yn(t) = y0 +
∫ t

t0

f (s, yn(s)) ds,

but the di�erence between this integral and the last two terms in

the previous expression is bound by the possible di�erences of the

function f (t, y) and the lengths of the intervals. Thanks to our
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□

8.143. Determine the general solution of the equation

y′′ + 3y′ + 2y = e−2x .

Solution. The given equation is a second-order (the highest derivative
of the wanted function is of order two) linear (all derivatives are in the
�rst power) di�erential equation with constant coe�cients. First, we
solve the homogenized equation

y′′ + 3y′ + 2y = 0.

Its characteristic polynomial is

x2 + 3x + 2 = (x + 1)(x + 2),

with roots x1 = −1 and x2 = −2. Hence, the general solution of the
homogenized equation is

c1e
−x + c2e

−2x,

where c1, c2 are arbitrary real constants.
Now, using the method of undetermined coe�cients, we will �nd

a particular solution of the original non-homogeneous equation. Ac-
cording to the form of the non-homogeneity and since −2 is a root of
the characteristic polynomial of the given equation, we are looking for
the solution in the form y0 = axe−2x for a ∈ R.

Substituting into the original equation, we obtain

a[−4e−2x + 4xe−2x + 3(e−2x − 2xe−2x)+ 2xe−2x] = e−2x,

hence a = −1. We have thus found the function −xe−2x as a partic-
ular solution of the given equation. Hence, the general solution is the
function space c1e

−x + c2e
−2x − xe−2x , c1, c2 ∈ R. □

8.144. Determine the general solution of the equation

y′′ + y′ = 1.

Solution. The characteristic polynomial of the given equation is x2 +x,
with roots 0 and −1. Therefore, the general solution of the homoge-
nized equation is c1 + c2e

−x , where c1, c2 ∈ R.
We are looking for a particular solution in the form ax, a ∈ R

(since zero is a root of the characteristic polynomial). Substituting
into the original equation, we get a = 1. The general solution of the
given non-homogeneous equation is c1 + c2e

−x + x, c1, c2 ∈ R. □

8.145. Determine the general solution of the equation

y′′ + 5y′ + 6y = e−2x .

Solution. The characteristic polynomial of the equation is x2 + 5x +
6 = (x + 2)(x + 3), its roots are −2 and −3. The general solution
of the homogenized equation is thus c1e

−2x + c2e
−3x , c1, c2 ∈ R. We

are looking for a particular solution in the form axe−2x , (−2 is a root
of the characteristic polynomial), a ∈ R, using the method of unde-
termined coe�cients. Substitution into the original equation yields
a = 1. Hence, the general solution of the given equation is

c1e
−2x + c2e

−3x + xe−2x .
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universal bound for f (t, y) above, we can thus use just the last inte-

gral instead of the actual values in the limit process limn→∞ yn(t),

thereby obtaining

y(t) = lim
n→∞

(
y0 +

∫ t

t0

f (s, yn(s)) ds
)

= y0 +
∫ t

t0

(
lim f (s, yn(s))

)
ds

= y0 +
∫ t

t0

f (s, y(s)) ds,

where we used the uniform convergence yn(t) → y(t).

This proves the theorem. □

8.52. Systems of �rst-order equations. The problem of �nding

the solution of the equation y′ (x) = f (x, y) can

also be viewed as looking for a (parametrized) curve

(x(t), y(t)) in the plane where we have �xed the

parametrization of the variable x(t) = t beforehand. However,

if we accept this point of view, then we can forget this �xed choice

for one variable and we can add an arbitrary number of variables.

In the plane, for instance, we can write such a system in the

form

x′ (t) = f (t, x(t), y(t)), y′ (t) = g(t, x(t), y(t))

with two functions f, g : R3 → R. Similarly for more variables.
A simple example in the plane might be the system of equa-

tions

x′ (t) = −y(t), y′ (t) = x(t).

It can be easily guessed (or veri�ed at least) that there is a solution

of this system,

x(t) = R cos t, y(t) = R sin t,

with an arbitrary non-negative constant R, and the curves of the

solution will be exactly the parametrized circles with radius R.

In the general case, we will work with the vector notation of

the system in the form

x′ (t) = f (t, x(t))

for a vector function x : R → Rn and a mapping f : Rn+1 → Rn.
We are able to extend the validity of the theorem on uniqueness

and existence of the solution to such systems:

Existence and uniqueness for systems of ODEs

Theorem. Consider functions fi(t, x1, . . . , xn) : Rn+1 → R,
i = 1, . . . , n, with continuous partial derivatives. Then, for ev-

ery point (t0, x1, . . . , xn) ∈ Rn+1, there exists a maximal interval

[t0 − a, t0 + b], with positive numbers a, b ∈ R, and a unique

function x(t) : R → Rn which is the solution of the system of

equations

x′1(x) = f1(t, x1(t), . . . , xn(x))

...

x′n(x) = fn(t, x1(t), . . . , xn(x))

with initial condition

x1(t0) = x1, . . . , xn(t0) = xn.
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□

8.146. Determine the general solution of the equation

y′′ − y′ = 5.

Solution. The characteristic polynomial of the equation is x2 −x, with
roots 1, 0. Therefore, the general solution of the homogenized equa-
tion is c1 + c2e

x , where c1, c2 ∈ R. We are looking for a particular
solution in the form ax, a ∈ R, using the method of undetermined
coe�cients. The result is a = −5, and the general solution is of the
form

c1 + c2e
x − 5x.

□

8.147. Solve the equation

y′′ − 2y′ + y = ex

x2+1 .

Solution. We will solve this non-homogeneous equation using the
method of variation of constants. We will thus obtain the solution in
the form

y = C1(x) y1(x)+ C2(x) y2(x)+ · · · + Cn(x) yn(x),

where y1, . . . , yn give the general solution of the corresponding homo-
geneous equation and the functionsC1(x), . . . , Cn(x) can be obtained
from the system

C′
1(x) y1(x)+ · · · + C′

n(x) yn(x) = 0,

C′
1(x) y

′
1(x)+ · · · + C′

n(x) y
′
n(x) = 0,

...

C′
1(x) y

(n−2)
1 (x)+ · · · + C′

n(x) y
(n−2)
n (x) = 0,

C′
1(x) y

(n−1)
1 (x)+ · · · + C′

n(x) y
(n−1)
n (x) = f (x).

The roots of the characteristic polynomial λ2 − 2λ + 1 are λ1 =
λ2 = 1. Therefore, we are looking for the solution in the form

C1(x) ex + C2(x) x ex,

considering the system

ĂC′
1(x) e

x + C′
2(x) x e

x = 0,

C′
1(x) e

x + C′
2(x)

[
ex + x ex

] = ex

x2 + 1
.

We can compute the unknowns C′
1(x) and C

′
2(x) using Cramer's

rule. It follows from ∣∣∣∣ex x ex

ex ex + x ex

∣∣∣∣ = e2x,∣∣∣∣ 0 x ex
ex

x2+1 ex + x ex

∣∣∣∣ = −x e2x

x2 + 1
,∣∣∣∣ex 0

ex ex

x2+1

∣∣∣∣ = e2x

x2 + 1
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Proof. The proof is almost identical to the one of the exis-

tence and uniqueness of the solution for a single equation

with a single unknown function as we showed in Theorem

8.49. The unknown function x(t) = (x1(t), . . . , xn(t)) is

a curve in Rn satisfying the given equation, so its compo-
nents xi(t) are again expressible in terms of integrals

xi(t) = xi(t0)+
∫ t

t0

x′i(t) dt = xi +
∫ t

t0

fi(t, x(t)) dt.

We are thus working with the integral operator y 7→ L(y) once

again, this time mapping curves in Rn to curves in Rn, and we are
looking for its �xed point. Since the Euclidean distance of two

points in Rn is always bounded from above by the sum of the sizes

of the di�erences of the particular components, the proof goes on

in much the same way as in the case 8.49. We only need to notice

that the size of the vector

∥f (t, z1, . . . , zn)− f (t, y1, . . . , yn)∥
is bounded from above by the sum

∥f (t, z1, . . . , zn)− f (t, y1, z2 . . . , zn)∥ + . . .

+ ∥f (t, y1, . . . , yn−1, zn)− f (t, y1, . . . , yn)∥.
We recommend to go through the proof of Theorem 8.49 from this

point of view and to think out the details. □

When we introduced and examined models of a real system,

the so-called qualitative behavior of the solution in dependence

on the initial conditions and free parameters of the system (i. e.

constants or functions) is essential.

As a quite simple example of a system of �rst-order equations,

we can notice the standard population model "predator � prey",

which was introduced in the 1920s by Lotka and Volterra.

Let x(t) denote the evolution of the number of individuals in

the prey population and y(t) for the predators. We assume that the

increase of the prey would correspond to the Malthusian model (i.

e. exponential growth with coe�cient α) if they were not hunted.

On the other hand, we assume that the predator would only natu-

rally die out (i. e. exponential decrease with coe�cient γ ). Fur-

ther, we consider an interaction of the predator and the prey which

is expected to be proportional to the number of both with a certain

coe�cient β, which is, in the case of the predator, supplemented by

a multiplicative coe�cient expressing the hunting e�ciency. We

get a system of two equations:

Lotka-Volterra model

x′ (t) = αx(t)− βy(t)x(t)

y′ (t) = −γy(t)+ δβx(t)y(t).

It is interesting that the same model captures quite well the

progress of unemployment in the system limited to employers and

their employees, considering the employees to be the predators,

while the employers play the role of the prey.

Vlozit cca ctyri obrazky znazornujici dynamiku pro

ruzne hodnoty koeficientu a opatrit komentarem!!!!!

Much information about this and other models can be found

in literature.
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that

C1(x) = −
∫

x

x2 + 1
dx = −1

2
ln
(
x2 + 1

)+ C1, C1 ∈ R,

C2(x) =
∫

dx

x2 + 1
= arctan x + C2, C2 ∈ R.

Hence, the general solution is

y = C1ex + C2x ex − 1
2 e

x ln
(
x2 + 1

)+ x exarctan x, C1, C2 ∈ R.

□

8.148. Find the only function y which satis�es the linear di�erential
equation

y(3) − 3y′ − 2y = 2ex,

with initial conditions y(0) = 0, y′ (0) = 0, y′′ (0) = 0.
Solution. The characteristic polynomial is x3 − 3x − 2, with roots 2
and −1 (double). We are looking for a particular solution in the form
aex , a ∈ R, easily �nding out that it is the function− 1

2e
x . The general

solution of the given equation is thus

c1e
2x + c2e

−x + c3xe
−x − 1

2
ex .

Substituting into the original conditions, we get the only satisfactory
function,

2
9
e2x + 5

18
e−x + 1

3
xe−x − 1

2
ex .

□
Further problems concerning higher-order di�erential equations

can be found on page ??

N. Applications of the Laplace transform

Di�erential equations with constant coe�cients can also be solved
using the Laplace transform.

8.149. Let L(y)(s) denote the Laplace transform of a function y(t).
Integrating by parts, prove that

Solution.

(8.11) L(y′ )(s) = sL(y)(s)− y(0)

L(y′′ )(s) = s2L(y)− sy(0)− y′ (0)
and, by induction:

L(y(n) )(s) = snL(y)(s)−∑n
i=1 s

n−i y(i−1) (0) . □

8.150. Find the function y(t)which satis�es the di�erential equation

y′′ (t)+ 4y(t) = sin 2t

as well as the initial conditions y(0) = 0, y′ (0) = 0.
Solution. It follows from the above exercise ∥8.149∥ that

s2L(y)(s)+ 4L(y)(s) = L(sin 2t)(s).

We also have

L(sin 2t)(s) = 2
s2 + 4

,
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8.53. Stability of systems of equations. Now, we restrict our-

selves to a single basic theorem about stability of sys-

tems. We can notice that assuming that the partial

derivatives of the functions de�ning the systems are

continuous (in fact, Lipschitz) guarantees the continu-

ity of the solution's behavior in dependence on the initial condi-

tions as well as the equations themselves.

However, as the distance of t from the initial value t0 increases,

the bounds grow exponentially! Therefore, this result has only a

local usage, and it is in no contradiction with the example of the

unstably behaving equation y′ (t) = t y(t) illustrated in paragraph

8.47.5

Let us consider two systems of equations written in the vector

form

x′ (t) = f (t, x(t)), y′ (t) = g(t, y(t))

and assume that the mappings f, g : U ⊂ Rn+1 → Rn have con-
tinuous partial derivatives on an open set U with compact closure.

Such functions must be uniformly continuous and uniformly Lips-

chitz on U , so we can label the �nite values

C = sup
x ̸=y; (t,x), (t,y)∈U

|f (t, x)− f (t, y)|
|x − y|

B = sup
(t,x)∈U

|f (t, x)− g(t, x)|

Having this notation, we can formulate our fundamental theorem:

Theorem. Let x(t) and y(t) be two �xed solutions

x′ (t) = f (t, x(t)), y′ (t) = g(t, y(t))

of the systems considered above, given by initial conditions x(t0) =
x0 and y(t0) = y0. Then,

|x(t)− y(t)| ≤ |x0 − y0| eC|t−t0| +B
C

(
eC|t−t0| −1

)
.

Proof. Without loss of generality, we can assume that t0 = 0.
From the expression of the solutions x(t) and y(t) as

�xed points of the corresponding integral operators,

we immediately get the bound

|x(t)− y(t)| ≤ |x0 − y0| +
∫ t

0
|f (s, x(s))− g(s, y(s))| ds.

The integrand can be further bound as follows:

|f (s, x(s))− g(s, y(s))|
≤ |f (s, x(s))− f (s, y(s))| + |f (s, y(s))− g(s, y(s))

≤ C |x(s)− y(s)| + B

If we denote F(t) = |x(t)−y(t)|, α = |x0 −y0|, we can write
our bound as

F(t) ≤ α +
∫ t

0
(C F(s)+ B) ds.

Such a bound can be quite easily used thanks to the following

general result, which is known as Gronwall's inequality. Notice

the similarity with the general solution of linear equations.

Lemma. Let a real-valued function F(t) satisfy, for the input val-

ues from an interval t ∈ [0, tmax],

F(t) ≤ α(t)+
∫ t

0
β(s)F (s) ds

5Much more information can be found in a nice book Teschl ...
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i. e.,

L(y)(s) = 2
(s2 + 4)2

.

The inverse transform leads to
y(t) = 1

8 sin 2t − 1
4 t cos 2t . □

8.151. Find the function y(t)which satis�es the di�erential equation

y′′ (t)+ 6y′ (t)+ 9y(t) = 50 sin t

and the initial conditions y(0) = 1, y′ (0) = 4.

Solution. The Laplace transform yields

s2L(y)(s)− s − 4 + 6(sL(y)(s)− 1)+ 9L(y)(s) = 50L(sin t)(s),

i. e.,

(s2 + 6s + 9)L(y)(s) = 50
s2 + 1

+ s + 10,

L(y)(s) = 50
(s2 + 1)(s + 3)2

+ s + 10
(s + 3)2

.

Decomposing the �rst term to partial fractions, we obtain

50
(s2 + 1)(s + 3)2

= As + B

s2 + 1
+ C

s + 3
+ D

(s + 3)2
,

so

50 = (As + B)(s + 3)2 + C(s2 + 1)(s + 3)+D(s2 + 1).

Substituting s = −3, we get

50 = 10D hence D = 5

and confronting the coe�cients at s3 , we have

0 = A+ C, hence A = −C.
Confronting the coe�cients at s, we obtain

0 = 9A+ 6B + C = 8A+ 6B, hence B = 4
3
C.

Finally, confronting the absolute term, we infer

50 = 9B + 3C +D = 12C + 3C + 5

hence C = 3, B = 4, A = −3.

Since
s + 10
(s + 3)2

= s + 3 + 7
(s + 3)2

= 1
s + 3

+ 7
(s + 3)2

,

we have

L(y)(s) = −3s+4
s2+1 + 3

s+3 + 5
(s+3)2 + 1

s+3 + 7
(s+3)2

= −3s
s2+1 + 4

s2+1 + 4
s+3 + 12

(s+3)2 .

Now, the inverse Laplace transform yields the solution in the form
y(t) = −3 cos t + 4 sin t + 4e−3t + 12te−3t . □
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for some real-valued functions α(t), β(t), where β(t) ≥ 0. Then,
we also have

F(t) ≤ α(t)+
∫ t

0
α(s)β(s) e

∫ t
s β(r) dr ds

for all t ∈ [0, tmax]. If we even have that α(t) is non-decreasing,

then

F(t) ≤ α(t) e
∫ t

0 β(s) ds .

Proof of the lemma. For the sake of transparency, let us

write

G(t) = e− ∫ t
0 β(s) ds .

Using the �rst assumption of the theorem, direct computation

yields

d

dt

(
G(t)

∫ t

0
β(s)F (s) ds

)
=

= β(t)G(t)

(
F(t)−

∫ t

0
β(s)F (s) ds

)
≤ α(t)β(t)G(t)

Now, integrating with respect to t and dividing by the non-zero

function G(t) gives∫ t

0
β(s)F (s) ds ≤

∫ t

0
α(s)β(s)

G(s)

G(t)
ds,

which, having added α(t) to both sides of the inequality, gives the

�rst proposition of the lemma.

Assuming that α(t) is non-decreasing, we can continue:

F(t) ≤ α(t)
(
1 +

∫ t

0
β(s) e

∫ t
s β(r) dr ds

)
.

Now, it su�ces to notice that the integrand is actually a derivative:

−β(s) e
∫ t
s β(r) dr = d

ds

(
e
∫ t
s β(r) dr

)
,

so we �nally obtain

F(t) ≤ α(t)
(
1 −

∫ t

0

d

ds
e
∫ t
s β(r) dr ds

)
= α(t)

(
1 + e

∫ t
s β(r) dr −1

)
,

and the second proposition of the lemma has thus been proved as

well. □

Now, we can �nish the proof of the theorem about continuous

dependency upon the parameters. We have already obtained the

boundF(t) ≤ α+∫ t0 (C F(s)+B) ds, and using amerelymodi�ed
function F̃ (t) = F(t)+ B

C
, it yields

F̃ (t) ≤ D
C

+ α +
∫ t

0
CF̃ (s) ds.

This is the assumption of Gronwall's inequality with (even) con-

stant parameters, so by the second proposition of the lemma, we

get

F(t)+ B
C

≤ (α + B
C
) e

∫ t
0 C ds , ,

which is the statement

F(t) ≤ α eCt +B
C
(eCt −1)

we have wanted to prove. □
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8.152. Find the function y(t)which satis�es the di�erential equation

y′′ (t) = cos (πt) − y(t), t ∈ (0,+∞)

and the initial conditions y(0) = c1, y′ (0) = c2.

Solution. First, we should emphasize that it follows from the theory of
ordinary di�erential equations that this equation has a unique solution.
Further, we should recall that

L
(
f ′′) (s) = s2L (f ) (s)− s lim

t→0+
f (t)− lim

t→0+
f ′(t)

and

L (cos (bt)) (s) = s

s2+b2 , b ∈ R.
Applying the Laplace transform to the given di�erential equation then
gives

s2L (y) (s)− sc1 − c2 = s

s2+π2 − L (y) (s),
i. e.,

(8.12) L (y) (s) = s(
s2 + 1

) (
s2 + π2

) + c1s

s2 + 1
+ c2

s2 + 1
.

Therefore, it su�ces to �nd a function y which satis�es (∥8.12∥). Per-
forming partial fraction decomposition, we obtain

s(
s2+1

)(
s2+π2

) = 1
π2 −1

(
s

s2+1 − s

s2+π2

)
.

The above expression of L (cos (bt)) (s) and the already proved for-
mula

L (sin t) (s) = 1
s2+1

then yield the wanted solution
y(t) = 1

π2 −1 (cos t − cos (πt))+ c1 cos t + c2 sin t . □

8.153. Solve the system of di�erential equations

x′′ (t)+x′ (t) = y(t)−y′′ (t)+e t , x′ (t)+2x(t) = −y(t)+y′ (t)+e−t

with the initial conditions x(0) = 0, y(0) = 0, x′ (0) = 1,
y′ (0) = 0.
Solution. Again, we apply the Laplace transform. This, using

L
(
e±t) (s) = 1

s∓1 ,

transforms the �rst equation to

s2L (x) (s)− s lim
t→0+

x(t)− lim
t→0+

x′ (t)+ sL (x) (s)− lim
t→0+

x(t) =

= L (y) (s)−
(
s2L (y) (s)− s lim

t→0+
y(t)− lim

t→0+
y′ (t)

)
+ 1

s−1

and the second one to

sL (x) (s)− lim
t→0+

x(t)+ 2L (x) (s) =
= −L (y) (s)+ sL (y) (s)− lim

t→0+
y(t)+ 1

s+1 .

Evaluating the limits (according to the initial conditions), we obtain
the linear equations

s2L (x) (s)− 1 + sL (x) (s) = L (y) (s)− s2L (y) (s)+ 1
s−1

and

sL (x) (s)+ 2L (x) (s) = −L (y) (s)+ sL (y) (s)+ 1
s+1

with the only solution

L (x) (s) = 2s−1
2(s−1)(s+1)2

, L (y) (s) = 3s
2
(
s2−1

)2 .

Once again, we perform partial fraction decomposition, getting

L (x) (s) = 1
8

1
s−1 + 3

4
1

(s+1)2
− 1

8
1
s+1 = 3

4
1

(s+1)2
+ 1

4
1

s2−1 .
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The continuous dependency upon both the initial conditions

and the potential further parameters in which the function f would

be Lipschitz-continuous immediately follows from the statement

of the theorem. A really simple equation in one variable x′ (t) =
x(t) with exponential solution shows that we cannot hope in better

general results.

8.54. Di�erentiability of the solutions. In practical problems,

we are often interested in the di�erentiability of the

obtained solutions, especially with regard to the initial

conditions or other parameters of the system.

We can notice that in the general vector notation

of the system of ordinary equations

x′ (t) = f (t, x(t)),

we can always suppose that the vector function does not depend

implicitly on t. Indeed, if it depends explicitly on t, we can add

another variable x0 and write the same system of equations for the

curve x̃′ (t) = (x0(t), x1(t), . . . , xn(t)) as

x′0(t) = 1

x′1(t) = f1(x0(t), x1(t), . . . , xn(t))

...

x′n(t) = fn(x0(t), x1(t), . . . , xn(t))

with initial conditions

x0(t0) = t0, x(t0) = x1, . . . , xn(t0) = xn.

Such systems, which do not explicitly depend on time, are called

autonomous systems of ordinary di�erential equations.

To simplify the method, we will deal with autonomous sys-

tems dependent on parameters λ and with initial conditions

(8.9) y′ (t) = f (y(t), λ), y(t0) = x.

Without loss of generality, we will, in the case of autonomous

systems, always consider the initial value t0 = 0, and should

need arise, we will write the solution with y(0) = x in the form

y(t, x, λ) to emphasize the dependency on the parameters.

For �xed values of the initial conditions (and the potential pa-

rameters), the solutionwill always be oncemore di�erentiable than

the function f . This can be easily derived inductively by applying

the chain rule. If f is continuously di�erentiable,

y′′ (t) = D1f (y(t)) · y′ (t) = D1f (y(t)) · f (y(t))
exists and is continuous. Having all the derivatives up to order two

continuous, we get the expression for the third derivative:

y(3) (t) = D2f (y(t))
(
f (y(t)), f (y(t))

)
+ (
D1f (y(t)))2 · f (y(t)).

Think out the argumentation for higher orders in detail.

Let us assume for a while that there is a solution y(t, x) of our

system (8.9) which is continuously di�erentiable in the parameters

x ∈ Rn as well. Then, the derivative

8(t, x) = D1
x(y(t, x)),

i. e. the Jacobian matrix of all partial derivatives with respect to

the coordinates xi , which depends on the time t as well as the initial
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Since we have already computed that

L
(
t e−t) (s) = 1

(s+1)2
, L (sinh t) (s) = 1

s2−1 ,

L (t sinh t) (s) = 2s(
s2−1

)2 ,

we get

x(t) = 3
4 t e

−t + 1
4 sinh t, y(t) = 3

4 t sinh t.

We de�nitely advise the reader to verify that these functions of x and
y are indeed the wanted solution. The reason is that the Laplace trans-
forms of the functions y = et , y = sinh t and y = t sinh t were
obtained only for s > 1). □

8.154. Find the solution of the following system of di�erential equa-
tions:

x′ (t) = −2x(t)+ 3y(t)+ 3t2 ,

y′ (t) = −4x(t)+ 5y(t)+ et , x(0) = 1, y(0) = −1

Solution.

L(x′ )(s) = L(−2x + 3y + 3t2 )(s),
L(y′ )(s) = L(−4x + 5y + et)(s).

The left-hand sides can be written using (∥8.11∥), while the right-hand
sides can be rewritten thanks to linearity of the L operator. Since
L(3t2 )(s) = 6

s3 and L(et)(s) = 1
s−1 , we get the system of linear equa-

tions

sL(x)(s)− 1 = −2L(x)(s)+ 3L(y)(s)+ 6
s3 ,

sL(y)(s)+ 1 = −4L(x)(s)+ 5L(y)(s)+ 1
s−1 .

In matrices, this is A(s)x̂(s) = b(s), where

A(s) =
(
s + 2 −3

4 s − 5

)
, x̂(s) =

(
L(x)(s)
L(y)(s)

)
and b(s) =

(
1 + 6

s3

−1 + 1
s−1

)
.

Cramer's rule says that

L(x)(s) = |A1|
|A| , L(y)(s) = |A2|

|A| , where

|A| =
∣∣∣∣s + 2 −3

4 s − 5

∣∣∣∣ = s2 − 3s + 2,

|A1| =
∣∣∣∣ 1 + 6

s3 −3
−1 + 1

s−1 s − 5

∣∣∣∣ = (s − 5)(1 + 6
s3 )+ 3(−1 + 1

s−1)

|A2| =
∣∣∣∣s + 2 1 + 6

s3

4 −1 + 1
s−1

∣∣∣∣ = (s + 2)(−1 + 1
s−1)− 4 − 24

s3 .

Hence,

L(x)(s) = 1
(s − 1)(s − 2)

(
(s − 5)(s3 + 6)

s3
− 3

s − 2
s − 1

)
,

L(y)(s) = 1
(s − 1)(s − 2)

(
(s + 2)(2 − s)

s − 1
− 4s3 + 24

s3

)
.

Decomposing to partial fractions, the Laplace images of the solutions
can be expressed as follows:

L(x)(s) = − 39
2s2 − 3

(s−1)2 + 28
s−1 − 21

4(s−2) − 15
s3 − 87

4s ,

L(x)(s) = − 18
s2 − 3

(s−1)2 + 27
s−1 − 7

s−2 − 12
s3 − 21

s
.
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condition x, can be determined using the chain rule:

D1
x

(
y′ (t, x)

) = d

dt

(
D1
xy(t, x)

)
= D1f (y(t, x)) ·D1

xy(t, x).

The derivatives with respect to the initial conditions along the so-

lution y(t, x) of the system (8.54) are thus given as the solutions

of a system of n2 �rst-order equations with initial condition

(8.10) 8′(t, x) = F(t, x) ·8(t, x), 8(0, x) = E,

where F(t, x) = D1f (y(t, x)), and the initial condition comes

out from the identity y(0, x) = x. The unique existence of the

solution of this (matrix) system and its continuous dependence on

the parameters have already been proved.

The following theorem says that for systems of continuously

di�erentiable right-hand sides f , the derivatives with respect to

the parameters can indeed be obtained in this way.

Differentiability of the solutions

Theorem. Let us consider an open subset U ⊂ Rn+k and a map-
ping f : U → Rn with continuous �rst derivatives. Then, a system
of di�erential equations dependent upon a parameter λ ∈ Rk with
initial condition at a point x ∈ U

y′ (t) = f (y(t), λ), y(0) = x

has a unique solution y(t, x, λ), which is a mapping with continu-

ous �rst derivatives with respect to each variable.

Proof. First, we can notice that we can consider a system de-

pendent on parameters to be an ordinary autonomous sys-

tem with no parameters if we consider even the parame-

ters to be space variables and we add (vector) conditions

λ′(t) = 0 and λ(0) = λ. Therefore, without loss of gen-

erality, we can prove the theorem for autonomous systems with no

further parameters and concentrate on the dependency upon the

initial conditions.

Just like in the case of the fundamental existence theorem, we

will build upon Picard's approximations of the solution using the

integral operator

y0(t, x) = x, yk+1(t, x) = x +
∫ t

0
f (yk(s, x)) ds.

Merely specifying the proof of this theorem 8.49, we can verify the

uniform convergence of the approximations yk(t, x) to the solution

y(t, x), including the variable x.

Now, for the initial condition, let us �x a point x0 and a small

neighborhood V of its, which, should need be, will be reduced

during the following bounds, and let us write C for the constant

which, thanks to Lipschitzness of the function f , gives the bound

|f (y)− f (z)| ≤ C |y − z|
on this neighborhood. We have already known that if the derivative

8(t, x) = D1
xy(t, x)

of the solution y(t, x) exists, then it will be given by the equation

(8.10) with an initial condition. Therefore, let us de�ne8(t, x) by

this equation and examine the expression

G(t, h) = |y(t, x0 + h)− y(t, x0)− h8(t, x0)|
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Now, the inverse transform yields the solution of this Cauchy problem:
x(t) = − 39

2 t − 3tet + 28et − 21
4 e

2t − 15
2 t

2 − 87
4 ,

y(t) = −18t − 3tet + 27et − 7e2t − 6t2 − 21 . □

O. Equation of heat conduction

8.155. Find the solution to the so-called equation of heat conduction
(equation of di�usion)

ut(x, t) = a2 uxx(x, t), x ∈ R, t > 0
satisfying the initial condition lim

t→0+
u (x, t) = f (x).

Notes: The symbol ut = ∂u
∂t

stands for the partial derivative of
the the u with respect to t (i. e., di�erentiating with respect to t and
considering x to be constant), and similarly, uxx = ∂2 u

∂x2 denotes the
second partial derivative with respect to x (i. e., twice di�erentiating
with respect to x while considering t to be constant). The physical in-
terpretation of this problem is as follows: We are trying to determine
the temperature u(x, t) in an thermally isolated and homogeneous bar
of in�nite length (the range of the variable x) if the initial temperature
of the bar is given as the function f . The section of the bar is constant
and the heat can spread in it by conduction only. The coe�cient a2

then equals the quotient α
cϱ
, where α is the coe�cient of thermal con-

ductivity, c is the speci�c heat and ϱ is the density. In particular, we
assume that a2 > 0.
Solution. We apply the Fourier transform to the equation, with respect
to variable x. We have

F (ut) (ω, t) = 1√
2π

∞∫
−∞

ut(x, t) e−iωx dx =

=
(

1√
2π

∞∫
−∞

u (x, t) e−iωx dx
) ′

,

where di�erentiated with respect to t, i. e.,

F (ut) (ω, t) = (F (u) (ω, t)) ′ = (F (u))t (ω, t).
At the same time, we know that

F
(
a2 uxx

)
(ω, t) = a2 F (uxx) (ω, t) = −a2ω2 F (u) (ω, t).

Denoting y(ω, t) = F (u) (ω, t), we get to the equation
yt = −a2ω2 y.

We already solved a similar di�erential equation when we were calcu-
lating Fourier transforms, so it is now easy for us to determine all of
its solutions

y(ω, t) = K (ω) e−a2ω2t , K (ω) ∈ R.
It remains to determineK(ω). The transformation of the initial condi-
tion gives

F (f ) (ω) = lim
t→0+

F (u) (ω, t) = lim
t→0+

y(ω, t) = K (ω) e0 = K (ω),

hence

y(ω, t) = F (f ) (ω) e−a2ω2t , K (ω) ∈ R.
Now, using the inverse Fourier transform, we can return to the original
di�erential equation with solution

u (x, t) = 1√
2π

∞∫
−∞

y(ω, t) eiωx dω =

= 1√
2π

∞∫
−∞

F (f ) (ω) e−a2ω2t eiωx dω =
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with small increases h ∈ Rn. In order to prove that the continuous
derivative exists, we just have to show that

lim
h→0

1
h
G(t, h) = 0.

We will need several bounds to this purpose. First, from the last

theorem about continuous dependence upon initial conditions, we

can immediately see the bound

|y(t, x0 + h)− y(t, x0)| ≤ |h| eC|t| .

In the next step, we use Taylor's expansion with remainder for the

mapping f ,

f (y)− f (z) = D1f (z) · (y − z)+ R(y, z),

where R(y, z) satis�es |R(y, z)|/|y − z| → 0 for |y − z| → 0.
We get the �rst bound which uses the de�nition of the mapping

8(t, x0) using its derivative, andwewriteF(t, x) = D1f (y(t, x))

again.

G(t, h) ≤
∫ t

0
|f (y(s, x0 + h))− f (y(s, x0))

− hF(s, x0)8(s, x0)| ds
≤
∫ t

0
∥F(s, x0)∥ |y(s, x0+h)− y(s, x0)− h8(s, x0)| ds

+
∫ t

0
|R(y(s, x0 + h), y(s, x0))| ds,

where we are working with the norm on matrices given as the max-

imum of the absolute values of their entries.

Since we assume that F(t, x) is continuous, we can bound the

norm in our neighborhood V and for |t| < T with a su�ciently

small T to remain in the neighborhood V by

∥F(t, x0)∥ ≤ B,

and, at the same time, for any selected constant ε > 0, we can �nd
a bound |h| < δ for which the remainde R satis�es

|R(y(t, x0 + h), y(t, x0))| ≤ ε|y(t, x0 + h)− y(t, x0)|
≤ |h|ε eCT .

Therefore, our bound can be improved as follows:

G(t, h) ≤ B

∫ t

0
G(s, h) ds + ε|h|T eCT .

Gronwall's lemma now gives

G(t, h) ≤ ε|h|T e(C+B)T .

However, hence it follows that limh→0
1
h
G(t, h) converges to zero,

which �nishes the proof. □

It can be proved very similarly that continuous di�erentiability

of the right-hand side up to order k (inclusive) guarantees the same

order of di�erentiability of the solution in all input parameters.

It even holds that if the right-hand side f is analytic in all

parameters, then the dependency of the solution on the parameters

is analytic as well.
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= 1√
2π

∞∫
−∞

(
1√
2π

∞∫
−∞

f (s) e−iωs ds
)

e−a2ω2t eiωx dω =

= 1√
2π

∞∫
−∞

f (s)

(
1√
2π

∞∫
−∞

e−a2ω2t e−iω(s −x) dω
)
ds.

Computing the Fourier transform F(f ) of the function f (t) =
e−at2 for a > 0, we have obtained (while relabeling the variables)

1√
2π

∞∫
−∞

e−cp2
e−irp dp = 1√

2c
e− r2

4c , c > 0.

According to this formula (consider c = a2t > 0, p = ω, r = s − x),
we have

1√
2π

∞∫
−∞

e−a2ω2t e−iω(s −x) dω = 1√
2a2t

e− (s −x)2

4a2t ,

Therefore,

u (x, t) = 1
2a

√
πt

∞∫
−∞

f (s) e− (x−s)2

4a2 t ds.

□

P. Numerical solution of di�erential equations

Now, we present two simple exercises on applying the Euler
method for solving di�erential equations.

8.156. Use the Euler method to solve the equation y′ = −y2 with
the initial condition y(1) = 1. Determine the approximate solution on
the interval [1, 3]. Try to estimate for which value h of the step is the
error less than one tenth.

Solution. The Euler method for the considered equation is given by

yk+1 = yk − h · y2
k

for
x0 = 1, y0 = 1, xk = x0 + k · h, yk = y(xk).

We begin the procedure with step value h = 1 and halve it in each
iteration. The estimate for the "su�ciency" of h will be made some-
what imprecisely by comparing two adjacent approximate values of
the function y at common points, terminating the procedure if the max-
imum of the absolute di�erence of these values is not greater than the
tolerated error (0.1).

The results
h0 = 1
y(0) = (1 0 0)
h1 = 0.5
y(1) = (1 0.5 0.375 0.3047 0.2583)
Maximal di�erence: 0.375.
h2 = 0.25
y(2) = (1.0000 0.7500 0.6094 0.5165 0.4498 0.3992

0.3594 0.3271 0.3004)
Maximal di�erence: 0.1094.
h3 = 0.125
y(3) = (1.0000 0.8750 0.7793 0.7034 0.6415 0.5901

0.5466 0.5092 0.4768 0.4484 0.4233 0.4009
0.3808 0.3627 0.3462 0.3312 0.3175)

Maximal di�erence: 0.0322.
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8.55. Flows of vector �elds. Before going to higher-order equa-

tions, we stop for a while to look at systems �rst-

order of equations from the geometrical point of view.

Now, we can geometrically formalize the right-hand

side of an autonomous system as assigning the vec-

tor f (x) ∈ Rn in the direction space of the Euclidean space Rn to
each of its points x in the considered domain. We talk about the

vector �eld X(x) = f (x).

If a vector �eld X on an open set U ⊂ Rn is given, then we

can de�ne for every di�erentiable function f on U its derivative

in the direction of the vector �eld X by

X(f ) : U → R, X(f )(x) = dX(x)f.

Therefore, if we have, in coordinates, X(x) = (X1(x), . . . Xn(x)),

then

X(f )(x) = X1(x)
∂f

∂x1
(x)+ · · · +Xn(x)

∂f

∂xn
(x).

The simplest vector �elds will have all coordinate functions

equal to zero except for one function Xi which will be constantly

equal to one. Such a �eld then corresponds to the partial derivative

with respect to the variable xi . This is alsomatched by the common

notation

X(x) = X1(x)
∂

∂x1
+ · · · +Xn(x)

∂

∂xn
.

Now, the problem of �nding the solution of our system of equa-

tions can be described equivalently as looking for a curve which

satis�es

x′ (t) = X(x(t))

for each t in its domain. The tangent vector of the wanted curve is

given, at each of its points, by the vector �eld X. Such a curve is

called an integral curve of the vector �eld X, and the mapping

FlXt : Rn → Rn,

de�ned at a point x0 as the value of the integral curve x(t), sat-

isfying x(0) = x0 is called the �ow of the vector �eld X. The

theorem about existence and uniqueness of the solution of the sys-

tems of equations says that for every continuously di�erentiable

vector �eld X, its �ow exists at every point x0 of the domain for

su�ciently small values of t. The uniqueness further directly guar-

antees that

FlXt+s (x) = FlXt ◦ FlXs (x),

whenever both sides exist. Moreover, the mapping FlXt0 (x) with a

�xed parameter t is di�erentiable at all points x where it is de�ned.

If a vector �eldX is de�ned on the wholeRn and has compact
support, then its �ow clearly exists at all points and for all values of

t. Such vector �elds are called complete. The �ow of a complete

vector �eld thus consists of di�eomorphisms FlXt Rn → Rn with
inverse di�eomorphisms FlX−t .

A simple example of a complete vector �eld is the �eld

X(x) = ∂
∂x1

. Its �ow is given by

FlXt (x1, . . . , xn) = (x1 + t, x2, . . . , xn).

On the other hand, the vector �eld X(t) = t2 d
dt

on the one-

dimensional spaceR is not complete as its solutions are of the form

t 7→ 1
C − t
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Using suitable software, the following graphical representation of the
results can be obtained, where the dashed curve corresponds to the
exact solution, which is the function y = 1/x.
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□

8.157. Using the Euler method, solve the equation y′ = −2y with
the initial condition y(0) = 1 and step value h = 1. Explain the
phenomenon which occurs here and suggest another procedure.

Solution. In this case, the Euler method is given by

yk+1 = yk − h · 2yk = −yk.

For the initial condition y0 = 1, we get the alternating values±1 as the
result. This is a typical manifestation of the instability of this method
for large step values h. If the step cannot be reduced for some reasons
(for instance, when processing digital data, the step value is �xed),
better results can be achieved by the so-called implicit Euler method.
For a general equation y′ = f (x, y), that is given by the formula

yk+1 = yk + h · f (xk+1, yk+1).

In general, we thus have to solve a non-linear equation in each step.
However, in our problem, we get

yk+1 = yk − 2h · yk+1,

so we have yk+1 = 1
3yk for h = 1. Again, the obtained results can be

represented graphically, including the exact solution of the equation.
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for initial conditions with t0 ̸= 0, so they "run away" towards in�-
nite values in a �nite time.

The description of a vector �elds as assigning the tangent vec-

tor in the direction space to each point of the Euclidean space is

independent of the coordinates. The following theorem thus gives

us a geometric local qualitative description of all solutions of sys-

tems of ordinary di�erential equations in a neighborhood of each

point x where the given vector �eld X is non-zero.

Theorem. If X is a vector �eld de�ned on a neighborhood of

a point x0 ∈ Rn and we have X(x0) ̸= 0, then there exists a

transformation of coordinates F such that in the new coordinates

y = F(x), the vector �eld X is given as the �eld ∂
∂y1

.

Proof. We will construct a di�eomorphism F =
(f1, . . . , fn) step by step. Geometrically, the essence of

the proof can be summarized as follows: we select a hyper-

surface which is complementary to the directions X(x),

goes through the point x0, then we �x the coordinates on

it, and �nally, we extend them to some neighborhood of the point

x0 using the �ow of the �eld X.

First, we move the point x0 to the origin and use a linear trans-

formation on Rn in order to achieve X(0) = ∂
∂x1
(0). Now, let

us write in these coordinates (x1, . . . , xn) the �ow of the �eld X

going through the point (x1, . . . , xn) at time t = 0 as xi(t) =
φi(t, x1, . . . , xn). We de�ne

fi(x1, . . . , xn) = φi(x1, 0, x2, . . . , xn).

Since the �ow of the �eld X satis�es

φi(0, 0, x2, . . . , xn) = (0, x2, . . . , xn),

since it is the �ow at time 0, we obtain

∂F

∂xi
(0) = (0, . . . , 1, . . . , 0), i = 2, . . . , n,

and the same formula holds for i = 1, because we have X = ∂
∂x1

.

Therefore, the Jacobianmatrix of the mappingF at the origin is the

identity matrixE, so it is indeed a transformation of coordinates on

some neighborhood (see the inversemapping theorem in paragraph

8.17).

Now, directly from the de�nition of the mapping F in terms of

the �ow of the vector �eldX, the �ow of the �eld will be expressed

in the new coordinates (y1, . . . , yn) as

FlXt (y1, . . . , yn) = (y1 + t, y2, . . . , yn).

Verify this by yourselves in detail! □

8.56. Higher-order equations. An ordinary di�erential equation

of order k (solved with respect to the highest deriva-

tive) is an equation

y(k) (t) = f (t, y(t), y′ (t), . . . , y(k−1) (t)),

where f is a known function of k+1 variables, x is an independent
variable, and y(x) is an unknown function of one variable. We will

show that this type of equation is always equivalent to a system of

k �rst-order equations.

We introduce new unknown functions in a variable t as fol-

lows: y0(t) = y(t), y1(t) = y′0(t), . . . , yk−1(t) = y′k−2(t). Now,
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the function y(t) is a solution of our original equation if and only

if it is the �rst component of the system of equations

y′0(t) = y1(t)

y′1(t) = y2(t)

...

y′n−2(t) = yn−1(t)

y′n−1(t) = f (t, y0(t), y1(t), . . . , yn−1(t)).

We thus get the following direct corollary of the theorems

from 8.52�8.54:

Solutions of higher-order ODEs

Theorem. Let a function f (t, y0, . . . , yk−1) : U ⊂ Rk+1 → R
have continuous partial derivatives on an open set U . Then, for

every point (t0, z0, . . . , zk−1) ∈ U , there exists a maximal interval

Imax = [x0 − a, x0 + b], with positive numbers a, b ∈ R, and a

unique function y(t) : Imax → R which is a solution of the k-th

order equation

y(k) (t) = f (t, y(t), y′ (t), . . . , y(k−1) (t))

with initial condition

y(t0) = z0, y
′ (t0) = z1, . . . , y

(k−1) (t0) = zk−1.

Moreover, this solution depends di�erentiably on the initial con-

dition and potential further parameters di�erentiably entering the

function f .

We can thus see that for an unambiguous assignment of a so-

lution of an ordinary k-th order di�erential equation, we have to

determine at a point the value and the �rst k − 1 derivatives of the

resulting function.

If we worked with a system of ℓ equations of order k, then

the same procedure transforms this system to a system of kℓ �rst-

order equations. Therefore, an analogous statement about exis-

tence, uniqueness, continuity, and di�erentiability will hold again.

Of course, stronger properties pass on to all such systems in

the cases when the right-hand side of the equation f is di�eren-

tiable up to order k (inclusive) or analytic, including the parame-

ters, and these properties pass on to the solutions as well.

8.57. Linear di�erential equations. We have already perceived

the operation of di�erentiation as a linear mapping from (su�-

ciently) smooth functions to functions. If we multiply the deriva-

tives ( d
dx
)j of the particular orders j by �xed functions aj (t) and

add up these expressions, we get the so-called linear di�erential

operator:

y(t) 7→ D(y)(t) = ak(t)y
(k) (t)+ · · · + a1(t)y

′ (t)+ a0y(t).

To solve the corresponding homogeneous linear di�erential equa-

tion then means to �nd a function y satisfyingD(y) = 0, i. e., the
image is the identically zero function.

It is clear straight from the de�nition that the sum of two so-

lutions will again be a solution, since for any functions y1 and y2,

we have

D(y1 + y2)(t) = D(y1)(t)+D(y2)(t).

Analogously, a constant multiple of a solution is again a solution.

The set of all solutions of a k-th order linear di�erential equation
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is thus a vector space. Applying the previous theorem about exis-

tence and uniqueness, we get the following:

The space of solutions of linear equations

Theorem. The set of all solutions of a homogeneous linear di�er-

ential equation of order k is always a vector space of dimension k.

Therefore, we can always describe the solutions as linear combina-

tions of any set of k linearly independent solutions. Such solutions

are determined uniquely by linearly independent initial conditions

on the value of the function y(t) and its �rst (k − 1) derivatives at
a �xed point t0.

Proof. If we choose k linearly independent initial conditions

at a �xed point, then we get, for each of them, a unique solution

of our solution. A linear combination of these initial condition

then leads to the same linear combination of the corresponding

solutions. We thus exhaust all of the possible initial conditions, so

we get the entire space of solutions of our equation in this way. □

8.58. Linear di�erential equations with constant coe�cients.

The previous discussion surely reminded us the situation with ho-

mogeneous linear di�erence equations we dealt with in paragraph

3.9 of the third chapter. The analogy goes further even when all

of the coe�cients aj of the di�erential operator D are constant.

We have already seen such �rst-order equations (8.8) whose solu-

tion is an exponential with an appropriate constant at the argument.

Just like in the case of di�erence equations, it suggests itself to try

whether such a form of the solution y(t) = eλt with an unknown

parameter λ can satisfy an equation of order k. Substitution yields

D(eλt ) = (
akλ

k + ak−1λ
k−1 + · · · + a1λ+ a0(x)

)
eλt .

The parameter λ thus leads to a solution of a linear di�erential

equation with constant coe�cients if and only if λ is a root of the

so-called characteristic polynomial akλ
k + · · · + a1λ+ a0.

If this polynomial has k distinct roots, then we get the basis

of the whole vector space of solutions. Otherwise, if λ is a mul-

tiple root, then direct calculation, making use of the fact that λ

is then a root of the derivative of the characteristic polynomial

as well, yields that the function y(t) = t eλt is also a solution.

Similarly, for higher multiplicities ℓ, we get ℓ distinct solutions

eλt , t eλt , . . . , tℓ eλt .
In the case of a general linear di�erential equation, we assign

a non-zero value of the di�erential operatorD. Again, analogously

to the reasonings about systems of linear equations or linear di�er-

ence equations, we can see that the general solution of this type of

(non-homogeneous) equation

D(y)(t) = b(t),

for a �xed function b(t), is the sum of an arbitrary solution of this

equation and the set of all solutions of the corresponding homoge-

neous equation D(y)(t) = 0. The entire space of solutions is thus
again a nice �nite-dimensional a�ne space, hidden in a huge space

of functions.

The methods for �nding a particular solution are introduced in

concrete examples in the other column. In principle, they are based

upon looking for the solution in a similar form as the right-hand

side is.
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8.59. Matrix systems with constant coe�cients. Now, let us

take a look at a very special case of �rst-order sys-

tems, whose right-hand side is given by multiplica-

tion by an n2-dimensional unknown vector function

Y(t):

(8.11) Y ′(t) = A · Y(t)
with a constant matrix A ∈ Matn(R). Combining all our knowl-

edge from linear algebra and univariate function analysis, we can

guess the solution directly if we de�ne the so-called exponential of

a matrix by the formula

B(t) = etA =
∞∑
k=0

tk

k!
Ak.

The right-hand expression can be formally viewed as a matrix

whose entries bij are in�nite series created from the mentioned

products. If we bound all entries of A by the maximum of their

absolute values ∥A∥ = C, then, for the k-th summand in bij (t),

we get the bound tk

k!n
kCk in absolute value. Hence, every series

bij (t) is necessarily absolutely and uniformly convergent, and it is

bound above by the value etnC . Trying to di�erentiate the terms of
our series one by one, we get a uniformly convergent series with

limit A etA . Therefore, by the general properties of uniformly con-
vergent series, the derivative

d

dt

(
etA
) = A etA

also equals this expression. We have thus obtained the general so-

lution of our system (8.11) in the form

Y (t) = etA ·Z,
where Z ∈ Matn(R) is an arbitrary constant matrix. Indeed, the

exponential etA is an invertible matrix for all t, so we have obtained

a vector space of the proper dimension, and hence all general solu-

tions.

Noticeably, if we have only a vector equation with a constant

matrix A ∈ Matn(R), y′ (t) = A · y(t), for an unknown function

y : R → Rn, then the exponential etA gives n linearly independent

solutions with its n columns. The general solution is then given by

any linear combination of them.

Finally, let us recall that we met the �rst-order matrix system

in paragraph 8.54 when we were thinking about the deriv-

ative of the solutions of vector equations with respect to

the initial conditions. Now, consider a di�erentiable vector

�eld X(x) de�ned on a neighborhood of a point x0 ∈ Rn
such that X(x0) = 0. Then, the point x0 is a �xed point of its �ow

FlXt (x).
The di�erential 8(t) = Dx FlXt (x0) satis�es (see (e8.42b) on

page 531)

8′(t) = D1X(x0) ·8(t), 8(0) = E.

We thus know explicitly the evolution of the di�erential of the vec-

tor �eld's �ow at the singular point x0, which is given by the expo-

nential

8(t) = etA , A = D1X(x0).

This is a useful step for reasoning about the qualitative behavior in

a neighborhood of the stationary point x0.
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8.60. A note aboutMarkov chains. In the third chapter, we dealt

with iterative processes, where the so-called stochas-

tic matrices and Markov processes determined by

them played an interesting role. Let us recall that

a matrix A is stochastic i� the sum of each of its

columns is one. In other words,

(1 . . . 1) · A = (1 . . . 1).

If we take the exponential etA , we obtain

(1 . . . 1) · etA =
∞∑
k=0

tk

k!
(1 . . . 1) · Ak = et (1 . . . 1).

Therefore, for every t, the invertible matrix B(t) = e−t etA is sto-

chastic. We thus get a continuous version of the Markov process

(in�nitesimally) generated by the stochastic matrix A.

Indeed, di�erentiating with respect to t, we obtain

d

dt
B(t) = − e−t etA + e−t A etA = (−E + A)B(t),

so the matrix B(t) is the solution of the matrix system of equations

with constant coe�cients

Y ′(t) = (A− E) · Y (t)
with the stochastic matrix A. This can be explained quite intu-

itively. If the matrix A is stochastic, then the instantaneous in-

crease of the vector y(t) in the vector system with the matrix A,

y′ (t) = A ·y(t), is again a stochastic vector. However, we want the
Markov process to keep the vector y(t) stochastic for all t. Hence,

the sum of increases of the particular components of the vector

y(t) must be zero, which is guaranteed by subtracting the identity

matrix.

As we have seen above, the columns of the matrix solution

Y ′(t) create a basis of all solutions y′ (t) of the vector system.
Let us further suppose that the matrix A is primitive, i. e.,

some of its powers has only positive entries, see ?? on page ??.

Then we know that its powers converge to a matrix A∞, all of

whose columns are eigenvectors corresponding to the eigenvalue 1.
Hence, there must exist a universal constant bound for all powers

∥Ak−A∞∥ ≤ C, and for every small positive ε, there is anN ∈ N
such that for all k ≥ N , we already have that ∥Ak−A∞∥ ≤ ε. Now,

we can bound the di�erence between the solution Y ′(t) for large t
and the constant matrix A∞:∥∥∥∥e−t

∞∑
k=0

tk

k!
Ak − e−t

∞∑
k=0

tk

k!
A∞

∥∥∥∥
≤ e−t ∑

k<N

tk

k!
C∥A∞∥ + e−t ε∥A∞∥.

The limit of the expression f (t) = e−t∑
k<N

tk

k! can easily be

computed by iterative application of l'Hospital's rule. Indeed, dif-

ferentiation of the sum yields the same, only forN one less, and the

derivative in the denominator is not changed, so the limit is zero.

Therefore, for our chosen ε, we can �nd a T such that f (t) would

be less than ε for t ≥ T . The whole expression has thus been

bound (for n ≥ N and t ≥ T > 0) by the number ε(C + 1)∥A∞∥.
We have thus proves a very interesting statement, which re-

sembles the discrete version of Markov processes:
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Continuous processes with a stochastic matrix

Theorem. Every primitive stochastic matrix A gives a vector sys-

tem of equations

y′ (t) = (A− E) · y(t)
with the following properties:

• the basis of the vector space of all solutions is given by the

columns of the stochastic matrix

Y(t) = e−t etA ,
• if the initial condition y0 = y(t0) is a stochastic vector, then

the solution y(t) is also a stochastic vector for all t,

• every stochastic solution converges for t → ∞ to an eigenvec-

tor y∞ of the matrix A corresponding to the eigenvalue 1 of

the matrix A.

4. Notes about numerical methods

Except for the simple equations, like the linear ones with con-

stant coe�cients, we seldom encounter analytically solvable equa-

tions in practice. Therefore, we usually need some techniques to

approximate the solutions of the equations we are working with.

We have already thought of a similar idea anywhere we dealt

with approximations (i. e., we would recommend to compare this

to the earlier paragraphs about splines, Taylor polynomials, and

Fourier series). With a bit of courage, we can consider di�erence

and di�erential equations to be mutual approximations. In one di-

rection, we replace di�erences with di�erentials (for example, in

economical or population models), and vice versa.

We will stop for a while to look at replacing derivatives with

di�erences. First, we introduce the usual notation for bounds on

the errors.

Let us recall that having a function f (x) in variable x, we say

that it is, in a neighborhood of a limit point x0 of its domain, of

order of magnitude O(φ(x)) for a function φ(x) i� there exists a

neighborhood U of the point x0 and a constant C such that

|f (x)| ≤ C · |φ(x)|
for all x ∈ U . The limit point x0 can also be one of the in�nite

values ±∞.

Themost usual cases areO(xp ) for a polynomial order of mag-

nitude, at zero or in�nity;O(ln x) for a logarithmic order of magni-
tude at in�nity, and so on. Let us notice that the logarithmic order

of magnitude is independent of the choice of the logarithm base.

A good example is the approximation of a function by its Tay-

lor polynomial of order k at a point x0. Taylor's theorem for univari-

ate functions says that the error of this approximation is O(hk+1),

where h is the increase of the argument x − x0 = h.

We also considered similar topics in the case of Fourier series.

8.61. Euler method. In the case of ordinary di�erential equa-

tions, the simplest scheme is approximation with the so-called Eu-

ler polygons. We will present it for a single ordinary equation with

two quantities: one independent and one dependent. It works anal-

ogously for systems of equations where scalar quantities and their

derivatives in time t are replaced with vectors dependent upon time

and their derivatives.
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Let us consider an equation (of order one, for the sake of sim-

plicity and without loss of generality)

y′ (t) = f (t, y(t)).

Wewill denote the discrete increase of time by h, i. e., tn = t0+nh,
and yn = y(tn). It follows from Taylor's theorem (with remainder

of order two) and our equation that

yn+1 = yn + y′ (tn)h+O(h2) = yn + f (tn, yn)h+O(h2).

Therefore, if wemake n such steps with increase h from t0 to tn, the

expected bound for the total error following the local inaccuracies

of our linear approximation at most hO(h2), i. e., the error's order

of magnitude will beO(h). In practice, rounding errors take e�ect

as well.

Using the numerical procedure of Euler method, we consider

the piecewise linear polygon de�ned above to be the solution.

540


	Chapter 1. Initial warmup
	1. Numbers and functions
	2. Combinatorics
	3. Difference equations
	4. Probability
	5. Plane geometry
	6. Relations and mappings

	Chapter 2. Elementary linear algebra
	1. Vectors and matrices
	2. Determinants
	3. Vector spaces and linear mappings
	4. Properties of linear mappings

	Chapter 3. Linear models and matrix calculus
	1. Linear processes
	2. Difference equations
	3. Iterated linear processes
	4. More matrix calculus
	5. Decompositions of the matrices and pseudoinversions

	Chapter 4. Analytic geometry
	1. Affine and euclidean geometry
	2. Geometry of quadratic forms
	3. Projective geometry

	Chapter 5. Establishing the ZOO
	1. Polynomial interpolation
	2. Real number and limit processes
	3. Derivatives
	4. Power series

	Chapter 6. Differential and integral calculus
	1. Differentiation
	2. Integration
	3. Infinite series

	Chapter 7. Continuous models
	1. Fourier series
	2. Metric spaces
	3. Integral operators
	4. Discrete transforms

	Chapter 8. Continuous models with more variables
	1. Functions and mappings on Rn
	2. Integration for the second time
	3. Differential equations
	4. Notes about numerical methods

	Chapter 1. Initial warmup
	A. Numbers and functions
	B. Combinatorics
	C. Difference equations
	D. Probability
	E. Plane geometry
	F. Mappings and relations
	G. Additional exercise for the whole chapter

	Chapter 2. Elementary linear algebra
	A. Systems of linear equations
	B. Manipulations with matrices
	C. Permutations
	D. Determinants
	E. Systems of linear equations for the second time
	F. Vector spaces
	G. Linear dependence and independence, bases
	H. Linear mappings
	I. Bases and inner products
	J. Eigenvalues and eigenvectors
	K. Additional exercises for the whole chapter

	Chapter 3. Linear models and matrix calculus
	A. Processes with linear restrictions
	B. Recurrent equations
	C. Population models
	D. Markov processes
	E. Unitary spaces
	F. Matrix decompositions
	G. Additional exercises for the whole chapter

	Chapter 4. Analytic geometry
	A. Affine geometry
	B. Eucledian geometry
	C. Geometry of quadratic forms
	D. Further exercise on this chapter

	Chapter 5. Establishing the ZOO
	A. Polynomial interpolation
	B. Topology of the complex numbers and their subsets
	C. Limits
	D. Continuity of functions
	E. Derivatives
	F. Extremal problems
	G. L'Hospital's rule
	H. Infinite series
	I. Power series
	J. Additions into the ZOO
	K. Additional exercises to the whole chapter

	Chapter 6. Differential and integral calculus
	A. Derivatives of higher orders
	B. Integration
	C. Integration of rational functions
	D. Definite integrals
	E. Improper integrals
	F. Lengths, areas, surfaces, volumes
	G. Uniform convergence
	H. Expletory examples for the whole chapter

	Chapter 7. Continuous models
	A. Orthogonal systems of functions
	B. Fourier series
	C. Metric spaces
	D. Integral operators
	E. Additional exercises to the whole chapter

	Chapter 8. Continuous models with more variables
	A. Multivariate functions
	B. The topology of En
	C. Tangent lines, tangent planes, graphs of multivariate functions
	D. Taylor polynomials
	E. Extrema of multivariate functions
	F. Implicitly given functions and mappings
	G. Constrained optimization
	H. Volumes, areas, centroids of solids
	I. Applications of Stoke's theorem – Green's theorem
	J. Applications of Stoke's theorem – the Gauss–Ostrogradsky theorem
	K. First-order differential equations
	L. Practical problems leading to differential equations
	M. Higher-order differential equations
	N. Applications of the Laplace transform
	O. Equation of heat conduction
	P. Numerical solution of differential equations


