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Distance-based PCA
Classical PCA

Definition (Distance-based PCA)

The Principal Component Analysis (PCA) finds a set of standardized linear
combinations, called principal components (PCs), which are orthogonal
and taken together explain all the variance of the random vector

Xixt = (X4, ..., X)" with E (X) = py and Var (X) = Xx,

where py is k-vector and Zx is k x k matrix. Let X/ ,i =1,2,..nbe a
random sample of k-vectors (the rows of X,«x), where k < n — 1. Then the
principal component transformation is defined as

Xoxk = Yoxk = (ank_1nll')7(-) T kxk,

where T is orthogonal, rsxr=A= diag( M, - Ak)y M > ... > M >0,

N,J =1,2,...k are eigenvalues of I and ~; (jth column of ') are
eigenvectors of I'. The jth PC of X, «« is defined as jth column of Y, by
equation Y; = (Xnxk—1npx) 7, Where ; is the jth column of I' and is called
Jjth vector of PC loadings, and R = Yj;,i = 1,2, ...n are PC scores of ith
individual (R; = Yj is ith element of n-vector Y;).
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Distance-based PCA
Classical PCA

Definition (Distance-based PCA; cont.)

SVD of covariance matrix X is defined as follows
Ix =TAI" =331 Ny
LetH =1- (%117) be centring matrix, then SVD of Xy can be written as
AT T T T\ r _ 1 TyT _ T
Er = —YTHY ——F (x— mX) H (x— 1ux) M= —FTXTHXF =I5,
If X = (X1, ...,Xk)T ~ Nk (/“’X? Zx), then

@ E(Y) =0and Var (Y)) =~/ Exv; =

@ covariance of transformed variables is equal to Cov (Y, Y;) =
¥ Exv; = Ny v, = 0,i #j, Var (Y1) > Var (Yz2) > ... > Var (Yk),
ZX7j = >\j7j
© covariance of original and transformed variables Cov (X;, Y;) = ~;\;

© correlation coefficient p (X, Y;) = (vi/N/ (Zx);) i1,j = 1,2, ..k
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Distance-based PCA

Classical PCA

Definition (Distance-based PCA; cont.)

Total variance is equal to
k
tr(£x) = tr (TAFT) = tr (A) = ",
j=1
and generalized variance

k
det(Xx) = [ V-
j=1
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Distance-based PCA
Classical PCA

Definition (Distance-based PCA; cont.)

If iy = X, Ex = Sx = 3 S0 (% — %) (% = X)"
are defined as follows

= IXTHX, then sample PCs

~

?nxp = (anp*’lni.r) r:

Sx = TAT = 37 NA7], Sy =T Syl If X =  Xi)T ~ Ny (g, £x),
then
@ v, =0and Var () =3/ Sx% =
Q sarﬂali covariance of transformed variables is equal to
Cov (¥,¥)) /’Y,\Sx'vj = N¥/%;=0,i £,
Var (y1) > Var (y2) > ... > Var (yk) Sxv; = )\j’)’/
(s ] sample covariance of original and transformed variables
Cov (xl,yj) =i\

@ sample correlation coefficient

p(xia/y\f) =r (XI')/y\J') = (fy\’l \/ /):j/ (sx)ii> ;"7./ = 1727k

(X1, ..

Spatial PCA

PCA for EEG data (Katina 2011)

Definition (Spatial PCA)

@ lety; represent a k-vector of EEG responses for individual
i,i=1,2,...n, measured in k sensor locations on the human head in
R® (projected to R?, in our case)

@ in general, these sensor locations might be different for each
individual—but here, we consider their x("- and x®-coordinates be the
same and form a k x 2 matrix X

@ with respect to X, y; are y-coordinates of the surface (x,.;”, x,f.z),y,-,-),
j=1,2,..k. Lety be mean response

@ spatial PCA is generalized PCA, where PCs are calculated with
respect to the bending energy matrix Be or its inverse

@ consider a random sample of n surface values (here EEG/ERP values)
Yi = (ym o Wi o o .y,'k)T, = 1,2, coolfl]

@ the bending energy matrix B, is calculated for the mean position of
the electrodes X (here fixed position X of the electrodes on the head

@ lets = %YCT Y. be k x k sample covariance matrix, where ith row of
Ycisequaltoyi. =y, —y
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Spatial PCA
PCA for EEG data

Definition (Spatial PCA, cont.)

@ let N e 7

35=(B;) "X (B.)
be the sample covariance matrix of (B, )“
sample covariance matrix of y;;

/2 Yic, i.e. generalized

@ the non-zero eigenvalues of )3 areTj with corresponding
eigenvectors g; (PC loadings)

@ Moore-Penrose generalized inverse of Bg‘/ 2,
a/2 —a/ZATA
(Bo)™ =3\ g/

@ the PC scores are

=9 (Bs)yiii=1,2,..mj=1,2, ..k
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Spatial PCA
PCA for EEG data
 Definition (Spatial PCA.,cont) .|

Definition (Spatial PCA, cont.)

@ PCs and PC scores are useful tools for describing the non-affine
surface variation in particular, the effect of the jth PC can be viewed

by plotting

a2 ’\1/2

y +¢;Bg g, /2

y(Cj,j,OL) rl':Cl'j
for various values of r; € (0, max(|r;|)) (or reasonable magnification of
max(|r;|); alternatively, fixing ¢; = 1, magnification of/l\'/z, standard
a/2 a/ZA AT

=%

deviation of PC; scores), where B, ¥4,

@ to emphasize large scale variability (global bending), o = 1

for small scale variability (local bending), o = —1, and

if « = 0, then we take B2 = | as the k x k identity matrix and the
procedure is exactly the same as classical PCA

@ visualization the effect of each PC—qrid of gray-scale rectangles with
colors corresponding to the surface values with superimposed contours
built up based on TPS, where the fixed positions of the electrodes were
re-sampled in the convex hull data-space

Stanislav Katina

Stanislav Katina




Spatial PCA
PCA for EEG data

Definition (Spatial PCA, cont.)

@ a PC summary of the surface data

@ PC summary for any q-subset of PCs {PC;,, ... PC; }, g > 1, can be
written as

Yi(PCyy...i)) =V + B2 " ryg,i=1,..n

J15---Jg

and then Yecg;, . j,) is the matrix of y;(PC, . .))
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Spatial PCA
PCA for EEG data

Definition (Spatial PCA, cont.)

@ affine contributions to the variability—an affine subspace PCA on
the n x k matrix Y, with the rows y,;, i = 1,2,...n

@ non-affine contribution to the variability —a non-affine subspace
PCA on the n x k matrix Yya with the rows yna;, i =1,2,...n

@ in affine subspace,fA stands for sample covariance matrix of y; and
spatial PCA is calculated with respect to bending energy matrix BS = I;

@ in non-affine subspace, we have (Bg)“/2 A (B;)”/z, because pure
bending is independent of affine component

@ to find the affine component we use linear regression model (LRM)
Y, = Y8, + €, where B, = (Y ¥) 'Yy, vi,i = 1,2, ...n, are the rows of
n x k matrix Y; theny, ; = Vﬁ, is the affine component; finally, we get
non-affine component (residuals of LRM), ynai =Yi — Ya,i
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Spatial PCA
PCA for EEG data

Definition (Spatial PCA, cont.)
Consider the null model
y=p+e,

wherey = (y1,Vi, - - .yk)T, € ~ Nk(0, Xg) Special case of this model can be

written as .
y=n+B?Y cgl'? +e
j=1
where ¢; ~ N(0, 1), € ~ Nk(0, o°lkx«) independently, ug; = 0,9/ g; = 1 and
9/g; =0 (i #J)- Then

q
Ip= Z/jgjng + P lexk
i=1

Finally, £5 can be estimated by X5 and 52 = — Py
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Spatial PCA
PCA for EEG data

FP1  FP2 1 2
F7 F3 f, F4 F8 M 3 47 4 12
T3 C3 Cz C4 T4 13 5 18 6 14
15 P3 Pz P4 1g 15 7 19 8 46
o1 02 9 10

channels labels

Obrazok: Ul 10-20 systém pozicii elektréd EEG s k = 19 elektrodami
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Spatial PCA
PCA for EEG data

I

o = N w

-2
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Obrazok: TPS siet farebnych Stvoruholnikov s farbami kore$pondujucimi
vyhladenym hodnotam plochy superponovanymi kontdrami (pouzitim
optimalnej A vypocitanej pomocou GCV)
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Spatial PCA
PCA for EEG data
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Obrazok: Histogram, boxplot, and quantile plot of penalties (bending energies;
outliers—Nr.14 and 5)
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Spatial PCA
PCA for EEG data

PC 2 scores (17.01%)
2 0 2
L L L
PC 2 scores (27.33%)
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pCt 077%)  PClscores (®
PCA in PC1 and PC2 subspace (46.78%)

pCt 64.78%)
PCA in PC1 and PC2 subspace (92.11%)

PC 2 scores (16.04%)
PC 2 scores (18.57%)
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PClscores(7358%)  PGiscores ¢
PCA in PC1 and PC2 subspace (89.62%)

PC1 scores (79.76%)
PCAin PC1 and PC2 subspace (98.33%)

Obrazok: Spatial PCA—PCA of local bending patterns (outlier Nr.5; upper left),
classical PCA (outliers Nr.12 and 14; bottom left), global bending patterns (upper
right), and PCA in the affine subspace (outlier Nr.5, 12, and 14; bottom right)

Spatial PCA
PCA for EEG data

PC 2 scores (15.88%)

PC 2 scores (17.01%)
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pCt 92%)
PCA n PC1 and PC2 subspace (43.81%)

Obrazok: Iterative process of outlier detection and relaxation in the subspace of first
two PCs of local bending patterns with 'curves décolletage’—first PCA (outlier Nr.5;
upper left), second PCA (outlier Nr.12 and 14; upper right), third PCA (outlier Nr.11;
bottom left), final PCA (without outliers; bottom right)

Stanislav Katina

Stanislav Katina




Spatial PCA
PCA for EEG data

Pet s o )
PCAIn PG and PC2 subspace (98.33%) PCAInPG1 and PC2 subspace (98.33%) PCAInPC1 and P

Obrazok: Iterative process of outlier detection and relaxation in the subspace of first
two affine PCs with 'curves décolletage’—initial PCA with incorrect relaxation direction

(outlier Nr.5, 12, and 14; upper left), initial PCA with correct relaxation direction (outlier

Nr.5, 12, and 14; upper right), final PCA (without outliers; bottom)
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Spatial PCA
PCA for EEG data

Euler angles 1, 6, and ¢ in degrees (clockwise around x(1)-, x(2)-
and y-axis) of original and affine-relaxed surfaces (OLS planes)
were calculated from a 3D rotation matrix. Additionally, translation in
absolute and relative scale (in the range of y values including whole
sample) was calculated as a difference of original and affine-relaxed
surface centres.

Tabulka: Affine outliers—angles of rotation about particular axes
(clockwise, in degrees)— about x(V-axis, § about x(?)-axis, ¢ about
y-axis; translation of surface centers in absolute (t.abs) and
relative (t.relat; in % of the range of y of the whole sample) scale

outliers P 0 ¢ tabs trelat
Nr. 5 —0.65 0.15 -0.07 1.00 13%
Nr. 12 —-1222 -3.24 472 137 —-17%
Nr. 14 2.00 1.26 —1.38 1.81 23%
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GMM
Simulations—quint examples

with added gaussian noise with added directional noise with added noise
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Obrazok: 250 quints generated from a normally distributed sequence
of 1000 random numbers—X = (X1, X2, X3, X4), Xj ~ Ng (ux, %lsxs),
M1 = (_170)7 K2 = (07 1)7 M3 = (170)’ 2 (07 _1)’ and ps = (070)1
o? = 0.001 (left); 9 quints with different random noise (middle, right)

GMM
Simulations—quint examples

with added gaussian noise
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PC1 scores (11.7%)

Stanislav Katina

Stanislav Katina




GMM

Simulations—quint examples
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Obrazok: Procrustes form space with k x CS (first row) and
In(k x CS) (second row), k = 1,2,5
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GMM

Simulations—quint examples

with added directional noise
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PC1 scores (74.2%)
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GMM

GMM

Simulations—quint examples

Simulations—quint examples

shape PC 1 minus with added directional noise) shape PC 1 plus

PC2 scores (9.54%)
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GMM
Simulations—quint examples

PC 1 minus

PC 1 plus

e

PC2 scores (2.27%)
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GMM

Simulations— quint example
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GMM
Key knowledge

0 form—information about object geometry that remains after translation
and rotation effects are removed

shape—information about object geometry that remains after
translation, rotation, and size effects are removed

object geometry—2D/3D Cartesian coordinates in k x d configuration
matrix X

shape components—affine (uniform) X4, non-affine (nonuniform)
Xna [local benging and global bending]

o
%
© biological homology—biologically correspondent parts of an organism

but point locations with respect to deformation TPS model—landmarks
© geometrical homology—uwith respect to some minimization criteria
(bending energy of TPS model) between source and target

configuration— semilandmarks on curves and surfaces

@ vectorization—Vectorized X = (x(":x?:
Vec(X) = x = (x, x® .. x), then Xs is n x dk matrix of vectorized
Procrustes shape coordinates Vec(Xp ;) = Xp; as its rows and its

covariance matrix is written as S

Geometric Morphometrics

Generalized Procrustes Analysis—Procrustes k-point registration

Definition (Generalized Procrustes Analysis, GPA)

Procrustes form coordinates x; ; =I';(x; — t;), where [; is rotation matrix
and t; is translation, x; ; are rows of Xy ;, i = 1,...n. Then we say that

Xi,i =1,2,...n are in optimal position or have the best Procrustes fit in the
sense of ‘form’ if

arginf Z H Xf7j = Xfyj ‘2 =

1<i<j<n

T T||?
arg inf Z I',- (X, = 1kt,T) = I',- (Xj = 1ktJT)
s 1<i<j<n

ry,.Fesoe)
tq,...tn€RY
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Geometric Morphometrics

Generalized Procrustes Analysis—Procrustes k-point registration

Definition (Generalized Procrustes Analysis, GPA)

Procrustes shape coordinates x» ; = ¢;I'i(x; — t;), where ¢; is scale, ['; is
rotation matrix and t; is translation, xp ; are rows of Xp;, i =1, ...,n. Then we
say that X;,i = 1,2, ..., n are in optimal position or have the best Procrustes
fit in the sense of 'shape’ if

arginf Y || Xpi —Xp; |I* =

1<i<j<n
arginf > e (X/ - 1kt/T>T — gl (Xj - 1kth)T 2
— 1<i<j<n

r,,.Feso)
t1,...tn€RY cq,Cp,...CcHERY
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Interpolation TPS Model

Definition (Thin-Plate Spline (TPS))
Consider a TPS given by f(x) = (fi (x), 2 (X), ... fs (X)), where

f(x) =c+ATx+W's(X), i (X) = Cm + apX+ 3| Windj (X), where
m=1,2,..d,¢c=(c1,Ca,...Cq)" , A= (a1, ap, ...a4),

Wn = (W1m7 Wom, . .. ka)T; W= (W1aw27 -~~wd),

S (X)qy = [P1(X), ... &k (x)]”, continuous radial (nodal) basis function

Ix31og (IXI3) Vlixl, >0 ifd =2
¢(x) =19 0,V|x],=0 ifd =2
HXHZ ) If d — 3
TPS interpolation to the data (x;, y;) is defined as
Y S 1 X w S 1, X
0o |=(1 o0 o ¢ |,L=(1 o0 o |,
0 X" 0 0 A X" 0 o

where Yixg = (Y1, .. .yk)T and Xy xg = (x1,...xk)T,
(S)U = ¢j (X,‘) = ¢(X,‘—Xj i =1,2,.. k.
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Interpolation TPS model

Definition (Thin-Plate Spline (TPS), cont.)
Inverse of L is equal to

where

@ bending energy matrix equals to B, = L

k x k
@ bending energy or penalty equals to

d 2p 2
IO =501 S o | Sy (i) | dxVa@..o@
with TPS model solution as
J(f) = tr (WTSW) = tr(YTB.Y)

Geometric Morphometrics

Bending Energy
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Obrazok: TPS deformation grid, bending, and bending energy
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Geometric Morphometrics

Affine and non-affine coordinates

Relative Warp Analysis

Definition (Affine and non-affine coordinates)

Regressing each k x d matrix Xp; (d = 2, 3) onto the Xp can
be defined by the MMLRM (Multivariate Multiple Linear
Regression Model)

~ = vTv \ 1T .
Xp; = Xpf + €i; B; = (xpxp) XpXp i =1,2,..n.

Let 3 = (5,1 55,-2) for 2D and 3 = <5,1 55,-255,-3> for 3D, then

@ affine Procrustes coordinates: Xaj = Xp7,-§,-

@ non-affine Procrustes coordinates (residuals of
MMLRM): XNA,i =Xp + (XP,i = XAJ)
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Generalized PCA—from shape space to affine and non-affine subspaces 1

Definition (Relative Warp Analysis (RWA))

If bending energy matrix Be is calculated for the mean shape
Xp, then dk x dk matrix B = ly4 ® Be. Let Generalized
covariance matrix with respect to bending energy is equal
to

S(oc) _ (Bf)a/ZS (B,)Q/Z’

where (B—)%/2 = EJ y o ZATfyj is Moore-Penrose generalized

inverse of B®/2.The non-zero eigenvalues of S(Ba) calculated by

SVD areTj and corresponding eigenvectors §j (relative warps,
RW). Then RW scores

ry =] (B7) Vec (Xs)) i =1,2,..n;j = 1,2,...Jq,
where Jy is the number of non-zero eigenvalues (d = 2, 3).
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Relative Warp Analysis

Relative Warp Analysis

Generalized PCA—from shape space to affine and non-affine subspaces 2

Definition (Relative Warp Analysis (RWA), cont.)
The effect of the jth RW can be viewed by plotting

Vec (Xp (c,j, a)) = Vec(Xp) + ch”/2§j7j.1/2,rj — cj7j.1/2

for various values of r; € (0, max(|r;|)) (or reasonable
magnification of max(|r;|); alternativelly, either ¢; ~ N(0,1) or

fixing ¢; = 1, magnification of71/2 standard deviation of RW;
scores), where BY/? = > j“/ ﬂj To emphasize

@ /arge scale variability (global bending), o = 1,
@ small scale variability (local bending), o = —1,

© o =0, then we take B? = | as the dk x dk identity matrix
and the procedure is equivalent to PCA of Procrustes
shape coordinates
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Generalized PCA—from shape space to affine and non-affine subspaces 3

Definition (Relative Warp Analysis (RWA), cont.)

@ Affine contribution to the variability by performing affine subspace
PCA on the covariance matrix S, of n x dk matrix X, with the rows
Vec (Xa,), i = 1,2,...n (which is equivalent to the RWA with o = 0)

© Non-affine contribution to the variability by performing non-affine
subspace PCA on the covariance matrix Sy, of n x dk matrix Xya with
the rows Vec (Xna,i), i =1,2,..n

Contribution of (a)symmetry by augmenting relabeled and reflected
Procrustes configurations to vectorized matrix of Procrustes shape
coordinates and performing SVD of S,s

Size contribution by augmenting vectorized matrix of Procrustes
shape coordinates by column of centroid sizes

Xsize = (IN(CS1), ...,In(CS,))", where CS; = \/(zj.‘=1 Ixj — Xi||3) =
I1Xi|| = tr(X;X]), then n x (dk + 1) matrix of vectorized form

coordinates Xr = (Xsfxs,-ze), and finally performing SVD of S¢
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GM vs KM
GM neurokrania ryb z rodu belica

@ neurocrania—roaches Rutilus rutilus and Rutilus virgo
(Actinopterygii: Cyprinidae)

@ R. rutilus (ny = 30) and R. pigus neurocrania (n,, = 50),
27 measurements
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GM vs KM
GM neurokrania ryb z rodu belica
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GM vs KM
GM neurokrania ryb z rodu belica
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Traditional vs Geometric Morphometrics

Fish Neurocrania-—Rutilus rutilus and R.pigus (Cyprinidae)

o
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PC 1 scores (39.464%)
distances

Obrazok: PCA of inter-landmark distances

Stanislav Katina

Stanislav Katina




Traditional vs Geometric Morphometrics

Traditional vs Geometric Morphometrics

Fish Neurocrania-—Rutilus rutilus and R.pigus (Cyprinidae)—Shape Space PCA
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Fish Neurocrania-—Rutilus rutilus and R.pigus (Cyprinidae)—Form Space PCA

RW2 scores (6.42%)
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Relative Warp Analysis

Generalized PCA—Generelazed PCA for paired data

Relative Warp Analysis

Generalized PCA—Generelazed PCA for paired data

Definition (RWA for paired data)

@ Letxp; = Vec(Xp,),i =1,2,...,n;n = 48 be a 2k-vector of

Procrustes shape coordinates, where Xp; = (x,g’),fxf,zv), ,

) — (X0, 1, ) d = 1,2

Xp i =

@ Let xp,; be 2k-vectors (k = 22) of matched-pair differences of
vectorized Procrustes shape coordinates, Xp ;i = Xp,15,; — Xp,10,i,
Xp, 15 = Vec(Xp,15,1) and Xp 10,; = Vec(Xp 10,i)

© S» be the covariance matrix of the data xp ,

Q Xp.10 = (x5 XE)0) = (X1, ..., %) be k x 2 matrix of mean Procrustes
shape coordinates X; of 10-year group, j = 1,2, ..., k, then
o -
S 1« Xp10 L1
o0 0 f (e b )
Xpo 0 0 ok

12
I-k><3

L=
LE%s
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Definition (RWA for paired data, cont.)

@ where L is symmetric positive definite,

@ the inverse of S exists as long as the landmarks are at least four in
number, not all on one straight line, and also not in the same place
(coincident); then inverse of L exists and is equal to L~"

® S =0¢(X —Xs);j,5=1,2,...,k, ¢ (x) = [|x||5 log <||X||§), vIx|l, > 0, if
x]l, =0,¢(x)=0
@ k x k matrix B = L' is called bending energy matrix of Xp 10, 2k x 2k

matrix B = lo»» ® Be, and 1/Be = 0, X" B, = 0, so the rank of the
bending energy matrix is k — 3

@ then (B’)’*/2 Sp (B’)“/2 is generalized covariance matrix of
matched-pair differences of vectorized Procrustes shape
coordinates, Xp ;

@ non-zero eigenvalues areTj with corresponding eigenvectors g; (PC
loadings, RWs)
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Relative Warp Analysis
Generalized PCA—Generelazed PCA for paired data

Definition (RWA for paired data, cont.)

@ RW scores are defined as r; = g/ (B™)*/*xp,
@ the effect of the jth RW can be viewed by plotting

Vec (XP (Cj,j, a)) = VeC(ip’m) = CjBa/Z/g\ﬂ?/z’ rj = Cj/l;1/2, G € RT

for various values of r; € (0, max(|r;|)) (or some magnification of

max(|ry|); alternativelly, fixing ¢; = 1, magnification offl;l/2 as standard
deviation of PC; scores)

@ the effect of the linear combination of RW, and RW., can be viewed
by plotting

Vec (Xp (C1, C2, @) = Vec(Xp 10) + ¢1B/2g1 11’2 + ¢,B*/?g,13/?
@ a PC summary of the shape data

2 2
Vec (Xp15, (o)) = Vec(Xe,10)+B5 " D 1y = Vec(Xp.10)+) _ 68/ X0,

J=1 j=1
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Relative Warp Analysis
Generalized PCA—Generelazed PCA for paired data

Definition (RWA for paired data, cont.)

@ to find the affine component we use linear regression model

X0 +x5) = x50 + €@ d =1,2i =1,2,...,n,

I

@ then xf:,? = if,cﬂo,@,(d) and X, = (xf;}fxf}) is the affine component of
Xp i

@ in affine subspace, SDA_stands for sample covariance matrix of
Xpa,i = Vec(Xa,i) — Vec(Xp,10); then PCA of Spj is called
affine-subspace PCA

@ let Xpr = (XDfxs,»ze), be an n x (2k + 1) matrix with the rows equal to
xor; = (x0.,In(CS))" i =1,2,...,n, and x[, = (IN(CS1), ..., IN(CS»)).
Let Spr be the covariance matrix of the data xpr ;; then PCA of Spr is
called form-space PCA

@ the first PC represents allometry—shape change during growth

Stanislav Katina

Relative Warp Analysis
Generalized PCA—Generelazed PCA for paired data

Definition (RWA for paired data, cont.)
Visualization of interpolated shape changes can be done
@ via thin-plate spline (TPS) deformation grids,

@ field of vectors (within the convex hull of reference shape ip,m, where
longer vectors show stronger deformation in the specific direction of the
shape change) superimposed with the grid of gray-scale rectangles
with colors corresponding to the Procrustes distances (regions
showing milder deformation are lighter, regions with stronger
deformation are darker; the surface does not show the direction—but
only the size—of some shape change)

Stanislav Katina

Data

2D lateral X-rays—growth after surgery (paired data)

@ Veleminska J., Katina, S., Smahel, Z., Sedlagkova, M., 2006: Analysis of facial
skeleton shape in patients with complete unilateral cleft lip and palate:
Geometric morphometrics. Acta Chirurgiae Plasticae, 48,1: 26—32

@ Veleminska J., Smahel, Z., Katina, S., 2006: Development prediction of sagittal
intermaxillary relations in patients with complete unilateral cleft lip and palate
during puberty. Acta Chirurgiae Plasticae, 49,2: 41-46

@ Katina, S.,2008: Detection of shape outliers with an application to complete
unilateral cleft lip and palat in humans. In S. Barber, P.D. Baxter, A. Gusnanto &
K.V.Mardia (eds), The Art & Science of Statistical Bioinformatics, pp. 33-37.
Leeds, Leeds University Press

@ Katina, S.,2011: Detection of shape outliers for matched-pair shape data. Tatra
Mountains Mathematical Publication (accepted)

@ 48 boys, complete unilateral cleft of lip and palate (UCLP), without symptoms of
other associated malformations, Clinic of Plastic Surgery in Prague

@ homogenously operated by the same team of surgeons (cheiloplasty according
to Tennison, periosteoplasty without the nasal septum repositioning

@ patients monitored during puberty, at the ages of 10 and 15 (born between 1972
and 1978)

@ 22 landmarks (x-rays of the patients’ heads, under standard conditions,
SigmaScan Pro 5 software)

Stanislav Katina




Geometric Morphometrics
2D lateral X-rays—growth after surgery (paired data)

Obrazok: Cleft patients and Design of lateral X-ray (semi)landmarks

[Dpt. of Anthropology, Charles University, Prague, Czech Republic]
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Data—10yrs old boys before operation

2D lateral X-rays—growth after surgery (paired data)
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Data—15yrs old boys after operation

2D lateral X-rays—growth after surgery (paired data)
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Geometric Morphometrics

2D lateral X-rays—searching biological signal in the data
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Obrazok: All PCA/RWA models—RW,RW, subspace
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Results of RWA—form space
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Outlier relaxation using PRM3
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Obrazok: Relaxation in Procrustes shape coordinates; TPS
deformation grids and field of vectors superimposed with the surface
of Procrustes distances of mean shape XPJO to the shape Xp 19 29
(left) and to the final relaxed shape Xp 10 29 (right); ‘curve décolletage’
of the shape Xp 19 29 (x—mean shape Xp 19, big e—shape Xp 1029,
small e—relaxed shapes Xp 19,29; middle)
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Data—human faces in 2D

@ Oberzaucher, E., Katina, S., Holzleitner, I.J., Schmehl, S.F., Mehu-Blantar, 1.,
Grammer, K., 2011: The myth of hidden ovulation: Shape and texture changes in
the face during the menstrual cycle. PNAS (submitted)

@ Pfluger, L.S., Oberzaucher, E., Katina, S., Holzleitner, 1.J., Mehu-Blantar The
Signal of Fertility. Evidence from a Rural Sample. Evolution and Human
Behaviour (accepted)

@ 20 young women (aged between 19 and 31) who reported to have a regular
menstrual cycle and did not take any hormonal contraceptives

@ standardized facial photographs—one taken in the ovulatory and one in the
luteal phase

@ in a forced choice task, 50 male and 50 female subjects were presented with
these photographs of each participant—to pick out the more attractive, healthy,
sexy, and likeable, of the two

@ skin patches sized 150 x 150 pixels from the cheek and subjected them to the
same forced choice task with slightly modified adjectives

@ 46 landmarks and 26 semilandmarks
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Data—human faces in 2D
2D Facial Analysis—two group differences

20 young women, 19 — 31yrs old, 46 + 26 (semi)landmarks
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Obrazok: Design of facial (semi)landmarks

[Dpt. of Anthropology, University of Vienna, Vienna, Austria]

Data—human faces in 2D
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Geometric Morphometrics

2D Facial Analysis—searching for biological signal in the data
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Geometric Morphometrics

2D Facial Analysis—searching for biological signal in the data
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Obrazok: Affine subspace PCA—RWA of S, (RW4,RW, subspace)
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Geometric Morphometrics

Geometric Morphometrics

2D Facial Analysis—searching for biological signal in the data

2D Facial Analysis—searching for biological signal in the data
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Results of RWA—bending patterns with small scale
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Geometric Morphometrics

2D Facial Analysis—searching biological signal in the data

full shape space PC2+ global bending PC1+ local bending PC1+ local bending PC2+
[ [mm

ovulatory face ovulatory face

ovulatory face

ovulatory face

global bending PC1—

full shape space PC2— local bending P local bending PC

o

luteal face uteal face uteal face luteal face

Obrazok: Summary of RWA/PCA analyses in all subspaces of paired
shape differences [statistically significant RWs/PCs]
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Data—human skulls

3D (semi)landmarks

@ example re-uses part of a Vienna data set of 372 skulls from various collections

@ 106 human crania (38 adult females, 54 males, 3 juvenile females, 11 juvenile
males, 14 unknown sex; from newborns to adults)

@ Dept. of Archaeological Biology and Anthropology, Natural History Museum,
Vienna, Austria

@ Dept. of Anthropology, University of Vienna, Vienna, Austria

@ Weisbach collection - acquired and exhumed skeletons of soldiers of the
Austro-Hungarian monarchy, sex and age of these crania are known from military
records

@ Hallstatt collection from ossuary in Hallstatt, sex and age are known from the
church-books

@ data — 347 landmarks and semilandmarks — 32 landmark points, 7 ridge curves
totalling 161 semilandmarks and 154 surface semilandmarks [5 — base, 184 —
face, 158 — neurocranium]

@ landmark points on both sides of every cranium and semilandmarks (on curves
and surface) on the left side of every cranium were digitalized using a
MicroScribe 3DX (Mitteroecker et al, 2004, Gunz, 2005)

@ Katina, S., Bookstein, FL., Gunz, P, Schaefer, K., 2007: Was it worth digitizing
all those curves? A worked example from craniofacial primatology. American
Journal of Physical Anthropology Suppl. 44: 140.
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Data—human skulls

6 norms: norma frontalis, lateralis dex. a sin., occipitalis, verticalis, basilaris




Data—human skulls

Data—human skulls

(Semi)landmarks of three skull regions

Design of the experiment
Homo sapiens
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x—coordinates
MEAN SHAPE: all specimens, from juveniles to adults
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(Semi)landmarks of three skull regions and euryon variability
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3D Form Space PCA
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PC 1 scores (18.246%)
juvenile-to-adult growth: left-to-right (all 347 landmarks, 3D)

Obrazok: PC1 and PC2 scores

3D Form Space PCA
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2D Skulls
Predmosti skulls

@ professionally digitised glass plate negatives of fossil skulls
(Pfedmosti 1 — P1, Pfedmosti 3 — P3, Pfedmosti 4 — P4, Pfedmosti 9 —
P9, Pfredmosti 10 — P10)

@ in the accessible norms: frontal, lateral sin., occipital, basal, and vertical
views

@ the skulls in question are those determined by Matiegka to have been
females (P1, P4, P10) and males (P3, P9)

@ 17 landmarks in the right lateral view

@ the recent population collection — 103 skulls of known sex (51 males
and 52 females) and age from the first third of the 20th century

@ Katina, S., Seféakova, A., Veleminska, J., Bruzek, J., Veleminsky, P,
2004: A Geometric approach to cranial sexual dimorphism in the upper
palaeolithic skulls from Pfedmosti (Upper Palaeolithic, Czech Republic).
Journal of the National Museum, Natural History Series 173,
1-4:133-144

@ Seftakova, A., Katina, S., 2008: Geometrical analysis of adult skulls
from Pfredmosti, In: Veleminska, J, Bruzek, J, (eds), Fossil hominids
from Pfedmosti nr. Pferov : Old documentation and new reading.
Academia, Praha, 87 — 101
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2D Skulls
Norma frontalis
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Skulls
Norma lateralis
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2D Skulls
Example of skull from Pachner reference sample

e
[Pachner collection at the Department of Anthropology and Human Genetics of Charles

University in Prague (Czech Republic)]
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2D Skulls

PCA Summary

Legenda:
F—Pachner females (n=52), M—Pachner males (n=51),

Predmosti crania—P1 o, P3l, P4 e, PO A, P10 ¢

@ TPS deformation grids and RW scores (RW1 and RW?2) — in shape
space (identical to PCA in shape space)

TPS deformation grids and RW scores (RW1 and RW?2) — in shape
space for local changes with large scale (o = 1)

TPS deformation grids and PC scores (PC1 and PC2) — in form space

TPS deformation grids and PC scores (PC1 and PC2) — in form space
with 95% tolerance ellipses for males and females

TPS deformation grids and RW scores (RW1 and RW2) —in shape
space for local changes with small scale (o« = —1)

o
o
o
o
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RWA in Paleoanthropology—Shape Space
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RWA in Paleoanthropology—Global Bending Patterns

RW2 scores (26.391%)

-004 -002 000 002

RW1 scores (38.612%)
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RWA in Paleoanthropology—Form Space

RW2 scores (12.41%)
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!
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RW1 scores (28.46%)
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RWA in Paleoanthropology—Form Space

RW2 scores (12.41%)
-0.10 -005 0.00 005 0.10
!
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RW1 scores (28.46%)
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RWA in Paleoanthropology—Local Bending Patterns

RW2 scores (13.212%)

RW1 scores (40.172%)
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3D laser-scan capture

Geometric Morphometrics

3D facial shape—VCFS data, differences between cases and controls (paired data)

42 pairs of laser-scanned faces, 23 landmarks, 1664
geometrically homologous semilandmarks on curves and
surfaces, 59242 mesh-points triangulated with 117386 faces

L)
5

Obrazok: VCFS face, laser-scan, and surface meshes

[Royal College of Surgeons in Ireland, Dublin; Face 3D data]
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3D facial shape—VCFS data, differences between cases and controls (paired data)
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Obrazok: Design of facial (semi)landmarks—symmetrized mean
shape
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3D face—first steps of the analysis

Data analysis 1

Data analysis:

@ with respect to the analysis of object asymmetry (in our case, facial
shape asymmetry), the original coordinates were relabelled and
reflected (RR) with respect to midsagital plane (MP)

@ MP was estimated as an ordinary least square plane of unpaired
midsagital landmarks and rotated into (x, y)-plane

@ for paired (semi)landmarks, the sign and labels were reversed across
the left-hand and right-hand side of the head shape

@ the original PSC together with their RR counterparts were jointly
submitted to GPA to register both into the same shape space

@ both configurations were centered with respect to original and RR
Procrustes mean shape, respectively, resulting in original and RR
centered PSC

@ fluctuating asymmetry (FA) expresses how the difference between the
original and RR shapes fluctuate in the sample; it is calculated as the
sum of squares of individual asymmetry scores, i.e. Procrustes
distances between original and RR centered PSC of each shape

Stanislav Katina

3D face—first steps of the analysis
Data analysis 2

Data analysis:

@ the asymmetry of the means (AM) is calculated as the sum of squares
of the Procrustes distances between the original and RR Procrustes
mean shape; AM multiplied by sample size is called directional
asymmetry (DA)

@ the PSC were adjusted for age and sex by linear regression model of
the form

centered PSC; = sex+age+sex : age+¢;,i = 1,2,...1664;j =1,2,3;

for further analysis, residuals of this model were used

@ the direction of case-control difference was found based on the
projection of “null shape” to particular PC subspaces; if this fails to
negative side of the PC axes cases are on the negative part of the axis
as well; if this fails to positive side of the PC axes cases are on the
positive part of the axis as well
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3D face—first steps of the analysis

Standardized views
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3D face—first steps of the analysis
Data analysis 3

PCA for reversible 3D images:

@ 21 RR centered case-control (semi)landmark differences at the same
time

@ PC scores for original and RR data are equal in absolute values

@ in this setting, symmetric and asymmetric PCs are separated which
simplifies the interpretation

@ the symmetric PCs are these where PC scores of original and RR
data do not have the same sign (they are equal only in absolute
value)

@ the asymmetric PCs are these where PC scores of original and RR
data have the same sign (they are equal)
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Geometric Morphometrics Geometric Morphometrics

3D facial shape—VCFS data, differences between cases and controls (paired data) 3D facial shape—VCFS data, differences between cases and controls (paired data)
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TPS deformations in topo-colors TPS deformations in topo-colors and wireframes
PCA estimates—control-to-case 3D Euclidean distance, signed distance; x-, y-, and PCA estimates—control-to-case 3D signed Euclidean distance, wireframes, and
z-axis direction (shape space) transparent visualization (shape space)
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2-block PLS

@ asymmetric 2-block PLS—traditional focus of the PLS
methods—find the directions in X4 that best describe X5 in
some way—oprediction of dependent variables X, from
independent variables X (Martens & Naes 1989, Joreskog
& Wolf 1982)

@ symmetric 2-block PLS—Ilow-dimensional linear
relationship between two high-dimensional measurement
blocks by adapting one single SVD (Sampson et al. 1989,
Bookstein 1994, Mclintosh et al. 1996)
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2-block PLS

o Let Sy = 1XEXS be the sample covariance matrix and then

e

where k1 + ko = k (k1 < k) is number of landmarks, ki is
number of landmarks in the first block and k» in the second
block, Sy, is dk, x dk;, sample covariance matrix of the bth
block, S4, = SzT1 is dkq1 x dk, sample cross-block
covariance matrix and is equal to

S11
So1

S12
S2

1

;
S = HX3,1XS,2
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2-block PLS

@ adapting the SVD to S, we get

AN AN A

S, = UNV',

where U is the estimate of dk1 x dkq orthogonal matrix of
left singular vectors with the columns 7y; (j = 1,2, ... dky)

and V is the estimate of dky x dky orthogonal matrix of
right singular vectors with the columns 75;

(j=1,2,...dky) and A is the estimate of dks x dk, matrix
of singular values ); on the diagonal (j = 1,2,... dky).

@ latent variables (scores) are defined as

L= Xs1U, Ly= X5,V
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2-block PLS

@ covariance between jth column l4; of L4 and jth column Iy,
of Ly is
Cov (|1j7 |2j) = /)\\j,
the maximum for any pair of such linear combination
@ each column of U is proportional to the covariances of the

block of Xs 1 with the corresponding column of the matrix
L,

@ each column of V is proportional to the covariances of the
block of Xs » with the corresponding column of the matrix
L,
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2-block PLS

The additional graphical structure becomes available beyond
U, and V,; vectors—scatter-plots of the latent variable
scores or TPS grids (2D), or the arrows and TPS morphs
(3D) of the form, where we visualise

VeC(ipA) + C1jG~j’ VeC(i,D,z) + Czjv.j

for the various values of ¢4, ¢;; € R™ (in the range of the
particular SW scores or reasonable magnification of this range)
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2-block PLS

A SW summary of the data (from each block separately) in the
shape space

dki
Vec (Xp,1,)) = Vec (Xp 1) ZHU s
dko
Vec (Xp2,) = Vec (Xp ) leu

where (Lb)lj = Ib,ij (b = 1,2)
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2-block PLS

SW summary for any g-subset of SWs {SW,,
can be written as

. SW,},q > 1

= VeC XP1

Zl'llj )

.117 lq

+ 3 V=1,

J15-dg

Vec (XP,1,i)SW(j1,.--/ )

Vec (XP’2,,') = Vec Xp 2

SW(j1,..Jq)

and then X,‘EVZU““J") are the matrices of all Vec (Xp,b,,-)s,/,/u1 da)

2-block PLS

@ to visualize a composite shape (both blocks together) we
have to scale the singular vectors properly (Mitteroecker &
Bookstein 2007)

@ block-wise matrix of common factor scores

I = ( 1yl
@ necessary scaling factor—eigenvectors from SVD of the
T ~ e~ ~ T
matrix I/l; are &; = (1j1, P2j1)

@ composite singular vectors

- P11V,
©02j1V.
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2-block PLS

@ composite shape Vec(Xp) + ij(sr) for the various values

of ¢; € RY (in the range of the particular SW scores or
reasonable magnification of this range)

@ let matrix of composite latent variables (composite
scores) be L(8) = XgF(), (L(N); = J;, the columns of
F() be f*) (Katina 2008)

@ SW summary of the data in the shape space
Vec (Xp,) = Vec (Xp) + Edky l,jfjsr
and SW summary for any g-subset of SW's
{SW,,,...SW, },q > 1 can be written as

Vec (Xp,) J) = Vec Xp) +X,..
and then X3 o

(sr) j —
o /,jfj Ji=1,..n,

SWr.. is the matrix of all Vec (Xp,)

SW(j1,.-.Jq)
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2-block GPLS

@ let B, be bending energy matrix of Xp

B B2
Be— ( 822 > ’
where k1 + ko = k (k1 < k) is number of landmarks, ki is
number of landmarks in the first block and k» in the second
block, B, = 0 is the k, x k, bending energy matrix of the

bth block, By, = BJ, is the k4 x ky cross-block bending
energy matrix

@ dk x dk matrix B =

B11
B2+

Id><d ®Bead :273
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2-block GPLS

@ let Sg =
@ then

7 (B7)"

B B
SB:(ssn )

(B) g(B)
St Sz
o let Sgg) be weighted cross-block covariance matrix,

/2 —Qf2~T~
(Bs) Z/ j /71T7/
inverse of B2/?)

(B)"* 5

(Moore-Penrose generalized

2-block GPLS

@ large scale variability, o = 1,

@ small scale variability, o = —1,

@ o =0, then BY = I, the k x k identity matrix
@ then SVD of

AN AN

si® = UAVT,

o let LY
latent variables (composite scores), (Lgr)),-j =Igj, let
the columns of F&") be f,(as;)

= X(SB)F,(BS’) be the matrix of weighted composite
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2-block GPLS

Then a SW summary of the data in the shape space is

dki

Vec (Xp,) = Vec (Xp) Ba/2ZIB i

and SW summary for any g-subset of SW's

{SWj,,...SW, },q > 1 can be written as
Ve (Xp) sy, = Ve (Xp) +B*2 3" I f57,i=1,..n,
j']? jCI
and then XSWU1 Ja) is the matrix of all Vec (X,:’,-)SWU1 )
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Two shape subspaces and two different 2-block GPLS

Following Katina (2008)

@ affine contribution to the variability—affine subspace PLS
on n x ky matrices X, 5, with the rows x, p;,
i=1,2,.n;b=1,2

@ non-affine contribution to the variability—non-affine
subspace PLS on n x k, matrices Xy » with the rows
XNA bi s i = 1,2, ...n

Two different 2-block GPLS

@ if we have two shape blocks—Procrustes shape
coordinates are pre-multiplied with (B )O‘/2 of Xp
(Procrustes mean of the composite shape)

@ if we have one shape block and one block of external
variables—Procrustes shape coordinates of the shape

block are pre-multiplied with (Bg )O‘/2 of Xp, (Procrustes
mean shape)
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Symmetric GPLS summary

two shape blocks

one shape block and one block of external variables
shape space

affine subspace

non-affine subspace

non-afine subspace with global and local bending

one or more external variables
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Results of GPLS

TPS grids of shape block vs "attractiveness” block in all shape subspaces

most attractive face

SWi+ SWi1-

least attractive face

most attractive face

SWi-

H m: H SEsases
%r T

most attractive face least attractive face

least attractive face

SWi+

most attractive face
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Results of GPLS
3D warps of shape block vs SOFA scores in three different shape subspaces
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Statistical inference in shape analysis
Outline

For one-, two-sample, and paired hypotheses about shapes,
there are the following tests

@ one-sample Hotelling T? test, one-sample Goodall F test

© two-independent sample Hotelling T? test, modification of Nel-Van
der Merwe test for the multivariate Behrens-Fisher problem, and
two independent sample Goodall F test,

© paired Hotelling T? test and paired Goodall F test
© Mardia test of object symmetry

Moore-Penrose generalized inverse of symmetric square matrix A, let say
A~ is inverse, where following equation holds ATAA™ = A, so

S
- —1 T
A :§ >\j Y
J=1

where ~; are eigenvectors of matrix A corresponding to eigenvalues
Aj >0, wherej=1,2...s < kd.

Stanislav Katina

Statistical inference in shape analysis
One-sample Multivariate Inference

Definition (One-sample tests)

Let Vec(Xp,),i = 1,2, ...n, be the random sample from population with
vectorized Procrustes mean shape Vec (u,) estimated by X and
covariance matrix Xp estimated by Sx. Let

VeC(XP’,') ~ Nk (Vec (“’P) 9 Zp) ,i = 1, ...n.

The null hypothesis is defined as: the Procrustes mean shape p, is equal to
the Procrustes mean shape p, SO Ho : p1p = pg, Hi @ pip # pg- If Ho holds,
Hotelling T? test statistic is equal to

n—s
S

FH — TE/ ~ Fs.,nfs,
where s = min(dk,n — 1), and

s 72

Th = (Xe — Vec (o))" Sx (Xp — Veo (o)) = 3 L
j=1

(8=

is square of Mahalanobis distance between Xp and Vec (), where Sy is
Moore-Penrose generalized inverse of Sy;

W
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Statistical inference in shape analysis
One-sample Multivariate Inference

Definition (One-sample tests; cont.)

Tio = '?J-T (xp — Vec (py)) is the jth PC score for the difference

(xp — Vec (pg)),j = 1,2, ...,s. High values of?j%/xj indicates the direction of
high shape variability associated with Xp in jth PC. The test statistic T3 can
be modified with respect to any subset of PCs as

=
T# = (X — Voo (1)) (S57V)) ™ (%p — Veo (1) = 3 <

Jtoedg Y

where 35601""j") = 22PCl1,eda) Xﬁﬁf is the covariance matrix estimated by
any g-subset of PCs {PC;,, PC,,,...,PC;, };q > 1.
If covariance matrix £p = ol and if Hy holds, Goodall test statistic

a2 (ip, uo)
L1 0F (Xei,Xe)

which is the special case of Hotelling T2 under the isotropy.

Fe=n(n-1)

~ Fs,n—s,

o
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Statistical inference in shape analysis
Two-sample Multivariate Inference

Definition (Two-sample tests)

Let Vec(Xpi),i = 1,2, ...n; ,be the random sample from population j,j = 1, 2,
with vectorized Procrustes mean shape Vec (u, ;) estimated by Xp; and
covariance matrix Xp estimated by common covariance matrix

Su = (M1Sx,1 + n2Sx2) / (n1 + n2 — 2), where sample covariance matrices
Sx,; = +Xp ;HXp, Xp is nj x (dk) matrix of Vec(Xp ;) as the rows. Let

Vec(XpJ;) ~ Ndk (Vec (l"’P,j) ,ZP) ;j = 1,2; = 1,.../7.

The null hypothesis is defined as: the Procrustes mean shape p 4 is equal
to the Procrustes mean shape pp 5, S0 Ho : pip 1 = pp o, Hi : pp 4 # pp - If
Ho holds, Hotelling T? test statistic is equal to

nina (N1 +n; —s—1)
(m+n2)(n1+n2—2)s
where s = min(dk,ny + n, — 2), and

2
H = TH ~ Fs,n1 tnp—s—1,

R

S
T = (Xp,1 — Xpp2)" Sy (Xp,1 —Xp2) = Z
j=1

>

)
Y
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Statistical inference in shape analysis
Two-sample Multivariate Inference

Definition (Two-sample tests; cont.)

?,-o = QI-T (Xp,1 — Xp,2) is the jth PC score for the difference (xp — Xp2),
Jj=1,2,...,s. High values of?j%/X, indicates the direction of high shape
variability associated with observed group difference Xp 1 — Xp 2 in jth PC.
The test statistic T3 can be modified with respect to any subset of PCs as

= = PC(jq .. .J e _ r;

Tf—zf = (Xp1 — Xp,g)T (SU G, m) (Xp,1 — Xp2) = Z /0

J15-+4g

where §[°UT ) — 2_PC( .. da) XA/ is the covariance matrix estimated by

any g-subset of PCs {PC;,, PC,,,...,PC;, } ;q > 1.
If covariance matrix Xp; = ol and if Hy holds, Goodall test statistic

Fr — Mtmn=2 dz—(ip,nip,z)
T o T ™M d2(Xp 40X "2 a2 (Xp 2i,X, ~
ny t+ny 3 F( P, 1i> P,1)+Z,':1 ,c( P,2i> Pﬁz)

Fs,(n1 +ny—2)s>

which is the special case of Hotelling T2 under the isotropy.
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Statistical inference in shape analysis
Paired Multivariate Inference

Definition (Paired tests)

Let Vec(Xpi),j = 1,2,i = 1,2, ...n, be the random sample from population
with vectorized Procrustes mean shapes Vec (up’j) estimated by Xp ; and
covariance matrices Xp; estimated by Sy ;. Let

VeC(XpJ‘,‘) ~ Nk (Vec (N‘P,j) ,ZPJ) ,j = 1,2,i = 1,...[7.

Let Vec(Xp,i) = Vec(Xp,1i — Xp2i), i = 1,2, ...,n, be a random sample of the
coordinate differences of one object with coordinates measured two times
and then Vec(Xp,;) ~ Nak (Vec (pp) , Zp). The estimates of parameters are
Xp and Sp.

The null hypothesis is defined as: the Procrustes mean shape p is equal to
the Procrustes mean shape p, SO Ho @ 1 = pg, Hi @ pup # pg- If Ho holds,
Hotelling T test statistic is equal to

n-—s

FH — TE/ ~ F&,nfs,

where s = min(dk,n — 1), and

[ semmmvKam L
Statistical inference in shape analysis
Paired Multivariate Inference

Definition (Paired tests; cont.)

_ — 7
Th = (Xo — Vec (1)) S (Xo — Vec (ko)) = 374 £
o =4/ (Xo — Vec (p,)) is the jth PC score for the difference
(xp — Vec (), j =1,2,...,s. High values of?]%/xj indicates the direction of

high shape variability associated with X in jth PC. The test statistic T2 can
be modified with respect to any subset of PCs as

_ S I
Th = (%o — Vee (o))" (57" )" (%o — Vec (o) = 5, _, 2, where

sg"(f“"fq’ = ZPCUh“Jq) Xﬁﬁf is the covariance matrix estimated by any

g-subset of PCs {PC;,,PC,,,...,PC;, } ;q > 1.
If covariance matrix £, = ol and if Hy holds, Goodall test statistic

d? (XD, IJ,O)
S d? (XD,,-,XP)

which is the special case of Hotelling T2 under the isotropy.

Fc=n(n—-1)

~ Fs,nfs,
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Statistical inference in shape analysis

Confidence and Tolerance Ellipsoids

Definition (Confidence and Tolerance Ellipsoids)

If kK > 1, then the generalization of (1 — «)100% confidence interval (Cl) for
pis (1 — a)100% confidence set (CS) for p
(n—1)k

CcS = {No : (Xf uo)rs*1 (y, ,1,0) S T (a)}.

Then Pr(CS N {u} # 9] = 1 — a. We can calculate realization of (1 — «) %
CS. It is confidence ellipsoid (CE) centered in X. The direction of
ellipsoid-axes is parallel to eigenvectors 7; of S (); are particular

eigenvalues). The length of ellipsoid-axes visualized from the center X is
equal to

(n—1)k

(n—k)n k.

+ /A\] Fk,nfk(1 70‘)71.:1727“'
These CEs (in one-, two-sample, and paired case) can be applied to:
(semi)landmark coordinates and PC scores. Multiplying Fx n—« (o) by n we

get tolerance ellipsoid (TE).

>
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Example 27

PCA a testovanie hypotéz

Example (DU 9)

Majme data gorf .dat a gorm.dat, ktoré su v kniznici shapes a
predstavuju suradnice k = 8 landmarkov na lebkach n = 30 samic a n = 29
samcov goril (Gorilla gorilla). Pokrac. prikladu 7.

9.1) Registrujte stradnice landmarkov gorf.dat a gorm.dat do spoloéného
tvarového priestoru pomocou GPA a aplikujte algoritmus vypoctu rotacie do smeru
najvacsej variability z DU7. Pouzite funkciu procGPA( . . .) $rotated (GPA, kde
vystupom je pole rozmeru 8 x 2 x 59 procrustovskych tvarovych suradnic).
Vypocitajte priemerné procrustovské suradnice pre samice a samcov, deformujte
suradnice samic na samcov a naopak, extrapolujte 3 x.
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Example 27

PCA a testovanie hypotéz

9.2) Vypocitajte vlastné cisla a viastné vektory kovarianénej matice Sy centrovanych
procrustovskych tvarovych suradnic. Pouzite funkciu eigen (). Skontrolujte, ¢i maju
véetky vlastné vektory jednotkovu dizku. Skalujte viastné &isla ich sumou, vynasobte
100 (zaokruhlite na dve desatinné miesta) a kumulativne ich zosumuijte. Pouzite
fukncie sum () a cumsum (). Zobrazte skore PC;j vs PC;, j =1,2,3;i <jv
rozptylovych grafoch (rozsahy vSetkych grafov Skalujte rovnako) spolu s 95%
toleranénymi elipsoidmi. \Vypoc itajte priemerné procrustovské suradnice pre samice
a samcov v podpriestore PC1 (spédtnou projekciou skore do tvarového priestoru —
vid. slajdy o klasickej alebo zovéeobecnenej PCA), extrapolujte 3x. Porovnajte
obrazky s (9.1) a interpretujte pouzitim matematicko-Statistického pojmového aparatu.
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PC3 (10.68%)
0

PC3 (10.68%)

I
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-30 -20 -10
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Example 27

PCA a testovanie hypotéz
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Obrazok: TPS deformacie samcov na samice a naopak samic na samcov;
priemerné procrustovskeé tvary (horny riadok), odhadnuté priemerné
procrustovské tvary v podpriestore PC1 (dolny riadok); extrapolované 3 x
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