
Recent discoveries in the field of bacterial polymer bio-
synthesis have opened up new avenues for the rational 
engineering of bacteria towards the production of tailor-
made biopolymers suitable for industrial and medical 
applications. Over the past decade, a better understand-
ing of the molecular mechanisms and regulatory proc-
esses underlying the synthesis of biopolymers has 
emerged. This knowledge has provided us with power-
ful tools to engineer bacteria that are capable of not only 
efficient biopolymer production but also the produc-
tion of modified and even unnatural polymers exhibit-
ing unique material properties for specific high-value 
applications, all at a viable economic cost. Production 
at a viable economic cost refers to the market value of 
the respective biopolymer substantially exceeding the 
production costs in order to generate profit. The market 
value depends on the material properties that impact on 
the field of application. However, low-value applications 
of biopolymers become economically viable when they 
can be produced at low costs.

Bacteria efficiently convert different carbon sources 
into a diverse range of polymers with varying chemical 
and material properties (BOX 1; FIG. 1). Although bacteria 
synthesize only a few intracellular polymers, the range 
of extracellular polymers that they can synthesize is vast. 
Some of these polymers serve the same function in a 
wide range of prokaryotes1, whereas other polymers can 
be specific for certain bacterial taxa and serve distinct 
biological functions2. Many bacterial species are able to 
synthesize several polymers3,4.

Four major classes of polymers are produced by 
bacteria: polysaccharides, polyesters, polyamides and 

inorganic polyanhydrides (such as polyphosphates). 
These polymers serve various biological functions, for 
example as reserve material or as part of a protective struc-
ture, and can provide a substantial advantage for bacte-
ria under certain environmental conditions. Therefore, 
complex regulatory pathways exist to control the biosyn-
thesis and even the material properties of these polymers 
in response to external stimuli.

Several bacterial polymers are already produced 
commercially through medium- to large-scale fermenta-
tions, with annual world production volumes of around 
2,000 tonnes and 100,000 tonnes for the polysaccha-
rides dextran5 and xanthan (D. Seisun, personal com-
munication), respectively, and up to 100,000 tonnes 
for the polyesters6 (TABLE 1). When bacterial polymers 
are required to compete with oil-based non-renewable 
polymers, the cost of production is a crucial parameter. 
However, biopolymers derived from natural resources 
have a competitive advantage, owing to their sustainable 
production from renewable resources, their biodegrad-
ability and, often, their biocompatibility. Biopolymers are, 
by definition, biodegradable, and so their application as 
commodity products becomes increasingly attractive in 
view of the desire to avoid the use of recalcitrant oil-
based polymers that will accumulate in the environment. 
When exposed to the microbial flora present in a given 
environment (for example, in soil or water), biopoly-
mers are fully degraded and mineralized to CO2 and 
H2O. Secreted depolymerases and hydrolases attack the 
biopolymer backbone, leading to lower-molecular-mass 
degradation products, which can then be taken up by the 
microbial cell to be used as carbon and energy sources. 
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Biocompatibility
In a biomaterials context, the 
ability of a material or polymer 
that is non-toxic to avoid 
eliciting an immune response.

Bacterial polymers: biosynthesis, 
modifications and applications
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Abstract | Bacteria can synthesize a wide range of biopolymers that serve diverse biological 
functions and have material properties suitable for numerous industrial and medical 
applications. A better understanding of the fundamental processes involved in polymer 
biosynthesis and the regulation of these processes has created the foundation for metabolic- 
and protein-engineering approaches to improve economic-production efficiency and to 
produce tailor-made polymers with highly applicable material properties. Here, I summarize 
the key aspects of bacterial biopolymer production and highlight how a better understanding 
of polymer biosynthesis and material properties can lead to increased use of bacterial 
biopolymers as valuable renewable products.
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Two-component signal 
transduction pathway
A regulatory pathway found in 
most bacterial and archaeal 
species that uses 
phosphotransfer schemes 
involving two conserved 
components, a histidine 
protein kinase and a response 
regulator protein.

Quorum sensing
The regulation of bacterial 
gene expression in response to 
fluctuations in cell population 
density. Quorum sensing is 
mediated by the release of 
chemical signal molecules 
(such as homoserine lactones) 
called autoinducers.

Furthermore, biopolymers are composed of natural 
non-toxic constituents and are considered to be inher-
ently biocompatible. This biocompatibility has been 
harnessed in numerous medical applications, in which 
biopolymers have been used as scaffolds or matrices in 
tissue engineering, wound dressing and drug delivery. 
Some biopolymers are gradually degraded in vivo, mak-
ing them well suited for use in tissue replacement and 
controlled drug release.

This Review highlights recent advances in our under-
standing of in vivo polymer biosynthesis pathways and 
then considers how this knowledge has enabled the design 
and metabolic engineering of biopolymers with specific 
material properties for production on a commercial scale. 
Owing to the ever-growing number of bacterial biopoly-
mers that have been characterized, detailed descriptions 
are limited to only representative model polymers. These 
model polymers have been selected on the basis of the 
characteristics of their biosynthesis pathways, the extent 
of knowledge available to describe their formation, and 
their commercial relevance and applied potential.

polysaccharides
given the overwhelming diversity of bacterial polysac-
charides, this section focuses on only commercially 
relevant examples of this class of polymer. The polysac-
charides produced by bacteria can be subdivided into 
the exopolysaccharides (for example, xanthan, dextran, 
alginate, cellulose, hyaluronic acid (HA) and colanic 
acid), which can be either secreted or synthesized extra-
cellularly by cell wall-anchored enzymes, the capsular 
polysaccharides (for example, the K30 antigen) and 
the intracellular polysaccharide (glycogen). Structural 
cell wall polysaccharides have been recently discussed 
elsewhere7 and will not be considered in this Review. 
Further categorization divides the polysaccharides into 
repeat unit polymers (for example, xanthan and the K30 
antigen), repeating polymers (for example, cellulose) 
and non-repeating polymers (for example, alginate)8–11 
(TABLE 1). The formation of polysaccharides with 
such varied structures and compositions requires the 

recruitment of different enzymes and proteins, which is 
reflected in the varied organizations of the biosynthesis 
gene clusters (FIG. 2).

The exopolysaccharide and capsular-polysaccharide 
biosynthesis gene clusters are subject to extensive tran-
scriptional regulation involving two-component signal 
transduction pathways, quorum sensing, alternative RNA 
polymerase σ-factors and anti-σ-factors, as well as inte-
gration host factor (IHF)-dependent and cyclic di-gMP-
dependent processes12–17. Induction of exopolysaccharide 
biosynthesis is often correlated with establishment of the 
biofilm growth mode, during which exopolysaccharides 
are important matrix components18.

Nucleoside diphosphate sugars (such as ADP–
glucose), nucleoside diphosphate sugar acids (such as 
gDP–mannuronic acid) and nucleoside diphosphate 
sugar derivatives (such as uDP–N-acetyl glucosamine) 
are direct precursors for bacterial polysaccharide bio-
synthesis (FIG. 3; TABLE 1). Polymer-specific biosynthesis 
enzymes (for example, pyrophosphorylases and dehy-
drogenases) are required for synthesis of the activated 
polymer precursor, which is the first committed biosyn-
thesis step, and have been targeted by metabolic engi-
neering to enhance polymer production and to allow the 
synthesis of tailor-made polysaccharides19.

Polymerization and secretion of exopolysaccharides 
and capsular polysaccharides are often rate limiting and 
can substantially affect the flux of carbon towards the 
processive formation of high-molecular-mass exopoly-
mers. The synthases or catalytic subunits of synthases are 
mostly localized in the cytoplasmic membrane and  
are often associated with proteins that are required for 
translocation of the polymer across the cytoplasmic 
membrane and, if needed, the outer membrane (FIG. 4).

Exopolysaccharides. exopolysaccharides are produced by 
a wide range of bacteria and some archaea20. Depending 
on their subunit composition, structure and molecular 
mass, exopolysaccharides can have commercially rel-
evant material properties that are attractive for indus-
trial and medical applications. These properties range 

 Box 1 | History of bacterial polymers

The first discovery of a bacterial polymer dates back to the mid nineteenth century, when Louis Pasteur discovered 
dextran as a microbial product in wine124. Van Tieghem125 then identified the bacterium (Leuconostoc mesenteriodes) that 
is responsible for dextran formation. This discovery was followed by the finding, in 1886, that cellulose is produced by 
bacteria126. Shortly after the discovery of these exopolysaccharides, the first intracellular reserve polymers were 
discovered, such as the polyamide cyanophycin in cyanobacteria127 and, 40 years later, the polyester polyhydroxybu-
tyrate in Bacillus megaterium128. Most other industrially and medically relevant bacterial polymers were found in the early 
to mid twentieth century, such as alginate129, xanthan130, poly-g-glutamate131 and polyphosphate132. Shortly after the 
discovery of the various biopolymers, the activities of their biosynthesis enzymes (either purified or in cell extracts) were 
described, and radioisotope-labelled precursors were also used to elucidate some details about the metabolic pathways 
for biopolymer formation133–140.

Between 1970 and 2000, the advent of gene-cloning techniques and DNA-sequencing methods enabled the 
identification of biosynthesis genes, such as the cyanophycin synthetase gene (cphA)58, and gene clusters, such as those 
found in the Pseudomonas aeruginosa genome76,77,141–144. It is striking that around two decades after the identification of 
genes and gene clusters involved in the biosynthesis of well-established polymers (for example, cellulose and alginate) 
the functional assignment of essential genes is still lacking10,145. Moreover, the reaction mechanisms of key enzymes, 
including various synthases, synthetases and polymerases, as well as the functions of co-polymerases and polymerase 
subunits and of proteins involved in polymer export and secretion (such as polysaccharide transporters, secretins and 
translocons) are still poorly understood.
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Pseudoplastic
A material that exhibits so- 
called shear thinning, which is 
a decrease in viscosity with an 
increase in the rate of shear 
stress.

Newtonian fluid
A fluid exhibiting a linear 
relationship between the shear 
stress and the strain rate, with 
the proportionality being the 
coefficient of viscosity.

Immunogenicity
The potential of a compound 
to elicit an immune response.

from forming viscous solutions to exhibiting a pseudo-
plastic material nature (TABLE 1). Dextran and xanthan, 
which are commercially produced, and alginate, another 
potentially applicable exopolysaccharide, are described 
in more detail below; owing to similarities between the 
biosynthesis pathways for xanthan and capsular polysac-
charides, the xanthan biosynthesis pathway is discussed 
in the section concerning capsular polysaccharides.

Dextrans are soluble in water, and dextran solu-
tions behave as Newtonian fluids and have a viscosity that 
changes as a function of concentration, temperature 
and average molecular mass21. Native dextrans are poly-
disperse (that is, their molecular masses typically range 
from 106 to 109 daltons). Acid hydrolysis of dextrans 
generates fractions of defined molecular masses. This 
property, in addition to their low immunogenicity, has led 
to numerous clinical and pharmaceutical applications; 
for example, dextrans are used as blood plasma extenders 
and as chromatography media22.

Dextransucrase is a glucansucrase belonging to the 
glycoside hydrolase superfamily and is the key enzyme 

for dextran synthesis. It is secreted and anchored to 
the cell wall, and it has an average molecular weight of 
160 kDa23 (TABLE 1). glucansucrases have been exten-
sively studied, leading to a detailed understanding of 
their catalytic mechanism (reviewed in REFS 23–25). 
These enzymes catalyse the hydrolysis of the glycosidic 
bond in sucrose and the transfer of glucose to the grow-
ing reducing end of the covalently linked glucan chain 
by an insertion mechanism that relies on two separate 
catalytic sites in the same active site24; the hydrolysis of 
the glycosidic bond produces the energy required for the 
glucose transfer reaction. Dextransucrase is encoded by 
dsrS, the expression of which is induced in the presence 
of sucrose26.

The production of HA requires only a single pro-
tein, HA synthase (HasA), for polymerization and 
secretion27,28; however, most exopolysaccharides are 
poly merized and secreted by membrane-spanning multi-
protein complexes (FIG. 4). These complex-mediated 
biosynthesis processes can be subdivided into two  
general pathways. One pathway is exemplified by the 

Figure 1 | chemical structures of representative bacterial polymers. a | Glycogen, an intracellular polysaccharide.  
b | Xanthan, a secreted polysaccharide. c | K30 antigen, a capsular polysaccharide. d | Alginate, a secreted and/or cyst  
cell wall polysaccharide. e | Dextran, an extracellularly synthesized polysaccharide. f | Cyanophycin, an intracellular 
polyamide. g | Poly-γ-glutamate, a secreted polyamide. h | An intracellular polyhydroxyalkanoate. i | Polyphosphate, an 
intracellular polyanhydride. Numbers below the chemical structure brackets indicate the polymerization degree most 
commonly found for each polymer; note that the polymerization degree can vary substantially under different growth 
conditions and in different species.
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Wzy-dependent polymerization and secretion mecha-
nism used in xanthan biosynthesis, which requires a 
lipid carrier for transfer of the repeat unit oligosaccharide 
across the cytoplasmic membrane. The second pathway 
is independent of both Wzy and a lipid carrier and is 
proposed for the production of exopolysaccharides such 

as alginate and cellulose, which are not composed of 
repeat units (FIG. 4a; TABLE 1).

Industrial and medical applications of alginates are 
linked to their stabilizing, viscosifying and gelling prop-
erties and their ability to retain water. Although algi-
nates are commercially produced from seaweeds, the 

Table 1 | classes of bacterial polymers and their characteristics

Polymer 
class

Polymer 
localization

Primary 
structure

Main 
components

Precursors Polymerizing 
enzyme* 

Producer industrial 
applications‡

Polysaccharides

Glycogen Intracellular α-(1,6)-branched 
α-(1,4 )-linked 
homopolymer

Glucose ADP–glucose Glycogen 
synthase (GlgA)

Bacteria and 
archaea

NA

Alginate Extracellular β-(1,4)-linked 
non-repeating 
heteropolymer

Mannuronic 
acid and 
guluronic 
acid

GDP–mannuronic 
acid

Glycosyl-
transferase 
(Alg8)

Pseudomonas spp. 
and Azotobacter 
spp. 

Biomaterial (for 
example, as a 
tissue scaffold or 
for drug delivery)

Xanthan§ Extracellular β-(1,4)-linked 
repeating 
heteropolymer  
consisting of 
pentasaccharide 
units

Glucose, 
mannose and 
glucuronate 

UDP–glucose, 
GDP–mannose and 
UDP–glucuronate

Xanthan 
polymerase 
(GumE)

Xanthomonas spp. Food additive 
(for example, as 
a thickener or an 
emulsifier)

Dextran§ Extracellular α-(1,2)/α-(1,3)/
α-(1,4)-branched 
α-(1,6)-linked 
homopolymer

Glucose Saccharose Dextransucrase 
(DsrS) 

Leuconostoc spp. 
and Streptococcus 
spp.

Blood plasma 
extender and 
chromatography 
media

Curdlan§ Extracellular β-(1,3)-linked 
homopolymer

Glucose UDP–glucose Curdlan 
synthase (CrdS)

Agrobacterium 
spp., Rhizobium 
spp. and 
Cellulomonas spp. 

Food additive 
(for example, as 
a thickener or a 
gelling agent)

Gellan§ Extracellular β-(1,3)-linked 
repeating 
heteropolymer 
consisting of 
tetrasaccharide 
units

Glucose, 
rhamnose 
and 
glucuronate

UDP–glucose, 
dTDP–rhamnose and 
UDP–glucuronate

Gellan synthase 
(GelG)

Sphingomonas 
spp. 

Culture media 
additive, food 
additive (for 
example, 
as a gelling 
agent) or for 
encapsulation

Colanic acid Extracellular β-(1,4)-linked 
repeating 
heteropolymer 
consisting of 
hexasaccharide 
units

Fucose, 
glucose, 
glucuronate 
and 
galactose 

GDP–l-fucose, 
UDP–d-glucose, 
UDP–d-galactose 
and 
UDP–d-glucuronate

Colanic acid 
polymerase 
(WcaD)

Escherichia coli, 
Shigella spp., 
Salmonella spp. 
and Enterobacter 
spp.

NA

K30 antigen Capsular β-(1,2)-linked 
repeating 
heteropolymer 
consisting of 
tetrasaccharide 
units

Mannose, 
galactose 
and 
glucuronate

UDP–d-glucose, 
UDP–d-galactose 
and 
UDP–d-glucuronate

Polysaccharide 
polymerase 
(Wzy)

Escherichia coli NA

Cellulose§ Extracellular β-(1,4)-linked 
homopolymer

d-glucose UDP–d-glucose Cellulose 
synthase (BcsA)

Alphaproteo-
bacteria, 
Betaproteo-
bacteria, 
Gammaproteo-
bacteria and 
Gram-positive 
bacteria

Food (nata 
de coco), 
diaphragms 
of acoustic 
transducers and 
wound dressing

Hyaluronic 
acid§

Extracellular β-(1,4)-linked 
repeating 
heteropolymer 
consisting of 
disaccharide 
units

Glucuronate 
and N-acetyl 
glucosamine 

UDP–d-glucuronate 
and UDP–N-acetyl 
glucosamine

Hyaluronan 
synthase (HasA)

Streptococcus spp. 
and Pasteurella 
multocida 

Cosmetics, 
viscosupplemen-
tation, tissue 
repair and drug 
delivery

R E V I E W S

NATuRe ReVIeWS | Microbiology  VOluMe 8 | AuguST 2010 | 581

© 20  Macmillan Publishers Limited. All rights reserved10



Lipid carrier
An amphipathic molecule, with 
a hydrophobic polyisoprenoid 
moiety and a hydrophilic 
phosphate residue, that is 
embedded in the cytoplasmic 
membrane for the transport of 
sugar repeat units.

ability to genetically engineer alginate-producing bac-
teria such as Azotobacter vinelandii and Pseudomonas 
fluorescens to produce tailor-made high-value alginates 
holds great promise (FIGS 5,6). The in vitro synthesis of 
alginate requires the presence of an intact envelope, pro-
viding evidence that a multiprotein complex spanning 
the cytoplasmic membrane, the periplasm and the outer 
membrane is required for coordinated polymerization 
and secretion26 (FIG. 4a). The roles of the individual pro-
teins in the complex as well as their regulation have been 
extensively investigated (for reviews, see REFS 28–30), but 
the underlying molecular mechanisms of polymerization 
and secretion remain elusive. One component of the bio-
synthesis complex, Alg8, has substantial sequence simi-
larities to processive β-glycosyl transferases of the gT2 
family and was recently identified as a key membrane 
protein for the production of alginate, with multiple cop-
ies of Alg8 contributing to substantial overproduction of 
alginate in Pseudomonas aeruginosa26,29,31–33. The material 
properties of alginates depend mainly on the composition 

(that is, the molar ratio and sequence of mannuronic acid 
and guluronic acid residues), degree of acetylation and 
molecular mass of the molecules, and the enzymes that 
control these parameters — which include C5 epime-
rase, lyase and acetyltransferase — have been studied in 
great detail with respect to their protein properties and 
enzyme characteristics11,34. These studies have provided 
a foundation for the development of bacterial strains that 
produce tailor-made alginates (FIG. 6). For example, it was 
shown that inactivation of the C5 epimerase activity in 
P. fluorescens led to the production of the homopolymer 
polymannuronate35. Further inactivation of genes encod-
ing other alginate-modifying enzymes and the controlled 
expression of those same genes in trans would provide a 
molecular toolbox for tailor-made alginate production.

Capsular polysaccharides. Capsular polysaccharides 
(CPSs) are secreted but remain attached to the cell and 
often function as major surface antigens and virulence 
factors. Their biosynthesis and assembly have been 

Polymer 
class

Polymer 
localization

Primary 
structure

Main 
components

Precursors Polymerizing 
enzyme* 

Producer industrial 
applications‡

Polyamides

Cyanophycin 
granule 
peptide

Intracellular Repeating 
heteropolymer 
consisting of 
dipeptide units

Aspartate 
and arginine

(β-spartate-
arginine)

3
-

phosphate, ATP, 
l-arginine and 
l-aspartate

Cyanophycin 
synthetase 
(CphA)

Cyanobacteria, 
Acinetobacter 
spp. and 
Desulfitobacterium 
spp.

Dispersant and 
water softener 
(after removal of 
arginyl residues)

Poly- 
γ-glutamate

Extracellular 
or capsular

Homopolymer d-glutamate 
and/or 
l-glutamate

(Glutamate)
n
- 

phosphate,  
ATP and glutamate

Poly- 
γ-glutamate 
synthetase 
(PgsBC; also 
known as 
CapBC)

Bacillus spp. and a 
few Gram-positive 
bacteria, the 
Gram-negative 
bacterium 
Fusobacterium 
nucleatum and 
the archaea 
Natronococcus 
occultus and 
Natrialba 
aegyptiaca

Replacement 
of polyacrylate, 
thickener, 
humectant, drug 
delivery and 
cosmetics

ε-poly-l-lysine Extracellular Homopolymer l-lysine l-lysine, ATP and 
l-lysine–AMP

ε-poly-l-lysine 
synthetase (Pls)

Streptomyces 
albulus subsp. 
lysinopolymerus

Feed 
preservative 
and, when 
cross-linked, 
adsorbent  
(in medicine)

Polyester

Polyhydroxy-
alkanoates§

Intracellular Heteropolymer (R)-3-hydroxy 
fatty acids

(R)-3-hydroxyacyl 
CoA

Polyhydroxy-
alkanoate 
synthase (PhaC)

Bacteria and 
archaea

Bioplastic, 
biomaterial and 
matrices for 
displaying or 
binding proteins 

Polyanhydrides

Polyphosphate Intracellular Homopolymer Phosphate ATP Polyphosphate 
kinase (PPK)

Bacteria and 
archaea

Replacement of 
ATP in enzymatic 
synthesis and 
flavour enhancer

dTDP, deoxythymidine diphosphate; NA, not applicable. *All polymerizing enzymes involved in the synthesis of intracellular polymers localize to the cytosol. All 
polymerizing enzymes involved in the synthesis of extracellular or capsular polymers localize to the cytosolic membrane, except for dextran sucrase, which is secreted 
and anchored to the cell wall. ‡For those polymers that are not commercially produced, potential applications are suggested. §Commerically produced polymers.

Table 1 (cont.) | classes of bacterial polymers and their characteristics
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1 kb

Essential subunits of polymer-synthesizing 
multiprotein complexes

Polymer synthesis enzymes

Catalytic subunits of polymer-synthesizing 
multiprotein complexes

Polysaccharide co-polymerases

Poly-γ-glutamate co-polymerases

Outer-membrane secretins or translocons

Precursor biosynthesis enzymes

Degrading enzymes

Polymer-modifying enzymes

Surface assembly of capsular polysaccharide

Glycosyltransferases

Polysaccharide-specific transport proteins

Transcriptional regulators

Transporter proteins

B C D E MLHF KG I JP
Xanthan synthesis (gum) operon of

Xanthomonas campestris pv. campestris

D 8 44 K J F AE G X L IP
Alginate synthesis (alg) operon of

Pseudomonas aeruginosa

Z orf2 A B DC -gluP
Cellulose synthesis (bcs) operon of

Gluconacetobacter xylinus

dsrSP
Dextransucrase gene of

Leuconostoc mesenteroides

B C A D E?P
Capsular poly-γ-glutamate synthesis

 (cap) operon of Bacillus anthracis

B C AA SE?P
Poly-γ-glutamate synthesis (pgs)

operon of Bacillus subtilis and
Bacillus licheniformis

ppkP Polyphosphate kinase gene of E. coli

wzi wza

w
zb wzc orfZwbaP wzy

orfY wcaN wbaZ wzxwcaOPK30 capsule synthesis operon of E. coli

B AP
Cyanophycin synthesis (cph) operon of

Synechocystis sp.

C1 Z C2 DP F I?
Polyhydroxyalkanoate synthesis (pha)

operon of P. aeruginosa

C1 A BP R
Polyhydroxybutyrate synthesis (phb)

operon of Ralstonia eutropha

A BP C
Hyaluronic acid synthesis (has) operon

of Streptococcus pyogenes

P gntU Basd X C A PPGlycogen synthesis (glg) operon
of Escherichia coli

F E D U C S? T MP region 2
Group II capsular polysaccharide

synthesis (kps) operon of E. coli

Nature Reviews | Microbiology

extensively studied in Escherichia coli 36, and the pro-
tective CPSs produced by pathogenic bacteria such as 
Klebsiella pneumoniae and Streptococcus pneumoniae 
have been shown to contribute to the pathogens’ ability 
to evade phagocytosis by macrophages37,38. Commercial 
applications of CPSs as valuable materials have not yet 
been developed, but their function as virulence factors 
has motivated much research into these polymers. An 
understanding of the biosynthesis process could identify 
targets for the treatment of infections, and CPSs or their 
derivatives might serve as potential vaccine candidates. 
However, as CPSs provide a paradigm for repeat unit 
polysaccharide biosynthesis, characterization of their 
biosynthesis pathways has also contributed substan-
tially towards understanding the synthesis of commer-
cially relevant exopolysaccharides such as xanthan and 
gellan (FIG. 4b). Indeed, several oligosaccharide repeat 

unit polymers require the lipid carrier undecaprenyl 
phosphate for translocation of the repeat unit across the 
cytoplasmic membrane following the Wzy-dependent 
pathway, and there is a high level of amino acid sequence 
similarity between the protein subunits that are involved 
in the polymerization and secretion of these oligosaccha-
rides8,39–41 (FIG. 4b). Previous studies on the lipopolysac-
charide O antigen polymerization and secretion processes 
laid the foundation for our current understanding  
of what is thought to be the most widely distributed  
Wzy-dependent polysaccharide biosynthesis pathway42.

During the assembly of K30 antigen, a well-studied 
example for repeat unit polysaccharide biosynthesis, 
transfer of the sugar phosphate from the respective 
nucleotide sugar to undecaprenyl phosphate is cata-
lysed by the initiating glycosyl transferase, WbaP, a 
membrane-anchored polyisoprenyl sugar phosphate 

Figure 2 | genetic organization of key biosynthesis genes and operons. Triangles represent promoters; triangles 
labelled P are the key regulatory promoters for polymer biosynthesis. Single-letter gene names take the operon name, 
such that D in the gum operon represents gumD. Precursor biosynthesis genes that are outside of the main gene clusters 
are not shown for the gum, kps, alg and pgs operons. Question marks indicate genes with unconfirmed functions. Region 2 
is a central group of N-acetylneuraminic-acid biosynthesis genes. β-glu, β-glucosidase; asd, aspartate semi-aldehyde 
dehydrogenase; gntU, gluconate uptake; orf, open reading frame encoding a protein of unknown function;  
wzb, protein tyrosine phosphatase.
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transferase8 and an orthologue of gumD (the glyco-
syl transferase involved in xanthan synthesis) (FIG. 4b). 
After a series of further sugar transfers to undecaprenyl 
phosphate, catalysed by monofunctional glycosyl trans-
ferases located in or at the inner leaflet of the cytoplas-
mic membrane, the repeat unit at the cytosolic side of 
the membrane is completed.

In xanthan biosynthesis, gumK has been identified 
as one of these monofunctional glycosyl transferases, 
providing a potential target for rational protein engi-
neering towards the production of tailor-made modified 
xanthans43.

The polymerization reaction occurs at the periplas-
mic side of the cytoplasmic membrane and requires 
transfer of the undecaprenyl phosphate-linked repeat 
unit across the membrane, mediated by Wzx, a putative 
polysaccharide-specific transport protein (a so-called 
‘flippase’) that also interacts with WbaP44,45 (FIG. 4b). The 
integral membrane protein Wzy has been proposed 
to be the polymerase that catalyses the transfer of the 
nascent polymer from its undecaprenyl phosphate car-
rier to the new lipid-linked repeat unit46. Wzc belongs 
to the polysaccharide co-polymerase (PCP) family of 
proteins, which not only assist polymerization but also 
control polymer length and guide the nascent polymer 
chain through the periplasm to the outer-membrane 
auxiliary protein Wza47 (FIG. 4b). It was proposed that 

PCPs share common structural features, such as trans-
membrane domains and extended periplasmic domains 
with surface properties that allow not only the assembly 
of PCPs into oligomers but also a defined interaction 
with Wzy protomers, which was suggested to mediate 
control of polymer chain length47. A model was devel-
oped suggesting that polysaccharide synthesis occurs 
by transferring the nascent chain from one Wzy to an 
adjacent Wzy, with the PCP controlling chain length by 
affecting assembly of Wzy (that is, chain growth would 
be terminated in the absence of an adjacent Wzy). 
Recent X-ray structures of the PCP ferric enterobactin 
transport protein e (Fepe) (Protein Data Bank acces-
sion number 3B8M) and of Wza from E. coli, combined 
with mutational analyses, have contributed towards our 
understanding of the structural requirements for trans-
location of nascent polysaccharide from the periplasm 
through the outer membrane39,40,48.

Storage polysaccharides. glycogen is the only intra-
cellular storage polysaccharide found in bacteria and 
archaea. glycogen synthases belong to the gT-B super-
family of retaining glycosyl transferases, which retain 
the anomeric stereochemistry of the donor sugar in the 
resulting polysaccharide. Resolution of the crystal 
structures of one archaeal and two bacterial glycogen 
synthases has improved our mechanistic understanding 

Figure 3 | bacterial polymer biosynthesis pathways from intermediates of central metabolism. The major 
metabolic routes towards the synthesis of the various polymer precursors are summarized. Solid lines indicate either 
linking of primary metabolic pathways with intermediates of polymer biosynthesis or direct enzyme-catalysed 
conversions towards the immediate polymer precursor. Dashed lines indicate multiple enzymatic steps. Polysaccharides 
are shown in light green boxes, polyesters are shown in pink boxes, polyamides are shown in blue boxes, and the inorganic 
polyanhydride is shown in a purple box. FAB, fatty acid de novo biosynthesis; FAD, fatty acid β-oxidation; KDPG, the 
2-keto-3-deoxy-6-phosphogluconate pathway; NDP, nucleoside 5ʹ-diphosphate; P, phosphate; PGI, phosphoglucoisomer-
ase; PGM, phosphoglucomutase; Pha, polyhydroxyalkanoate synthesis enzyme; PHA

scl
, short-chain-length PHAs; PHA

mcl
, 

medium-chain-length PHAs; TCA cycle, tricarboxylic acid cycle.
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of their activity as retaining glycosyl transferases49–51. 
ADP–glucose and an α-(1,4)-glucan acceptor bind to the 
enzyme and, through an induced fit, activate it to cata-
lyse transfer of the glucose moiety to the acceptor mol-
ecule49. How the α-(1,4)-glucan acceptor (known as the 
primer) is synthesized remains unknown. Despite this 
mechanistic understanding, bacterial glycogen has not 
been considered for commercial applications to date.

polyamides
The non-ribosomally synthesized polyamides are a 
distinct group of biopolymers consisting of only two 
extracellular polyamides, poly-γ-glutamate (PgA) and 
ε-poly-l-lysine (Pl), and the intracellular cyanophycin 
granule peptide (CgP)52 (FIG. 1; TABLE 1). Pl has been 

shown to exhibit antibacterial properties. PgA can exist 
in either capsular or released forms; in Bacillus anthracis, 
capsular PgA is an important virulence factor that has 
a low immunogenicity and therefore does not trigger a 
humoral immune response in the infected host. Released 
PgA might serve as a nitrogen or carbon source and has 
also been implicated as a water-binding component of 
the biofilm matrix. The material and chemical properties 
of PgA and of CgPs with a chemically reduced arginine 
content resemble the properties of chemically synthe-
sized and extensively applied polyacrylates; for example 
they can be used as dispersants, antiscalants or superab-
sorbers52–54. Hence, bacterial polyamides could provide 
renewable, non-toxic and biodegradable alternatives to 
polyacrylates.

Figure 4 | Selected models of polymer synthesis and secretion machineries. The biosynthesis and secretion  
(where relevant) of many bacterial polymers requires the assembly of multiprotein complexes. Some representative 
and advanced multiprotein complex models are depicted here. It should be noted that these model are supported by 
experimental data, but the extent of supporting data varies substantially from polymer to polymer. Protein colours 
indicate proteins with similar functions. See main text for details. a | The alginate biosynthesis model from Pseudomonas 
aeruginosa. b | A model of the biosynthesis of the K30 capsular polysaccharide from Escherichia coli. c | The poly-γ-glutamate 
(PGA) synthesis pathways from Bacillus spp. A, B, C, and E represent either CapA, CapB, CapC and CapE for the synthesis  
of capsular PGA in Bacillus anthracis or PgsA (also known as PgsAA and CapA), PgsB (also known as CapB), PgsC (also 
known as CapC) and PgsE for the synthesis of released extracellular PGA in Bacillus licheniformis and Bacillus subtilis.  
d | The structure of polyhydroxyalkanoate (PHA) granules from Ralstonia eutropha. AlgT, RNA polymerase factor σ22; 
c-di-GMP, cyclic di-GMP; P

i
, inorganic phosphate; Wzb, protein tyrosine phosphatase.
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Intracellular polyamides. CgP polymerization is cata-
lysed by CgP synthetase (CphA), and its mobilization 
(that is, its breakdown for use as a nitrogen and carbon 
source) is catalysed by cyanophicinase (CphB) (FIG. 2; 

TABLE 1). CgP synthesis has been proposed to resemble 
an amide ligase-dependent reaction55. In vitro synthesis 
of CgP requires ATP, K+, Mg2+, a CgP primer and a 
thiol reagent56–58, and recent biochemical studies suggest 
that CphA forms a homodimer and possesses two dif-
ferent substrate- and ATP-binding sites to accommodate 
the incorporation of both aspartate and arginine resi-
dues into the nascent polymer58,59. A lack of structural 
data for CphA still hampers elucidation of the reaction 
mechanism of this enzyme.

Released extracellular and capsular polyamides. In 
addition to being produced by gram-positive bacteria 
(FIG. 2) and archaea, PgA was recently found to be pro-
duced by the gram-negative bacterium Fusobacterium 
nucleatum60,61 (TABLE 1). The membrane-anchored protein 
PgA synthase B (PgsB; also known as CapB), which has 
similarities to the amide ligases, is the catalytic sub unit 
of the PgA synthetase62. PgsB and PgsC (also known as 
CapC) both have ATPase activity that is increased by 
the addition of PgsA (also known as CapA and PgsAA), 
suggesting that all three proteins might constitute the 
PgA synthetase multiprotein complex in vivo60,63,64 
(FIG. 4c). The proposed PgA synthesis reaction is based 
on the amide ligase mechanism, such that a primer 
(oligo-(γ-glutamate) or glutamate) is phosphorylated at 
its carboxyl terminus and one glutamate residue is then 
added. PgdS, a γ-glutamyl hydrolase, might hydrolyse 
the nascent PgA, inducing release of the polymer and 
controlling its molecular mass65. For PgA capsule for-
mation, CapD (a γ-glutamyl transpeptidase) is required 
to catalyse covalent anchoring of the PgA chain to the 
cell wall66.

Τhe biosynthesis of the third natural polyamide, Pl, 
which consists of only 25–35 l-lysine residues, has been 
intensively studied with respect to the reaction mecha-
nism of the single subunit enzyme Pl synthetase (Pls). 
Only recently, Pls was purified from Streptomyces albu-
lus and the respective gene was cloned67. Pls localizes 
to the cytoplasmic membrane and contains domains 
characteristic of non-ribosomal peptide synthetases 
but lacks the conserved condensation or thioesterase 
domains required for release of the final product67. Pl 
chain-length diversity was proposed to be the result of 
an inherent property of Pls, which acts iteratively for 
the growth of the Pl chain residing in a proposed slen-
der cavity. A reaction mechanism similar to an amino 
acid ligase mechanism has been proposed67; however,  
Pl synthesis is clearly distinguishable from PgA and 
CgP synthesis in that it does not require phosphoryla-
tion of the carboxyl terminus of the growing chain. Pls 
therefore represents a new single-module non-ribosomal 
peptide synthetase.

polyesters
Polyhydroxyalkanoates (PHAs; also known as bacterial 
bioplastics) accumulate as carbon reserve material in 
response to the availability of excess carbon source when 
growth is limited owing to starvation of other nutrients 
such as nitrogen and phosphorus. This accumula-
tion is subject to extensive regulation by biosynthesis 

Figure 5 | Strategies for the production of modified biopolymers with altered 
material properties that enhance application performance. Blue boxes represent 
metabolic-engineering targets to increase production or to enable the production of 
tailor-made polymers. a | Production strains with improved yields and/or that are capable 
of producing modified or tailor-made polymers have been developed for in vivo 
production of polymers. This approach applies metabolic engineering, implementing our 
knowledge about polymer biosynthesis pathways, metabolic flux and key enzymes to 
modify the biosynthesis pathway appropriately. b | In vitro, there are two basic strategies 
that can be adopted. First, in vitro synthesis using polymerizing enzymes or engineered 
enzymes exposed to selected substrates can lead to new biopolymers. Second, isolated 
biopolymers can be upgraded by exposure to enzymatic or chemical modifications.  
PHA, polyhydroxyalkanoate.
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genes1,68. PHA is deposited as spherical intracellular 
inclusions with an amorphous, hydrophobic PHA core 
that is mainly surrounded by proteins involved in PHA 
metabolism69,70 (FIG. 4d). PHAs can vary substantially in 
composition, as there are over 150 known constituents, 
resulting in an enormous diversity of material proper-
ties. PHAs exhibit a crystallinity ranging from 30% to 70% 
and a melting temperature of 50 °C to 180 °C; these ther-
moplastic material properties make PHAs commercially 
relevant as renewable and biodegradable alternatives to 
oil-based plastics.

Thermoplastic resins represent around two-thirds of 
the current global production of oil-based commodity 
materials, amounting to 170 million tonnes per year, 
with their global usage growing at about 5% per year71. 
Bacterial bioplastics can be processed into materials 
that are suitable to replace oil-based materials in many 
applications, including film, fibres, moulded products, 

extruded goods, coatings and adhesives. Currently, the 
production capacity for generating bioplastics through 
large-scale bacterial fermentation has reached ~100,000 
tonnes per year6. Production costs of bioplastics syn-
thesis are currently 5–10 times the cost of synthesis 
for plastics derived from petrochemicals, which is a 
major hindrance for the successful commercialization 
of bioplastics.

Owing to the broad substrate specificity of PHA 
synthase (PhaC), any organic molecules containing a 
carboxyl and a hydroxyl group that can be converted 
to the respective CoA thioester can, in principle, be 
incorporated into a high-molecular-mass PHA72. The 
biosynthesis pathways of the activated PHA precursor, 
(R)-3-hydroxyacyl-CoA, have been extensively studied 
and exploited through metabolic engineering, leading  
to the production of modified PHAs — that is, a range 
of heteropolymers and homopolymers containing  

Figure 6 | Modifications of biopolymers and impact on material properties. a | The precursor substrate provided to a 
bacterial culture can substantially affect the composition of the resulting polymer. This has been found to be particularly 
useful for the production of modified polyhydroxyalkanoates (PHAs) such as poly(3-hydroxybutylate-co-3-hydroxyvalerate) 
(poly(3HB-co-3HV)), sold under the trade name Biopol (Metabolix). b | The C5 epimerase that introduces G residues into 
preformed alginates has been used as an example for in vitro enzyme-catalysed modifications and in vivo metabolic 
engineering towards the production of tailor-made alginates. G, α-l-guluronic acid; M, β-d-mannuronic acid; poly(3HB), 
poly(3-hydroxybutyrate).
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(R)-3-hydroxy fatty acids and/or (R)-4-hydroxy fatty 
acids with different carbon chain lengths — that  
show more favourable material properties (for exam-
ple, melting temperature, glass transition temperature  
and elongation at break) for industrial and medical 
applications72,73 (FIGS 5,6).

PHAs can be classified by chain length, with 
medium-chain-length PHAs (which have constituent 
C6–C14 chains) being produced mainly by pseudomon-
ads and short-chain-length PHAs (which have constitu-
ent C3–C5 chains) being produced by a wide range of 
bacteria and archaea1.

Biosynthesis of medium-chain-length PHAs recruits 
PHA-specific enzymes such as (R)-specific enoyl- 
CoA hydratase (PhaJ) and (R)-3-hydroxyacyl ACP:CoA 
transacylase (Phag) to divert intermediates of fatty acid 
metabolism (such as enoyl-CoA and (R)-3-hydroxyacyl 
acyl carrier protein (ACP)) towards biosynthesis pathways 
of precursors74,75 (FIG. 3).

Biosynthesis of short-chain-length PHAs involves 
a β-ketothiolase-catalysed condensation of two acetyl-
CoA monomers (or an acetyl-CoA and a propionyl-CoA 
monomer), with subsequent (R)-specific reduction 
being catalysed by acetoacetyl-CoA reductase, lead-
ing to formation of (R)-3-hydroxybutyryl-CoA (or  
(R)-3-hydroxyvaleryl-CoA)76–78 (FIG. 3).

PhaC belongs to the α/β-hydrolase fold family of 
enzymes and catalyses the stereoselective conversion 
of the activated precursor (R)-3-hydroxyacyl-CoA to 
polyoxoesters, with the concomitant release of CoA79,80. 
Initiation of PHA synthesis requires activation of the 
thiol group of the cysteine residue in the PhaC active 
site by the conserved histidine in the same active site, 
enabling a nucleophilic attack on the thioester bond of 
the (R)-3-hydroxyacyl-CoA substrate, concomitantly 
releasing CoA and forming a covalent enzyme–substrate 
intermediate81,82. A conserved PhaC aspartic acid residue 
presumably activates the hydroxyl group of the bound 
3-hydroxy fatty acid, which then attacks the thioester 
bond between a second hydroxyl fatty acid unit and 
the active site cysteine of a second PhaC subunit, join-
ing the two fatty acids together. Incoming substrate is 
then covalently bound to the free cysteine and, after 
activation of its hydroxyl group, the next nucleophilic 
attack will extend the polyester chain by another unit. 
experimental evidence was obtained for chain termi-
nation occurring by transferring most of the polyester 
chain to a second, surface-exposed amino acid, which 
hydrolyses the chain83. The remaining primed PhaC 
then started a new cycle of PHA synthesis. experimental 
evidence was obtained showing that an increased PhaC 
copy number causes a decrease in PHA chain length, 
suggesting that the amount of PhaC in a host cell has  
a role in controlling PHA chain length84. The crystal 
structure of PhaC remains elusive.

polyanhydrides
Inorganic polyphosphate is the only polyanhydride 
found in all living cells (FIG. 1; TABLE 1). In bacteria, 
polyphosphate can form intracellular storage particles 
but may also form a membrane-anchored complex with 

low-molecular-mass polyhydroxybutyrate, facilitating 
the uptake of DNA and various ions85. Furthermore, it 
has been shown that polyphosphate affects numerous 
aspects of bacterial physiology, such as survival during 
the stationary growth phase, response to stress, motility, 
quorum sensing, biofilm formation and pathogenicity. 
Biodegradable polyphosphates are used in various indus-
trial applications ranging from the replacement of asbes-
tos as a flame retardant to their use as flavour enhancers 
in food. As polyphosphates can be easily produced by 
dehydration of rock phosphate, commercial production 
of bacterial polyphosphates is not economically feasible. 
However, the ability of bacteria to accumulate polyphos-
phate while removing phosphate from the environment 
could make bacterial polyphosphate production a useful 
biproduct of commercial waste water treatment.

The key enzyme for polyphosphate biosynthesis is 
the highly conserved polyphosphate kinase (PPK). In 
addition to synthesizing polyphosphate from ATP, PPK 
catalyses the reverse reaction, phosphorylating ADP 
to produce ATP. This activity has been used to recycle 
costly ATP from cheap polyphosphate in ATP-dependent 
enzymatic synthesis reactions86,87. The reaction mecha-
nism of PPK has been elucidated by obtaining the crys-
tal structure of PPK from E. coli in complex with the 
inhibitor, β-γ-imidoadenosine-5-phosphate88. The first 
step in polyphosphate synthesis is the autophosphoryla-
tion of a conserved histidine residue. His435 of E. coli 
PPK presumably acts as a nucleophile, attacking the 
phosphodiester bond of the γ-phosphate group of ATP, 
whereas His592 is a general acid catalyst, donating a pro-
ton to the oxygen atom between the β-phosphate and the 
γ-phosphate88,89. The chain elongation reaction mecha-
nism leading to the generation of polyphosphate remains 
to be elucidated. Recently, a second PPK, PPK2, has been 
identified in P. aeruginosa; PPK2 catalyses the synthesis 
of polyphosphate from gTP and prefers gDP to ADP 
as a phosphate group acceptor90. This gDP kinase activ-
ity, leading to gTP formation, substantially affects the 
biosynthesis of the alginate precursor91 (TABLE 1). PPK2 
homologues have been found to be widely spread among 
bacteria92.

tailor-made biopolymers
genome sequencing, functional genomics and the clon-
ing and characterization of biosynthesis genes have all 
had a substantial impact on our understanding of bio-
synthesis pathways in organisms that produce com-
mercially relevant polymers, as well as leading to the 
discovery of new biopolymer-producing bacteria93–96. 
This knowledge has been applied to pathway recon-
struction and engineering towards improved produc-
tion and the synthesis of tailor-made polymers (FIG. 5). In 
particular, recombinant production of the less complex 
polymers, such as PHA, CgP, HA and PgA, through 
the establishment of biosynthesis pathways in non- 
polymer-producing heterologous hosts has proven to be 
a powerful development97–103. One example is the large-
scale commercial production of PHA by fermentation 
of recombinant E. coli6. In addition, E. coli harbouring 
the polyhydroxybutyrate (PHB) biosynthesis genes from 
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Ralstonia eutropha (and, if relevant, genes from other 
bacterial species) has been commonly used for the pro-
duction of PHA composed of (R)-3-hydroxybutyrate and 
(R)-3-hydroxyvalerate and/or (R)-3-hydroxyhexanoate, 
and these polymers show material properties (such as 
increased elasticity and decreased brittleness) that are 
preferred for various industrial applications68,103.

More recently, metabolic engineering exploiting 
bacterial biosynthesis pathways led to the production of 
new unnatural polymers, including polythioesters and 
lactate-based polyesters, in recombinant E. coli 104–106. 
Homopolythioesters were produced from the precursor 
substrate 3-mercaptoalkanoate by recombinant E. coli 
harbouring genes encoding phosphotransbutyrylase 
(Ptb) and butyrate kinase (Buk1) from Clostridium  
acetobutylicum and the promiscuous PHA synthase from 
Thiocapsa pfennigii. These new polymers showed unique 
properties when compared with PHAs and petrochemical- 
derived polymers104. Direct production of polylactic 
acid, a bioplastic that is commercially produced in a two-
step process comprising the fermentative production of 
lactic acid and its subsequent chemical polymerization, 
was achieved using E. coli harbouring the genes encod-
ing engineered propionate-CoA transferase and PhaC.  
In silico genome-scale metabolic-flux analysis was applied 
to inform further genetic-engineering approaches, and 
productivity was notably enhanced by knocking out the 
acetate kinase (ackA), phosphoenolpyruvate carboxylase 
(ppc) and aldehyde–alcohol dehydrogenase (adhE) genes 
as well as by replacing the promoters of the d-lactate 
dehydrogenase (ldhA) and acetyl-CoA synthetase (acs) 
genes with the strong trc promoter (Invitrogen)107,108.

The identification of key biosynthesis enzymes (for 
example, synthases, synthetases and polymerases) and 
polymer-modifying enzymes (for example, epimerases, 
acetyltransferases and lyases) and an increased under-
standing of their reaction mechanisms as well as their 
structure–function relationships promise not only to 
improve polymer production but also to allow us obtain 
new and tailor-made polymers34,43,84,105,109. Besides 
rational design of biosynthesis pathways, including 
engineering of key enzymes, random mutagenesis and 
site-directed evolution are valid strategies towards the 
development of polymer production strains26,110–114.

Whereas the cell, as a biosynthesis machine, can use 
cheap carbon sources as precursor substrates, such as 
waste products (glycerol, whey and so on), the in vitro 
synthesis of biopolymers using purified key enzymes or 
subcellular fractions relies on costly precursor molecules 
such as ATP, CoA, CoA thioesters and nucleotide sugars 
or sugar acids. In vitro synthesis has been achieved for 
various polymers (for example, PHA, cellulose, alginate 
and PgA), and it allows the ultimate control of polymer 
composition, but it has only limited commercial appli-
cability owing to the very high production costs. For 
example, in vitro synthesis of the bioplastic PHB, which 
requires the costly precursor (R)-3-hydroxybutyryl-CoA 
and purified PHB synthase, would amount production 
costs of around uS$286,000 per gram of PHB. By con-
trast, bacterial production of PHB at a scale of thousands 
of tonnes per year has been estimated to cost about 

$0.0025 per gram of PHB, and this is still 5–10 times as 
expensive to produce as the respective petroleum-based 
polymers.

The strategies outlined above show the enormous 
polymer design space available for bacterial polymer 
production, and this could be even further extended by 
exposing isolated biopolymers to further chemical or 
enzymatic modifications (FIG. 5). One example of enzy-
matic modification is the use of alginate epimerases with 
different substrate specificities to introduce guluronic 
acid residues at specific sites in alginates, thereby alter-
ing their material properties115 (FIG. 6). All the strategies 
for the production of tailor-made biopolymers that are 
mentioned above are strongly informed by knowledge 
of the structure–material property relationships of the 
respective biopolymers.

An exciting and recent development is the poten-
tial use of PHA granules, which are formed inside 
recombinant bacterial cells, as tailor-made functional-
ized micro- or nano-beads in which specific proteins 
attached to the PHA core have been engineered to dis-
play various protein functions (FIG. 4d). The application 
performance of engineered PHA beads in high-affinity 
bioseparation116–118, enzyme immobilization119, protein 
production120, diagnostics121 and as an antigen delivery 
system122 has been demonstrated, and the technology is 
now being commercialized (see REF. 69 for a review).

industrial production: where are the bottlenecks?
The ability to develop bacterial production strains by 
random approaches or by engineering biosynthesis path-
ways and key enzymes makes bacteria ideal hosts for 
the production of tailor-made polymers for use either as 
commodity products or in the high-value medical field. 
The production costs are driven by the yield of polymer 
relative to the amount of carbon source required, as well 
as by downstream processing requirements, which are 
strongly informed by the targeted application field. This 
is particularly relevant for intracellular polymers such 
as PHAs, as cells need to be lysed to release the polymer, 
which will subsequently be subjected to various sepa-
ration processes. These separation processes become 
especially challenging when polymers are considered 
for medical applications. Depending on the production 
scale, which can range from kilograms to tonnes, bio-
polymer production by bacterial fermentation under 
current good manufacturing practice requires a substan-
tial investment into capital equipment — from $1 million 
for kilogram yields to $10–100 million for tonne yields. 
Capital equipment costs are determined by the culture 
volume used, which in turn dictates the dimensions 
of the bioreactor and downstream processing equip-
ment. Downstream processing involves the separation 
of biomass and culture supernatant, usually by filtra-
tion, followed by product-specific separation processes 
(for example, micro- or nanofiltration, solvent extrac-
tion, precipitation, chromatography or crystallization). 
When compared with the production process for syn-
thetic polymers, the biotechnological process provides 
a notable reduction in capital equipment and operating 
costs and, moreover, waste disposal costs are lower and 
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