1 Procvi£ování 12 - výsledky 1. Naimportujte data... 2. Vytvo°te zkratky... ## Loading required package: permute ## Loading required package: lattice ## This is vegan 2.0-10 3. Rank abundance plot. Micrsp Thieinde Tanybrun PolyGr.1 Pararufi Ablasp ParaGr 0500100015002000 4. Jedinci v pod£eledích. ## Diamesinae Chironominae Orthocladiinae Prodiamesinae Tanypodinae ## 58 4929 6189 147 545 5. Dataframe subfam. ## froude chir orth tanypod ## s01 0.139193 41 92 6 ## s02 0.175951 64 323 18 ## s03 0.140536 55 80 10 ## s04 0.046165 55 110 18 ## s05 0.051925 100 327 62 ## s06 0.070242 134 405 65 2 ## s07 0.296715 19 232 7 ## s08 0.427528 5 141 0 ## s09 0.329023 14 202 3 ## s10 0.407331 22 187 0 ## s11 0.219511 14 163 3 ## s12 0.522477 149 297 1 ## s13 0.065500 378 102 83 ## s14 0.181655 38 109 3 ## s15 0.299809 337 368 17 ## s16 0.167799 7 114 1 ## s17 0.135520 13 226 4 ## s18 0.242733 103 452 3 ## s19 0.039662 47 135 16 ## s20 0.476675 57 139 21 ## s21 0.507082 195 1227 2 ## s22 0.134698 49 59 13 ## s23 0.127380 47 92 6 ## s24 0.558432 268 395 6 ## s25 0.539509 14 31 1 ## s26 0.001813 2530 107 139 ## s27 0.020319 174 74 37 6. Dataframe subfam s prom¥nnou hab. ## froude chir orth tanypod hab ## s01 0.139193 41 92 6 P ## s02 0.175951 64 323 18 P ## s03 0.140536 55 80 10 P ## s04 0.046165 55 110 18 OM ## s05 0.051925 100 327 62 OM ## s06 0.070242 134 405 65 OM ## s07 0.296715 19 232 7 R ## s08 0.427528 5 141 0 R ## s09 0.329023 14 202 3 R ## s10 0.407331 22 187 0 VEG ## s11 0.219511 14 163 3 VEG ## s12 0.522477 149 297 1 VEG ## s13 0.065500 378 102 83 OM ## s14 0.181655 38 109 3 P ## s15 0.299809 337 368 17 VEG ## s16 0.167799 7 114 1 P ## s17 0.135520 13 226 4 P ## s18 0.242733 103 452 3 VEG ## s19 0.039662 47 135 16 P ## s20 0.476675 57 139 21 R ## s21 0.507082 195 1227 2 VEG ## s22 0.134698 49 59 13 P ## s23 0.127380 47 92 6 P ## s24 0.558432 268 395 6 VEG ## s25 0.539509 14 31 1 R 3 ## s26 0.001813 2530 107 139 OM ## s27 0.020319 174 74 37 OM 7. Rozd¥lte si gracké okno na 3 oddíly. 8. Bodový graf abundancí pod£eledí proti Froudeho £íslu. q q qq q q q q q q q q q q q q q q q q q qq q q q q 0.0 0.1 0.2 0.3 0.4 0.5 2345678 chir subfam$froude log1p(subfam[,i]) q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.1 0.2 0.3 0.4 0.5 4567 orth subfam$froude log1p(subfam[,i]) q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.1 0.2 0.3 0.4 0.5 012345 tanypod subfam$froude log1p(subfam[,i]) 9. Bodový graf abundancí pod£eledí proti Froudeho £íslu s odli²enými habitaty. q q q q q q 0.0 0.1 0.2 0.3 0.4 0.5 2345678 chir subfam$froude log1p(subfam[,i]) q q q qq q 0.0 0.1 0.2 0.3 0.4 0.5 4567 orth subfam$froude log1p(subfam[,i]) q q q q q q 0.0 0.1 0.2 0.3 0.4 0.5 012345 tanypod subfam$froude log1p(subfam[,i]) 10. Se°a¤te úrovn¥ faktoru hab. q OM P VEG R 0.00.20.4 hab froude 4 11. Boxplot abundancí pod£eledí proti habitatu. q q q q OM P VEG R 2345678 chir subfam$hab log1p(subfam[,i]) q q q OM P VEG R 4567 orth subfam$hab log1p(subfam[,i]) q OM P VEG R 012345 tanypod subfam$hab log1p(subfam[,i])