C2110 UNIX and programming

9. lekce

Petr Kulhánek, Jakub Štěpán

kulhanek@chemi.muni.cz

National Centre for Biomolecular Research, Faculty of Science Masaryk University, Kotlářská 2, CZ-61137 Brno

INVESTMENTS IN EDUCATION DEVELOPMENT

CZ.1.07/2.2.00/15.0233

Contents

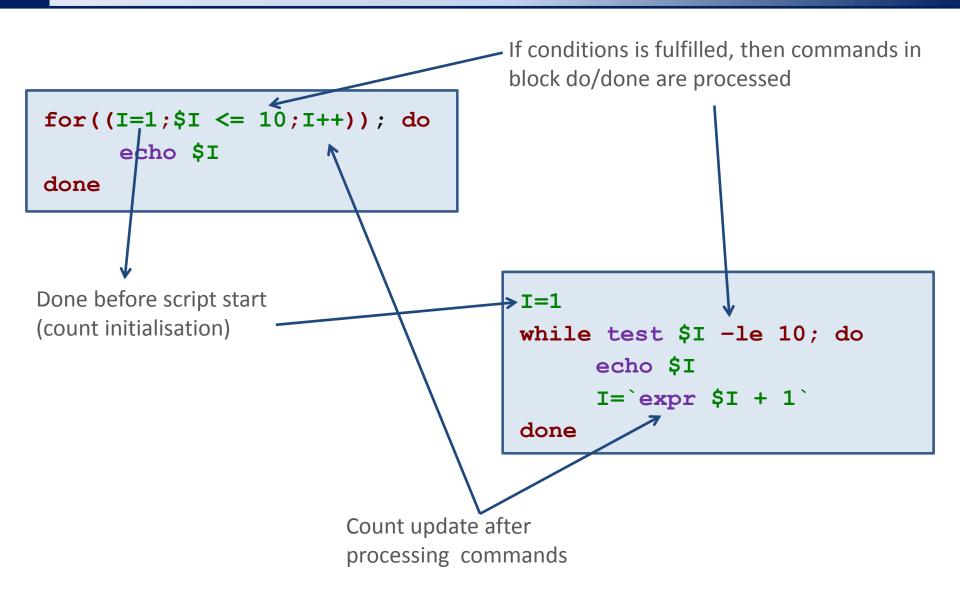
- **Bash**
 - Cycle using while
- **>** Gnuplot
 - Language overview, command plot, terminals, command splot

Bash

> Cycle using while

Cycle using while

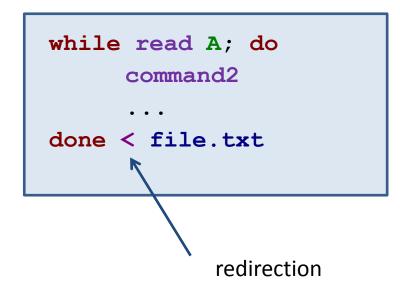
Cycle (loop) is control structure, that repeatedly processes set of commands. Repeats are done until condition is fulfilled.


Cycle repeats until command1 return value is 0.

```
while command1
do
command2
....
done
```

Compact form:

```
while command1; do
    command2
    ...
done
```


Cycle using for vs. while cycle

Redirection and pipes

Reading file per lines:

```
cat file.txt | while read A; do
command2
....
done
roura
```


Redirection to file:

```
for((I=1;I <= 10;I++)); do
    echo $I
done > file.txt

Output of all commands is redirected to file.txt.
```

Home work I

Explain different behavior of folloving scripts file.txt obsahuje pět řádků.

Print number 0

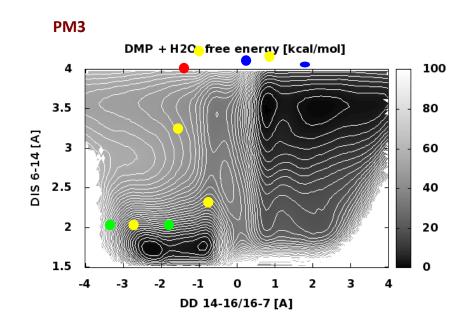
```
#!/bin/bash
I=0
while read A; do
    I=$(($I+1))
done < data.txt
echo $I</pre>
```

Print number 5

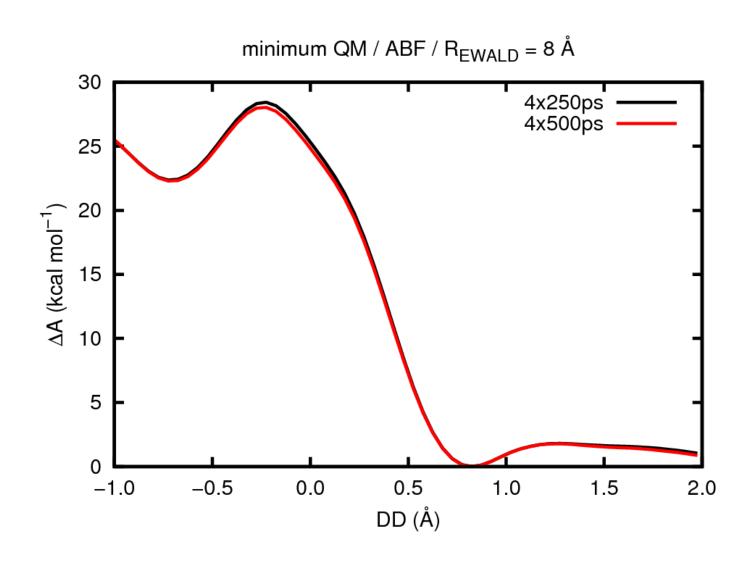
Home work II

File rst.out (wolf.ncbr.muni.cz:/home/kulhanek/Data/rst.out) contains results of molecular dynamics simulation. Task is to extract dependence of temperature on simulation time from file.

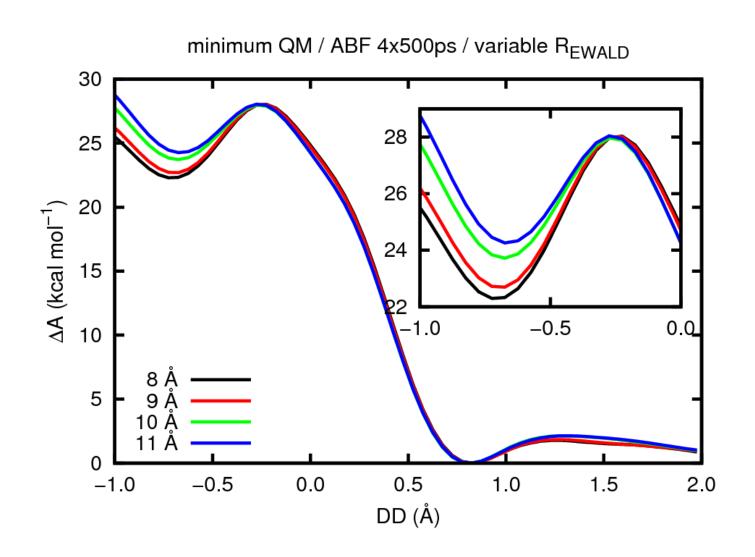
```
Time
                                                                 Temperature
                                    0.500
                                                       288.02
NSTEP =
             500
                   TIME(PS) =
                                           TEMP (K)
                                                                PRESS =
                                                                            0.0
               942.6248
                                         151.0990
                                                                       791.5258
Etot
                        EKtot
                                                   EPtot
                51.3204 ANGLE
                                        292.3619
                                                                       176.5980
BOND
                                                   DIHED
                17.7099 1-4 EEL =
                                         981.4071
                                                                       -68.3301
                                                   VDWAALS
1-4 \text{ NB} =
              -494.7423 EGB
                                        -164.7991
EELEC
                                                   RESTRAINT
                                                                         0.1822
EAMBER (non-restraint) =
                                791.3436
```


WARNING: Script nust not contain commands grep, awk and their variants. Use command read and while.

Gnuplot


- > (Non)Interactive run
- > Command plot
- > Terminals
- > Showcases

http://www.gnuplot.info/


(documentation, tutorials, source codes)

Showcase

Showcase

Interactive run

Gnuplot is dedicated to draw 2D and 3D graphs, through interactive and scripting mode as well.

```
Shell BASH command line
Interactive mode
[kulhanek@wolf ~]$ qnuplot
        GNUPLOT
        Version 4.4 patchlevel 3
        last modified March 2011
        System: Linux 3.2.0-31-generic
        Copyright (C) 1986-1993, 1998, 2004, 2007-2010
        Thomas Williams, Colin Kelley and many others
        gnuplot home: http://www.gnuplot.info
        faq, bugs, etc: type "help seeking-assistance"
        immediate help: type "help"
        plot window:
                      hit 'h'
Terminal type set to 'wxt'
gnuplot>
                    gnuplot command line
```

Noninteractive run

1) Un-direct running

We run interpreter and as its argument we put script name.

```
$ gnuplot my_gnuplot_script
```

Scripts **does not need** permission x (executable).

2) Direct running

We run directly script (shell automatically start interpreter).

```
$ chmod u+x my_gnuplot_script
```

```
$./my_gnuplot_skript
```

Scripts **needs** permission **x** (executable) and **interpreter** (part of script).

```
#!/usr/bin/gnuplot
plot sin(x)
pause -1
```

Command - plot

> plot function/file [plot_setup] [, fce/file ...]

Shows XY graph of function or data from file.

```
Examples:
               lines, points, linespoints, dots
                                                   Line color
> plot sin(x)
> plot cos(5.7*x+3.4) with points linecolor rgb "red" \
                                linewidth 2 title "cos"
 Data file name
                              Line thickness
> plot "input.txt" using 1:2 with lines
                                        Second column are y-axis values.
                                        First column are x-axis values.
> plot sin(x), cos(x)
```

Plots functions sin and cos to one graph.

Exercise

- 1. Plot function graph of $y=x^2$
- 2. Plot function from task 1 again, but with blue line.
- Plot graph of temperature dependency on time from data file /home/kulhanek/Data/temp.txt Time is in first column, temperature is in second column.
- 4. Plot graph of function sin(x) using red line and function cos(x) using orange line with points.

Do all tasks in interactive mode.

Other commands

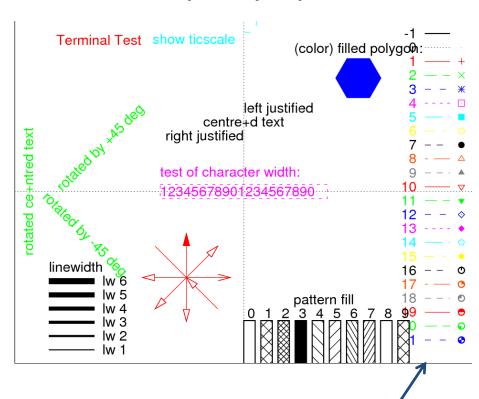
```
> set title "title"
                                             # Graph header
> set xrange[min value:max value]
                                             # sets range of x axis
> set xlabel "title"
                                             # sets title of x axis
> set yrange[min value:max value]
                                             # sets range of y axis
> set ylabel "title"
                                             # sets title of y axis
                                             # disables key for data in plot
> set nokey
> pause -1
                                             # wait for key press
```

Exercise

- 1. Write script, that plots function $y=x^2$ in range 0-10 for x axis. Run script un-directly using gnuplot interpreter.
- 2. Write script, that plots dependence of temperature on time from data in file /home/kulhanek/Data/temp.txt . Add axis labels including units. Time is in picoseconds, temperature in kelvin.

Terminals

Terminal determines output form.


```
# output is shown in window
> set term x11
                                  # output is shown in advanced window
> set term wxt
> set term png size 800,600
                                  # output is plot as a picture in png format
> set output "output.png" # output will be saved to file output.png
                                  # prints page with terminal features, terminals does
> test
                                  have different abilities
```

Sample terminal outputs

wxt

postcript/eps

Supports dotted lines

Exercise

- What possibilities offer terminals x11 and wxt. Work in interactive mode and use command test.
- 2. Write script, that plots graph of function $y=5.x^3 + 6.x^2 7$ in range -10 to 5 on x axis. Run script directly with interpreter in script header.
- 3. Change previous script to plot graph to format png. Picture size will be 640x480. Show picture using command **display**.
- 4. View result of command **test** for terminal png and postscript.
- 5. What terminals gnuplot supports (set terminal with no argument)?

Command - splot

To plot function of two variables, command splot may be used.

> splot functionkce/file [plot_setup] [, fce/file ...]

Shows XYZ graph of function or data from file.

View point is set by command **set view a,b**, where **a** and **b** are view angles. View from top is set by **set view map**

Sampling of density for x and y axis is set by command set isosamples a,b, where a and b gives number of samples in given direction.

To highlight surface by its function value **pm3d** command may be used, for example:

> splot x*x+y*y with pm3d

Exercise

- 1. Plot function x^2+y^2
- 2. Set top view (set view)
- 3. Unset current view (unset view)
- 4. Raise density of points for function plot (**set isosamples**). Use values 10,20; 20,10 and 20,20
- 5. Use view pm3d
- 6. Set top view (**set view**)

Do all tasks in interactive mode.