
C2110 UNIX and programming 12th lesson -1-

C2110 UNIX and programming

Petr Kulhánek, Jakub Štěpán

kulhanek@chemi.muni.cz

National Centre for Biomolecular Research, Faculty of Science
Masaryk University, Kotlářská 2, CZ-61137 Brno

CZ.1.07/2.2.00/15.0233

12th Lesson

C2110 UNIX and programming 12th lesson -2-

Contents

AWK

• Text files analysis

• Regular expressions

• Arrays

 BASH user input check

• BASH error states

• Input values check

C2110 UNIX and programming 12th lesson -3-

Script execution

BEGIN {

}

{

}

/VZOR/ {

}

END {

}

1

2

3

4

Each block is in curly brackets {}.
Some program blocks are optional – see description.

Default record separator is new line – one line = one record.

• Block BEGIN (1) is executed (if present) before file analysis.

• Record from file is read. By default one record is whole
line from input file or stream. Record is split to fields. By
default words of line are fields.

• Block (2) is executed for any record.

• Block (3) is executed for any record matching PATTERN.

• Possible other blocks are executed

• Block END (4) is executed (if present) after analyzing whole
file content.

C2110 UNIX and programming 12th lesson -4-

Regular expressions

/PATTERN/ {

}

If record matches PATTERN, then block is executed.

PATTERN may be regular expression.

Regular expression is string construction, that describes structure of set of text strings. It
may be used to search text strings or substitutions of substrings.

Simple regular expressions samples:

TEXT - matches if record contain text TEXT (TEXT may occur anywhere in record)
^TEXT - matches if record contain text TEXT on record beginning
TEXT$ - matches if record contain text TEXT on record end

C2110 UNIX and programming 12th lesson -5-

Exercise

1. Extract temperature dependency on time from file rst.out. Display graph of
dependency by gnuplot.

2. Extract time dependency of energies from file rst.out. Extract total energy
(Etot), kinetic energy (EKtot) and potential energy (EPtot) time dependency.
Display graphs of all energies in gnuplot. Make sure, that sum of potential
and kinetic energy is equal to total energy.

NSTEP = 1000 TIME(PS) = 1.000 TEMP(K) = 305.69 PRESS = 0.0

 Etot = 907.8481 EKtot = 160.3711 EPtot = 747.4770

 BOND = 40.6154 ANGLE = 273.9238 DIHED = 164.5827

 1-4 NB = 14.6900 1-4 EEL = 973.2602 VDWAALS = -67.6091

 EELEC = -488.9232 EGB = -163.0629 RESTRAINT = 0.3793

 EAMBER (non-restraint) = 747.0977

C2110 UNIX and programming 12th lesson -6-

Arrays
AWK provides associative arrays. An array has name, all items are accessed by key. Key may
have arbitrary type and value. Key may be variable value.

Value assignment:

 my_array[key] = value;

Obtain value:

 variable = my_array[key];

Examples:

 i = 5;

 my_array[i] = 15;

 print my_array[i];

 a = "word";

 my_array[a] = "value";

 print my_array["word"], my_array[5];

C2110 UNIX and programming 12th lesson -7-

Arrays, ...

for(variable in array) {

 print array[variable];

 ...

}

Cycle does one iteration for each key value
used in array. Actual key value is in variable.

Searching in key list:

Array item deletion by key:

delete array[key];

C2110 UNIX and programming 12th lesson -8-

Exercise

1. Extract temperature time dependency from file rst.out. Remove last 2 values (these
are average and fluctuation). Display graph in gnuplot.

2. Extract temperature values from file rst.out and calculate its average value.
Compare calculated value with value printed in file rst.out. Why both values differ?

C2110 UNIX and programming 12th lesson -9-

BASH user input check

 BASH error states

 Input values check

C2110 UNIX and programming 12th lesson -10-

BASH error states
Example from lession 8. Script does not behave correctly if started with no argument or
with non-numerical argument.

#!/bin/bash

if test "$1" –le 0; then

 echo "Number not greater then zero!"

 exit 1

fi

echo "Number greater then zero."

exit 0

$./my_script

my_script: line 2: test: -le: unary operator expected

Number greater then zero.

$ echo $?

0

$./my_script f

my_script: line 2: test: f: integer expression expected

Number greater then zero."

$ echo $?

0

C2110 UNIX and programming 12th lesson -11-

Input values check

#!/bin/bash

echo "Write numeric value!"

read A

if ! expr $A + 0 > /dev/null; then

 echo „Error! Non-numeric value read: $A"

 exit 1

fi

It is neccessary to check values obtained from user.

Check

• Number and type of arguments
• Validity of numerical values (zero devision, negative counter values)
• Zero string length
• Existence of files for processing

C2110 UNIX and programming 12th lesson -12-

Exercise

1. To script from home work 1 in lesson 8 (rectangle drawing) add check that
user submitted exactly two arguments.

2. Adjust previous script to check that user submitted size in natural
numbers.

3. Adjust previous script in such a way, that third argument will be character
or string to print rectangle with (instead of character "X"). Check if
argument is non-empty string.

4. Adjust previous script in such a way, that user will insert values
interactively on request after script start.

5. Adjust script from home work II lesson 9 in such a way, that script will
accept name of analyzed file as a argument and file path existence will be
checked.

