C2115 Practical Introduction to Supercomputing

5th Lesson

Petr Kulhánek, Jakub Štěpán

kulhanek@chemi.muni.cz

National Centre for Biomolecular Research, Faculty of Science Masaryk University, Kotlářská 2, CZ-61137 Brno

INVESTMENTS IN EDUCATION DEVELOPMENT

CZ.1.07/2.2.00/15.0233

C2115 Practical Introduction to Supercomputing

Contents

Exercise LIII.3 solution

input, matrix multiplication

Result explanation

computer architecture and its bottlenecks

> Optimized libraries usage

BLAS, LAPACK, LINPACK, result comparison

Exercise LIII.3 solution

> Input, matrix multiplication

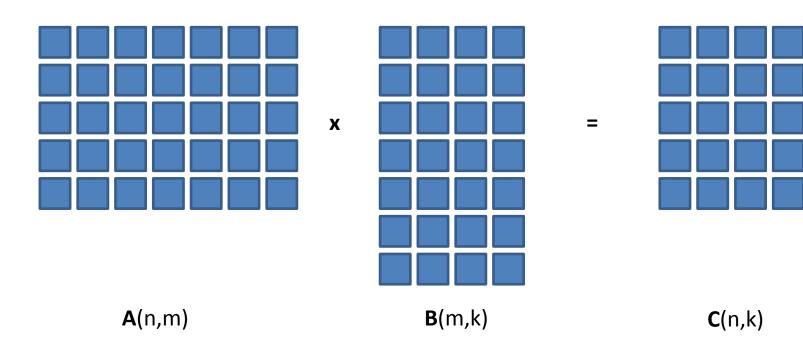
C2115 Practical Introduction to Supercomputing

5th Lesson -3-

Exercise LIII.3

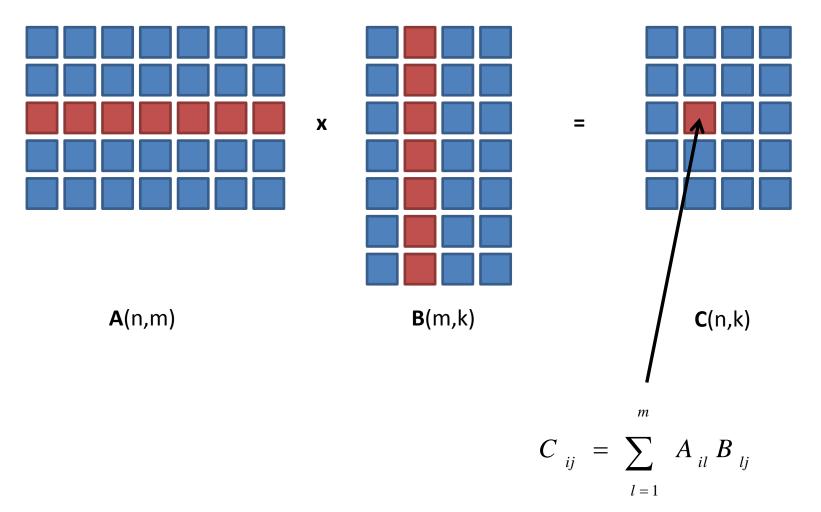
- Write program, that dynamically allocates two dimensional array A of size n x n. Items will be initialized by random numbers from range <-10 ;20>. Print array to terminal.
- Create two separate arrays (matrices) A and B of size n x n. Initialize arrays in same way as in previous exercise. Write code for matrix A and B multiplication, save result to matrix C.
- 3. How many floating point operations will be done during matrix multiplication? Measure time necessary for matrix multiplication (do not include matrix initiation and creation). Calculate approximate processor power in MFLOPS from operation number.
- 4. Calculate processor performance for different matrix **A** and **B** sizes. Create graph for values of **n** in range 10 to 1000.

Matrix multiplication



5th Lesson -5-

Matrix multiplication



Resulting **C** matrix item is scalar product of vectors given by i-th row of matrix **A** and j-th column of matrix **B**

C2115 Practical Introduction to Supercomputing

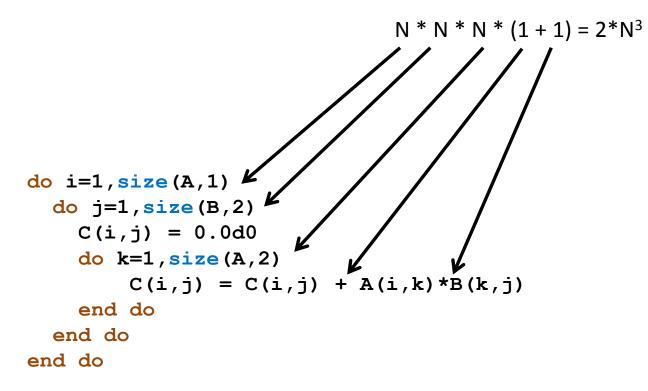
Matrix multiplication, program

subroutine mult_matrices(A,B,C)

```
implicit none
 double precision :: A(:,:)
 double precision :: B(:,:)
 double precision :: C(:,:)
  1_____
 integer
                  :: i,j,k
 1 -----
                          _____
 if (size(A,2) .ne. size(B,1)) then
   stop 'Error: Illegal shape of A and B matrices!'
 end if
 do i=1, size(A, 1)
   do j=1,size(B,2)
     C(i,j) = 0.0d0
     do k=1, size (A,2)
        C(i,j) = C(i,j) + A(i,k) * B(k,j)
     end do
   end do
 end do
end subroutine mult matrices
```

Number of operations

Expect that matrices **A** and **B** are square matrices of NxN size:

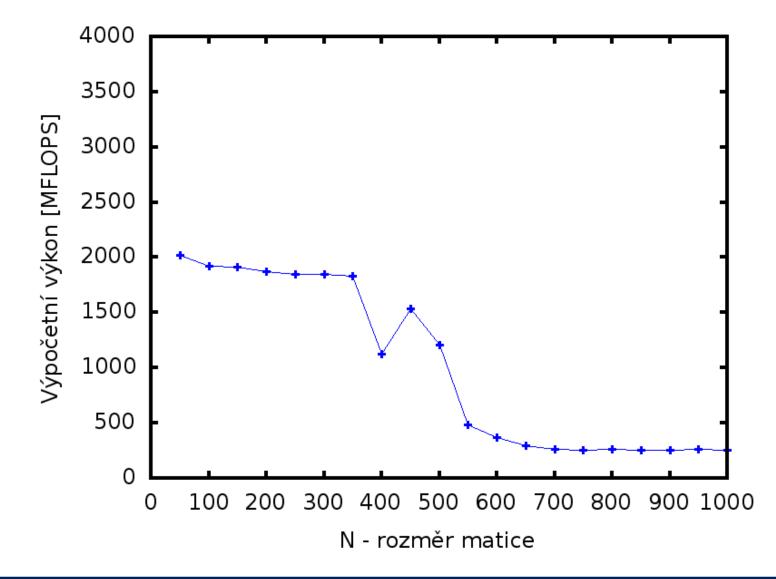


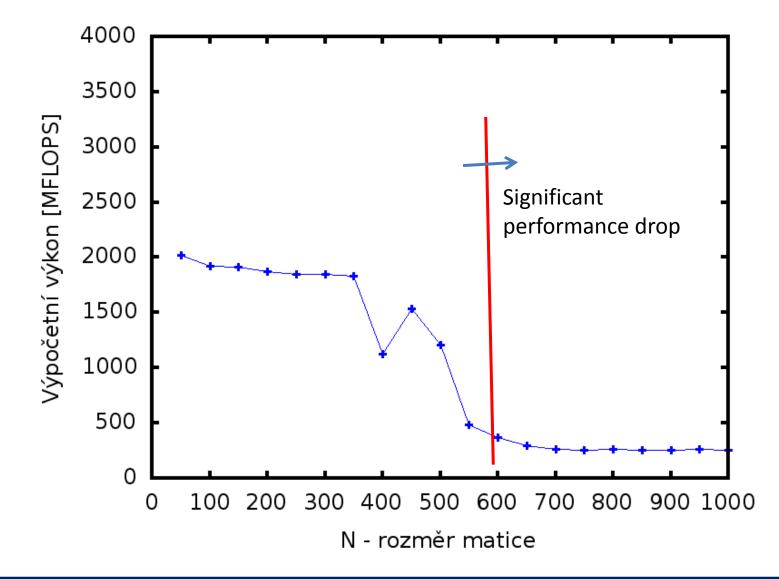
Computing measures computational performance as number of **FLOPS** (FLoating-point **Operations Per Second**), that is how many floating point operations are done in second.

Results

wolf21: gfortran 4.6.3, optimization O3, Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz

N	NR	NOPs	Time	MFLOPS	Legend:
50	50000	12500000000	6.1843858	2021.2	N – matrix size
					NR – number of iterations
100	500	100000000	0.5200334	1923.0	NODe Electing Doint operations
150	50	337500000	0.1760106	1917.5	NOPs – Floating Point operations
200	50	80000000	0.4280272	1869.0	Time – runtime in seconds
250	50	1562500000	0.8440533	1851.2	MFLOPS – performance
300	50	270000000	1.4640903	1844.1	
350	50	4287500000	2.3441458	1829.0	
400	50	640000000	5.7083569	1121.2	
450	50	9112500000	5.9363708	1535.0	
500	50	12500000000	10.3366470	1209.3	
550	1	332750000	0.6880417	483.6	
600	1	43200000	1.1600723	372.4	
650	1	549250000	1.8601189	295.3	
700	1	68600000	2.5881615	265.1	
750	1	843750000	3.2762032	257.5	
800	1	1024000000	3.8522377	265.8	
850	1	1228250000	4.7883034	256.5	
900	1	1458000000	5.6963577	256.0	
950	1	1714750000	6.5044060	263.6	
1000	1	200000000	7.9444962	251.7	



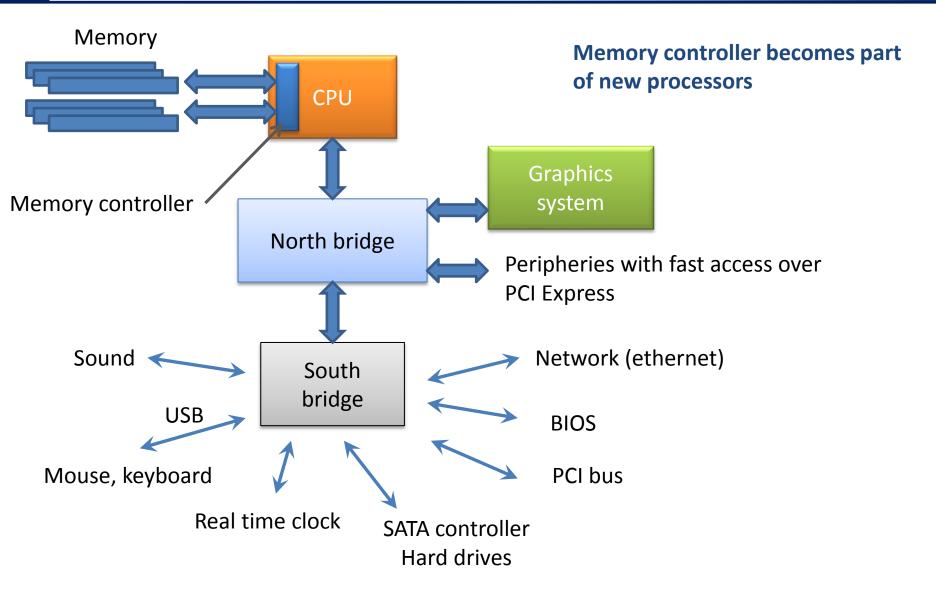


Results explanation

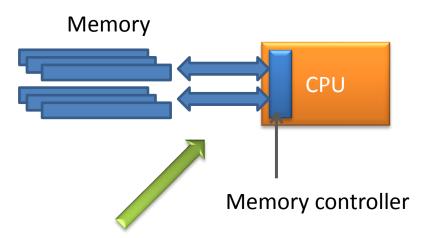
Computer architecture

> Bottlenecks

Architecture, general overview

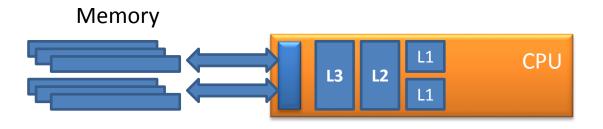


Architecture, bottleneck



Bottleneck: data transfer rate between memory and CPU is usually slower then speed that CPU processes data.

Hierarchy memory model

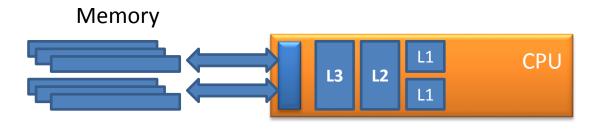


Fast cache memory (cache), various levels with different access rates.

wolf21 - transfer rates (memtest86+, http://www.memtest.org/)

Туре	Size	Rate
L1	32kB	89 GB/s
L2	256 kB	35 GB/s
L3	8192 kB	24 GB/s
Memory	8192 MB	12 GB/s

Hierarchy memory model



Fast cache memory (cache), various levels with different access rates.

wolf21 - transfer rates (memtest86+, http://www.memtest.org/)

Туре	Size	Rate
L1	32kB	89 GB/s
L2	256 kB	35 GB/s
L3	8192 kB	24 GB/s
Memory	8192 MB	12 GB/s

If problem size exceeds CPU cache memory size, then transfer rate between CPU and physical memory becomes **speed limiting factor**.

N=600 600x600x3x8 = 8437 MBA,B,C double precision

Optimized libraries usage

> BLAS
> LAPACK
> LINPACK
> Result comparison

C2115 Practical Introduction to Supercomputing

Linear algebra libraries

BLAS

The BLAS (**Basic Linear Algebra Subprograms**) are routines that provide standard building blocks for performing basic vector and matrix operations. The Level 1 BLAS perform scalar, vector and vector-vector operations, the Level 2 BLAS perform matrix-vector operations, and the Level 3 BLAS perform matrix-matrix operations. Because the BLAS are efficient, portable, and widely available, they are commonly used in the development of high quality linear algebra software, LAPACK for example.

LAPACK

LAPACK is written in Fortran 90 and provides routines for solving systems of simultaneous linear equations, least-squares solutions of linear systems of equations, eigenvalue problems, and singular value problems. The associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are related computations such as reordering of the Schur factorizations and estimating condition numbers. Dense and banded matrices are handled, but not general sparse matrices. In all areas, similar functionality is provided for real and complex matrices, in both single and double precision.

http://netlib.org

Optimized libraries

Optimized libraries BLAS and LAPACK

- ➢ optimized by hardware producer
- ATLAS http://math-atlas.sourceforge.net/
- MKL http://software.intel.com/en-us/intel-mkl
- ACML http://developer.amd.com/tools/cpu-development/ amd-core-math-library-acml/
- cuBLAS https://developer.nvidia.com/cublas

Optimized libraries FFT (Fast Fourier Transform)

- > optimized by hardware producer
- MKL http://software.intel.com/en-us/intel-mkl
- > ACML http://developer.amd.com/tools/cpu-development/
- amd-core-math-library-acml/ ▶ FFTW http://www.fftw.org/
- cuFFT
 https://developer.nvidia.com/cufft

Matrix multiplication using BLAS

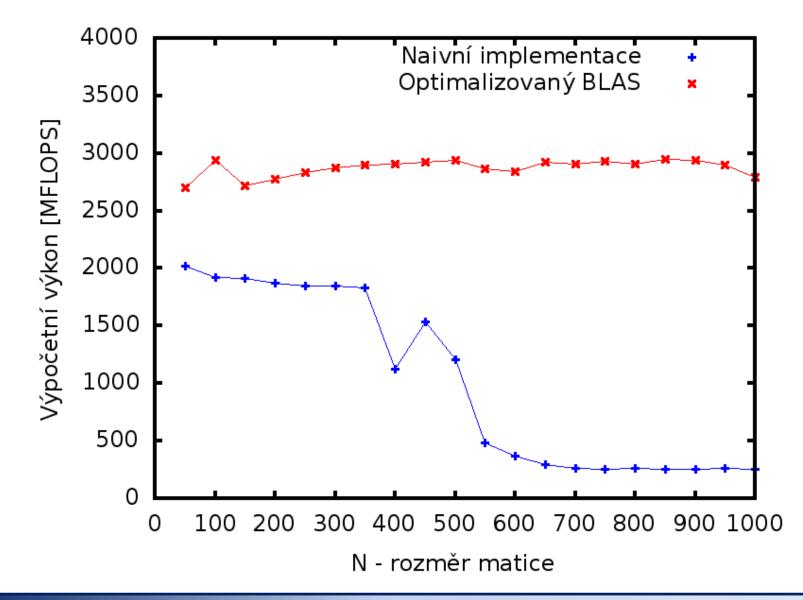
```
subroutine mult matrices blas(A,B,C)
```

end subroutine mult_matrices_blas

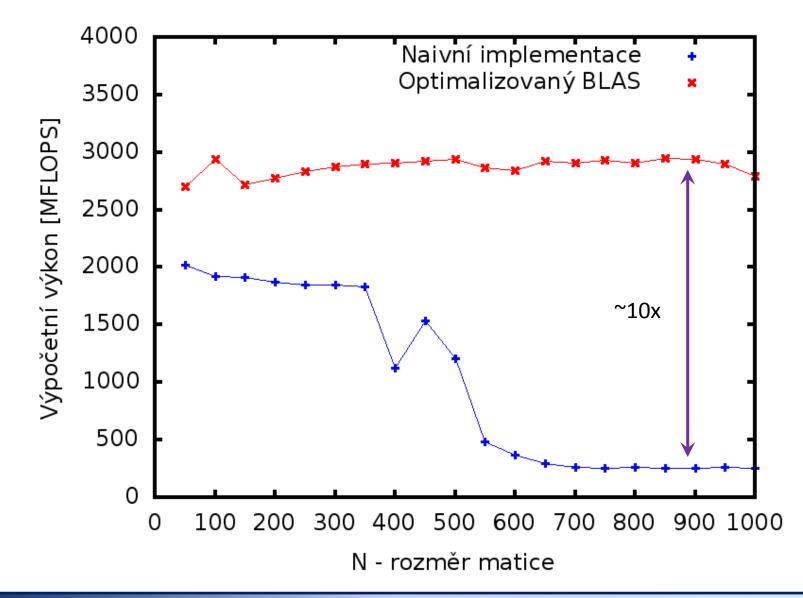
Compilation:

\$ gfortran -03 mutl mat.f90 -o mult mat -1blas

Naive vs. optimized solution



Naive vs. optimized solution



Summary

It is always appropriate to use **existing library** to solve problem, because these are usually **highly hardware optimized**.