Ruggedness, robustness, stability

Šimon Vojta and Branislav Vrana RECETOX, Masaryk University, Brno, CR

TEMPUS project NETREL learing course

Research centre for toxic compounds in the environment

Ruggedness Testing

- the degree of reproducibility of results obtained under a variety of conditions, such as different laboratories, analysts, instruments, environmental conditions, operators and materials
- a measure of reproducibility of test results under normal, expected operational conditions from laboratory to laboratory and from analyst to analyst
- determined by the analysis of aliquots from homogeneous lots in different laboratories

Ruggedness testing

- by considering each effect separately, by repeating measurements after varying a particular parameter by a small amount (say 10%) and controlling the other conditions appropriately
- this can be labour-intensive as a large number of effects may need to be considered
- for a well-developed method, most of the effects can be expected to be small, it is possible to vary several parameters at the same time
- any stable and homogeneous sample within the scope of the method can be used for ruggedness-testing

- 7 parameters, each tested at two levels (low-high) e.g.
 - 1. volume of sample
 - 2. time of extraction
 - 3. flow rate
 - 4. temperature
 - 5. pH
 - 6. salt concentration
 - 7. modifier addition

128 possible combinations!

low		high		Combinations
	0		7	1
	1		6	7
	2		5	21
	3		4	35
	4		3	35
	5		2	21
	6		1	7
	7		0	1
SUM				128

- The design described allows information to be gathered from only eight experiments
- A, B, C, D, E, F and G nominal level
- a, b, c, d, e, f and g alternative level
- The chosen levels may be the **extreme values** of the parameter, e.g. the two extremes of temperature likely to be encountered during use of the method

To find if changing factor 'A' to 'a' has an effect, A is calculated

Experiment number			Metho	Observed result				
1	А	В	С	D	Е	F	G	1
2	Α	В	с	D	e	f	g	m
3	А	b	С	d	E	f	g	р
4	А	b	с	d	e	F	Ğ	W
5	а	В	С	d	e	F	g	V
6	а	В	с	d	E	f	G	х
7	а	b	С	D	e	f	G	у
8	а	b	с	D	E	F	g	Z

$$\Delta_{A} = \frac{1+m+p+w}{4} - \frac{v+x+y+z}{4}$$

With this combination the effect of the other factors cancels out!

Experiment number	Method parameter								Observed result				
1	А	В	(2	D	F	2	F	(ť		1	
2	А	В	C	:	D	е	;	f	2	5		m	
3	А	b	(2	d	E	E	f	g	5		р	
4	А	b	C	:	d	e	;	F	C	ť		W	
5	а	В	0	2	d	e	;	F	Ę	5		V	
6	а	В	C	;	d	E	Ľ	f	C	ť		х	
7	а	b	(2	D	e	;	f	C	ť		у	
8	а	b	C	;	D	E]	F	Ę	5		Ζ	

$$\Delta_{A} = \frac{1+m+p+w}{4} - \frac{v+x+y+z}{4}$$

TEMPUS project NETREL learing course

Research centre for toxic compounds in the environment

Changing factor 'B' to 'b' is examined by calculating B, as follows:

Experiment number			Observed result					
1	А	В	С	D	E	F	G	1
2	А	В	с	D	e	f	g	m
3	А	b	С	d	Е	f	g	р
4	А	b	с	d	e	F	G	W
5	a	В	С	d	e	F	g	v
6	a	В	с	d	Е	f	G	X
7	a	b	С	D	e	f	G	У
8	a	b	с	D	E	F	g	Z

$$\Delta_{\rm B} = \frac{1+m+v+x}{4} - \frac{p+w+y+z}{4}$$

TEMPUS project NETREL learing course

Research centre for toxic compounds in the environment

- The next step is to arrange the seven differences, A to G, in numerical order (ignoring the sign).
- To calculate if any of the differences are statistically significant, a statistical test (*t* -test) is applied.
- Equation below is used to compare the difference $|\Delta_i|$ with the expected precision of the method, s and the level of confidence used (t-test).

$$|\Delta_i| > \frac{ts}{\sqrt{2}}$$

• For cases where equation is true, the change from the nominal to the alternative level is significant.

- NOTE! the results of the test will be misleading if the factors investigated are not independent
- Such a study may be used to set the level of control that should be applied at particular stages of the method, e.g. adjust the pH to 6.5 ± 0.2
- It is also possible to study the effect of potential interferences by using this approach

