import pyfits # generovani flatu bias = pyfits.open('dark_V_0115.fits') bias_data = bias[0].data bias.close() dark = pyfits.open('noise_B_0052.fits') dark_data = dark[0].data dark.close() flat = pyfits.open('flat_V_0007.fits') flat_data = flat[0].data flat.close() xdark_data = (13.0/5.0)*(dark_data - bias_data) flat_data = flat_data - xdark_data - bias_data xflat = flat_data.mean() flat = pyfits.open('flat_V_0007.fits') flat[0].data = flat_data / xflat del flat[0].header['BSCALE'] del flat[0].header['BZERO'] flat.writeto('flat.fits',clobber=True) flat.close() # fotometricke korekce bias = pyfits.open('dark_V_0115.fits') bias_data = bias[0].data bias.close() dark = pyfits.open('dark_Clear_0120.fits') print(dark[0].header['EXPTIME']) dark_data = dark[0].data dark.close() flat = pyfits.open('flat.fits') flat_data = flat[0].data flat.close() obr = pyfits.open('bllac_V_0001.fits') obr_data = obr[0].data xdark_data = (300.0/90.0)*(dark_data - bias_data) obr_data = (obr_data - xdark_data - bias_data) \ / flat_data obr[0].data = obr_data del obr[0].header['BSCALE'] del obr[0].header['BZERO'] obr.writeto('bl.fits',clobber=True) obr.close()