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1. Introduction

1.1 What this text is

This is a supplementary text to the exercises to the lecture F5170: Introduction to Plasma
Physics. The lecture itself contains many theoretical derivations and considerations and the aim
of this text is to mediate hands-on experience to students who come in contact with plasma
physics for the first time.

Throughout the text, you, as a student, will be presented to a number of problems, most
of which have to be solved with the help of computers. You will, among other things, learn
to solve systems of ordinary differential equations, to batch-process data or to numerically inte-
grate data, which can not be described by an analytical function. You will find most of the skills
and numerical techniques that you will learn throughout the semester useful also in other
disciplines of physics.

The hands-on examples are designed to be as straightforward and illustrative as possible.
It has been taken into account that most of the students may initially lack the programming
skills, required for completing this course. For this reason, all the code is richly commented
and documented. The idea is that you will learn the basics of Matlab programming on these
real-life commented examples.

1.2 What this text is not

First and foremost, this text does not aim to be a comprehensive guide to Matlab programming
and scripting. There are countless books and manuals on Matlab and its frameworks. The most
relevant and accessible ones are listed in section 2.2.3. Be prepared that the text may occasionaly
be too concise, the language may be sloppy and the logic not obvious. That is because at this
point, the text is not designed to work on its own but rather in combination with the exercises
to F5170: Introduction to Plasma Physics.

This text is also not a reference that the user would be advised to cite in scientific publications
or theses of any kind. It is always best to refer directly to the books or articles that this text
is built on. Although obtaining the original references just to make sure a particular formula
or figure is correct may seem tedious and pointless, it is a skill that you will certainly find useful
in your future scientific work.

Finally, this text is not a text on numerical methods. Various differential equation solvers
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are considered black boxes and their inner workings are not analysed in detail. The authors
avoid non-dimensionalization of all the equations that are solved because using meaningful
physical units has the advantage that you will not only understand the phenomena qualitatively
but you should also get an idea about the magnitudes of various quantities in plasma physics.

1.3 Connection to the lecture
The lecture spans across 13 weeks of a Fall semester at the Masaryk University. This text reflects
the contents of the lecture and the idea is that you will progress by one chapter every two weeks.
There is usually no exercise in the first week of the semester.

1.3.1 Weeks 2 & 3: Getting ready
Since the lecture has to have a bit of a head start, you will have whole two weeks to get the re-
quired software to work on your computer. Both Windows and Linux users will have to install
the university-licensed Matlab software (see chapter 2). Students should also study the second
part of this chapter to learn the absolute basics of Matlab code and logic.

1.3.2 Weeks 4 to 6: Particles in fields
In weeks 4 to 6, you should understand all the Matlab programs presented in chapter 3 and
by the end of week 5, you should complete all the exercises in the respective chapter. The ex-
ercises focus on movement of particles in electric and magnetic fields and should help you to
understand the nature of various particle drifts in plasmas.

1.3.3 Weeks 7 & 8: Data processing
You will learn basics of batch data processing using examples from plasma physics. This includes
interpolation and integration of discrete data in Matlab as well as data conversion. Although
you will work with data relevant for plasma physics, you will find the skills obtained in this section
useful in any other discipline of physics.

1.3.4 Weeks 9 & 10: Distribution functions
This short chapter should help you to understand distribution functions. You will be provided
with programs that can visualize the time development of a distribution function. You will also
analyze the shape of the Maxwellian distribution for various conditions.

1.3.5 Weeks 11 to 13: Final assignment
In the final assignment, you will utilize the knowledge obtained in all the previous sections.
You will have to write or complete a program that solves particle balance in a laboratory argon
plasma. You will also learn how the composition of the plasma changes with the pressure or the
temperature of electrons and heavy species.
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2. Matlab fundamentals

Matlab (originally Matrix Laboratory) is commercial software and a scripting language being
developed by the company MathWorks. Unlike many traditional programming languages, Matlab
allows the user to manipulate matrices and vectors in an intuitive way. It allows the users to define
their own functions which can have virtually any input or output.

2.1 Installing Matlab at the Masaryk University
2.1.1 MUNI License

As of 2014, Masaryk University has the newest license of Matlab with a license pool of at least
250 licenses. This means, that 250 students or employees of MUNI can run Matlab simul-
taneously. In order to work properly, the MUNI license requires the user to be connected
to the Internet and to MUNI’s virtual private network (VPN). The license is limited to research
and non-commercial usage.

2.1.2 Getting the installation files
The installation files for Matlab 2014b are available from the intranet of the Masaryk University.
Please keep in mind that the Matlab installation file is currently approximately 7.5 GB large but
inside Masaryk University’s network, you will be able to download the installation files extremely
fast. Starting from version 2013, Matlab is available only for 64bit computers and operating
systems. If you want to use Matlab on a 32bit architecture, please ask the advisor.

Howto 2.1.1 — Downloading Matlab files. Follow these steps to get all the necessary files
1. Open inet.muni.cz in your web browser
2. Log in using your university number (UČO) and your primary password
3. Go to Software→ Nabídka softwaru
4. Locate Matlab in the software list and click Získat
5. After agreeing with the License agreement, download the following three to your

computer
• The license.dat file
• The installation image, R201xx_Windows.iso for Windows machines

or R201xx_UNIX.iso for Linux-based operating systems

http://inet.muni.cz
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• The Autorizační kód – store it in a text file since the installer will ask you for it.

2.1.3 Installation
Having downloaded the ISO installation images, you have to mount them and run the setup.
Mounting an ISO image means creating a virtual DVD drive, containing the files from the ISO.
Alternatively, you could burn the ISO image onto a DVD and install it from there.

Howto 2.1.2 — Mounting the ISO on Windows. The most widely used software for mount-
ing ISO files (i.e. creating a virtual DVD drive with the ISO files as a content) is probably Dae-
mon Tools Lite.

R Despite being the best software for mounting virtual drives, Daemon tools Lite forces
a lot of unwanted software on the user. If you want to avoid an unwanted toolbar
in your browser, go through the installation carefully, unchecking the corresponding
option.

After the installation of Daemon Tools, mount the Matlab DVD:

1. Right-click the Daemon tools icon in your system tray
2. Go to Virtual DVD→ Device 0: → Mount Image
3. Locate the ISO image and confirm
4. You will now see the Matlab DVD in My Computer

Howto 2.1.3 — Mounting the ISO on Linux. Many modern Linux distributions have built-in
functionality for mounting ISO images. You can usually access this functionality by right-
clicking the ISO file and choosing the Mount option.

If you cannot find a built-in mounting function in your distro, you can use AcetoneISO
software, which is available in repositories of all major Linux distributions.

If you prefer a command line solution, you can type the following to the terminal, without
having to install anything

1mount -o exec R201xx_UNIX.iso /mnt/disk

with /mnt/disk being the directory where you want to mount the ISO

On Windows, the installer is started by the setup.exe file, while on Linux, you have to execute
the ./install binary. In both cases, the files are located in the top-lever directory of the installa-
tion DVD. When the installer asks you whether you want to Activate Matlab, click Yes.

R On Linux, you may want to install Matlab as a super-user. Otherwise, a link in /usr/local/bin
will not be created and you will not be able to run it simply by typing matlab to the com-
mand line.

The Matlab installation itself is straightforward and user-friendly so follow the installation
guide. You will be asked to provide first the Autorizační kód, then choose the installation location
and then provide the license file. At one point, you will be asked about installing toolboxes.
The toolboxes are additional function libraries, extending the functionality of Matlab. If you want
to save some hard-drive space, you do not have to install toolboxes from these categories
• Test and measurement
• Computational finance
• Computational Biology

http://www.stahuj.centrum.cz/multimedia/vypalovani_cd/daemon-tools/
http://www.stahuj.centrum.cz/multimedia/vypalovani_cd/daemon-tools/
http://sourceforge.net/projects/acetoneiso/
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• Code generation

2.1.4 Running Matlab
Windows users will find a link to Matlab on their desktop and in their Start menu. On Linux, you
can run Matlab by the matlab command (if you installed it under superuser privileges) or from
its installation directory,

1/path/to/Matlab/R20xx/bin/matlab

After starting Matlab, the main window will open. It should be identical on all operating systems.

Figure 2.1: The main Matlab window

The window has three main sub-windows:
• Current folder shows you the contents of the folder you are in, especially all Matlab

scripts that you can execute.
• Workspace lists all variables (numerical values or matrices) which are currently defined.

By double-clicking a variable, its value will be displayed.
• Command window is the most important part. Here, you can define new variables,

call functions or execute Matlab scripts. You will learn more about this in the next section.

2.2 Matlab fundamentals

This section briefly discusses the fundamentals of Matlab syntax and logic. It will not be very
exhaustive because this text is built on the assumption that writing Matlab code does not have
to be studied rigorously and can be understood on meaningful examples. At the end of this
section, you should understand especially the following,
• What is a variable in Matlab and how to define one.
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• How to access matrix and vector elements or select sub-matrices
• What is the difference between script files and function files.
• What is a function in Matlab and how to call it.
For some of you, the information in this section will be trivial but this text also remembers

those, who never came in contact with any programming.

2.2.1 Variables and indexing

Working with variables in Matlab is as easy as in real life, you only have to realize that Matlab
performs numerical operations, not analytical. What does this mean in practice? Try to define
a variable simply by typing

1v = 10

and let’s assume it is the velocity of some object. You then define the object’s mass in kilograms

1m = 3

and you can calculate the object’s kinetic energy as

1Ek = 0.5*m*v^2

Now, when you try to re-define the velocity and look to the Workspace sub-window, you will
see that the kinetic energy has not changed. That is because the variable Ek only contains
the numerical value, the way in which this variable was calculated is not stored. You would
have to re-run the corresponding command to get the updated value of Ek.

Working with matrix or vector variables is also simple in Matlab. Let us assume you want
to rotate a vector in the 3D Cartesian space in the xy-plane. First, define the vector

1r = [10, 20, 30]

and then define matrix of the rotation using sin() and cos() built-in functions

1M = [cos(pi/3),-sin(pi/3),0; sin(pi/3),cos(pi/3),0; 0,0,1]

You can see that matrices are defined row-by-row. The elements in columns are separated
by commas (,) and the rows are separated by semicolons (;). A vector is essentially just a 1×n
or n×1 matrix. However, if you try to multiply M and r by typing

1rrot = M*r

you will get an error saying that inner dimensions do not agree. That is because r is a row vector
and you cannot multiply a 3× 3 matrix with a 1× 3 vector. In this case, the multiplication
is performed by

1rrot = M*r'

where the apostrophe denotes transposition of r.

R You noticed that upon defining a new variable, its value is displayed in the command
window. To prevent that, end each command with a semicolon (;).

The standard operations that can be performed on scalars, vectors and matrices are addition
(+), subtraction (-), multiplication (*), division (/) and exponentiation (�). However, there
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are also element-wise operations. For example, element-wise multiplication (.*) of two 1×3
vectors works like this

(1,4,5) .∗ (2,4,6) = (1∗2,4∗4,5∗6) = (2,16,30). (2.1)

Apart from element-wise multiplication, there is also element-wise division (./) and element-
wise exponentiation (.�).

Finally, it is useful to know how to access individual elements of matrices and vectors
or to create sub-matrices or sub-vectors. You can perform the following operations on a vector

1a = [1,2,3,4,5,6,7];

2b = a(4) % get fourth element of "a" = 4

3b = a(1:3) % get subvector from el. 1 to 3 = [1,2,3]

4b = a(4:end) % subvector from el. 4 to the end = [4,5,6,7]

With 2D matrices, you need to use two indices. Take in mind that the first index is the row
and the second is the column

1a = [1,2,3;4,5,6;7,8,9];

2b = a(1,2) % get the element on 1x2 = 2

3b = a(:,2) % get the second column = [2,5,8]

4b = a(3 ,:) % get the third row = [7,8,9]

5b = a(1:2,1:2) % get the submatrix = [1,2;4,5]

2.2.2 M-files
Defining variables and operating with them in the command window can save some time but that
alone would make Matlab only a better pocket calculator. Typically, you will use Matlab or any
similar scripting language for automation of repetitive or complicated tasks. There are two types
of files which you can use for storing a sequence of commands, script files and function files.
It may be a bit confusing that both have the .m extension, but that is the fact.

Script files
A script file contains a set of Matlab commands, one at each line, which are executed in a se-
quence. For example, if you measure a quantity over a long period of time and you want
to generate an up-to-date normalized plot every day, it is convenient to use a script

Matlab script example

1day = [1, 2, 3, 4, 5, 7, 8, 10, 12, 15]; % days

2count = [450, 363, 291, 220, 180, 150, 120, 100, 90, 80];

% bacteria count

3mc = max(count); % finds maximum value of count

4norm_count = count/mc; % performs normalisation

5

6% Plots data on x-axis and count on y-axis

7plot(day , norm_count , 'rx-');

8xlabel('Days'); % sets x-axis title

9ylabel('Normalized cell count [CFU]'); % sets y-axis title

10title('Plasma sterilisation experiment ') % sets figure title

11

12print -dpng -r72 'experiment.png'; % exports figure to png
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On the first two lines, there are the measurement data. The day variable stores measurement
days while the count variable stores values measured on each of these days. On lines 3 and 4,
the data are normalized and from line 7 onwards, the data are plotted. Obviously, such a script
file can save some time in our model situation.

R The code above contains comments. You can and should use them to annotate any of your
code so that you are able to recall what it does even after some time. The percent sign
tells Matlab that everything which follows (until the end of line) is not a command
and should be ignored.

If you want to run a script file, you simply change the Current folder to the folder where
your script is and type the script name (without the extension .m) into the command window.

Exercise 2.1 Write a script file which will plot the following ozone density measurements
in the logarithmic scale. Note that the log() function calculates the natural logarithm
while log10() calculates the decimal logarithm.

position [mm] 0.0 0.1 0.2 0.3 0.5 0.6
O3 density [m−3] 1.4 ·1020 1.0 ·1020 5.2 ·1019 1.6 ·1019 4.5 ·1018 9.1 ·1017

�

Function files

M-files containing functions are a little different from the script files. First and foremost,
a function is no longer a plain sequence of commands but it is an object which always has N inputs
and M outputs, similar to functions in mathematics. To provide an example, a Matlab function
that calculates the Larmor radius and cyclotron frequency of an electron could look like this

Matlab function example: gyro.m

1function [r, omega] = gyro(B, vp)

2q = -1.602e�19; % elementary charge [C]

3m = 9.109e�31; % mass [kg]

4

5r = m*vp/(abs(q)*B); % Larmor radius

6omega = q*B/m; % Cyclotron frequency

7end % end of function

The behaviour of this function is defined on the first line. The variables r and omega are the output
arguments and B and vp are input arguments. The function name on the first line (gyro),
has to be identical with the file name.

This function can be executed either from the Command window or from another m-file.
To test this, try running

1[r0, w0] = gyro(1e�4, 1e3)

from your Command window. Two new variables, r0 and w0 will appear in your Workspace
with the correct values of Larmor radius and the cyclotron frequency.

Exercise 2.2 Write a function that will have electron density in m−3 and electron temperature
in eV at the input and the Debye length and plasma frequency at the output. The necessary
formulas can be found for instance in [Bit04]. �
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2.2.3 Where to go from here
In this section, only the absolute fundamentals of Matlab coding were explained. A more detailed
introduction can be found at www.mathworks.com/help/matlab/getting-started-with-matlab.html
and the authors of this text advise the students to read it.

Similar to all computer-related matters, keep in mind that Google is your friend. What you will
find especially useful are links leading to stackexchange.com. Since Matlab is so widely used,
you can be almost certain that someone else already got a similar problem resolved on this forum.

If you decide to use Matlab beyond this course, for your own research, MatlabCentral
will be very useful, www.mathworks.com/matlabcentral. Most importantly, it contains detailed
documentation of Matlab functions, most with usage examples. In addition, it is also a discussion
board and a repository of examples and additional functions that you can download (e.g. functions
for nicer plotting).

http://www.mathworks.com/help/matlab/getting-started-with-matlab.html
http://stackexchange.com/
http://www.mathworks.com/matlabcentral/
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3. Motion of particles in E and B fields

3.1 Particles in constant E and B fields

The first problem that you will learn to implement is simple motion of a charged particle
in electric and magnetic fields. This is a well known problem with well-known analytical
solutions. This aim of this section is to demonstrate, how different are the approaches to solving
a set of differential equations (DEs) on paper and in a computer program. The short program
developed in this section is richly commented and explained and it is crucial that the reader
understands what every line of code exactly does.

Movement of particles in complex, often non-uniform and time-dependent, electric and mag-
netic fields is often investigated in plasma physics as well as in other disciplines. Some of the most
frequent applications include:
• Mass spectrometers, in which particles can be filtered by according to mass/charge ratio
• Fusion reactors which use magnetic fields for plasma confinement [aa ]
• Electron microscopes, where the electron beam is guided by electric fields [FEI10]
• Hall thrusters used for propulsion in space (see figure 3.1)
• and many more...

3.1.1 Underlying equations
The code developed in this section will solve the equation of motion in three dimensions
for a particle with a defined mass and charge. The force acting on the particle is the Lorentz
force

FL = q(E+v×B) = q(E+ ṙ×B) (3.1)

where q is the charge of the particle, E is the electric field, v is the velocity of the particle, r its
position and B is the magnetic field. The equation of motion for the particle, therefore, takes
the form

r̈ =
q
m
(E+ ṙ×B) (3.2)

with m being the mass of the particle. The motion equation in this form can be very use-
ful for various general considerations and for finding analytical or approximative solutions
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(a) A schematic by David Staack (b) Hall thruster firing

Figure 3.1: Hall effect thrusters use electric and magnetic field to accelerate ions
out from a plasma. As of 2014, Hall thrusters are routinely used with geostationary satel-
lites as well as extraterrestrial missions. [GK08, page 15]

to the problem. However, if we want to solve this motion equation numerically, we will have
to change our perspective a bit.

First and foremost, it has to be said that Matlab, as well as most numerical libraries, does
not have functions which would allow you to solve second order ODEs directly. It is, however,
very good with solving first-order ODEs as well as systems of first-order ODEs. With the use
of the standard notation,

r = (x,y,z), (3.3)

ṙ = (vx,vy,vz), (3.4)

Ḃ = (Bx,By,Bz), (3.5)

Ė = (Ex,Ey,Ez) (3.6)

equation (3.2) is equivalent to the following six ODEs.

ẋ = vx, (3.7)

ẏ = vy, (3.8)

ż = vz, (3.9)

v̇x =
q
m
(Ex + vyBz− vzBy) , (3.10)

v̇y =
q
m
(Ey + vzBx− vxBz) , (3.11)

v̇z =
q
m
(Ez + vxBy− vyBx) . (3.12)

Apparently, we transformed three second-order ordinary differential equations expressed by the vec-
tor equation (3.2) to a set of six first order differential equations.

R Transforming N differential equations of the second order to 2N differential equations
of the first order is not uncommon in physics. Most readers have certainly encountered
this in mechanics courses, when transferring between Lagrangian and Hamiltonian for-
malisms. In this sense, the formalism which is much more convenient for numerical
analysis is the Hamiltonian formalism.
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3.1.2 Solving the system of ODEs in Matlab
The Matlab function which is used for ODE solving is the ode45 function. This function
is capable of solving a set of first-order differential equations in the form

q̇ = f (t,q) (3.13)

where t is the independent variable and q = q(t) is a vector of dependent variables. It should
now be apparent, why we reformulated the motion equation to the form desribed by equa-
tions (3.7) to (3.12). If you compare our reformulated equations to (3.13), you should see that
in our case

q = (x,y,z,vx,vy,vz). (3.14)

The function ode45 is called in the following way

1[t,q] = solver(@f,tspan ,q0)

The first argument of the function ode45 is the function f (t,q) which evaluates the right-hand
sides of the system of ODEs. The second argument is the interval on which the ODEs will
be solved and the third argument are the initial conditions for q.

The function ode45 returns the solution in the form of a matrix with the following form

t=



t
0.0

0.0001
0.0002
0.0003
0.0004
0.0005
...


q=



x y z vx vy vz

0 0 0 100.0 0 0
−0.0000 0 99.91 −3.95 0
0.0005 −0.0000 0 99.65 −7.91 0
0.0007 −0.0000 0 99.21 −11.84 0
0.0010 −0.0001 0 98.60 −15.76 0
0.0012 −0.0001 0 97.82 −19.64 0
... ... ... ... ... ...


(3.15)

The column vector q contains the values of our independent variable (time) while the columns
of the matrix q contain the values of our dependent variables (positions and velocities) at given
times.

3.1.3 The Implementation
We are going to need two files to solve the motion equation. The first one, odefun.m will contain
the function evaluating the r.h.s. of the system of differential equation while the file solve.m
will contain the initial solution itself and plotting of the result. These two files have to be placed
in the same directory and only the latter will be executed directly from Matlab. Let us first look
at the file odefun.m.

Program 1: odefun.m

1function dqdt = odefun(t,q),

2% This is the input function for the

3% ordinary differential equation solver ode45.

4% Input: independent variable t(time), 6-dim vector q

5% q = [x,y,z,v_x ,v_y ,v_z]

6% Output: time derivative of q, dqdt = dq/dt

7

8qe = -1.602e�19; % Elementary charge in

Coulomb
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9m = 9.109e�31; % Particle mass in kg

10

11% Now , we define position and velocity variables

12% using the vector of dependent variables , q.

13% This would not be necessary but using

14% "x" instead of q(1), etc.. makes the code

15% below more readable

16x = q(1);

17y = q(2);

18z = q(3);

19vx = q(4);

20vy = q(5);

21vz = q(6);

22

23Ex = 0;

24Ey = 2e�6;

25Ez = 0;

26Bx = 0;

27By = 0;

28Bz = 1e�7;

29

30% Now , we calculate the components of the 6-dim

31% vector dq/dt.

32dxdt = vx; % dx/dt = v_x

33dydt = vy; % dy/dt = v_y

34dzdt = vz; % dz/dt = v_z

35dvxdt = qe/m*(Ex + vy*Bz - vz*Bx); % dv_x/dt

36dvydt = qe/m*(Ey + vz*Bx - vx*Bz); % dv_y/dt

37dvzdt = qe/m*(Ez + vx*By - vy*Bx); % dv_z/dt

38% Finally , we have to assign the calculated

components

39% to the vector variable dqdt , which is

40% the output of the function

41dqdt = [dxdt; dydt; dzdt; dvxdt; dvydt; dvzdt];

42

43end % end of function

Although the source code is richly commented, let us now look closer at some of its important
parts. Apparently, the file odefun.m is a Matlab function file. Line 1 tells the computer that this
file contains a function called odefun which takes the independent variable t and the vector
of dependent variables q as the input and it returns its derivative q̇ (written as dqdt in ASCII).

On lines 8 and 9, the elementary charge and particle mass are defined. The new set of variables
which is defined on lines 16 to 22 is not necessary for the correct operation of the whole program
but it is much more illustrative to use x, y, etc ... on lines 35 to 37, where the derivatives
are expressed. On lines 23 to 28, the electric and magnetic fields are defined.

R Defining the constants q0 and m inside the function is not a good practice but we do it here
to make the source code as clear as possible. Since the function odefun() will be called
many times by the ODE solver, it would be better to define these constants as global
variables.
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Having defined the function, describing the right hand side of the system of ODEs (3.13),
we can finally solve it and plot the results. The relevant commands are included in the file
solve.m.

Program 1: solve.m
1% This matlab script solves the equation of motion

2% for a charged particle in presence of electric

3% and magnetic fields.

4

5% First , we need to define the initial conditions.

6% Remember , q = [x,y,z,v_x ,v_y ,v_z]

7q0 = [0;0;0;1e2;0;0];

8

9% Now we define the time interval , on which

10% we want to solve the ODE.

11ti = 0;

12tf = 2.5e�3;

13N = 1000;

14timespan = linspace(ti,tf,N);

15% The function linspace(ti, tf, N) creates

16% a linearly spaced vector beginning at "ti"

17% ending at "tf" with "N" steps/components.

18

19% And now for the solving itself

20% The notation @odefun tells the program

21% that the first argument is a function.

22[t, q] = ode45(@odefun , timespan , q0);

23% The result will be a vector t and a matrix q with N rows.

24

25% The following commands display the calculated trajectory

26mesh([q(:,1) q(:,1)], [q(:,2) q(:,2)], [q(:,3) q(:,3)], [t(:)

t(:)],'EdgeColor ', 'interp ', 'FaceColor ', 'none'); % plot

27view(2) % sets the plot to top view

28set(gca ,'FontSize ',16,'fontWeight ','bold') % sets font size

29xlabel('x [m]') % sets title of x-axis

30ylabel('y [m]') % sets title of y-axis

31zlabel('z [m]') % sets title of z-axis

32title(['Particle trajectory , ti=', num2str(ti), ' s, tf=',

num2str(tf), ' s']) % sets figure title

33

34print -depsc 'Output.eps' % prints the figure to file

3.1.4 Exercises
Exercise 3.1 Copy the source code presented in the previous section to your computer
or use m-files provided in the Prog1_Particle_motion directory.
• Run the program with pre-defined values you should get a curve similar to figure 3.2.
• What kind of drift is observed?
• What is the direction of the drift velocity for an electron and a positron?

�
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Figure 3.2: A trajectory of a particle in E = (0,10−6,0)V/m, B = (0,0,10−7)T
and q(0) = (0,0,0,100m/s,0,0,0)

Exercise 3.2 Change the charge qe and the mass m of the particle to those of a proton.
• How many times do you have to increase the time scale in order to see the characteristic

trajectory of the drift?
• Compare amplitude of the oscillations of electrons and protons and the magnitude

of their drift velocities (read these data from the plots).
�

Exercise 3.3 Modify the Matlab program from exercise 3.1 in such a way that the mo-
tion equation is solved without electric field but with magnetic field quadratically growing
in the direction of y

E = (0,0,0) (3.16)

B = (0,0,Bz) (3.17)

Bz = B0

(
y
y0

)2

(3.18)

q0 = (0,0,0,
√

2v0,
√

2v0,0) (3.19)

In the equation above, y0 is the characteristic distance that your particle travels. You can either
find this empirically or you can estimate it from the theoretical velocity magnitude of your
particle and the time scale tf of your simulation.

Do you observe any drift? For what values of B0, y0 and v0 did you observe it? What
is the direction of the drift velocity for an electron and for a positron? �

Advanced exercise 3.1 Modify the program from this section so that the electric field
changes harmonically with time. We recommend using

Ex = E0 · cos(ωt) , (3.20)

Ey = 0, (3.21)

Ez = 0, (3.22)
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and setting the initial velocity to

vx = 0, (3.23)

vy = v0, (3.24)

vz = 0. (3.25)

Now, examine for several frequencies ω (for example 106, 107, 108 and 109 Hz) the motion
of a proton and an electron.
• How do they react to the field?
• Compare how easily the electron and proton are influenced by the external field for

various frequencies.
�

3.2 Van Allen radiation belt
The discovery of van Allen radiation belts is often seen as the first big discovery of the space age.
Their existence was prediced by James van Allen and confirmed by the Explorer I satellite in 1958.
The belts are a direct consequence of the Earth’s magnetic field, which traps high-energy
particles and prevents them from reaching the surface of the Earth. Since no shielding is ever
perfect, there is always some flux of particles towards the surface of the Earth. These particles
then ionize and excite the gas molecules in the lower layers of the atmosphere, which we observe
as the aurora (pictured in the header of this chapter).

There are two stable van Allen belts, the first is located at 1000 to 6000 km above the surface
while the second is located at 13000 to 60000 km [Bak12]. The third van Allen belt has been
discovered very recently and it seems to appear and disappear over time [Sci13; Shp+13].

Since you should now have a very good understanding of charged particle motion in electric
and magnetic fields, saying that the energetic particles are simply trapped in the magnetic field
is perhaps too vague. In this section, we will modify the Program 1 we used before and use
to calculate a trajectory of a high-energy proton in the Earth’s magnetic field. In the process,
we will learn what global variables are and how to use them in Matlab. You will also become fa-
miliar with several advanced plotting commands. This section is inspired by Lecture notes
of S. Markidis [Mar13].

3.2.1 Underlying equations
The equations that will have to be solved and the method of their solution are identical to the previ-
ous section 3.1. The only principal difference is that the electric field will be zero and the magnetic
field will be a strong function of position and will be approximated by the field of a magnetic
dipole with constant magnetic dipole moment m.

R As mentioned above, we approximate the geomagnetic field by a field of a dipole. This
is a very rough approximation which is valid only up to the distance of several Re (Earth
radii). Above that the magnetic field is strongly non-symmetrical due to its interactions
with the solar wind. Most of the scientific activity in this field, both experimental and theo-
retical, is endorsed by NASA under the Living with a star program (lws.gsfc.nasa.gov).
Some very advanced theoretical models of the geomagnetic field and space weather
are available at ccmc.gsfc.nasa.gov.

In the vector form, the magnetic field of a dipole is

B(r) =
µ0

4π

(
3r(m · r)

r5 −m
r3

)
(3.26)

http://lws.gsfc.nasa.gov
http://ccmc.gsfc.nasa.gov
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where m is the magnetic moment, µ0 the vacuum permeability and

r = (x,y,z), (3.27)

r = |r| . (3.28)

Exercise 3.4 We will work in a cartesian coordinate system with the origin at the center
of the Earth and the z-axis identical with the Earth’s axis. In this system, the magnetic moment
of the planet is

m = (0,0,M). (3.29)

• Express components of the magnetic field B = (Bx,By,Bz) in cartesian coordinates.
• What is the value of M if the geomagnetic field at the equator is 3.12 ·10−5 T?

�

3.2.2 Implementation
Just like in the previous case, we have to define the function which will return the right hand
sides of our system of ODEs. The corresponding function m-file, odefun.m looks very similar
to the previous cases.

Program 2: odefun.m

1function dqdt = odefun(t,q),

2% This is the input function for the

3% ordinary differential equation solver ode45.

4% Input: independent variable t(time), 6-dim vector q

5% q = [x,y,z,v_x ,v_y ,v_z]

6% Output: time derivative of q, dqdt = dq/dt

7

8% In solve.m, we define some global variables. Now ,

we need to tell

9% Matlab , that we will use "m" and "qe"

10global m; global qe;

11

12% Re-naming position and velocity variables

13x = q(1);

14y = q(2);

15z = q(3);

16vx = q(4);

17vy = q(5);

18vz = q(6);

19

20% The electric field is zero here

21Ex = 0;

22Ey = 0;

23Ez = 0;

24

25% The magnetic field is now calculated using another

function , bfield(r) which is a function of

position. The function is stored in bfield.m
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26r0 = [q(1), q(2), q(3)]; % The position vector

27B = bfield(r0); % the function returns a vector B

28% ... and we use this vector to define our component -

wise B-field variables

29Bx = B(1);

30By = B(2);

31Bz = B(3);

32

33% From here on, it is~similar to Program 1

34dxdt = vx; % dx/dt = v_x

35dydt = vy; % dy/dt = v_y

36dzdt = vz; % dz/dt = v_z

37dvxdt = qe/m*(Ex + vy*Bz - vz*By); % dv_x/dt

38dvydt = qe/m*(Ey + vz*Bx - vx*Bz); % dv_y/dt

39dvzdt = qe/m*(Ez + vx*By - vy*Bx); % dv_z/dt

40dqdt = [dxdt; dydt; dzdt; dvxdt; dvydt; dvzdt];

41

42end % end of function

The first difference is found on line 10. Instead of setting the variables m and qe to some particular
value, we defined them as global variables. If you are not familiar with the concept of global
and local variables, see the remark below.

R A global variable is a variable that is available in all functions and programs where
it is declared global. Normal variables (local) are not shared (inherited) between functions
and programs.
Imagine that you want to use the variable m both in solve.m and odefun.m

• If you use local variables, you have to assign the value of the variable, i.e. m = 1.627e-27;,
both in odefun.m and in solve.m. Therefore, you have to write the numerical
value into every file.

• If you use global variables, you can set the value m = 1.627e-27; only in solve.m
and you declare the variable as global by writing global m; both to odefun.m
and in solve.m. Therefore, the numerical value is written in one file only.

The advantage of the second approach is apparent. If you want to change the mass m,
you only have to re-write it once.

The second difference in odefun.m is around line 26. You can see that the magnetic field is not
defined explicitly but it is obtained from an external function bfield(). The function is stored
in the file bfield.m, it also uses some global variables (also defined in solve.m) and you have
to complete it by writing correct expressions for Bx, By, Bz.

Program 2: bfield.m

1function B = bfield(r0),

2% The function calculates the geomagnetic field B at

the position r0. It works with cartesian

coordinates.

3% The function uses the following global variables:

4global Re; global q; global m; global mu0; global M;

5

6% If you did the exercises , the lines below should be

clear
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7x = r0(1);

8y = r0(2);

9z = r0(3);

10r = sqrt(x^2+y^2+z^2);

11

12% Complete the following based on the exercise above

13Bx = XXX;

14By = YYY;

15Bz = ZZZ;

16

17B = [Bx; By; Bz];

18end

Finally, we need a script file, which includes all the necessary variables and calls the ode45
solver.

Program 2: solve.m

1% This matlab script solves the equation of motion

2% for a charged particle in Earth 's magnetic field.

3

4% To make the program run faster , we will define all our

5% constants as global variables.

6global Re; global m; global qe; global mu0; global M;

7Re = 6378137; % Earth radius in meters

8m = 1.627e�27; % Particle mass in kg

9qe = 1.602e�19; % particle charge in Coulomb

10esc = 1; % Earth scale - for plotting

11c = 299792458; % Speed of light in m/s

12mu0 = 4*pi*1e�7; % Vacuum permeability in V*s/(A*m)

13M = 7.94e22; % Earth 's magnetic moment in H/m

14

15% Initial conditions for position

16% Defined in spherical coordinates for convenience ...

17r0 = 3*Re;

18phi0 = 0;

19theta0 = pi/2;

20% ... and transformed to cartesian.

21x0 = r0*sin(theta0)*cos(phi0)

22y0 = r0*sin(theta0)*sin(phi0)

23z0 = r0*cos(theta0)

24

25% Initial conditions for velocity

26% defined using particle energy and two angles

27Ek_eV = 5e7; % energy in eV

28Ek = Ek_eV*1.602e�19; % energy in Joule

29v_r0 = c*(1+m*c^2/Ek)^-0.5 % relativistic velocity magnitude

30v_phi0 = 0; % azimuthal angle in rad

31v_theta0 = pi/4; % polar angle in rad

32

33% Coordinate transformation for velocity.
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34vx0 = v_r0*sin(v_theta0)*cos(v_phi0)

35vy0 = v_r0*sin(v_theta0)*sin(v_phi0)

36vz0 = v_r0*cos(v_theta0)

37

38% Defining the vector of initial conditions

39q0 = [x0;y0;z0;vx0;vy0;vz0];

40

41% Defining the time interval

42ti = 0; % initial time in seconds

43tf = 20; % final time in seconds

44N = 10000; % number of steps

45timespan = linspace(ti,tf,N);

46

47% Solving the ODE.

48% Please note that odefun(t,q) is different from Program 1

49[t, q] = ode45(@odefun , timespan , q0);

50

51

52% Having solved the equation , the data has to be plotted.

53% It is not necessary to understand what each of the commands

54% below does.

55

56h = figure; % Creates a new figure

57

58% The following set of commands plots the magnetic lines of

force. [Adapted from MagLForce script by A. Abokhodair]

59n = 4;

60d2r = pi/180; r2d=1/d2r;

61tht=d2r*(0:5:360)';

62phi=d2r*(0:ceil(180/n):180);

63hh=phi*r2d;

64A=r0;

65r=A*sin(tht).^2;

66rho=r.*sin(tht);

67x=rho*cos(phi); y=rho*sin(phi);

68[nR,nC]=size(x);

69u=ones(1,nC); z=r.*cos(tht)*u;

70plot3(x/Re,y/Re,z/Re,'r','LineWidth ',1.0);

71

72hold on; % This tells Matlab that whatever you are going to

plot next will be included in the same figure !!!

73

74% Plotting an ellipsoid , representing the Earth.

75[u,v,w]= sphere(30);

76surf(esc*u, esc*v, esc*0.9*w);

77colormap('default ');

78camlight right;

79lighting phong;

80axis equal % This forces the axes to have the same scale!
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81

82% Plotting the particle trajectory and add labels to axes.

83plot3(q(:,1)/Re, q(:,2)/Re, q(:,3)/Re,'LineWidth ',1.0)

84set(gca ,'FontSize ',18) % sets font size

85xlabel('x [R_e]') % sets title of x-axis

86ylabel('y [R_e]') % sets title of y-axis

87zlabel('z [R_e]') % sets title of z-axis

88title(['Proton trajectory , E = 50 MeV , t_i=', num2str(ti), '

s, t_f=', num2str(tf), ' s']) % sets figure title

89

90print -dpng -r200 'ProtonMagField.png' % prints the figure to

file using the png format with 200 dpi resolution.

The solve.m file is quite similar to the one we used in the previous one. On lines 6 to 13,
global variables are defined. It is best practice that global variables declared global and assigned
their values at the beginning of the first file that is executed. On lines 15 to 39, the initial
conditions are defined. To make the them more intuitive, the initial conditions are defined
in spherical coordinates and then transformed to Cartesian ones. The differential equation
is solved on line 49 and from line 57 onwards, the plotting commands are listed. Please
note the usage of the hold on command, which tells Matlab that all the next plots will be added
to the same figure. Also note that all data that is plotted is scaled by the Earth’s radius Re.

If you completed the expression for the magnetic field correctly, running the program
with the pre-defined values should give a plot similar to figure 3.3.

Figure 3.3: Motion of a high-energy proton in the geomagnetic field

Exercise 3.5 Analyze the motion of the high-energy proton in the geomagnetic field. What
are the three components of the motion? �

Exercise 3.6 Even though our model is quite simple, it can be helpful in understanding
the basic structures of the radiation belts. Try changing the initial position of the proton.
• What is the maximum initial distance r0, for which the proton still has a stable
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trajectory?
• What is the minimum initial distance, for which the proton does not hit the surface

of the Earth?
�

Advanced exercise 3.2 Replace the proton in the previous model with an electron and try
to find the initial conditions (especially the distance from the Earth), for which the electron
will have stable trajectory. Think before you code, will electrons require higher or lower
magnetic field to be confined? How does the drift of an electron differ from that of a proton?
�
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4. Data processing

4.1 Introduction

The Matlab skills that you will learn in this chapter will be useful also outside plasma physics.
In particular, the chapter focuses on data processing, including interpolation and integration
of discrete data. Furthermore, you will learn to use so-called loops and conditions in order
to batch-process large sets of data.

4.2 Loops and conditions in Matlab

Let us first look at two very important elements of Matlab programming and programming
in general, loops and conditions. If you have previous experience with programming, this section
will probably seem quite trivial but if you do not, you will learn skills that you will almost
certainly find useful in your future career of a scientist.

Loops are stuctures that allow you to repeat a certain sequence of instruction multiple times.
Such repetitive tasks in physics may include
• plotting multiple data files in the same format,
• conveting large amounts of data,
• solving a differential equation for multiple sets of initial/boundary conditions.
• . . .

There are two types of loops in Matlab, the for loop and the while loop. The former executes
the specified sequence of commands N times (e.g. “integrate the data in first 50 files”) while
the latter keeps executing the sequence as long as some expression is true (e.g. “keep integrating
the data until you reach an integral larger than 10”). However, the range of applications
of the while loop is very narrow and it is quite easy to make it endless. For this reason, we will
only focus on the for loop, which is completely sufficient for purposes of most physicists.

Conditions are used when the sequence of commands that you want to execute depends
on whether some statement is true or false. They are specially useful in combination with loops.
An example you can think about is automated plotting; you can create a program that will plot
the data in logartihmic scale if the difference between the lowest and the highest values is larger
than two orders of magnitude.
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4.2.1 For loop

As already mentioned, the for loops makes it possible to perform a certain operation N times.
The loop is used as follows.

1for j=1:10,

2% your commands

3end

The loop above will run ten times. The variable j is called the loop variable and you can use
it inside the loop. Let us now write a program that actually does something at least a little useful.
In particular, we will create plots of y = xn with n ∈ 〈1,6〉 and x ∈ 〈0,1〉.

1figure; % creates figure

2colors = ['r', 'g', 'b', 'm', 'k', 'y', 'c', 'r']; % this is

a vector of strings (texts)

3for j=1:8, % will run for 8 values of j

4x = linspace(0,1,50); % we saw this before , creates a

linearly spaced vector from 0 to 1 with 50 values.

5color = colors(j); % selects j-th element from colors

6plot(x, x.^j, color);

7hold on; % we want everything in the same figure

8end

Exercise 4.1 Modify the program above so that it plots

y =
sin(nx)

x
for x ∈ 〈0,2π〉and n ∈ 〈1,5〉 (4.1)

Do not forget that x is a vector and you have to use element-wise operations. �

In plasma physics as well as in other disciplines of physics, one often has to work with data
obtained from literature and often it happens that the data have a different unit than you need.
The next exercise program serves as a batch-converter of collisional cross-sections which have
been specified in the unit of cm2 to the unit of m2. In order to write the program, we are going
to need two more useful functions, load() and dlmwrite().

The load function is very intuitive, it loads data into a matlab variable from a file. The input
data file can have several formats (tab-separated data, comma-separated data, etc...) and it is loaded
to a variable by the command

1matrix = load('datafile.dat');

On the other hand, the function for saving data to an ASCII file is equally straightforward.

1dlmwrite('new_datafile.dat', matrix , '\t');

As you can see, it takes three parameters, namely the output file, the variable that is saved
to the file and the delimiter delimiting columns in the output file. Typically used delimiters
are ',' (comma), ';' (semicolon) and '\t' (tab).

In the next exercise, you also need to know how to work with strings in Matlab. String
is merely a programming term for a text. Since string in Matlab is basically a vector of letters,
you can use the same syntax with the exception that strings have to be enclosed in quotation
marks (').



4.2 Loops and conditions in Matlab 31

Let us demonstrate how to join strings on a simple example. The following script will
open and plot the content of files csk1.dat to csk3.dat (these files can be found in the
Prog3_cross_section_convert directory).

1colors = ['r', 'g', 'b', 'm', 'k', 'y', 'c', 'r'];

2figure;

3for j=1:3,

4color = colors(j);

5matrix = load(['csk', num2str(j), '.dat']);

6xdata = matrix(:,1); % first column

7ydata = matrix(:,2); % second column

8plot(xdata , ydata , color);

9hold on;

10end

11xlim([0,1e6]); % set x-axis limits

The data you just plotted are not random curves, they are cross sections of collisions of electrons
with argon atoms. The x-axis is the electron temperature in Kelvin while the y-axis is the col-
lisional cross-section in m2. In particular, the csk1.dat file contains the data for an elastic
collision

e+Ar→ e+Ar, (4.2)

csk2.dat the data for argon excitation

e+Ar→ e+Ar∗, (4.3)

and csk3.dat the data for ionization

e+Ar→ 2e+Ar+. (4.4)

Exercise 4.2 The program above produces a plot, which is not very intuitive mainly because
the magnitudes of the plots are very different. Modify the program so that
• the electron energy is expressed in the unit of eV,
• the y-axis scale is logarithmic.

The resulting plot should look comparable to this one

with the red line corresponding to the elastic collision, the green line to excitation and the blue
line to ionization.
• Look at the picture, what are the excitation and ionization thresholds?

�
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Exercise 4.3 Modify the plotting program so that it converts the x-data from Kelvin to elec-
tronvolt and saves each cross-section to tab-delimited csevN.dat with N being the corre-
sponding file number. �

4.2.2 If . . . elif . . . else conditioning
In the previous section, you learned about for loops which allow you to perform the same task
repetitively. You can further step up your programs by using conditions. By including conditions
in your programs, you can a certain set of commands if a statement is true and an another
set of commands if it is false.

Let’s assume that you are developing a very complicated program, in which you often need
to find inverse matrices. As you know, the inverse matrix A−1 to matrix A is defined as

A−1A = I (4.5)

where I is the identity matrix.

Exercise 4.4 The Matlab function which allows you to calculate the inverse matrix is called
inv() and its only argument is the matrix that you want to invert.
• Define a 3x3 singular matrix A (determinant is zero) and try to invert it using inv().

What does the resulting matrix look like?
�

As you saw in the exercise above, trying to calculate inverse matrix to a singular matrix
does not lead to any useful result. It would be much more practical to define a custom function
which will perform the inversion only if the input matrix is not singular. If the matrix
is singular, your function will display an error and stop your program. The function we just
described could look something like this

1function inverted = myinv(matrix),

2rows = length(matrix(:,1)); % calculates the length

of the first column , i.e. the number of rows

3cols = length(matrix(1 ,:)); % calculates the length

of the first row , i.e. the number of colums

4

5if(rows ~= cols), % if rows DOES NOT EQUAL cols

6disp('The supplied matrix is not a square

matrix ')

7return % terminates the script

8elseif(det(matrix) == 0); % if determinant is zero

9disp('The matrix is singular.')

10return % terminates the script

11else , % if both the conditions above are false

12inverted = inv(matrix); % performs inversion

and returns the inverted matrix

13end

14end

The syntax of the if...elseif...else conditioning should now be evident from the code
above. You can see that the statement that needs to be evaluated is written in round brackets after
if or elseif. Matlab tests the conditions from up to bottom, i.e.

1. The shape of the matrix is tested first. If not square, the error is displayed.
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2. If the matrix is square, the determinant is tested. If zero, the error is displayed
3. Only if the matrix is square and non singular, the inversion is performed.

Exercise 4.5 Verify that the function myint() behaves correctly, try entering several non-
square matrices and several singular matrices. Add another elseif statement which will
display a warning if your matrix rank is larger than 10. Test if it works. �

Advanced exercise 4.1 Look into the directory Prog4_cross_section_convert_if

which contains three files with collisional cross-sections. Two of these files include electron
temperature in eV while one of them includes electron energy in Kelvin.
• Modify the program that we used in exercise 4.2 using a reasonable if...else

condition so that it decides which files should be converted and which not.
• A comparable simple piece of code could be very useful when compiling a collisional-

radiative plasma model with thousands of similar files that need to be preprocessed.
However, what are the limitations of your program?

�
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5. Particle interactions in plasma

This chapter illustrates the differences between equilibrium and non-equlibrium distribution
functions and shows the impact of the shape of the distribution function on macroscopic variables.
In this chapter, you will learn basics of numerical integration and interpolation in Matlab.

5.1 Maxwell-Boltzmann distribution
5.1.1 Mean speeds

In the lecture, you learned that under equilibrium conditions, the velocity of particles is governed
by the Maxwell-Boltzmann distribution. In particular, the distribution function for the velocity
magnitude F(v) is

F(v) = 4πnv2
( m

2πkT

)3/2
exp
(
−mv2

2kT

)
. (5.1)

Distribution functions, especially those of electrons, can tell you a lot about your plasma,
if you know how to read and interpret them. In particular, it is very important to understand
what influence do distribution functions of different shapes have on macroscopic variables
that everyone can intuitively understand. The macroscopic variables are very often given
by quite simple integrals of distribution functions. Therefore, this section will teach you
how to numerically integrate functions in Matlab.

R Some of the integrals that we will evaluate numerically in this section also have an ana-
lytical solution. However, in most laboratory plasmas, the distribution functions of some
particles (especially electrons) can not be described by an analytical expression. Hence
we will prefer numerical integration over analytical. Again, knowing how to integrate data
numerically will be useful for you even in other disciplines of physics.

There are several numerical techniques for numerical integration, the simplest one is the trape-
zoidal rule that you may remember from mathematical analysis lectures. In the trapezoidal rule,
the function is approximated by trapezoids and the total surface area of the trapezoids gives
you the estimate of the integral of the function between points a and b. The trapezoidal rule
is schematically illustrated in figure 5.1(a). A more advanced method is the Simpson’s rule
which approximates the function f (x) to be integrated by several consecutive polynomicals Pi(x)
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(see figure 5.1(b)). Therefore, the Simpson’s rule can achieve better accuracy, especially with
fast-varying functions.

a a b1 a2
(a) Trapezoidal rule

a a b1 a2

P1(x)

P2(x)

P3(x) P4(x)

(b) Simpson’s rule

Figure 5.1: An illustriation of the trapezoidal rule for numerical integration (left) and the Simpson
rule (right). In the Simpson rule. the upper side of the “trapezoids” is not linear but rather given
by a polynomial, which can be integrated analytically.

Figure 5.1(a) also suggests, that you can make the trapezoidal rule arbitrarily accurate
by decreasing the size of the trapezoids. Therefore, the trapezoidal rule will be sufficient
for our pourposes. The trapezoidal rule integration algorithm is implemented in Matlab under
the name trapz(). The function takes two vectors as arguments. The first contains the x-data
while the second contains f(x).

1x = linspace(0, pi, 100);

2fx = sin(x.^2)./log(x);

3I = trapz(x, fx);

You do not have to specify the lower and upper bounds of the definite integral because these are
given by the minimum and maximum values of the vector x. In other words, the two lines above
calculate the follwing definite integral

I =
∫ xmax

xmin

sin(x2)

x
dx =

∫
π

0

sin(x2)

x
dx (5.2)

In the following exercise, you will learn to use the trapz() function and evaluate its accuracy
on something that can be verified analytically.

Exercise 5.1 Program 5 below is a template for plotting the Maxwell-Boltzmann distribution
and for calculating and plotting the mean speeds of the distribution function. Complete
the program by
• filling in the expression for F(v) on line 7 (speed distribution function in 3D),
• calculating the mean speed on line 12 and mean quadratic speed on line 13 (both using

the trapezoidal rule),
• providing analytical expressions for mean speed, mean quadratic speed and most

probable speed on lines 16 to 18.
Once you complete the program, answer the following questions.
• Do the numerical results agree with the analytical ones?
• Look at the plot. Which of the three speeds is the lowest, which is the highest? Does
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their order change when you increase/decrease the temperature?
• Try changing setting the number of steps in linspace() to 10, 50, 100, 500. What

can you say about the agreement of numerical and analytical results?
�

Program 5: Maxwell-Boltzmann distribution and speed

1m0 = 1.6605e�27; % a.m.u. in kilograms

2m = 40*m0; % particle mass in kilograms

3kB = 1.380e�23; % Boltzmann constant in m^2 kg s^-2 K^-1

4T = 1000; % temperature in Kelvin

5

6v = linspace(0,4000,500); % x data

7Fv = ...; % distribution function

8plot(v, Fv);

9hold on;

10

11% numerical expressions

12v_mean = ...; % mean speed

13v_sq_mean = ...; % mean quadratic speed

14

15% analytical expressions

16v_mean_an = ...; % mean speed

17v_sq_mean_an = ...; % mean quadratic speed

18v_mp_an = ...; % most probable speed

19

20lineht = max(Fv)*1.1; % line height , only for plotting

21plot([v_mean , v_mean], [0, lineht], 'r'); % mean speed

(red)

22plot([v_sq_mean , v_sq_mean], [0, lineht], 'g'); % mean

quadratic speed (green)

23plot([v_mp_an , v_mp_an], [0, lineht], 'm'); % most

probable speed (pink)

24hold off

Advanced exercise 5.1 In the program above, we calculated the mean velocity and the mean
quadratic velocity numerically while the most probable velocity was only calculated analyt-
ically. To calculate it numerically, you would have to find a maximum of our distribution
function (which is given by vectors v and Fv in our program). Use the internet to figure
out a way to do it. �

As you know from the lecture, the distribution function is normalized so that∫
∞

0
F(v)dv = n. (5.3)

Therefore, when you integrate the distribution function from some velocity v0 to ∞, you obtain
the number of particles which have velocity greater or equal to v0. If you integrate F(v) from v0
to v1, you obtain the number of particles with velocities in the interval 〈v0,v1〉. With this in mind,
try to complete the exercise 5.2.
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Exercise 5.2 The mass of nitrogen molecules is 28 a.m.u. and their number density at ambi-
ent conditions is approximately 1.7 ·1025 m−3. How many nitrogen molecules in your room
are faster than 50, 500, 1000, 2500, 5000 and 10000 m/s? �

5.1.2 Shape of the Maxwell-Boltzmann distribution

You have probably noticed that the equilibrium Maxwell-Boltzmann distribution function
is given only by two macroscopic parameters, in particular the mass of a particle m and the tem-
perature T . The exercise below does not require any programming but if you do not know
the answer right away, you will find the program in the previous section very helpful.

Exercise 5.3 The following figure shows three equilibrium distributions of speed with
unknown parameters m and T .
• If the particle mass m is constant, which of the distribution functions will corresponds

to lowest temperature and which to highest?
• If, on the other hand, the temperature T is constant, which of the distribution functions

corresponds to lowest and highest particle mass?
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5.2 Time evolution of a distribution function

In the previous section, we thoroughly analyzed the key properties of the Maxwell-Boltzmann
distribution. However, the Maxwell-Boltzmann distribution is only achieved in equilibrium
and prior to achieving equilibrium, the distribution function can be almost arbitrary. In addition,
we only took into account homogeneous and isotropic distribution functions in the previous sec-
tion (i.e. depends only on velocity magnitude). In this section, we will still assume that the space
is homogeneous (i.e. the distribution function does not depend on the coordinate r) but now,
the distribution function can also be anisotropic (i.e. can depend on the velocity vector v, not only
on its magnitude).

The program that you will use for analyzing the time evolution of the distribution function
is not very complicated. It is based on the simplest non-equilibrium formulation of the Boltz-
mann kinetic equation. In this approximation, we assume that the external force acting
on the particles is zero,

F = 0, (5.4)
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and the collision term is expressed in the Krook form(
∂ f
∂ t

)
coll

=− f − f0

τ
=−νm · ( f − f0) (5.5)

where f0 is the equilibrium distribution function, τ is the relaxation time and νm is the collision
frequency. The whole Boltzmann equation, therefore, reduces to

∂ f (v, t)
∂ t

=−νm · ( f (v, t)− f0(v)) (5.6)

which has an analytical solution of

f (v, t) = f0(v)+ [ f (v,0)− f0(v)]e−νmt . (5.7)

Therefore, the program actually does not solve the differential equation but only plots the solution
in an intuitive way. The source code with extensive comments is listed below. The following
lines are crucial for you when using the program
• Line 5 sets the time interval, on which the solution is plotted
• Line 6 sets the velocity interval, similar to the previous program
• Lines 11 to 13 set the initial distribution function.
• Line 32 changes how the plots scale. If it is commented out, the plots will have variable

scale, if you uncomment it, the scale will be constant.

Program 6: Plotting time evolution of a distribution function

1m0 = 1.6605e�27; % a.m.u. in kilograms

2m = 40*m0; % particle mass in kilograms

3kB = 1.380e�23; % Boltzmann constant in m^2 kg s^-2 K^-1

4Vm = 5e8; % collision frequency , Hz

5time = linspace(0, 1e�8, 100); % time interval

6v = linspace(-2000,2000,200); % velocity interval

7

8% initial distribution function , f_0

9sigma = 10; % Initial width

10v0 = 500; % initial velocity

11fx_init = 1/(sqrt(2*pi)*sigma)*exp(-(v-v0).^2/(2*sigma^2));

12fy_init = v*0;

13fz_init = v*0;

14

15% Calculating the equilibrium temperature , the following

follows from energy conservation.

16v_sq = sqrt(trapz(v, (fx_init+fy_init+fz_init).*v.^2));

17Teq = 1/3*m*v_sq^2/kB;

18

19% equilibrium distribution function

20fx_eq = sqrt(m/(2*pi*kB*Teq)) * exp(-m*v.^2/(2*kB*Teq));

21fy_eq = sqrt(m/(2*pi*kB*Teq)) * exp(-m*v.^2/(2*kB*Teq));

22fz_eq = sqrt(m/(2*pi*kB*Teq)) * exp(-m*v.^2/(2*kB*Teq));

23

24fx = fx_init;

25fy = fy_init;

26fz = fz_init;
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27

28hFig = figure; % creating the figure , setting dimensions

29set(hFig , 'Position ', [100 300 1000 300]);

30for j=1:length(time), % for loop making the time steps

31absmax = max([fx, fy, fz])*1.1; % variable y-axis scale

32% absmax = max([max(fx_init),max(fy_init),max(fz_init)]);

% uncomment this line for fixed y-axis scale

33subplot(1,3,1); % first subplot - x

34plot(v, fx, 'b', 'LineWidth ', 2);

35ylabel('f(v_x)');

36xlabel('v_x');

37ylim([0, absmax ]);

38whitebg('white')

39subplot(1,3,2); % second subplot - y

40plot(v, fy, 'r', 'LineWidth ', 2);

41ylabel('f(v_y)');

42xlabel('v_y');

43ylim([0, absmax ])

44subplot(1,3,3); % third subplot - z

45plot(v, fz, 'm', 'LineWidth ', 2);

46ylabel('f(v_z)');

47xlabel('v_z');

48ylim([0, absmax ]);

49% setting figure title - time

50ax=axes('Units','Normal ','Position ' ,[.075 .075 .85 .85],'

Visible ','off');

51set(get(ax,'Title'),'Visible ','on')

52title(['t = ', num2str(time(j)), ' s']);

53% calculating new values of fx, fy, fz

54fx = fx_eq + (fx_init - fx_eq)*exp(-time(j)*Vm);

55fy = fy_eq + (fy_init - fy_eq)*exp(-time(j)*Vm);

56fz = fz_eq + (fy_init - fz_eq)*exp(-time(j)*Vm);

57M(j) = getframe(gcf); % appends a frame to variable M

58end

59movie2avi(M, 'out.avi', 'fps', 7); % saves the movie

Exercise 5.4 Run the program above, watch the output animation and answer the following
questions
• What is the physical meaning of the initial condition for the distribution function?
• What kind of particles could the distribution functions describe?
• The collision frequency is 5 · 108 Hz, which is a resonable value. What is the time

necessary for reaching the equilibrium?
• Try increasing and decreasing the collision frequency in Program 6. What happens

with the time necessary for reaching equilibrium and why?
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Here is an example of what the output should look like at various times. Please note that
the y-axis scale is changing.
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5.3 Rate coefficients
Finally, let us demonstrate how different distribution functions can influence macroscopic
properties, such as the rate coefficients of plasmachemical reactions. The rate coefficient
of a reaction is calculated using the collisional cross section σr as

kr = 〈σr(v)v〉=
∫

∞

0
σr(v)vF(v)dv. (5.8)

As you can see, we will again be working only with the distribution function for speed be-
cause it is reasonable to assume that the cross-section of a particular reaction does not depend
on the whole velocity vector but only on its magnitude.

When calculating the integral (5.8), there is one technical issue that has to be overcome,
the interpolation of the collisional cross-section σr(v). Cross-sections of most reactions
can not be expressed analytically and are available only as tabulated data. The interpola-
tion is necessary beacause you need to compute the element-wise product σr(v)vF(v) and σr(v)
and F(v) do, generally, have different data sampling.

In Matlab, you can interpolate 1D data using the interp1() function. Let’s say that you have
a function given by vectors xdata (sample points) and ydata (values) and you want to obtain
function values with much finer sampling. The syntax would be as follows

1xdata = [1, 5, 10, 15, 20];

2ydata = [1, 35, 110, 235, 410];

3

4xinterp = linspace(8,17,0.5);

5yinterp = interp1(xdata , ydata , xinterp , 'pchip', 0);

You can see that the interp1() function has five parameters, the vector of sample points
(xdata), the vector of function values (ydata), the vector of new sample points (xinterp)
and the interpolation method. The fifth parameter (zero) means that no extrapolation is performed
and for all points outside the interval given by xdata, the function value is zero.

R With interp1(), you can choose from several interpolation methods. The most popu-
lar choices are 'nearest' which interpolates the data based on the nearest neighbour,
'linear' which performs linear interpolation, 'pchip' which performs cubic interpola-
tion and 'spline' which interpolates the data using piecewise-continuous polynomials.

Let us now examine, what will happen if we try to calculate the rate coefficient for electron
impact ionization of argon

e+Ar→ 2e+Ar+. (5.9)

The calculation will be performed for two distribution functions, the Maxwell-Stefan distribu-
tion function and for a nearly monoenergetic beam with the same mean speed. The program
below should not contain anything we have not encountered before. Its output are two numbers,
the rate coefficient for Maxwell-Bolrzmann distribution and the rate coefficient for the monoen-
ergetic beam.

"Program 7: Electron impact ionization"

1m = 9.109e�31; % electron mass

2kB = 1.380e�23; % Boltzmann constant in m^2 kg s^-2 K^-1

3TeV = 15; % electron temperature in eV

4T = TeV*11604; % electron temperature in Kelvin
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5

6% loading the cross -section

7sigdata = load('sigmaion.dat');

8xsig = sigdata(:,1);

9ysig = sigdata(:,2);

10

11v = linspace(0,2e7,1e6); % sampling for speed

12sigma = interp1(xsig , ysig , v, 'pchip', 0); % interpolating

the cross -section

13

14% Maxwell -Boltzmann distribution

15Fv = 4*pi*v.^2.*(m/(2*pi*kB*T))^1.5.*exp(-m*v.^2/(2*kB*T)); %

distribution function

16kr_MB = trapz(v, v.*Fv.*sigma)

17vmean = trapz(v, Fv.*v);

18

19% Distribution function of a nearly monoenergetic beam

20v0 = vmean;

21width = vmean/100;

22Fv2 = 1/(sqrt(2*pi)* width) * exp(-(v-v0).^2/(2*width^2)); %

distribution function

23kr_beam = trapz(v, v .* Fv2 .* sigma)

Exercise 5.5 Run the program and compare the two rate coefficients. You will notice
that they are not the same, although the mean velocity is the same in both cases. Provide
an explanation. �

Exercise 5.6 Modify the program so that it plots σr(v) and answer the following questions.
• What is the ionization threshold in electronvolts?
• Where does the cross-section reach the maximum value.

�

Exercise 5.7 Run the program for several values of electron temperature (defined in elec-
tronvolt on line 3).
• What happens with the rate coefficients with increasing electron temperature?
• Is there electron temperature for which the rate coefficient for the nearly monoenergetic

beam exceeds the Maxwell-Boltzmann coefficient? Provide an explanation why this
is/is not possible.

�

Advanced exercise 5.2 Rewrite Program 7 so that it uses electron energy rather than
electron velocity for the calculations. Using electron energy is much more common in plasma
physics. �

R There are several publicly available databases, from which you can obtain collisional cross-
sections. The most comprehensive one is probably LxCat, available at lxcat.net. Another
quite extensive database is the ALADDIN database, available at www-amdis.iaea.org/ALADDIN/.

http://lxcat.net
https://www-amdis.iaea.org/ALADDIN/
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6. Particle balance in plasma

As you already know, plasmas consist of many types of particles (species). Apart from
neutral ground-state atoms and molecules, there can be various excited species (as discussed
in Interactive Introduction to Plasma Physics: part I), positive or negative ionic species and,
of course, the electrons by which the plasma is sustained. Furthermore, each species can generally
have different temperature.

Knowing the temperature of individual species and their concentration is very important
for the applications of plasmas. For example, in biological applications of laboratory plasmas,
it is crucial to mainain high electron temperature while keeping the temperature of heavy
particles low.

6.1 Formulating the problem
In this last chapter of this text, you will implement a program that calculates the concentrations
of individual particle species in atmospheric-pressure argon plasma for a given electron temper-
ature Te and gas temperature Tg. The model will be again implemented in Matlab and it will
be zero-dimensional. Practcally, this means that the number densities of each particle species
are only a function of time, not position,

nα = nα(t). (6.1)

6.1.1 The source term
Under the zero-dimensional approximation that we made, the continuity equation for species α ,
simplifies to an ordinary differential equation

∂nα

∂ t
= Sα . (6.2)

This equation looks relatively simple but it has to be pointed out that the source term Sα

is a complicated function of temperatures (which are constant in our model) and number denisties
of other particle species.

Generally speaking, the source term for particle species α is a sum of contributions from
all reactions that include the species α ,

Sα = ∑
r

Sα,r. (6.3)
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The contribution Sα,r represents how many particles of species α are produced or consumed in re-
action r per unit time. The source term depends on the order of the reaction. In our model, we will
consider two orders of reactions, two-body reactions and three-body reactions. As the names
suggest, two-body reactions are reactions between two particles and three body reactions are re-
actions between three particles at the same time. However, keep in mind that the order of the re-
action tells you only how many reactants enter the reaction, it does not say anything about
the number of products.

R In reality, no actual three-body collisions take place but plasma physicists often use this
approximation at high pressures (including atmospheric pressure). A three-body reaction
is actually given by two consecutive two-body reactions

A+B−→ C+D, (6.4)

C+E−→ F. (6.5)

If the second reaction is faster and more probable than the first reaction, we can write
the process as a three-body reaction

A+B+E−→ D+F. (6.6)

An example of a two body reaction is the following electron-impact ionization of argon (later,
we will designate this reaction R4).

e+Ar∗ −→ 2e+Ar+ (R4) (6.7)

In this reaction, an electron collides with an excited argon atom and provides the energy necessary
for ionization. The reaction will, contribute to source terms of all the reactants and products, in
particular

Se,R4 =+k1(Te,Tg) ·ne ·nAr∗ , (6.8)

SAr+,R4 =+k1(Te,Tg) ·ne ·nAr∗ , (6.9)

SAr∗,R4 =−k1(Te,Tg) ·ne ·nAr∗ . (6.10)

You can see, that the source term contribution contains the rate coefficient, which can depend
on the temperatures of electrons and heavy particles. Our model is a two-temperature model,
in which the electron temperature is different but all the other types of particles (ground-state,
ions, excited species) have the same temperature Tg. You can also see that the contributions differ
by the ± sign, which is also quite straightforward. Since reaction (R4) produces one new elec-
tron and one new ion, the sign of the corresponding source terms is positive. On the other
hand, the reaction consumes one excited argon atom, therefore the corresponding source term
contribution has a negative sign.

An example of a three-body reaction is for example the formation of argon molecular ion.
You may find the existence of this particle quite surprising, given that argon is an inert gas, but in
high-pressure plasmas, they play quite an important role. The reaction leading to the formation
of this ion is

Ar++2Ar−→ Ar+2 +Ar. (R8) (6.11)

Analogical to the two-body reactions, the three-body reaction contributes to the source terms
of individual species the following way

SAr+2 ,R8 =+k8(Tg) ·nAr ·nAr ·nAr+ , (6.12)

SAr+,R8 =+k8(Tg) ·nAr ·nAr ·nAr+ , (6.13)

SAr,R8 =−k8(Tg) ·nAr ·nAr ·nAr+ . (6.14)



6.1 Formulating the problem 47

This time, the rate coefficient depends only on the temperature of heavy species Tg because
no electrons enter the reaction. In addition, the rate coefficient will have a different unit
(see exercise below).

Exercise 6.1 In our formulation, the source term always has the unit of 1/(m3 · s), what
is the physical interpretation? What is the unit of the rate coefficient kr for two-body and three-
body reactions? �

6.1.2 The reaction scheme

The reaction scheme implemented in this work is adapted from an article by Baeva et. al. which
focuses on numerical simulations of an atmospheric-pressure microwave plasma jet operating
in argon [Bae+12]. The model includes the particle species listed in table 6.1. It should

Table 6.1: The list of all species included in the argon plasma model

Ar ground-state argon atom (concentration obtained from the state equation)
Ar∗ excited argon atom (groups resonant and metastable 4s states of argon)
Ar+ argon atomic ion
Ar+2 argon molecular ion

e electron

be pointed out that the continuity equation (6.2) is solved only for four species, Ar∗, Ar+, Ar+2
and e. The number density of ground-state argon can be determined from the state equation
for the ideal gas, which works very good for monoatomic gases at high pressures. If the argon
gas was not ionized, the number density of argon would simply be

nAr =
p

kBTg
(6.15)

where p is the pressure, kB the Boltzmann constant and Tg the temperature of heavy parti-
cles. However, the equation above is not valid if a part of the argon gas is ionized or ex-
cited.

Exercise 6.2 What is the actual number density of ground-state argon in plasma if the number
density of excited atoms is nAr∗ , the number density of atomic ions is nAr+ and the number
density of molecular ions is nAr+2

? �

The particle species listed in table 6.1 above can undergo 11 reactions in total. The complete
set of these reactions is listed in table 6.2. In this reaction scheme, the authors assumed
that the energy distribution functions of electrons and heavy particles are both Maxwellian. This,
combined with advanced fitting, allowed them to express the rate coefficients analytically.

Exercise 6.3 Reactions (R1), (R3) and (R4) in table 6.2 all include an exponential part
exp(−C/Te) which is zero at low electron temperatures and approaches one at higher electron
temperatures.
• What do you think is the unit and the physical meaning of the constants 11.65, 15.76

and 4.11?
• Looking at the rate coefficients of these three reactions, which one will probably

be the most important ionization channel?
�
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Table 6.2: The reaction scheme for high-pressure argon plasma (adapted from [Bae+12]).
The electron temperature is always in eV while the gas temperature is in K.

reaction rate coefficient unit

(R1) e+Ar−→ e+Ar∗ 4.9 ·10−15 ·
√

Te · exp(−11.65/Te) m3/s
(R2) e+Ar∗ −→ e+Ar 4.8 ·10−16 ·

√
Te m3/s

(R3) e+Ar−→ 2e+Ar+ 1.27 ·10−14 ·
√

Te · exp(−15.76/Te) m3/s
(R4) e+Ar∗ −→ 2e+Ar+ 1.37 ·10−13 ·

√
Te · exp(−4.11/Te) m3/s

(R5) e+ e+Ar+ −→ e+Ar 8.75 ·10−39 ·T−4.5
e m6/s

(R6) e+Ar+2 −→ Ar+Ar∗ 1.04 ·10−12 · (Te/0.026)−0.67 · 1−exp(−418/Tg)
1−0.31exp(−418/Tg)

m3/s

(R7) e+Ar+2 −→ e+Ar+Ar+ 1.11 ·10−12 · exp
(
−2.94−3 Tg−300

Te·11604

)
m3/s

(R8) Ar++2Ar−→ Ar+Ar+2 2.25 ·10−43(Tg/300)−0.4 m6/s
(R9) Ar+Ar+2 −→ Ar++2Ar 0.522 ·10−15T−1

g exp(−15131/Tg) m6/s
(R10) Ar∗+Ar∗ −→ e+Ar++Ar 6.2 ·10−16 m3/s
(R11) Ar∗+Ar−→ Ar+Ar 3.0 ·10−21 m3/s

Exercise 6.4 Express the source terms of the following four species: e, Ar∗, Ar+, Ar+2 using
rate coefficients k1 to k11 and the species’ denisties nAr,ne,nAr∗ ,nAr+ ,nAr+2

. �

As you can see, even for the relatively simple argon atom, the number of possible reac-
tions is quite high. The number of reactions taking place in plasmas rises dramatically with
the complexity of the gas in which plasma is ignited. With molecular gases, various rotational
and vibrational excitations have to be taken into account, as well as dissociation and re-association
of the molecule. Just to get the idea of the complexity, you would need several dozen reactions
to provide a minimum description of a plasma in an O2/N2 mixture. In order to describe
plasmas in argon with ambient air (including humidity and other admixtures), the number
of reactions rises to more than 4000 [GB13].

6.2 Implementation

Now we know everything in order to solve the system of ordinary differential equations in the fol-
lowing form

∂

∂ t


ne

nAr∗

nAr+

nAr+2

=


Se

SAr∗

SAr+

SAr+2

 (6.16)

We have solved a system of mathematically similar ordinary differential equations (ODEs)
in chapter 3. Therefore, if you are unsure about anything regarding the code, try looking back
at the exercises where we dealt with motion of particles in E and B fields.

Since this is the final chapter of this text, you will only be provided with a template
of the whole program and you have to fill in the missing pieces. The main file containing
the solution looks like this:

"Program 8: solve.m"

1% setting global variables

2global p;
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3global kB;

4global Tg;

5global Te;

6p = 1e5; % pressure in Pa

7kB = 1.38e�23; % Boltzmann constant in m^2 kg s^-2 K^-1

8Tg = 400; % Gas temperature in Kelvin

9Te = 2; % Electron temperature in eV

10

11tsteps = 1000; % number of time steps

12tspan = logspace(-11, -6, tsteps); % this time , we do not use

linear spacing for the time but rather logalithmic

13% Initial number densities in m^-3

14nArs_init = 1e12; % Ar*

15nArp_init = 1e12; % Ar+

16nAr2p_init = 1e12; % Ar_2+

17ne_init = nArp_init+nAr2p_init; % electrons , follows from

global neutrality

18% The vector of initial densities

19initial = [nArs_init , nArp_init , nAr2p_init , ne_init ];

20

21% Solving the system of ODEs

22[t, sol] = ode45('odefun ', tspan , initial);

23

24% Plotting the data

25close all

26figure;

27hold on;

28nAr = p./(kB*Tg)-sol(:,2)-0.5*sol(:,3)-sol(:,1);

29plot(log10(t), log10(nAr), 'c');

30plot(log10(t), log10(sol(:,1)), 'r');

31plot(log10(t), log10(sol(:,2)), 'b');

32plot(log10(t), log10(sol(:,3)), 'm');

33plot(log10(t), log10(sol(:,4)), 'k');

34ylim([12, 26])

35legend('Ar', 'Ar^*', 'Ar^+', 'Ar_2^+', 'electrons ', 'Location

', 'northwest ')

36

37xlabel('Time , log_ {10} [s]');

38ylabel('Number density , log_ {10} [m^{-3}]');

39title(['p=', num2str(p), ' Pa, T_g=', num2str(Tg), ' K, T_e='

, num2str(Te), 'eV']);

40set(gca ,'fontsize ', 16);

The program above should not surprise you now. The biggest difference with our previous
programs solving ordinary differential equations lies on line 12. In particular, we do not use
a linearly-spaced vector for time and we use a logarithmically spaced vector instead. This
is because the processess in plasma are often logarithmic with respect to time.

Similar to chapter 3, the solve.m program uses the ode45() solved to calculate the time evo-
lution of our system. The function evaluating the right-hand side of our system of equations (6.16)
is called odefun() and is stored in a Matlab function file with a similar name.
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"Program 8: odefun.m"
1function dqdt = odefun(t, q),

2% We will use global variables defined in solve.m

3global p;

4global kB;

5global Tg;

6global Te;

7% the vector q contains the densities of Ar*, Ar+, Ar_2+

and electrons

8nArs = q(1);

9nArp = q(2);

10nAr2p = q(3);

11ne = q(4);

12% the density of argon is calculated using the state

equation and the densities of other heavy species

13nAr = p./(kB*Tg)-nArs -0.5*nAr2p-nArp;

14% The rate coefficients are all stored in separate

function files

15k1 = f_k1(Te, Tg);

16k2 = f_k2(Te, Tg);

17k3 = f_k3(Te, Tg);

18k4 = f_k4(Te, Tg);

19k5 = f_k5(Te, Tg);

20k6 = f_k6(Te, Tg);

21k7 = f_k7(Te, Tg);

22k8 = f_k8(Te, Tg);

23k9 = f_k9(Te, Tg);

24k10 = f_k10(Te, Tg);

25k11 = f_k11(Te, Tg);

26% Now , it is necessary to define the source terms

27SArs = +k1*ne*nAr ...

28-k2*ne*nArs ...

29-k4*ne*nArs ...

30+k6*ne*nAr2p ...

31-2*k10*nArs*nArs ...

32+k11*nArs*nAr;

33SArp = ...;

34SAr2p = ... ;

35Se = ... ;

36% and finally , the derivative of the input vector is

returned

37dqdt = [SArs; SArp; SAr2p; Se];

38end

In the odefun() function, the source terms for individual particle species have to be calculated.
The source term for Ar∗ (variable SArs) has already been pre filled but the source terms for Ar+

(variable SArp), Ar+2 (variable SAr2p) and electrons (variable Se) have to be completed based
on exercise 6.4. Furthermore, the rate coefficients k1 to k11 are defined using eleven external
functions f_k1() to f_k11() which take the gas temperature Tg in Kelvin and electron
temperature Te in eV as input. Of course, not all the rate coefficients will depend on both Tg
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and Te but for consistency, both these temperatures are passed to the functions. You will have
to create these 11 simple functions based on the reactions and rate coefficients in table 6.2.

Exercise 6.5 Complete the program, the template for which was provided above. In particu-
lar, you will have to

1. Writing the expressions for particle source terms in file odefun.m.
2. Creating 11 function filenení vyloučeno, že autoři neudělali chybus, f_k1.m to f_k11.m.

Each of these files will calculate the rate coefficient of the corresponding reaction.
Please note that the functions must be able to work with vector arguments, i.e. you
have to use element-wise operations with Tg and Te.

3. Run the code with pre-defined values of pressure p, Tg and Te. Check if the output
looks similar to the figure below.
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Please take into consideration that this is the first time this text has been used in class
and the authors may have also made a mistake in the source terms. If your output looks
a little different and you are sure that your source terms are correct, do not worry.

�

Now, when your program works, you can try changing various parameters in order to
get a qualitative and quantitative idea how the argon plasma works.

Exercise 6.6 Try increasing and decreasing the electron temperature and answer the follow-
ing questions.
• How does the equilibrium electron density change and why?
• How does the ignition time change?
• What is the dominant ion in the ignition phase and what is the dominant ion when

the plasma stabilizes? Does the dominance of the two ions change with electron
temperature?

�

Exercise 6.7 Run the program for your chosen value of electron temperature and for pressures
of 103, 104, 105 and 106 Pa and answer the following questions.
• How does the equilibrium electron density change and why?
• How does the ignition time change?

�
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6.3 Parametric study

Programs which are in principle similar to the program that we developed in this section
are often used in plasma physics for examining plasma properties at various conditions, although
the number of reactions taken into account is typically much higher (several thousand). It is often
desirable to know how the plasma composition changes at various electron temperatures, neutral
gas temperatures or pressures.

Advanced exercise 6.1 Modify the program in the previous section so that it solves
the system of equations for several values of Te/p and plots the steady-state number densities
as functions of Te/p. You can do this by adding a for loop.

What makes this exercise difficult is the fact that the ignition time changes quite quickly
with electron temperature and pressure. Therefore, the time interval has to be updated
in each iteration according to the current value of Te and p, otherwise the solution will take
very long. �

R When solving similar sets of equations for a large number of conditions, advanced numeri-
cal techniques have to be employed to achieve reasonable computation times. Sometimes,
the equations are solved in a logarithmic form, i.e. not for the number densities of particles
but for their logarithms,

l j = lnn j. (6.17)

This trick can make the convergence much faster because the values of n j vary by many
orders of magnitude during the solution while values of l j vary only within an order
of magnitude.

The exercise above may be quite difficult and unnecessarily time-consuming for students
who do not intend to use Matlab on regular basis. However, even if you didn’t implement
the program in the advanced exercise above, try to complete the following one.
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Exercise 6.8 As already mentioned, the composition of plasma often changes dramatically
with electron temperature. The figure below shows the number densities of various particle
species as a function of electron temperature at the constant pressure of p = 105 Pa and gas
temperature Tg = 400 K. Think about the following questions and answer them.
• If you wanted to use the plasma as a light source, what temperature would you use

and why?
• What is a simple explanation for the decrease in Ar+2 with increasing Te?
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6.4 Conclusion
This brings us to the end of the study material. If you have come thus far and completed
all the exercises successfully, accept our congratulations. The authors sincerely hope that the
exercises and demonstrations in this study text helped you to deepen the understanding of the
complex processes taking part in plasmas. We also hope that the Matlab skills that you learned
here will be useful to you, no matter what discipline of physics you end up in.

Figure 6.1: Downloaded from xkcd.org
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