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1. Introduction 

1.1. Foreword 
As a scientist, I am supposed to do experiments and publish articles, not to mention the 

teaching, so you can imagine that little time is left for programming and, especially, writing 
manuals. However, I had to make RefFIT because no other software was flexible and fast 
enough to model spectral data in the way I wanted. It represents, if you want, my idea of data 
fitting. Initially it was a little DOS program for a Drude-Lorentz fitting of the reflection 
coefficient (this is where its name comes from). Somewhat later it has grown into a sizeable 
Windows application intended to facilitate modeling and the extraction of the complex 
dielectric function from various kinds of optical experiments, such as reflectivity, transmission, 
ellipsometry etc. measured on different kinds of samples (anisotropic, layered etc.). The 
following principles have formed the basis of RefFIT: (i) it should be possible combine 
different types of spectra and fit them simultaneously, (ii) a user should be able to see in real 
time how does the fitting come about (and not to wait until the program finishes and gives birth 
to an output file, which yet has to be painted by a graphical package), (iii) the program should 
run as fast as possible (iv) there should be a macro language for routine operations.  

Initially I did not bother with any written manuals. When some of my colleagues found it 
useful, it was possible to explain privately, how RefFIT works. However, as more people 
become interested in it, I realized that a manual would help a lot. It has become even more 
evident after I had to look into this guide a couple of times myself (the human memory is not 
that long!). 

I have to emphasize, that RefFIT is not professional software, designed in accordance 
with established interface and compatibility standards, but rather a home-made tool, sharpened 
to solve particular class of problems by someone, who deals with these problems every day. 
Unfortunately, it is not ‘fool-proof’ so, please, be prepared that it may crash unexpectedly. All 
formulas RefFIT uses were carefully checked and tested. However I do not take ‘any legal 
responsibility’ for possibly overlooked mistakes and the ‘consequences, caused by those’ 
(please, let me know, if you find any). Some commands and conventions look rather strange 
because they were put as temporary solutions, but are still in there. Many improvements to 
RefFIT are planned for a long time but not have been done yet. Nevertheless, I dare to offer 
you this program already now because in spite of its ‘child diseases’ RefFIT works and nicely 
solves most of fitting problems that we encounter in our lab. I would be happy if you can find it 
useful too.  

Before I start let me acknowledge those who contributed directly or indirectly to the 
creation of this program. The very idea of RefFIT has appeared during my graduate study in 
P.L.Kapitza Institute for Physical Problems (Moscow) as a result of enlightening discussions 
with my PhD adviser, professor E.A.Tishchenko, who was also my first teacher of optical 
spectroscopy. When I came a postdoc to the Optical Solid State group headed by professor Dirk 
van der Marel (University of Groningen and, currently, University of Geneva) I was deeply 
impressed by his versatile OPTPAL program [1], also designed to fit optical data, but much 
more powerful than RefFIT at that time. The later development of RefFIT was to a great extent 
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governed by a desire to combine the best OPTPAL features with a user-friendly interface. The 
creative science atmosphere of Dirk’s group is very stimulating for me. I must specially 
acknowledge Patricio Mena, who helped me a lot to improve RefFIT by using it extensively in 
his PhD study and even writing several subroutines. Several new models were created by Erik 
van Heumen and Dook van Mechelen. And, of course, I want to thank all my colleagues who 
elected to use RefFIT as their computational tool and thus furthered its evolution. 

1.2. What is RefFIT for? 
One can generally say that RefFIT is designed to analyze the optical spectra of solids. 

Clearly, this statement has to be a bit specified, because there are myriads of thinkable optical 
experiments and, correspondingly, very different ways to analyze them. So which sort of data 
are we going to deal with and what for ‘analysis’ we are going to apply?  

First of all, by optical spectra, we mean frequency-dependent optical quantities. An 
example of an optical spectrum is the frequency-dependent reflectivity )(ωR , which can be 
directly measured. Another example is given by the optical conductivity )(ωσ , which is 
usually not measured directly but derived from experimental data after some analysis (or, 
alternatively, it can be taken from articles of other groups, which is also a sort of measurement 
☺).  Of course, in addition to the light frequency there might be other experimental parameters, 
such as the angle of incidence, a sample thickness etc. Secondly, we put a common dogma, that 
the optical properties we deal with are determined solely by the complex dielectric function 

)()()( 21 ωεωεωε i+=  of the studied material. Thus, we assume that the measurable optical 
quantities, such as reflection, transmission, ellipsometry outputs etc., are described by the 
textbook Fresnel equations [2].  

The primary goal of spectra analysis, that RefFIT does, is to get information about the 
material dielectric function on the base of optical spectra. It is done by the fitting of these 
spectra using a model of the dielectric function with a set of adjustable parameters. These 
parameters are varied in order to obtain the best match between the experimental and calculated 
data points. 

There are two ways to model the dielectric function. It might be either a mathematical (or 
physical, if you like) formula with a limited number of parameters, or a variational (also called 
a ‘free-shape’) dielectric function, which is ‘allowed’ to vary independently at every frequency 
point [4] (see sections 2.2.4 and 2.2.5). The first possibility is very familiar to many (e.g., the 
Drude-Lorentz modeling of reflectivity). Although the second one might look uncommon, it is 
often implicitly present in the data analysis. For example, in spectroscopic ellipsometry 1ε  and 

2ε  are extracted independently at every frequency from the two measured ellipsometric angles 
- ψ  and Δ . The same thing can be done in RefFIT by the fitting of )(ωε  with a not-Kramers-
Kronig-constrained variational dielectric function (section 2.2.5). Another example is the 
conventional Kramers-Kronig transformation of reflectivity [6] (used, by the way, in about 
90% of papers on infrared spectroscopy of solids), which can be substituted in RefFIT by the 
fitting of )(ωR  by a Kramers-Kronig-constrained variational dielectric function (section 2.2.4). 
To make a long story short: every analysis that RefFIT does is a fitting! 
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For a reliable extraction of )(ωε  it is often crucial to fit spectra of different types 
simultaneously. An example, when the analysis of a single quantity might be rather shaky, is 
the already mentioned Kramers-Kronig transformation of reflectivity. It is well known, that the 
experimental reflectivity uncertainties and the ambiguity of extrapolations to high and low 
frequencies in this case can boost the error bars of the resulting dielectric function (or, 
equivalently, of the optical conductivity). As a rule, it helps a lot to supplement the reflectivity 
measurement with the ellipsometry or transmission spectra. In RefFIT the user can freely 
choose the collection of datasets, which should be fitted simultaneously. 

An indicative list of the built-in models includes the Drude-Lorentz model, the dielectric 
function of a BSC superconductor, the extended Drude model, ellipsometry, reflection and 
transmission of multi-layer and anisotropic samples. Of course, it is hopeless to predict all the 
experiments that a solid-state optical spectroscopist might wish to do. Therefore, new models 
are added to RefFIT from time to time in order to meet the emerging needs. 

The fitting is always a try-and-error activity, which requires a lot of human efforts and 
intuition. Sometimes one can spend hours and even days before a proper model is found. In 
order to ease this procedure, RefFIT was designed in such a way that a user can see the results 
of his manipulations with parameters on the graphs in real time. 

Once a good model is found, it might be necessary to apply it many times in the same 
way to different datasets, e.g. to study temperature dependence of spectra. It is obviously not 
practical to continue doing it ‘by hand’. Do not worry: the built-in macro language greatly 
facilitates the execution of lengthy routine calculations in RefFIT. 

1.3. About this manual 
This manual consists of three major parts.  

In Chapter 2 some theoretical aspects of the optical data fitting are considered. It starts 
with the description of the celebrated Levenberg-Marquardt algorithm for a non-linear 
modeling, which is the ‘computational engine’ of RefFIT. Then the physical constraints on the 
dielectric functions are discussed, which have to be met by a realistic model. We also describe 
in details a novel method of the so-called variational dielectric functions (RefFIT is likely the 
first program to use this technique). Finally, the analysis of differential (modulation) spectra is 
discussed. 

Chapter 3 is a tutorial that shows, step-by-step, how to tackle typical fitting problems 
with RefFIT. The examples are selected in order to cover the most essential features of RefFIT.  

Finally, in Chapter 4 you can find the full reference information about RefFIT, including 
the description of all its elements (datasets, models, graphs etc.), the exact formulas used to 
calculate optical quantities, the macro language and so on. 

This manual is not meant to be an optics course, so I assume that the reader is familiar 
with optical spectroscopy. A basic acquaintance with Windows is also assumed. 

The screenshots, which I used in the text, are made on my laptop, running under 
Windows XP. If you have another Windows version, then the appearance of some graphics on 
your screen might look slightly different. 
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1.4. Let’s keep in touch 
Please, do not hesitate to contact me if you have any problems or suggestions regarding 

RefFIT or this manual. Depending on the problem, I might be able to solve it quickly and send 
you an improved program version. It is even feasible to include extra features according to your 
particular needs, provided that these extras are reasonable enough to be potentially useful to 
other users. For instance, one can easily put new formulas for the dielectric function, new 
model types or new macro commands. It is clear that only the user’s feedback is really able to 
improve the program. 

If you wish to periodically receive information about the recent developments in RefFIT, 
such as new models included, new possibilities added and bugs fixed, you can send me an e-
mail. I would appreciate it if you provide some information about your field of research and the 
type of optical measurements you do. 

 

My current contact information is:  

Phone: +41-22-3793105, Fax:  +41-22-3796869  

E-mail: Alexey.Kuzmenko@physics.unige.ch 

University of Geneva, DPMC, Quai Ernest-Ansermet, 24, 1211 Geneva, Switzerland 
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2. Basics of optical data fitting 

2.1. Non-linear modeling 
The fitting or modeling of the experimental (in particular, optical) data is a process, when 

someone looks for a meaningful model with a set of adjustable parameters and varies them in 
order to get the best match of the model to experimental curves.  

To find a proper model is usually a central problem, which a computer can hardly do on 
its own (we humans are still proud to be smarter than the machines we make!). Once a model is 
thought up and reasonable initial values of parameters are found, the second stage is to vary 
them in order to get the best fit. To continue doing it by hand is usually not practical and even 
doable, when there are more than 2 or 3 tangled parameters. It could be even dangerous, 
because a ‘reasonably looking’ match might be rather far from the numerically-the-best one. 
Fortunately, at this stage the fitting procedure can be very efficiently automated as described 
below. 

Suppose, we have a set of N  experimental data points { ix , iy , iσ } ( i = 1 ,…, N ), that 
we want to fit. Here ix  is the data coordinate1, iy  is the data value and iσ  is the data error bar. 
Next, we take a model, which calculates the data value y  as a function of x , and a set of 
internal parameters { 1p , 2p … Mp }: ),( 1 Mppxfy K= . 

Let us construct a so-called ‘chi-square’ functional: 

),(
),(

1
2

1

2

12
M

N

i i

Mii pp
ppxfy

K
K

χ
σ

χ =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
≡ ∑

=

 

Equation 2-1 

If we assume that all measured values iy  are normally distributed with standard 
deviations given by iσ , then ‘statistically-the-best’ match would correspond to the minimal 
value of 2χ . Thus, the modeling is essentially the minimization of the chi-square with respect 
to parameters. Therefore, the method itself is called the ‘least-square’ technique.  

Of course, the error bars are determined not only by a statistical noise, but also by 
systematic inaccuracies, which are very hard to estimate and are clearly not normally 
distributed2. However, to move on, we suppose that they are somehow accounted for by the 
values iσ . 

When ),( 1 Mppxf K  is a non-linear function of parameters (which is virtually always 
the case in optical modeling), the so-called Levenberg-Marquardt algorithm of the chi-square 
minimization is indispensable. We shall discuss it in the next section. 
                                                 
1 In the case of optical data ix  is usually the light frequency. 
2 Honestly, I do not believe there is a ‘scientific way’ to deal with systematic error bars (tell me if I am wrong!) 
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2.1.1. Levenberg-Marquardt algorithm 

The Levenberg-Marquardt (LM) algorithm is based on the self-adjustable balance 
between the two minimizing strategies: the ‘gradient descent’ and the ‘inverse Hessian’ 
methods.  

The ‘gradient descent’ method is simply an instinctive moving in the ‘steepest descent’ 
direction, which is apparently determined by the minus-gradient:  

),,,(
),,,(

2
1

1
1

2
1

2

Mi
k

N

i i

Mii

k
k ppx

p
fppxfy

p
K

K

∂
∂−

=
∂
∂

−≡ ∑
= σ

χβ  

Equation 2-2 

(the one-half coefficient is put to simplify the formulas). Suppose, the current parameter values 
are kp  ( k =1,…, M ). To improve the fit, we can ‘shift’ the parameters kkk ppp δ+→ , where 

kconstant βδ ×=kp  

Equation 2-3 

The absolute value of the constant we will discuss later. The ‘steepest descent’ strategy is 
justified, when one is far from the minimum, but it becomes extremely inefficient in the 
‘plateau’ close to the minimum, especially in the multi-parameter space.  

In the latter case it is much better to assume that the function to be minimized has almost 
parabolic shape, determined by the Hessian:  
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Equation 2-4 

(the one-half here is also for the sake of simplicity). After the computing, numerically or 
analytically, the gradient and the Hessian for the current set of parameters, one can immediately 
‘jump’ to the minimum by shifting the parameters kkk ppp δ+→ , where the displacement 
vector kpδ  is determined from the linear system: 

∑
=

=
M

i
klkl p

1

βδα . 

Equation 2-5 

It was argued (see Ref. [3]), that the term in Equation 2-4, which contains the second 

derivative 
lk pp

f
∂∂

∂ 2

, is not important near the minimum and, moreover, may even destabilize the 

fitting process. So, instead of Equation 2-4 we shall define the α-matrix simply as: 
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Equation 2-6 

Coming back to the ‘steepest descent’ technique, one can see that the Equation 2-3 has a 
problem with the unit dimensions. Let us suppose that the parameter kp  is measured in cm-1. 
Then kβ  has the units of cm (as the 2χ  is dimensionless) and the constant ought to have a 
dimension (cm-2 in this case). Therefore it cannot be the same for all parameters, which are 
generally measured in different units (seconds, Teslas etc.). The solution is to use the 
dimensionless constant. The only way to get rid of the dimension, is to normalize it by kkα : 

k
constant β
α

δ ×=
kk

kp . 

Equation 2-7 

There is an elegant way, due to Marquardt, to continuously ‘switch’ from one strategy to 
another. Let us consider a ‘diagonally-enhanced’ α-matrix: 

)1( λδαα klklkl +=′ , 

Equation 2-8 

where λ  is a dimensionless constant, and replace klα  with klα ′  in Equation 2-5: 

∑
=

=′
M

i
klkl p

1

βδα . 

Equation 2-9 

If we take 1<<λ , then the displacement vector kpδ , obtained from Equation 2-9, is close to 
the one, obtained by the pure ‘inverse Hessian’ technique (Equation 2-5). However, if 1>>λ , 
then we can almost neglect the off-diagonal elements and the solution of Equation 2-9 becomes 
simply 

)1( λα
β

α
β

δ
+

=
′

=
kk

k

kk

k
kp . 

Equation 2-10 

One can see that Equation 2-10 has the same form, as Equation 2-7. It means that, by increasing 
the parameter λ , we approach the ‘steepest descent’ limit.  

Now we are ready to formulate the LM algorithm, which block diagram is shown in 
Figure 2-1. 
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Figure 2-1. The block diagram of the Levenberg-Marquardt technique, used by RefFIT. 

The minimization process is iterative. One starts with a reasonably small value of λ . At 
every successful iteration ( 2
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new χχ < ) it is reduced by a factor of 10, moving towards the 

‘inverse Hessian’ regime. Otherwise it retreats to the ‘steepest descent’ regime by being 
increased by a factor of 10. When the so-called stop criteria are satisfied, the fitting process 
stops. 

An important issue is the computation of klα  and kβ . According to Equation 2-2 and 
Equation 2-6, we have to calculate the first derivatives of the model function ),( 1 Mppxf K  
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if the model function (but not the derivatives) is provided by an external routine. In this case 
much care has to be taken, as the computational errors could be rather large, especially near the 
minimum point. Fortunately, since we are going to use the model functions given by explicit 
analytical expressions, we can always calculate the derivatives analytically. 
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of the 2χ  during the last few (e.g., three) iterations does not exceed a certain threshold 2δχ . It 
also makes sense to ensure that the fitting process does not take too long by putting certain 
limits on the total number of iterations or (and) the total fitting time. There could be many more 
criteria. For instance, the process must terminate, when an impatient user hits the “STOP” 
button. 

It is remarkable, that the LM algorithm, in spite of its simplicity, may easily handle 
models that contain a huge number of parameters (of the order of thousands!). The convergence 
speed, i.e., the number of iterations, needed to reach the minimum, is not significantly 
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influenced by the number of parameters. It rather depends on the adequacy of the model to the 
experimental data and the success of the initial approximation. 

2.1.2. Simultaneous fitting of several datasets of different types 

So far we considered the fitting of only one dataset by a single model. It is rather 
straightforward to extend the discussion to a case, when several datasets of different 
experimental types have to be fitted simultaneously with several models.  

Let us consider Q  datasets, while an ν -th dataset ( QK1=ν ) contains νN  datapoints: 
},{ ννν σ iii yx ( νNi K1= ). Suppose that an ν -th dataset should be fitted by its own model 

),,,( 1 Mppxf Kν . Although in this notation all models depend formally on the same set of 
parameters, it does not imply that every model really depends on all parameters. In other 
words, some derivatives kpf ∂∂ /ν  may be equal to zero by definition. It is important, however, 
that different models may depend on the same parameters. 

Our goal is to fit several datasets simultaneously. For each dataset a separate chi-square 
term can be written: 

∑
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Equation 2-11 

We can compose the total chi-square to be minimized: 
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Here νw  are the ‘weights’ of individual chi-square terms that have to be adjusted, as discussed 
below. The definitions of kβ  (Equation 2-2) and klα  (Equation 2-6) should be modified 
accordingly: 
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The remaining part of the LM algorithm goes exactly as in 2.1.1. 

The weight coefficients νw  deserve special remarks. Rigorously speaking, they should be 
equal to 1, provided that the spreads of all data points are statistically independent. However, 
due to the systematic error bars, this assumption is obviously not correct. For instance, the shift 
of the reflectivity coefficient, caused by the reference mirror imperfection, is not very different 
for two spectrally close data points. The second problem is that the error bars νσ i  are not 
always well known. Therefore, it is often necessary to ‘tune’ the weight coefficients in order to 
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achieve a proper ‘balance’ between the contributions of different data sets to the total chi-
square (Equation 2-12). But how this can be done? Frankly speaking, I see no other recipe but 
to try different values of vw , see the result, and listen to your own intuition when choosing the 
best one. 

2.1.3. Confidence limits 

When the fitting is done, it is often necessary to estimate the ‘error bars’ of the obtained 
parameter values )0(

kp . From the statistical point of view, it is more correct to talk about the so-
called ‘confidence limits’. One can intuitively define the confidence limit of a parameter kp  as 
the largest possible value kpδ , such as the shift kkk ppp δ+→ )0(  does not cause an 
‘unrealistically’ large increase of the chi-square. An essential addition to this definition is that, 
after the shifting of the value of kp , one should again minimize 2χ  with respect to all 
remaining parameters.  

The importance of an extra minimization is clear from the following (a bit exaggerated) 
example. Let us consider the following model function f , which depends on the two 
parameters ( 1p  and 2p ) and does not even depend on x : 2121 ),( ppppf += . Suppose, our 
dataset contains only one data point }1,1{ == σy  ( x  is not important here). The chi-square in 
the case is 2

21
2 )1( pp −−=χ . The fitting procedure may converge, for instance, to 6.0)0(

1 =p  
and 4.0)0(

1 =p  (in this case the fit is exact and 02 =χ ). What are the confidence limits of both 
parameters? Obviously, there are no limits at all, because for any given number a , the 
combination apap −== 1, 21  also provides an exact fit! However, at any fixed value of 2p , 
the shift of 1p  will cause an increase of the 2χ . If we now set that the largest ‘realistic’ value 
of 2χ  is 0.01 then formally the ‘confidence limit’ of 1p  should be 0.1. The same is valid for 

2p . One can say that parameters 1p  and 2p  are correlated. 

The calculation of the confidence limits kpδ is relatively simple. We can ignore the 
deviations of ),,( 1

2
Mpp Kχ  near the minimum point ),,( )0()0(

1
2

)0( Mpp Kχ  from the quadratic 
shape, given by the Hessian matrix klα . 

 ∑ −−=−
lk

llkkkl pppp
,

)0()0(2
)0(

2 ))((αχχ . 

Equation 2-13 

Let 2δχ  be the ‘maximal acceptable’ difference 2
)0(

2 χχ −  that we will discuss later. 
Then, after simple algebra, we can get: 

kkkp ))(( 12 −= αδχδ , 

Equation 2-14 
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where kl)( 1−α  is the inverse Hessian matrix also called the ‘covariance matrix’. Note, that all 

the diagonal elements kk)( 1−α  are positive because ),,( )0()0(
1

22
)0( Mpp Kχχ =  is a local minimum 

point and Equation 2-14 can always be applied. 

The reasonable choice of 2δχ  absolute value is quite an issue. Ideally, 2δχ  should be 
defined by the condition: 

pMP =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

,
2

2δχ , 

Equation 2-15 

where M  is the number of parameters, p  is the desired confidence probability limit (typically, 

95.0=p ) and ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛≡ ∫∫

∞ −−−−

0

1

0

1 /),( dttedttexaP atx at  is the incomplete gamma-function (the 

derivation can be found in Ref. [3]).  

However, the Equation 2-15 can be applied, if (i) the data points are statistically 
independent, (ii) all weight coefficients νw  are unities, and (iii) the model is absolutely 
adequate to the data. However, as was mentioned in the section 2.1.2, the existence of the 
systematic error bars invalidates the first two assumptions. One also needs much optimism to 
heavily rely on the assumption (iii). In this situation the choice of 2δχ  becomes rather 
ambiguous and, therefore, human-dependent.  

Fortunately, from Equation 2-14 it follows that 2δχ  scales the confidence limits of all 
parameters proportionally. One can therefore reliably compare the error bars of different 
parameters, even though their absolute values might be ill-defined. 

2.2. Modeling of the dielectric functions 
The central assumption in the calculations RefFIT does is that all measurable optical 

quantities (such as reflectivity, penetration depth etc.) can be expressed in terms of the complex 
frequency-dependent dielectric function )()()( 21 ωεωεωε i+=  of the material under study. 
Therefore, the most important issue is the modeling of the dielectric function itself.  

2.2.1. Physical properties of the dielectric functions 

It is well-known from the textbooks (e.g., [2]) that any realistic dielectric function ought 
to satisfy certain physical conditions.  

First of all, )()( 11 ωεωε −=  and )()( 22 ωεωε −−= , therefore it is sufficient to model the 
)(ωε  for 0≥ω  only.  

Secondly, 0)0(2 ≥>ωε , which means that the intensity of light cannot increase in the 
direction of propagation.  
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The third requirement is that at very high frequencies the optical properties of matter are 
the same as those of vacuum: 1)(1 =∞→ωε  and 0)(2 =∞→ωε .  

Finally, due to the causality principle, the real and imaginary parts are not independent, 
but coupled via the so-called Kramers-Kronig (KK) relation3: 

∫
∞

−
=−

0
22

2
1

)(21)(
ω

ε
π

ωε
x

dxxx . 

Equation 2-16 

Since the integrated function has a pole at ω=x , the principal value of the integral should be 
taken. 

The Equation 2-16 is a particularly strong constraint. It implies that, the knowledge of the 
)(2 ωε  in the whole spectral range is enough to restore the )(1 ωε  without any extra 

assumptions. Thus only one of the two functions )(1 ωε  and )(2 ωε  is independent. 

The dielectric function )(ωε  of a physical system is often presented a sum of different 
terms (contributions) due to the optical response of independent subsystems: 

...)()(1)( +++= ωεωεωε BA . 

Obviously, in this case the KK relations must hold for individual contributions separately: 

∫
∞

−
=

0
22

2
1

)(2)(
ω

ε
π

ωε
x

dxxx A
A , ∫

∞

−
=

0
22

2
1

)(2)(
ω

ε
π

ωε
x

dxxx B
B … 

Equation 2-17 

Note that 1 is no longer present in this formula, like in Equation 2-16.  

What is the practical value of the KK relation? It is not obvious, how to use it, as 
experimental spectra are never measured in the whole spectral range. In many cases, if the 
range is very limited, it makes no sense to impose the KK relation on the dielectric function to 
be found. If the spectral range is relatively large, then the KK condition becomes essential, but 
one should be rather careful while making assumptions about the behavior of the dielectric 
function outside the considered spectral region. We shall discuss this issue later on. 

2.2.2. Why modeling? 

Why and when do we need to model the dielectric functions? One can speculate much on 
that, but I would distinguish the two main possibilities.  

Firstly, one can get some physically meaningful characteristics of the material under 
study (for example, the plasma frequency, the fundamental gap or the phonon line asymmetry) 
directly from the experimental spectra, assuming a specific physical model (metallic Drude 
conductivity, semiconductor gap, Fano lineshape etc.). In this case the obvious recipe is to fit 
the data with a formula-defined function, which is derived from this model (section 2.2.3). The 
quality of the best match will suggest how good the model is. 
                                                 
3 There exists another KK relation that we will not use, as it does not impose essentially new constraints 
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The second possibility is to extract the dielectric function )(ωε  itself from the measured 
spectra as careful as possible without any model assumptions (the model-dependent analysis of 

)(ωε  can be done afterwards). For example, we might want to obtain )(1 ωε  and )(2 ωε  from 
the measured ellipsometric quantities )(ωψ  and )(ωΔ , which is rather trivial (in the isotropic 
case), or from reflectivity )(ωR  alone, which is not trivial, as it heavily relies on the Kramers-
Kronig relations. It is remarkable, that in this case the problem can be again formulated in 
terms of fitting! Then, one has to find the best dielectric function that matches the available 
optical data. In other words, we have to minimize the chi-square (Equation 2-1 or Equation 
2-12) in the whole Hilbert space of physically sensible dielectric functions, which formally 
means that we have an infinite number of the fitting parameters. As it is technically impossible 
to deal with an infinite number of parameters, one has to restrict somehow the set of considered 
dielectric functions to a finite-dimensional subspace4. One way to do it is to represent )(ωε  
again by a formula (section 2.2.3). The particular meaning of the formula is not important, 
provided that it gives a physically allowed result (see section 2.2.1) and is ‘flexible’ enough to 
fit all important features of the experimental spectra. However, the formula-given dielectric 
functions are usually too ‘stiff’ for this purpose. In this case a better solution might be to use 
the so-called variational dielectric functions (section 2.2.4).  

2.2.3. Formula-defined dielectric functions 

There is a variety of formulas corresponding to different models of the dielectric 
functions. Perhaps, the most famous example is the Drude-Lorentz (DL) model, which we will 
refer to many times later on: 

∑ −−
+= ∞

i ioi

pi

i ωγωω
ω

εωε 22

2

)(
,
 

Equation 2-18 

It describes the optical response of a set of harmonic (damped) oscillators. Here ∞ε  is the so-
called ‘high-frequency dielectric constant’, which represents the contribution of all oscillators 
at very high frequencies (compared to the frequency range under consideration). The 
parameters piω , i0ω  and iγ  are the ‘plasma’ frequency, the transverse frequency 
(eigenfrequency) and the linewidth (scattering rate) respectively of the i -th Lorentz oscillator. 
For the Drude term, which describes to response of the unbound  (free) charge carriers, the i0ω  
is zero. 

We shall distinguish between the formulas that satisfy the KK relation and the ones that 
do not. Of course, the safest way is to always fit the data with the KK-compliant functions. 
However, non-KK functions are also often used. For instance, the formula for an asymmetric 
oscillator: 

γωωω
ω

ωε
πφ

i
e

o

i
p

−−
= 22

2

)(
 

                                                 
4 Moreover, it makes no sense to have more parameters than the total number of experimental points. 
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Equation 2-19
 is useful to estimate the asymmetry of the lineshape, when the data are analyzed in the range 

close to 0ω . However, this ‘asymmetric’ term may cause serious problems with the asymptotic 
behavior at high frequencies and optical sum rules if applied to a broad range of frequencies. 

Notably, even the DL function (Equation 2-18) is, strictly speaking, not Kramers-Kronig-
compatible, if 1≠∞ε . This ‘problem’ is commonly ignored, because 1≠∞ε  can be imitated by 
an oscillator sitting infinitely far away above the highest considered frequency. 

Every formula-given function can be differentiated analytically, which is crucial to 
implement the Levenberg-Marquardt minimization (section 2.1.1). 

2.2.4. Variational dielectric functions (KK-constrained) 

The method of variational dielectric functions is relatively new [4]. This section contains 
the detailed description of this technique.  

Let me outline a situation, where this type of functions naturally comes about. Imagine 
that we are given a normal-incidence reflectivity spectrum )(ωR , measured in the (wide 
enough) spectral range ],[ maxmin ωω , and we have to extract the corresponding dielectric 
function )(ωε .  

One solution that is known since fifties [6] is to apply a special Kramers-Kronig 
transformation for the logarithm of the complex reflectivity. This method is very popular since 
it does not require much numerical work. However, its applicability is limited to the case of the 
normal-incidence reflectivity from a bulk isotropic sample. It fails for instance, if the angle of 
incidence is large enough [7]. 

A more universal way is to fit the reflectivity using some model function, which 
automatically satisfies the KK relation. We also have to use a Fresnel relation between )(ωε  
and )(ωR , which properly takes into account particular experimental conditions (the angle of 
incidence, a possible substrate etc.). If we manage to match all essential features of the 
measured reflection coefficient (apart from the noise) then we expect the model dielectric 
function to closely resemble the true dielectric function of the system. As we cannot assume a-
priori any specific model, the only way is to take some trial function with a lot of parameters 
that is ‘flexible enough’ to effectively approximate the true dielectric function.  

One can take, for instance, the DL oscillator function (Equation 2-18) and put as many 
terms as it is necessary to obtain a nice fit to the data. All oscillator parameters  piω , i0ω  and 

iγ  in this case are usually adjustable. In fact, this approach is doable, even though in some 
‘unlucky’ cases the number of oscillators has to be very large. The reason for the success is the 
completeness of Drude-Lorentz functions in a sense that any physical dielectric function can be 
approximated with an arbitrarily good accuracy by some set of Lorentzians (although this 
statement is intuitively clear, the rigorous proof might be complicated).  

However, this way of fitting has serious disadvantages. First of all, there are no obvious 
criteria on how many oscillators are really necessary. Secondly, as we add more and more 
oscillators to the model function, it becomes less and less clear how to guess the initial values 
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of parameters of every newcomer. Finally, if all parameters are allowed to change, it often 
happens that the fitting process causes an uncontrollable divergence of some of them5. To avoid 
it, one has to deliberately fix some parameters. It makes the fitting procedure rather tricky and 
ambiguous, preventing the routinely execution. 

Now we take the first step towards the variational dielectric functions. In order to 
improve the multi-oscillator fitting strategy, we can put oscillators at fixed frequencies 

ii ωω =0 , ( i  = 1,.., N ) and set their linewidths iγ  to an also fixed value, which is of the order of 
the distance between adjacent frequency points (for instance 2/)( 11 −+ −= iii ωωγ ). The idea, is 
that the i -th oscillator is ‘locally responsible’ for the spectral weight6 near iω  (see Figure 2-2). 
In this way we ensure, that our model function is able to provide enough spectral weight to any 
frequency region. We are left with only plasma frequencies piω  (which determine the spectral 
weights) allowed to change.  
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Figure 2-2 The real and imaginary parts of the Lorentz dielectric function )(ωε Lor

i , with the transverse frequency 

iωω =0  and the linewidth 2/)( 11 −+ −= ii ωωγ . 

The frequency mesh should cover the spectral range ],[ maxmin ωω 7 and should be dense 
enough to allow a very accurate fitting of the reflectivity spectrum. Ultimately, we can put even 
one oscillator to every experimental point of the spectrum! In this case the number of 
adjustable parameters is the same as the number of experimental points, so that the fitting can 
be in principle exact (of course, the data noise will be also fitted). Although we can still use the 
standard minimization procedure, described in section 2.1, such a fitting can be hardly referred 
to as ‘modeling’. I would rather call it ‘variational fitting’ or ‘free-shape fitting’ or something 
of the kind. 

To make this variational approach really workable, we have to overcome the two major 
obstacles.  

                                                 
5 Typically, it happens, when the transversal frequency goes beyond the experimental spectral range. 
6 By ‘spectral weight’ we mean, as usual, the integrated optical conductivity ∫∫ dxxxdxx )(~)( 21 εσ  
7 then min1 ωω =  and maxωω =N  
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The first problem is that the Lorentzian lineshape 

22222

2
,

2 )(
)(

ωγωω
γωω

ωε
+−

=
i

piLori  

is not very suitable to represent solely the ‘local’ spectral weight close to iω  because of the 
slowly decaying low- and high-frequency ‘tails’ (Figure 2-2). We need a more ‘localized’ 
function. Ideally, it should have no tails at all, i.e. to be non-zero only inside, let say, the small 
region ],[ 11 +− ii ωω , adjacent to iω .  

A good candidate is a ‘triangular’ shape of )(2 ωε  (Figure 2-3): 
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Equation 2-20 

The corresponding )(1 ωε  can be analytically obtained by applying the KK transformation 
(Equation 2-17): 
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Equation 2-21 

where yxyxyxyxyxg −−+++≡ ln)(ln)(),( . 
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Figure 2-3. The real and imaginary parts of the ‘triangular’ dielectric function )(, ωε ∧i , described in the text. 

Now we can construct the desired variational function as a linear superposition of 
triangular functions localized at all frequencies iω  
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∑
=

∧=
N

i

i
iA

1

,
var )()( ωεωε  

Equation 2-22 

and consider coefficients iA  as free parameters. To ensure that 0)(2 ≥ωε , we require that all 
0≥iA . It is convenient to set them to zero at the boundaries: 01 == NAA , ensuring that 
)(2 ωε  vanishes at 1ω  and Nω 8.  

As is schematically shown on Figure 2-4, the imaginary part of )(var ωε  is a piecewise 
curve going through N points { ii A,ω }(i = 1,..,N). One can see that )(Im var ωε  in between the 
reference frequency points iω  is simply given by a linear interpolation. The )(Re var ωε  is its 
exact KK transform. 

The free parameters of )(var ωε  are the values of 2ε  at every frequency point iω . There 
are altogether 2−N  parameters. Obviously, this construction is extremely flexible and totally 
model-independent, just what we aimed to obtain! 
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Figure 2-4.  A KK-constrained variational dielectric function. The )(Im var ωε  is composed of many triangular 

functions )(Im , ωε ∧i  and the )(Re var ωε  is the exact KK-transform of )(Im var ωε . 

The second problem is that the so-constructed variational dielectric function (Equation 
2-22) totally ignores all spectral weight beyond the frequency range ],[ maxmin ωω . However, 
according to the KK relation (Equation 2-17), the non-zero )(2 ωε  outside this region 
influences )(1 ωε  inside it, and is, therefore, essential to calculate reflectivity )(ωR , which 
depends on both )(1 ωε  and )(2 ωε .  

                                                 
8 a non-zero value of 2ε  at the boundary would result in a discontinuity of 2ε  and therefore in an unwanted 

divergence of 1ε  
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The problem can be circumvented by doing the fitting in two steps. Initially, the spectra 
are fitted in a conventional way by some formula-defined dielectric function )()( mod

)0( ωεωε = . 
If the match is reasonably good, then we can assume that )(mod ωε  has correct frequency 
dependence outside the considered spectral range, even though some fine details of the 
experimental curve are not fitted very well. Then we can fix all parameters of )(mod ωε  and add 
a variational function to it: 

)()()( varmod
)1( ωεωεωε += . 

Now the )(var ωε  acts as a small correction to the initial model )(mod ωε . When we do a 
variational fitting of the reflectivity spectrum with )()1( ωε , the ‘KK influence’ of the low- and 
high-frequency spectral weights on )(1 ωε  inside ],[ maxmin ωω  is already accounted for by 

)(mod ωε .  

Because )(var ωε  is now added to )(mod ωε , which is the dominant contribution to the total 
dielectric function, the parameters iA  are not necessarily positive (which was initially required 
by the condition 0)(2 ≥ωε ), but can be negative as well. 

From the Equation 2-22 we can get a simple analytical formula for the first derivatives of 
the dielectric function )(var ωε  with respect to the parameters iA , which are required by the 
Levenberg-Marquardt procedure (section 2.1.1): 

)()( ,
var

ωεωε ∧=
∂

∂ i

iA
.  

At the end we minimize the chi-square with respect to all 2−N  parameters, thus 
obtaining ‘the best’ KK-related dielectric function, which fits the reflectivity spectrum. 

In the above example we discussed the fitting of a single reflectivity spectrum. As was 
mentioned before, in the particular case of a normal-incidence reflectivity spectrum of an 
isotropic sample, (almost) the same result could be obtained by the ‘conventional’ KK 
technique. However, an important advantage of the new method is that it can be applied to 
virtually any type of optical spectra, or a combination of them! 

The typical number of parameters that are adjusted in the fitting by variational functions 
is very large – up to the number of experimental points, which might amount to few thousands. 
Although such an enormous number of parameters seem to make the fitting procedure 
prohibitively slow, we found that it nevertheless converges within acceptable time limits. This 
is yet another reason to admire, how good the LM method is! 

The optimization of the mesh of anchor frequency points Nωω K1  is essential for correct 
work of the variational fitting algorithm. On one hand, the mesh should be dense enough to 
enable the variational function to fit all important spectral details. On another hand, N cannot 
be too large. The first reason is that the calculation time is growing quickly as a function of the 
number of parameters to be adjusted. The second reason is that an excessive density of anchor 
points may give rise to numerical instabilities, most typically, fast spurious oscillations of the 
resulting 1ε  and 2ε  as functions of ω . In other words, the variational function should not be 
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'too flexible'. According to our experience, numerical instabilities can often be avoided if the 
number of anchor frequencies is two times smaller, than the total number of experimental 
points. Each anchor point must correspond to at least one experimental point, contributing to 
the chi-square (Equation 2-12). 

2.2.5.  ‘Not-KK-constrained’ variational dielectric functions 

Although the title of this section looks ‘frightening’, the model function developed here is 
in fact much easier to understand and deal with then the one of the previous section. 

The variational functions that we told so far about were always ‘forced’ to satisfy the 
Kramers-Kronig relation. However, one can also consider a not KK-constrained variational 
function, where both )(1 ωε  and )(2 ωε  are ‘flexible’ and independent (Figure 2-5). Now it is 
not necessary to set )(1 ωε  and )(2 ωε  to zero at the boundaries 1ω  and 2ω . If we consider a 
mesh of frequencies iω  ( i = 1, .. N ), as in the previous section, then the dielectric function of 
this kind is parameterized by the N2  values )(1 iωε  and )(2 iωε . 
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Figure 2-5  A non-KK-constrained variational dielectric function, which is composed of many triangular functions. 
The real and imaginary parts are completely independent. 

Of course, now there is no guarantee, that the resulting )(1 ωε  and )(2 ωε  will be KK-
related. As a result, one can get sometimes a totally unphysical result (for instance, when there 
is not enough data or the systematic error bars are large). On the other hand, such ‘KK-relaxed’ 
function is much easier to deal with, than a KK-constrained one, because )(1 ωε  does not 
depend non-locally on the values of )(2 ωε  in the entire range anymore. 

Although it is generally important to verify that the resulting function satisfies the KK 
relations, it is not always necessary and even plausible. For instance, in some optical techniques 
two or more values are measured independently at every frequency. The well known example 
is the ellipsometry, where two parameters (ψ  and Δ ) are obtained. Another example is the 
method, where the reflectivity R  and transmission T  are measured on the same sample. In 
both techniques the 1ε , 2ε  are derived from the measured quantities at every frequency 
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independently, without the usage of the KK relations. If the spectral range, where the 
measurements are done, is too small, it is even impossible to check for the KK relations9. 

In these cases the fitting of the data with a KK-relaxed variational dielectric function 
obviously does the right job. Even though the fitting now formally involves N2  parameters, it 
is in fact equivalent to the ‘point-by-point’ series of N  independent fitting problems which 
involve 2 parameters ( )(1 iωε  and )(2 iωε ) each.  

2.3. Differential modeling 
Suppose, we measure some optical spectra )(ωS  (for example, reflection, transmission, 

ellipsometry etc. or their combinations), from which we can obtain the dielectric function 
)()()( 21 ωεωεωε i+=  by a modeling, described in section 2.2. If the dielectric function 

depends on some externally controlled parameter P  (most typically, temperature, but might be 
also pressure, magnetic field etc.), then it is often necessary to measure the change of ε  due to 
the change of P , let say, from 1P  to 2P : 

),(),()( 21 PP ωεωεωε −≡Δ ,  

or, equivalently (if the changes are small), to obtain the derivative P∂∂ /ε . Sometimes this 
technique is called ‘modulation spectroscopy’ because the optical properties are ‘modulated’ by 
an external parameter. 

In principle, we can obtain the model dielectric functions ),( 1mod Pωε  and ),( 2mod Pωε  by 
the fitting of ),( 1PS ω  and ),( 2PS ω  separately and assume that  

),(),()()( 2mod1modmod PP ωεωεωεωε −≡Δ≈Δ .  

However, this approach completely ignores, that the error bars of the differential spectra  

),(),()( 21 PSPSS ωωω −=Δ  

have very little to do with the ones of the genuine spectra )(ωS . In fact, they are usually much 
smaller, because most systematical errors are cancelled out!. As a result, the )(mod ωεΔ  may 
look rather different from )(ωεΔ . 

If the SΔ  and εΔ  are small, then it might be better to fit the )(ωSΔ  directly by using a 
so-called differential model for )(ωεΔ . The procedure can be done in two steps. Initially, the 
base model )(ωε base  can be deduced by the usual fitting of ),( 1PS ω . It can be either formula-
defined model (section 2.2.3), or a variational model (sections 2.2.4, 2.2.5). Apart from the 
values of )(1 ωε  and )(2 ωε , the base model also provides the derivatives (sensitivities) of the 
measured spectrum with respect to the 1ε  and 2ε : 

                                                 
9 When the ellipsometry data are taken in a broad range, it does make sense to fit it with a KK-constrained 
function, because it may reveal serious systematic measurement errors, if any. 
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Using these derivatives, the differential spectra can be calculated in the first order of a 
Taylor expansion:  

)()()()()( 2211 ωεωαωεωαω Δ+Δ≈ΔS . 

Equation 2-23 

Then one can associate an extra (differential) model )(ωε diff  with εΔ  and adjust its parameters 
in order to fit )(ωSΔ , using Equation 2-23. The error bars of )(ωSΔ  have to be estimated 
separately. In the fitting with the differential model, the role of the base model is to provide 
only the (fixed) derivatives )(1 ωα  and )(2 ωα .  

Formally, )(ωε diff  has to be treated as a usual dielectric function, because the physical 
requirements to it are almost the same as the usual requirements to the dielectric functions (see 
2.2.1). For instance, it is important that  )(ωε diff  satisfies the Kramers-Kronig relation. The 
only obvious difference is that 2εΔ  can be negative (unlike 2ε ), and both 1εΔ  and 2εΔ  must 
vanish at very high frequencies.  
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3. Tutorial 
This chapter shows how to solve typical problems using RefFIT. Each section is devoted 

to a particular task. I suggest you to go through the sections sequentially, since the last parts do 
not repeat the detailed explanations, given in the beginning. It is especially important to read 
the first section (3.1), which deals with the most basic RefFIT objects. 

Of course, before the going through this tutorial, you should install RefFIT on your 
computer. This simple procedure is explained in section 4.2. 

3.1. Drude-Lorentz fitting of a reflectivity spectrum 
As I already mentioned, RefFIT was created as a reflectivity fitting routine with the 

Drude-Lorentz dielectric function (Equation 2-18). The normal-incidence reflectivity )(ωR  is 
expressed via the dielectric function )(ωε  according to Fresnel formula: 

2

1
1

ε
ε

+
−

=R .  

It is one the most common data analysis that solid-state infrared spectroscopists do. So why 
don’t we try it first? 

In order to do it in RefFIT, one should first open a model window by choosing “Model” 
from the “Window” menu (Figure 3-1). It contains a particular DL model that can be used later 
on for plotting graphs, fitting data and so on. In this window we can add or delete the Lorenzian 
terms and manually edit parameters. The “Einf” field stands for ∞ε ; “Wo”, “Wp” and “G” 
designate the transverse frequency i0ω , the plasma frequency piω  and the scattering rate iγ  
respectively, measured in inverse centimeters10 (cm-1). By the way, 1 eV is about 8000 cm-1. 
Let us keep for a while the initial values (Figure 3-1).  

 

                                                 
10 Inverse centimeters are apparently invented by the infrared spectroscopists to make the life of normal people 
more difficult ☺. 
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Figure 3-1  A newly created model window with default parameters. 

Next we create a new graph, by choosing “Graph” from the “Window” menu (Figure 
3-2). In a graph you can plot curves, generated by the models and datasets.  

 
Figure 3-2 An empty graph window. 

If you want to set up the graph contents, just double-click on the white area. You will get 
a window, as shown at Figure 3-3. Choose the first item “(Model [R] “Model1”)” from the list 
“Available curves” and transfer it to the list “Graph curves” by clicking the  button. The 
curve will appear on the graph. 
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Figure 3-3  Graph contents window is used to set up the graph curves. 

Now we would like to edit the model parameters. If you do not like, that the plasma 
frequency of the Lorenzian in the model is so small (100 cm-1), you can change it to, let say, 
1000. For that you can either double-click on the corresponding field in the “Model1” window, 
or set the marker to this field and start typing a new value. The graph will be immediately 
redrawn after you finish editing by pressing “Enter” or in any other way. You can do the same 
with other parameters, or add extra Lorenzian terms. Any time you change something the 
graphs will react accordingly. 

You might have already noticed an additional window, called “Parameter control” 
(Figure 3-6) that appeared simultaneously with the “Model1” window. It is intended to change 
the characteristics of the currently selected parameter, such as its value as well as the minimal 
and maximal limits etc. On the left side you can see a trackbar, which works like a microphone 
volume control. Just drag it up and down in order to change the parameter value. The graph 
starts to show a movie, which you direct yourself!  

 
Figure 3-4 Parameter control window allows one to change the properties of a currently select parameter. 

After finishing with one parameter click to another one and continue the procedure. You 
might even not need a keyboard to get the desired spectrum shape. 

If you need to change the graph properties, such as axes scales, titles etc, you can double-
click on the gray area in the “Graph1” window and enter the corresponding properties. 
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Figure 3-5  In the “Graph properties” window one can modify the axis scales and titles. 

The playing around with parameters in an abstract model may start to get boring after a 
minute or so. To be more close to the real life let us load an experimental reflectivity curve. No 
doubt, you have your own beautiful spectra, but I would propose to take my own data file as a 
start. OK, we should open the dataset manager by clicking at “Dataset manager’ item of the 
“Window” menu. After that we get a window, shown at Figure 3-6. It has 10 slots for datasets.  

 
Figure 3-6 Dataset manager: no datasets are loaded yet. 

The rest is straightforward. Click the  button in the first slot that will invoke the 
“Load Dataset” window (Figure 3-7). 
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Figure 3-7 

Click the  button and in the “Browse” window pick up the master file ‘R1.DAT’ 
from the directory “TUTORIAL\PART1”. Click the  button. The dataset will be loaded 
now to the first slot (Figure 3-8). Note that the program assumed that this file contained 
reflectivity by checking the first filename character – “R”. Sometimes the data type is 
determined incorrectly. If this happens, then you must choose the right quantity in the 
“Quantity” field.  

 
Figure 3-8 The dataset manager with a reflectivity dataset loaded into the first slot. 

You may close the ‘Dataset manager’ window in order to save some space on the screen. 
Don’t worry; it will not cause the unloading of our dataset. 
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Now we would like to show this curve on the same graph. Let’s go back to the “Graph1” 
window and double-click anywhere in the white space. You can notice, that an extra item 
“DATA [R] “R1.DAT”” has appeared in the “Available curves” list of the “Graph contents” 
window (Figure 3-9). Very nice, this is our dataset. Move it to the “Graph curves” list and click 
the  button. You may not like the appearance of the experimental curve. If so, you have 
to pop up “Graph contents” again, select “DATA [R] “R1.DAT”” in the “Graph curves” list 
and set the curve parameters according to your taste. Let us set the parameters as shown in 
Figure 3-9. 

 
Figure 3-9 The “graph contents” window with the data and model curves selected for plotting. 

Next I would suggest you to play with the model parameters manually in order to make 
the model curve as close as possible to the experimental one. To be specific, keep only two 
Lorenzians in the model. I’ll see you in five minutes… 

…OK, I am back. I hope, your “Graph1” looks similar to Figure 3-10. 

 
Figure 3-10 The match between the experimental and model reflectivity curves (after a manual parameter 
adjustment). 
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If you are still far from this fitting match, you can type the parameters that I obtained 
(Figure 3-11). You must have already figured out that these two Lorenzian terms correspond to 
the two strongest optical phonon modes. 

 
Figure 3-11  The model with the two manually adjusted Lorentzians. 

So, we did a first step, and it is time to save the model. The way to do it is to activate our 
model window and press the F2 on the keyboard (do not ask me, why!). You will have the 
possibility to choose the path and the filename. I would suggest calling it “MODEL1.RFM”11, 
but it is up to you. If you now do something wrong or the program crashes, you can load this 
saved model by pressing the F3 button in the active model window. 

Of course, we would expect from RefFIT to do an automated fitting. This is our ultimate 
goal, after all. Let us show the ‘Fit’ window by clicking on ‘Fit’ in the ‘Window’ menu (Figure 
3-12).  

 

 
Figure 3-12  The “Fit” window. The fitting task is not specified yet. 
                                                 
11 “RFM” is a standard extension for the RefFIT model files. 
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It is tempting to press immediately the  button, but this wouldn’t work until we tell 
the program that we want to fit the “R1.DAT” dataset to the model “Model1”. The way to do it 
is to add the corresponding term to the chi-square (Equation 2-12). Click the  button.The 
window “Add ChiSq term” will show up (Figure 3-13). In the list “Available ChiSq terms” 
there is only one possibility: “[R] “R1.DAT”-“Model1”” (there would be much more if more 
models and datasets were available). Select this item and click  .  

 

 
Figure 3-13  Adding chi-square terms. 

Now the fitting problem is well specified (Figure 3-14). The number of points in the 
spectrum is 4792 and the number of fitted parameters is 7. You can also see how big the chi-
square is.  

 

 
Figure 3-14  The “Fit” window after the adding of a chi-square term. 

Now we can press the  button. You might notice that the match considerably 
improved (Figure 3-15) and the chi-square has decreased more than 10 times. It is a good idea 
save the model again, perhaps with a different name, e.g., “MODEL2.RFM”. 
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Figure 3-15  The model and experimental reflectivity curves after the automated fitting. The model contains only 
two oscillators. 

Honestly, I am still not quite happy with the fitting quality. It looks like that our sample 
has a small metallic conductivity, because reflectivity is bending upwards at very low 
frequencies. Let us put an extra Drude peak, corresponding to the response of charge carriers. It 
is a special case of Lorenzian with zero transverse frequency 0ω . What we should do is to 
simply add an extra Lorenzian to the model (by clicking the   button) and set 0ω  
explicitly to zero. You may try to adjust pω  and γ  in order to get a better match. If you find it 
difficult, I suggest setting both of them to 500 cm-1. 

Now it makes sense to start the automated fitting again. But wait! We want 0ω  of the 
Drude term to be always zero, while at the moment it is an adjustable parameter. There are 
several ways to tell RefFIT that we do not want a parameter to be varied. Perhaps, the fastest is 
to click on it with the right mouse button. Another way is to move the marker (light-green) to a 
specific parameter and press the SPACEBAR. The third option is to uncheck “Active in fit” in 
the Parameter window (Figure 3-4). The fixed parameter always looks red.  

OK, we can start fitting. Wow, we’ve got an improvement (Figure 3-16)! The model now 
is shown at Figure 3-17. If you prefer to have oscillators to be sorted by their transverse 
frequency ( 0ω ), then click on the column header “Wo”. It is time to save the model again.  
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Figure 3-16  The best model and data match for the model with one Lorentz terms and one Drude term. 

 

 
Figure 3-17  The model with one Lorentz terms and one Drude term, giving the best match to the data. 

Having obtained such a fit, you might want to see the corresponding dielectric function. 
Let us open a new graph window (by choosing ‘Graph’ from the ‘Window’ menu). Open the 
“Graph properties” window by double-clicking on the gray area. Change the Y-axis range to [-
20;+20] and Y-axis title to “E1,E2” (Figure 3-18).  
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Figure 3-18  The “Graph properties” window. 

Then open the “Graph contents” window by double-clicking on the white area (Figure 
3-3) and move items “MODEL [E1] “Model1”” and “MODEL [E2] “Model1”” to the list 
“Graph curves”. Now we can see the real and imaginary parts of the dielectric function (ε1 and 
ε2) on the same graph (Figure 3-19). Of course, in this way you can plot also other curves, like 
conductivity, penetration depth, loss function etc.  

 
Figure 3-19  The real and imaginary part of the dielectric function, plotted on the same graph. 

In order to have some outcome you may want export some curves, calculated by a model. 
To do this you should activate a graph window and press the SPACEBAR. You can then 
specify the file name in the “Export Graph to ASCII” window. All the model curves on the 
graph will be stored as separate columns in this file. At this moment it is not yet possible to 
specify, which set of frequencies will be used to generate the model curves. The computer will 
take the frequency range exactly the same as on the horizontal scale of the graph. The 
resolution will correspond to the resolution of your screen. Please, do not complain. It used to 
be a temporary solution, but I did not make a better one. However, you can export data with an 
adjustable set of frequencies using a macro (see section 4.11.6). 
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Congratulations! You have fitted a real experimental curve! You may try to improve the 
match by fitting, for example, the sharp phonon dip at around 350 cm-1 or other structures.  

By the way, this was the reflectivity spectrum of a high-temperature superconductor 
La1.85Sr0.15CuO4 at 100 K for electric field polarization perpendicular to the CuO2-planes (Ref. 
[8]). At this temperature it was not yet superconducting. If you want to fit the reflectivity of the 
sample in the superconducting state, I prepared another file for you (“R2.DAT”). Hint: you will 
need to introduce an extra Drude term with 0=γ , which corresponds to the contribution of 
superconducting electrons. 

3.2. Simultaneous fitting of several data types 
This time we consider an example, where several spectra of different types are fitted 

simultaneously in order to improve the accuracy of the resulting dielectric function12. The 
measurements were done on a single-crystalline sample of compound CeIrIn5 at low 
temperature T = 35 K (see Ref. [9]). This material is a rather good metal, which results in a 
very high reflectivity at low frequencies. 

The reflectivity R  at nearly-normal incidence was measured in the far- and mid-infrared 
spectral range 25 – 5500 cm-1 (data file “R.DAT”). The ellipsometric measurements provided 
the spectra of 1ε  and 2ε  from 6000 to 36000 cm-1, which includes the near-infrared, the visible 
and the soft ultraviolet ranges (files “E1.DAT” and “E2.DAT”). In addition, the static (i.e. zero-
frequency) conductivity DCσ , equal to about 4.8 104 Ω-1cm-1, was obtained from conventional 
electrical measurements (file “S1DC.DAT”, which contains only one point).   

It is important to fit spectra simultaneously, since it helps to remove the uncertainty, 
given by the fact that in the far-infrared only one quantity (reflectivity) is measured, which is in 
general not enough to get both 1ε  and 2ε

13. Therefore, our goal is to fit all available data with 
the same model dielectric function. For simplicity, we shall use only the Drude-Lorentz 
formula (Equation 2-18). 

To begin with, let us load all spectra that we are going to use, one by one. First we load 
the reflectivity spectrum.  

Please, open the “Dataset Manager” window (Figure 3-6) and click the  button in 
the first slot. In the window “Load Dataset #1” (shown in Figure 3-7) click the  button 
on the top. Select the master file “R.DAT” from the directory “TUTORIAL\PART2”. As this 
file turns out to be rather big, we will generate a smaller dataset with different set of 
frequencies. In the “X” group box check the button “generate” and type 25 in the field “Xmin”, 
5000 in the field “Xmax” and 1000 in the field “# pts”. Check the “linear” grid. It means that 
the dataset will contain 1000 evenly (linearly) distributed frequency points in the range 25-
5000 cm-1. As a result, the “Load Dataset #1” should look like in Figure 3-20. Click the  
button. 

                                                 
12 This example was provided by F.P.Mena 
13 One can say, that the knowledge of the static conductivity and as well as high-frequency dielectric function 
helps to effectively ‘anchor’ the complex phase of the reflectance coefficient, which is difficult to measure in the 
far-infrared 
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Figure 3-20  Loading the reflectivity dataset. 

Load dataset “E1.DAT” to slot #2. It contains not so many frequency points, so we would 
like to load it as it is. Just do not check “generate” button in the “X” group box. Load files 
“E2.DAT” and “S1DC.DAT” in the same way. If all downloads are OK, the “Dataset 
Manager” window should look as in Figure 3-21. 

 
Figure 3-21  The dataset manager after all four datasets are loaded. 

We will need one “Model” window to model the dielectric function of the sample. Could 
you create a new “Model” window? If you do not remember how, look at the first Tutorial 
section (3.1) or at the Reference (section 4.5). Let us postpone the editing of the model 
parameters until we create the graphs. 
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I suggest to create three graphs: one for the reflectivity, one for the dielectric function 
(both 1ε  and 2ε ) and one for the optical conductivity. The X and Y ranges must be set 
according to the dataset ranges. The procedure to set the graph properties and curves was also 
described in section  (3.1) and in the Reference (section 4.9).  

Let me ask you to set the X-range of the first graph to [0; 5500] and the Y-range to [0.65; 
1.0]. The default axis titles of “Wavenumber (1/cm)” and “Reflectivity” are OK here. Create 
experimental model reflectivity curves (“DATA [R] “R.DAT”” and “MODEL [R] “Model1”” 
respectively). 

For the second graph set the X-range and the Y-range to [5000; 36000] and [-30; +30] 
correspondingly; change the Y-axis title to “Eps1, Eps2”. Create two dataset curves (“DATA 
[E1] “E1.DAT”” and “DATA [E2] “E2.DAT””) and two model curves (“MODEL [E1] 
“Model1”” and “MODEL [E2] “Model1””). 

For the third graph set the X-range to [0; 1000] and set the Y-range to [0; 60000]. Change 
the Y-title to “Sigma1 (S/cm)”. Plot the curves “DATA [S1] “S1DC.DAT”” and “MODEL 
[S1] “Model1””. 

Arrange the graphs on the screen in order to see them all at the same time. 

Now you can try to fit the data ‘by hand’ in order to get a good starting point for the 
automated fitting routine. You will need more than one oscillator. I advise to use the slider in 
the “Parameter control” window (Figure 3-4) to change the values of the model parameter. 
Adjust the parameter minimum and maximum limits, if necessary (the maximum limit is only 
10000 by default, which is not enough in some cases).  

It may take a while before you find a reasonable fit, depending on your experience. For 
instance, it took me about 10 minutes to get a fit with one Drude and one Lorentz oscillator, 
shown in Figure 3-22. The match is not great, but it looks like an acceptable initial 
approximation. If you are not so happy with what you obtained, just copy my parameter values 
(you can load the model stored in the file “MODEL1.RFM”). 
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Figure 3-22  The general RefFIT view after the data fitting ‘by hand’. 

OK, it is time for computer to work a little bit and refine the model parameters. We only 
have to set up the fitting task to tell him what exactly we want to fit.  

Open the “Fit” window (Figure 3-12). We have to specify the chi-square terms 2
νχ  and 

their weights νw  from Equation 2-12. Click the  button. In the window “Add Chi-square 
term(s)” (Figure 3-23) select all available terms: “[S1] “S1DC.DAT” – “Model1””, “[E2] 
“E2.DAT” – “Model1””, “[E1] “E1.DAT” – “Model1”” and “[R] “R.DAT” – “Model1”” and 
click .  
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Figure 3-23  Adding the four available chi-square terms. 

The weights of all chi-square terms νw  are equal to one by default. However, here we 
have a case, when this is not the optimal choice. The reason is (see sections 2.1.2 and 2.1.3) 
that we did not set the proper data error bars. RefFIT always sets to them 0.01 unless other 
values are explicitly specified. I would suggest you to set νw  equal to 1000 for the term “R”, 1 
for the terms “E1” and “E2” and 1.0E-6 for the term “S1” (I found these values after several 
tries and errors). The window “Fit” should look like at Figure 3-24. 

 
Figure 3-24  The “Fit” window. Four chi-square terms are selected. 

Now you can click  (which is my ‘favorite’ button, by the way). It takes seconds (or 
even fractions of a second) to reach a better fit that you can see at Figure 3-25. Not bad for a 
model with only two oscillators! By the way, do not forget to save the model. 
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Figure 3-25 The general RefFIT view after the automated data fitting with a two-oscillator (Drude+Lorentz) 
model. 

You may want to improve the fit by putting more oscillators. Having done it, you can 
compare your result with the one shown at Figure 3-26. Here 7 oscillators in the model make 
the match almost perfect everywhere, except for the reflectivity at about 5000 cm-1. I guess the 
problem lies in some experimental mismatch between the measured low-frequency reflectivity 
and the reflectivity, that corresponds to the dielectric function at high frequencies. The model, 
shown in Figure 3-26, can be loaded from the file “MODEL2.RFM”. 
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Figure 3-26 The general RefFIT view after the data fitting with a model, which contains 7 oscillators. 

3.3. Using macros 

3.3.1. Writing a simple macro 

All actions that we went through in section 3.2 can be programmed in a macro (see 
section 4.11). An obvious advantage of a macro is that it can be edited and run many times. A 
stored macro also helps to recollect what exactly analysis has been performed the last time. 

An example of such a macro is given by the file “DEMO.RFS” in the directory 
“TUTORIAL\PART3” (I advise to put the extension “.RFS” to all macro filenames). Below I 
put the listing of this file. Each command corresponds to some user action. They are separated 
by semicolons “;”. Note, that all lines starting from “#” are ignored by the macro interpreter. 
You can check the syntax of particular commands in the Reference (section 4.11). 
################################################################## 
# 
#   This macro instructs RefFIT to perform the actions described 
#   in the RefFIT Manual (Tutorial section 3.2) 
#   All input data are taken from the directory "..\PART2" 
# 
#   Written by A.Kuzmenko (2004) 
# 
################################################################## 
 
#------------------------------------------------------------------------------------ 
# sets the dimensions and the title of the main (application) window  
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MainWindow(XPos = 0, YPos = 0, Width = 1024, Height = 740, Title = "macro example"); 
 
#------------------------------------------------------------------------------------ 
# loads four datasets 
 
# here the frequency set is generated by RefFIT (XMethod = 3) 
LoadDataset(DatasetNo = 1, Quantity = "R", MasterFile = "..\PART2\R.DAT", XMethod = 
3,  
 Xmin = 25.0, Xmax = 5000.0, XPts = 1000, XGrid = 2); 
 
# here the frequency sets are taken from the master file (XMethod = 1) 
LoadDataset(DatasetNo = 2, Quantity = "E1", MasterFile = "..\PART2\E1.DAT", XMethod = 
1); 
LoadDataset(DatasetNo = 3, Quantity = "E2", MasterFile = "..\PART2\E2.DAT", XMethod = 
1); 
LoadDataset(DatasetNo = 4, Quantity = "S1", MasterFile = "..\PART2\S1DC.DAT", XMethod 
= 1); 
 
#------------------------------------------------------------------------------------ 
 
# creates a model (which is AUTOMATICALLY ascribed ModelNo = 1) 
NewModel(XPos = 0, YPos = 50, Width = 300, Height = 400); 
 
# loads a saved model file into the model window 
LoadModel(ModelNo = 1, File = "..\PART2\MODEL2.RFM"); 
 
#------------------------------------------------------------------------------------ 
 
# makes and sets up three graph windows 
 
# creates a graph (which is AUTOMATICALLY ascribed GraphNo = 1) 
NewGraph(XPos = 300, YPos = 50, Width = 420, Height = 350); 
 
# sets the graph properties 
GraphProperties(GraphNo = 1, Xmin = 10, Xmax = 5500.0, Xlog = 0,  
 Ymin = 0.65, Ymax = 1.0, Ylog = 0, YTitle = "Reflectivity"); 
 
# plots the dataset #1 
AddDataCurve(GraphNo = 1, DatasetNo = 1, nColor = 0, ShowLine = 1, ShowSymbol = 1,  
 ShowError = 0, nSymbolSize = 1, nSymbolShape = 0, SymbolOpen = 1, Scale = 1.0, 
Shift = 0.0); 
 
# plots a reflectivity curve, generated by the model #1 
AddModelCurve(GraphNo = 1, ModelNo = 1, Quantity = "R", nColor = 0,  Scale = 1.0, 
Shift = 0.0); 
 
 
# creates a graph (which is ascribed GraphNo = 2) 
NewGraph(XPos = 300, YPos = 400, Width = 420, Height = 330); 
 
# and so forth... 
GraphProperties(GraphNo = 2, Xmin = 5000.0, Xmax = 36000.0, Xlog = 0,  
 Ymin = -30.0, Ymax = 30.0, Ylog = 0, YTitle = "Eps1, Eps2"); 
 
AddDataCurve(GraphNo = 2, DatasetNo = 2, nColor = 0, ShowLine = 1, ShowSymbol = 1,  
 ShowError = 0, nSymbolSize = 1, nSymbolShape = 0, SymbolOpen = 1, Scale = 1.0, 
Shift = 0.0); 
 
AddDataCurve(GraphNo = 2, DatasetNo = 3, nColor = 0, ShowLine = 1, ShowSymbol = 1,  
 ShowError = 0, nSymbolSize = 1, nSymbolShape = 0, SymbolOpen = 1, Scale = 1.0, 
Shift = 0.0); 
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AddModelCurve(GraphNo = 2, ModelNo = 1, Quantity = "E1", nColor = 0,  Scale = 1.0, 
Shift = 0.0); 
AddModelCurve(GraphNo = 2, ModelNo = 1, Quantity = "E2", nColor = 0,  Scale = 1.0, 
Shift = 0.0); 
 
NewGraph(XPos = 650, YPos = 200, Width = 352, Height = 330); 
GraphProperties(GraphNo = 3, Xmin = 0, Xmax = 1000.0, Xlog = 0,  
 Ymin = 0.0, Ymax = 60000, Ylog = 0, YTitle = "Sigma1 (S/cm)"); 
AddDataCurve(GraphNo = 3, DatasetNo = 4, nColor = 0, ShowLine = 0, ShowSymbol = 1,  
 ShowError = 0, nSymbolSize = 4, nSymbolShape = 0, SymbolOpen = 0, Scale = 1.0, 
Shift = 0.0); 
AddModelCurve(GraphNo = 3, ModelNo = 1, Quantity = "S1", nColor = 0,  Scale = 1.0, 
Shift = 0.0); 
 
#------------------------------------------------------------------------------------ 
 
# opens the "Fit" window  
WindowFit(Xpos = 0, YPos = 450); 
 
# adds four chi-square terms to the fitting task, which means that all datasets are 
#requested to be fitted, but does not perform fitting yet 
AddChiSqTerm(DatasetNo = 1, ModelNo = 1, Weight = 1e3); 
AddChiSqTerm(DatasetNo = 2, ModelNo = 1, Weight = 1.0); 
AddChiSqTerm(DatasetNo = 3, ModelNo = 1, Weight = 1.0); 
AddChiSqTerm(DatasetNo = 4, ModelNo = 1, Weight = 1e-6); 
 
#------------------------------------------------------------------------------------ 
 
# starts the fitting, which is limited by 10 iterations 
Fit(NumIters = 10); 
 
#------------------------------------------------------------------------------------ 

Listing 1  The commands of the macro “DEMO.RFS” simply imitate the user actions. 

How to run this macro? Technically speaking, you should provide the macro filename as 
a command-line parameter when you start RefFIT. As is written in section 4.11.1, there are 
several ways to do that. I would advise to associate the extension “.RFS” with the executable 
file “REFFIT.EXE”, which you can do, for instance, in the Windows Explorer program. After 
you have successfully done it, all macro files (including this file “DEMO.RFS”) should appear 
with an icon . Now double-click on the file “DEMO.RFS” and the macro will be executed. 

You may want to play a bit with some commands in order to better arrange the windows 
on the screen, or to change the graph parameters (scales, curve appearances etc.). Attention: if 
RefFIT will find an error in the macro, it will refuse to execute it. If this happens, you can 
‘locate’ the error by ‘commenting out’ the recently modified commands one-by-one (using the 
symbol “#”).  

3.3.2. Using cycles in a macro: the temperature dependence of phonon 
spectra 

Now we consider an example of a more advanced macro, which routinely fits reflectivity 
spectra, measured at several temperatures, with a Drude-Lorentz model.  

Here we take the reflectivity spectra of the cupric oxide CuO in the far-infrared (phonon) 
range for the electric field paraller to the b-axis (Ref. [10]). This example is very interesting, 
because the temperature dependence of the lineshape of one phonon mode demonstrates a 
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remarkable ‘anomaly’, related to the antiferromagnetic ordering at about 210-230 Kelvin. The 
spectra were measured at temperatures 4, 100, 150, 180, 200, 210, 220, 230, 240, 250 and 300 
Kelvin. They are stored as separate data files “RB003.DAT”, “RB100.DAT”, etc. in the 
directory “TUTORIAL\PART4”. What we would like to do, is to fit all spectra one-by-one 
with a similar model (i.e. with the same set of oscillators) allowing only parameter values to be 
varied. After that we shall plot the temperature dependence of the phonon parameters 

Before the writing of a macro we have to manually find a proper model for the dielectric 
function. Let us first have a look at three files “RB004.DAT”, “RB150.DAT” and 
“RB300.DAT”. You can load these files using the Dataset Manager and plot them on the same 
graph (see figure Figure 3-27).  

 
Figure 3-27  Three reflectivity spectra of CuO at 4, 150 and 300 K are plotted on the same graph. 

One can see that, although the spectra look rather different, they have at least three 
common phonon modes (two modes at around 160, 330 and a very intense and a strongly 
temperature-dependent one at about 400 cm-1). Few extra minor modes are present at low 
temperatures that we can ignore in our analysis. 

I would ask you to fit the reflectivity spectrum at 4 K with a Drude-Lorentz model. You 
will need to put three Lorentz oscillators with all parameters free. Follow section 3.1 if you 
need more details on how to do that. Having obtained the fit, you can save your model (let say, 
as a file “MYMODEL.DAT”) and compare it with my version stored in the file 
“MODEL.DAT” (see Figure 3-28). 
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Figure 3-28  The fitting of the reflectivity spectrum at 4 K with a three-oscillator model. 

Now we can proceed with a programming. A macro should first fit the spectrum at the 
lowest temperature (4 K); then it should fit the next spectrum (100 K), using the 4K parameter 
values as an initial approximation; then fit the 150 K spectrum, and so forth. On each step it 
must save the model parameters and export some model curves (for instance, the reflectivity or 
the optical conductivity) that can be plotted afterwards using any scientific graphics package 
(e.g., Origin). 

To run a cycle we will need the text file “LOOP.DAT”, each line of which corresponds to 
one particular temperature (see Listing 2). More exactly, each line contains a particular version 
of the changeable (temperature-dependent) part of the data file name. I have already made this 
file for you, but you can also create it with any standard text editor. 
004 
100 
150 
180 
200 
210 
220 
230 
240 
250 
300 

Listing 2  File “LOOP.DAT” specifies the macro cycle. 

The macro itself, which is called “FITALL.RFS” is shown in the Listing 3.  
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################################################################## 
# 
#   This macro fits the reflectivity spectra  
#   "RB004.DAT", "RB100.DAT", ... , "RB300.DAT", 
#   which are measured for different temperatures, in a cycle.  
#   All input data are taken from the same directory 
# 
#   Written by A.Kuzmenko (2004) 
# 
################################################################## 
 
#------------------------------------------------------------------------------------ 
# opens the main window 
 
MainWindow(XPos = 0, YPos = 0, Width = 1024, Height = 740); 
 
#------------------------------------------------------------------------------------ 
# creates a new model 
 
NewModel(XPos = 0, YPos = 50, Width = 300, Height = 240); 
 
#------------------------------------------------------------------------------------ 
# creates and sets up a couple of new graphs (for reflectivity and conductivity 
 
NewGraph(XPos = 300, YPos = 50, Width = 720, Height = 350); 
GraphProperties(GraphNo = 1, Xmin = 75.0, Xmax = 4000.0, Xlog = 1, Ymin = 0.0,  
 Ymax = 1.0, Ylog = 0, YTitle = "Reflectivity"); 
AddModelCurve(GraphNo = 1, ModelNo = 1, Quantity = "R"); 
 
NewGraph(XPos = 300, YPos = 400, Width = 720, Height = 330); 
GraphProperties(GraphNo = 2, Xmin = 75.0, Xmax = 4000.0, Xlog = 1, Ymin = 0.0,  
 Ymax = 100.0, Ylog = 0, YTitle = "Conductivity"); 
AddModelCurve(GraphNo = 2, ModelNo = 1, Quantity = "S1"); 
 
#------------------------------------------------------------------------------------ 
# opens the "Fit" window  
 
WindowFit(Xpos = 0, YPos = 450); 
 
#------------------------------------------------------------------------------------ 
# loads a 'seed' model  
 
LoadModel(ModelNo = 1, File = "MODEL.RFM"); 
 
#------------------------------------------------------------------------------------ 
# enters the cycle loop 
 
BeginLoop(LoopFile = "LOOP.DAT"); 
 
 #---------------------------------------------------------------------------- 
 # changes the title of the application 
 
 MainWindow(Title = "Fitting spectrum at T = %1 K"); 
 
 #---------------------------------------------------------------------------- 
 # loads a new experimental reflectivity curve 
 
 LoadDataset(DatasetNo = 1, Quantity = "R", MasterFile = "RB%1.DAT",  
  XMethod = 3, Xmin = 75.0, Xmax = 2000.0, XPts = 1000, XGrid = 2); 
 
 #---------------------------------------------------------------------------- 
 # plots the experimental reflectivity curve 
 



 Guide to RefFIT                                                                                                                                         Page  48 

 AddDataCurve(GraphNo = 1, DatasetNo = 1, ShowLine = 1, ShowSymbol = 1,  
  ShowError = 0, nSymbolSize = 1, nSymbolShape = 0, SymbolOpen = 1); 
 
 #---------------------------------------------------------------------------- 
 # adds the corresponding chi-square term 
 
 AddChiSqTerm(DatasetNo = 1, ModelNo = 1, Weight = 1.0); 
 
 #---------------------------------------------------------------------------- 
 # wait until all the graphs are redrawn 
 
 Wait(); 
 
 #---------------------------------------------------------------------------- 
 # performs the fitting (maximum 10 iterations) 
 
 Fit(NumIters = 10); 
 
 #---------------------------------------------------------------------------- 
 # suspends the execution, allows the user to verify, that the fit is OK 
 
 Suspend(); 
 
 #---------------------------------------------------------------------------- 
 # saves the new model parameters under a unique name 
 
 SaveModel(ModelNo = 1, File = "MOD_%1.RFM"); 
 
 #---------------------------------------------------------------------------- 
 # export the model reflecitivity and conductivity curves 
 
 ExportModelCurve(File = "RF_%1.DAT", ModelNo = 1, Quantity = "R",  
  Xmin = 1E-4, Xmax = 1E6, XPts = 1000, XGrid = 2); 
 
 ExportModelCurve(File = "S1_%1.DAT", ModelNo = 1, Quantity = "S1",  
  Xmin = 0.995e-4, Xmax = 1.005e-4, XPts =3, XGrid = 1); 
 
 #---------------------------------------------------------------------------- 
 # deletes the experimental reflectivity curve 
 
 DeleteDataCurve(GraphNo = 1, DatasetNo = 1); 
 
 #---------------------------------------------------------------------------- 
 #deletes the chi-square term 
 
 DeleteChiSqTerm(DatasetNo = 1, ModelNo = 1); 
 
 #---------------------------------------------------------------------------- 
 #unloads the dataset 
 
 UnloadDataset(DatasetNo = 1); 
 
#------------------------------------------------------------------------------------ 
#  the end of the cycle loop 
EndLoop(); 
 
#------------------------------------------------------------------------------------ 
#  deletes the model curve 
 
DeleteModelCurve(GraphNo = 1, ModelNo = 1, Quantity = "R"); 
DeleteModelCurve(GraphNo = 2, ModelNo = 1, Quantity = "S1"); 
 
#------------------------------------------------------------------------------------ 
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#  restores the original application title 
 
MainWindow(Title = ""); 
 
#------------------------------------------------------------------------------------ 
#  exits the application 
 
Exit(QuitApp = 1); 
#------------------------------------------------------------------------------------  

Listing 3  Macro “FITALL.RFS” fits the reflectivity spectra at different temperatures one-by-one in a cycle. 

The cycle body is marked by the two commands: BeginLoop and EndLoop. In the 
first command the name of the ‘loop file’ has to be specified (“LOOP.DAT”). The cycle will be 
repeated as many times as the number of lines in the loop file. On each stage the symbol “%1” 
in the file name parameter of all input-output commands (LoadDataset, SaveModel, 
ExportModelCurve) is substituted with the string in the corresponding line of the loop file 
(for instance, “RB%1.DAT” will be substituted by “RB004.DAT” on the first stage, by 
“RB100.DAT” on the second stage and so on. 

It is essential, that within the cycle body the commands LoadDataset, 
CreateDataCurve and AddChiSquareTerm are followed by the corresponding ‘anti-
commands’ UnloadDataset, DeleteDataCurve and DeleteChiSquareTerm 
correspondingly. Otherwise the execution of a macro may cause the program crash (sorry, that 
RefFIT is not ‘fool-proof’ yet!). 

Now you can run the macro, as described in section 3.3.  

In the beginning it will fit the spectrum at 4 K and show a dialog window asking whether 
you want to continue the macro execution (see Figure 4-32). This dialog is invoked by the 
command Suspend that we put after the command Fit. If you are not happy with the fitting 
quality, you can stop the macro and ‘correct’ the model manually. It is also possible to correct 
the model without the terminating the macro and to continue the execution later on. If you find 
the fitting match acceptable, then continue the program without doing anything. 

In this version the macro will ask you to verify the fitting quality for every temperature. If 
you think it is unnecessary, then just remove or ‘comment out’ the command Suspend, and 
run the macro again. It is much faster now, isn’t it?!!! 

You may have noticed already that the macro execution creates a number of new files. 
These are: (i) the models saved in the files “MOD_XXX.RFM” (RefFIT format) and 
“MOD_XXX.ASC” (text format), (ii) the model reflectivity curves (files “RF_XXX.DAT”), 
(iii) the model optical conductivity curves (files “S1_XXX.DAT”), (iv) the file “PAR.DAT”, 
where RefFIT ‘flushes’ the model parameters to every time it saves a model (see section 4.5.1). 

You can use the file “PAR.DAT” to plot the temperature dependence of the parameters of 
the phonon modes. Let us make a graph of )(Toω  and )(Tγ  of the model third oscillator, 
which seems to change strongly when we sweep across the critical temperature. One way to do 
it is to import the file “PAR.DAT” to the Origin worksheet (see Figure 3-29). Then we should 
somehow convert the first column (which is a filename text) to the temperature (which is a 
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number). Here you can do it just ‘by hand’, but when you have more temperatures, it makes 
sense to do the conversion differently14. 

 
Figure 3-29  File “PAR.DAT”, which contains the temperature dependence of the phonon parameter, can be 
imported into Origin. 

The desired parameters are stored in the 10-th and 12-th columns respectively (the 
meaning of columns is described in section 4.5.1). You can plot the graphs, as is shown in 
Figure 3-30. One can see that the phonon mode softens and narrows dramatically below the 
transition temperature (210-230 K). This is perhaps the strongest phonon anomaly I ever seen! 
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Figure 3-30  The temperature dependence of a phonon mode, stored in the file “PAR.DAT” after the macro 
execution. 

                                                 
14 I know one ‘trick’: to import the file “LOOP.DAT” to the first column of this worksheet. 



 Guide to RefFIT                                                                                                                                         Page  51 

3.4. Using variational dielectric functions  

3.4.1. Kramers-Kronig analysis of reflectivity 

The Drude-Lorentz fitting of reflectivity spectrum with a limited number of oscillators 
(see section 3.1) gives artificially smooth resulting spectra of )(1 ωε  and )(2 ωε  (see, for 
example, Figure 3-19). Some small, but potentially important spectral details are always lost in 
this approach. On another hand, the well-known Kramers-Kronig analysis of reflectivity [6], 
which is, in principle, model-independent, preserves all spectral information, contained in the 
original reflectivity curve. 

With RefFIT, the KK analysis of spectra can also be done. However, the approach, used 
in this program, is rather different from the conventional one [6]. Instead of applying the KK 
transformation to the reflectivity directly, it can fit the reflectivity with a KK-constrained 
variational dielectric function, abbreviated ‘VDF’ (see section 2.2.4). In Ref. [4] it was shown, 
that both approaches give almost identical results, when applied to a normal-incidence 
reflectivity.  

We are going to apply the KK analysis to the same reflectivity spectrum as we fitted in 
section 3.1. We shall also get use of the best Drude-Lorentz reflectivity fit, obtained in that part 
of the Tutorial. 

… 

>>> To be finished <<< 
… 
 

All the operations, that we just performed manually, I also put to the macro “KK.rfs”, 
located in the directory “TUTORIAL\PART5”. A special command VarDielFunc (see 
section 4.11.5) was used to manipulate VDFs. 

3.4.2. Inversion of ellipsometric data 

In this example we are going to use VDFs without the Kramers-Kronig constraint. 
… 
>>> To be finished <<< 
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4. Reference 

4.1. System requirements 
RefFIT can be run under all Microsoft Windows versions starting from Windows 95. 

Although it is difficult to formulate specific computer requirements, one can advise to have at 
least 128 Mb of memory and processor faster than 1 GHz. The point is that some complicated 
fitting tasks claim a lot of memory and are computationally rather challenging, especially if the 
variational dielectric functions are involved (see sections 2.2.4, 2.2.5, 4.6.3). Also, a high 
processor speed is necessary to update the screen in real time when a user is manually ‘playing 
with’ model parameters. 

4.2. Installation and starting RefFIT 
Although there is no setup program, the installation of RefFIT is very easy. One should 

manually create a directory, e.g. “D:\REFFIT”, and copy to it all the files from the distribution 
package (including “REFFIT.EXE”), keeping the directory structure. No extra files, such as 
dynamical libraries, have to be installed on the system. 

To start RefFIT, one should just run file “REFFIT.EXE”. It can be done, for instance, by 
double-clicking on the program icon in the Explorer program. To facilitate the program call one 
can create a shortcut to “REFFIT.EXE” on the Windows taskbar. When using a macro, 
“REFFIT.EXE” should be called with a macro name as a command line parameter. More 
details about macros can be found in section 4.11. 

Right after starting, the application window looks rather ascetic (Figure 4-1). All actions 
are done using the menus or the toolbar. The menu “File” is intended to Save and Load the 
RefFIT projects15. Via the “Window” menu all RefFIT windows (models, graphs etc.) are 
created. Finally, from the “Help” menu one can access the “RefFIT manual” (this file 
basically)16 and get the “About” information. 

As usual, one can choose “Exit” in the “File” menu or click the  button in order to 
terminate the application. 

                                                 
15 This option is not realized yet! However, one can ‘save’ the project by writing it in the form of a macro. 
16 It is supposed that your system can read the pdf-files (Adobe Reader or Adobe Acrobat must be already 
installed). 
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Figure 4-1  This is how RefFIT looks like when it starts. No internal objects are created yet. 

4.3. Parameters 
A parameter in RefFIT is a number, which is used as an input for model formulas to 

calculate optical quantities, and can be varied (manually or automatically) in order to improve 
the match of the model and experimental spectra. The examples of parameters are Lorentzian 
transverse frequency, and experimental angle of incidence. Parameter values are displayed and 
can be manually edited either in the “Experimental parameters” window (Figure 4-3) or 
“Model” windows (Figure 4-4).  

The value is not the only characteristic of a parameter. Another essential property is the 
switch, which determines whether or not a parameter is allowed to be varied in the automated 
fitting (adjustable) or not. There are also maximal and minimal values (limits) that parameters 
may have. In order to be active, the limits have to be checked.   

To access these extra characteristics a separate window is provided, which is called 
“Parameter control” (Figure 4-2). It contains the full information about the parameter, which is 
currently selected. To see the characteristics of another parameter, one should select it by a 
mouse click or by moving the marker to it with the arrow keys. This window also contains a 
trackbar, which allows you to change the parameter value in a comfortable way by dragging it 
up and down. Note that all the other windows in RefFIT will be updated in real time.  
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Figure 4-2  The “Parameter control” windows contains the full information about the selected parameter. 

The activity switch can be also toggled in the “Model” window by clicking right mouse 
button on the parameter, or pressing SPACE when the parameter is selected. 

There is a possibility to ‘couple’ two or more parameters together. The coupled 
parameters are treated as a single one. In particular they always have the same values and other 
characteristics. The parameters may belong to different models. In order to couple parameters 
together, one has to associate each of them with the same ‘coupling variable’ using the 
“Parameter Control” window. There can be several coupling variables, allowing several sets of 
coupled parameters. One has to do it, for example, if two ellipsometry experiments are done on 
the same sample. In this case each experiment should be described by a separate model, but the 
sample thickness has to be the same. In the model window, the coupled parameters are 
displayed with a bold font. 

4.4. Experimental Parameters 
There is a set of parameters, which are not directly related to the model dielectric 

functions, but rather to the experimental conditions. For instance, the reflectivity coefficient 
depends on the angle of incidence, even though the dielectric function does not. This kind of 
parameters is collected in a separate window called “Experimental parameters” (Figure 4-3). It 
can be displayed by choosing the corresponding item in the “Window” menu. 

  
Figure 4-3  The “Experimental parameters” window lists all parameters, related to the experimental conditions. 

One should note that experimental parameters apply to the output quantities of the models 
of the Dielectric Function type only (see section 4.6). In the case of other model types all the 
parameters, necessary to calculate model outputs, are contained in the model window.  

The description of all the experimental parameters is given in Table 4-1. 
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Parameter name Units Description 
Sample thickness cm Thickness of the sample, used to calculate the coefficient of 

transmission with the interference (“T”)  and without the 
interference “TT”. 

Thickness spread - The relative spread of the sample thickness. Used to model 
the effect of non-parallel (wedged) sample. Applies to the 
quantities “T” and “TT”. 

Angle of incidence degrees The angle of incidence. The normal incidence corresponds to 
0 o, the totally grazing incidence – 90o. Applies only to “Rp”, 
“Rs” and “Rps”. 

Angle spread degrees The absolute spread of angles of incidence. Used to model 
the effect of non-parallel beam. Applies to “Rp”, “Rs” and 
“Rps”. 

Scaling factor of R - Used to scale the calculated value of reflectivity by a 
constant value. Has no particular physical meaning, but may 
help to simulate the systematic error bars. Applies only to 
‘R’, ‘Rp’ and ‘Rs’. 

Scaling factor of T - The same as, scaling factor of R, but applied to the 
transmission coefficient (“T” and “TT”). 

Table 4-1  The description of the experimental parameters. 

4.5. Models 
Models are the central objects in the RefFIT program. One can define a model as a set of 

parameters, which are used to calculate a set of optical quantities, for example reflectivity, 
conductivity, loss function etc., according to certain sets of formulas. Each model is 
represented by a separate window, which looks like Figure 4-4.  

 
Figure 4-4  An example of the “Dielectric function” model window. 
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In order to create a new model one should choose the “Model” command in the 

“Window” menu, or click on the  button from the toolbar. One can open as many as 100 
models at the same time. They will automatically receive names “Model1”, “Model2” etc.  

To close the existing model window you can either click either  or  button. 
When the Model window is closed then the model itself is destroyed as an object. 

The model windows can be resized. 

4.5.1. Saving and loading models 

A Model can be stored in a separate file. To do that, one should activate the 
corresponding window and press , or alternatively, the F2 button. In the “Save Model as” 
window that appears one can specify the file path (directory) and the file name. The convention 
is that the model files have the extension “RFM”, e.g. “MYMODEL.RFM”.  

The model file stores information about the parameters in the internal RefFIT format, 
which cannot be viewed or accessed by other programs. However, every time a model is saved, 
an extra file is created automatically, which lists all parameter values and error bars in the text 
format, that can be opened, e.g, by the Notepad program. This file has the same name as the 
model file, but the extension “ASC”. For instance, after saving a model under file name 
“MOD12.RFM”, a text file “MOD12.ASC” is created. Note, that error bars are not calculated, 
unless the corresponding fitting option is specified (section 4.10.2). 

There is another ‘side’ action, which accompanies model saving. Namely, a new line is 
added to a file called “PAR.DAT”, which lies in the current directory. This line has the 
following format “ModelFileName Chi-Square Einf Wo[1] Wp[1] G[1] Wo[2] Wp[2] G[2] 
Wo[3] Wp[3] G[3] …”, where  ModelFileName is the filename of the model saved, Chi-Square 
is the current value of the fitting chi-square, Einf is the value of ∞ε , Wo[1], Wp[1] and G[1] 
are the values parameter 0ω , pω  and γ  from the first row in the Lorentzian table, Wo[2], 
Wp[2] and G[2] are the parameters from the second row and so on. File “PAR.DAT” is very 
useful, when, for example, the spectra for different temperatures are fitted in a cycle and for 
each temperature the model is saved under a different name. Then one can easily plot the 
temperature dependence of model parameters, such as plasma frequency or conductivity gap, 
using any standard scientific graphics package (see an example in section 3.3.2). 

A saved model can be loaded into an existing model window. One should create a new 
model window or activate the existing one and press  or, alternatively, the F3 button. 
After that the model file to be loaded has to be selected. It is a good idea to save models after 
each modification (e.g., fitting run) to avoid the potential loss of data. 

4.5.2. Editing models 

The rows in the ‘Lorenzian’ section can be added and deleted by the buttons  and 
, or, alternatively, by the Insert and Delete keys. A row can be moved up and down by 

clicking  and . They can also be sorted in different ways by mouse clicking on the 
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column headers. For instance, in order to sort the Lorenzians by increasing transversal 
frequencies one should click on the first column header “Wo”. 

4.5.3. Model types 

The meanings of parameters and output optical spectra depend on the model type. At the 
moment there exist several types of models. The most common one is the “Dielectric Function” 
type (see section 4.6). Each newly created model is assumed to be of this type. In this case the 
meaning of the parameters exactly corresponds to the text labels in the Model window.  

Originally, the “Dielectric Function” was the only type of models in RefFIT, but recently 
other types were introduced (see section 4.7). Due to technical reasons, it was easier to keep the 
same appearance of the Model window for other model types and use special ‘tricks’ in order to 
explain RefFIT that the model type is not “Dielectric Function”, but something else. According 
to the convention, the way to change the model type is to put a negative integer number (code) 
into the parameter “Einf” and make this parameter fixed (look red on the screen). The code -1 
corresponds to the extra (special) model type 1, code -2 corresponds to the extra model type 2, 
etc. In this case “Einf” is not treated as a parameter but just as model type identifier and the text 
labels in the Model window do not have original meanings anymore. Particular meaning of 
parameters in the “Lorenzian” section depends on the model type17.  

Each model has a set of output quantities, which depends on the model type. Different 
quantities are designated by abbreviations. For instance, reflectivity is referred to as “R”, the 
real part of conductivity – “S1”, penetration depth – “PD” etc. These abbreviations are 
meaningful only for the Dielectric Function model. For other types the meaning of the output 
quantities is different, although the same abbreviations are used.  

The next sections describe different model types. 

4.6. “Dielectric function” model 
In the “Dielectric Function” model the complex dielectric function 21 εεε i+=  is 

calculated as a sum (linear superposition) of different terms, e.g., Drude, Lorentz, or others, 
using the parameters residing in the “Model” window. The dielectric function has only one 
component, thus this model is applicable either to the isotropic sample or to the special 
experiment geometry, when only one component of the dielectric tensor is involved18. 

All the output optical quantities are derived from the dielectric function. In some cases 
extra parameters are used from the “Experimental parameters” set. For example, the 
transmission of a thin sample depends on sample thickness. 

Table 4-2 lists all output quantities of the “Dielectric Function” model. The formulas in 
this table refer to the complex refraction index ε=+= 21 innN , complex reflectivity 

N
Nirrr

+
−

=+=
1
1

21  and complex optical conductivity 
i

i
π
ωεσσσ
421 =+= .  

                                                 
17 In the future RefFIT versions, a more elegant way to distinguish model types will surely be found. 
18 Some special models can combine several isotropic dielectric functions to form a tensor. 
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Quantity 
abbre-
viation 

Description Calculation formula(s) Units Experimental 
parameters 
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- angle of 
incidence 
(θ ), angle 
spread ( θs ) 

“E1” The real part of 
the dielectric 
function 

1ε  - - 

“E2” The imaginary 
part of the 
dielectric 
function 

2ε  - - 

“S1” The real part of 
the optical 
conductivity in 
practical units 

151
πσ ×  

Ω-1cm-1 - 
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“S2” The imaginary 
part of the 
optical 
conductivity in 
practical units 

152
πσ ×  

Ω-1cm-1 - 

“N1” The real part of 
the refraction 
index 

1n  - - 

“N2” The imaginary 
part of the 
refraction index 
(extinction 
coefficient) 

2n  - - 

“PD” Penetration 
depth ωπ 2

0 2
1
n

l =  
cm - 

“LF” Loss function 
2
2

2
1

21Im
εε

ε
ε +

=⎟
⎠
⎞

⎜
⎝
⎛−  

- - 

“AC” Absorption 
coefficient 

0

2
l

=α  
cm-1 - 

Table 4-2  The output quantities of the “Dielectric Function” model. 

4.6.1. Drude-Lorentz dielectric function 

The physical meaning of the Drude-Lorentz (DL) dielectric function and its parameters is 
described in section 2.2.3.  

The dimensionless ∞ε  is stored in the “Einf” field. Each row in the “Lorentzians” table 
corresponds to one oscillator. The transverse frequency 0ω  is taken from the column “Wo” 
(measured in cm-1), plasma frequency pω  – from column “Wp” (measured in cm-1), and 
linewidth γ  (measured in cm-1) – from column “G”. The light frequency ω  is measured in cm-

1 as well. 

The Drude term is a particular case of the Lorentz term, with 00 =ω . In this case 0ω  
must be fixed (not active in fit). 

4.6.2. Special dielectric functions 

In addition to the standard Drude-Lorentz model RefFIT has a number of extra built-in 
formulas for the dielectric function. In this section we will describe all of them.  

The parameters of the extra (special) dielectric functions can be stored in the 
“Lorentzians” table of the model window, using a ‘trick’, similar to the one intended to 
distinguish the Dielectric Function model from other (special) models (section 4.5). 

By default, RefFIT assumes that each row in the “Lorentzians” table corresponds to a 
Lorentz oscillator. However, if the “Wo” column contains a negative integer value, e.g., -10 (it 
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should be also fixed!), RefFIT considers the parameters in the “Wp” and “G” columns as the 
ones of a special dielectric function. The particular type of a dielectric function is determined 
by the number in the “Wo” column. Some special functions depend on more than two 
parameters, so that two or more rows are necessary to store them. 

The list of the built-in special dielectric function formulas is given in Table 4-3. The 
selection might look strange at a first glance. The point is that it is not meant to be a 
comprehensive collection of functions for fitting. It is rather a set of some special formulas that 
RefFIT users, including myself, have ever employed in their data analysis. As was mentioned 
in the Introduction, the list is being continuously extended and everyone can ask me to include 
an extra function that he (or she) would like to have. The light frequency ω  is assumed to be in 
cm-1. Note, that all the formulas give a dielectric function that satisfies Kramers-Kronig 
relations (see section 2.2.1), unless the opposite is explicitly mentioned. 

Dielectric function Wo 
(code) Wp G 

-1 pω   
[cm-1] 

1γ  

[cm-1] 
Formula for the dielectric function of a non-Fermi liquid 
(Ref.[11], formula (15)) 

αα γωγωω
ω

ε 21
2

2
1

2

)()( −++
−=

ii
p  -2 α  

2γ  
[cm-1] 

-3 0σ  

[Ω-1cm-1] 
- Formula for the c-axis dielectric function of cuprates with the 

body-centered tetragonal structure liquids (Ref.[11], formula 
(14)) 

[ ]2/323242
0 )1(16)881)(21(2)/60( Ω+Ω+Ω−Ω−Ω+= σωε i , 

where 21 /)( γωγ i−=Ω  

-4 
1γ   

[cm-1] 
2γ  

[cm-1] 

-5 0σ   
[Ω-1

 cm-1] 
- Formula for the ab-plane dielectric function of cuprates 

(Ref.[11], formula (3)) 

ωγγωγ
γ

σωε
ii

i
−+−

=
211

1
0)/60( , 

 

-6 
1γ  

[cm-1] 
2γ  

[cm-1] 

-7 pω  

[cm-1] 

γ  
[cm-1] 

The dielectric function of a weak-coupling s-wave BCS 
superconductor with arbitrary scattering rate (Ref. [12]). 
Parameter t is the reduced temperature cTTt /= . The formulas 
of Ref.[12] are taken as they are, with γτ /1= , except for the 
temperature dependence of the gap, which in this case is 

tt
2

cos)( 0
π

Δ=Δ .  

Note: the computational code is taken from Ref..[12]. 

-8 t  0Δ  
[cm-1] 

Drude (not Lorentz!) term with arbitrary sign of the spectral 
weight 

)( γωω
ε

i
A
+

−=  

Note: although a negative A would have a little physical 
meaning for the usual dielectric function, it can be used for the 

-9 A   
[cm-2] 

γ  
[cm-1] 
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differential dielectric function (see section 4.7.1). 
Constant (frequency independent) dielectric function 

21 εεε i+=  
Note: this function is simple but obviously NOT Kramers-
Kronig friendly, so be careful! 

-10 
1ε  2ε  

-20 pω  

[cm-1] 

γ  
[cm-1] 

-21 Δ  
[cm-1] 

Δδ  
[cm-1] 

“Gapped” Drude function: 

)(
)(4 1

1 ωδ
ω
ωπσ

εε Ai ++= , if fSW = 1 

ω
ωπσ

εε
)(4 1

1 i+= , if fSW = 0. 

 
Here 

)()()( 11 ωσωωσ DΓ=  is the “gapped” conductivity, 

∫
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1
)(81)(
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ωε
d  is the KK transform of 1σ , 
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1)1()( 00  , 

is the smoothed step function,  

)(4
)( 22

2

1 ωγπ
γω

ωσ
+

= p
D  is the Drude conductivity. 

 
Here A  is the spectral weight added at zero frequency to 
compensate the loss of spectral weight due to the gap (if fSW = 
1). In other words, A  is adjusted in order to keep the total 
spectral weight as if it there were no gap (e.g., 8/2

pω ).  
Note: This formula has no microscopic justification. It is just a 
handy way to introduce the conductivity gap of a controllable 
shape to the Drude dielectric while keeping the KK relations.  
 
The shape depends on the gap value Δ , the gap spread Δδ  and 
the filling factor 0ξ  (0 for the full gap, 1 for no gap). A similar 
dielectric (but without the KK transformation) was used in 
Ref.[13]. 

-22 
0ξ  fSW 

-25 A  
[cm-2] 

γ  
[cm-1] 

Lorentz term with arbitrary sign of the spectral weight 

γωωω
ε

i
A
−−

= 22
0

 

Note: although a negative value of A would have little physical 
meaning for the usual dielectric function, it can be used for the 
differential dielectric function (see section 4.7.1). 

-26 
0ω  

[cm-1] 
- 

The difference between two Lorentzians with the same spectral 
weight and linewidth, but different frequencies 

-27 
1ω  

[cm-1] 
2ω  

[cm-1] 
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= 22
2

22
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Note: this term allows one to model the shift of the oscillator 
frequency in the differential dielectric function (see section 
4.7.1). 

-28 A  
[cm-2] 

γ  
[cm-1] 

-29 A  
[cm-2] 

γ  
[cm-1] 

The same function as for codes (-25) and (-26), just in case one 
needs more terms of this type. 

-30 
0ω  

[cm-1] 
- 
 

-35 A  
[cm-2] 

γ  
[cm-1] 

The same function as for codes (-25) and (-26), just in case one 
needs more terms of this type. 

-36 
0ω  

[cm-1] 
- 
 

-37 A  
[cm-2] 

γ  
[cm-1] 

The same function as for codes (-25) and (-26), just in case one 
needs more terms of this type. 

-38 
0ω  

[cm-1] 
- 
 

-39 A  
[cm-2] 

γ  
[cm-1] 

The same function as for codes (-25) and (-26), just in case one 
needs more terms of this type. 

-40 
0ω  

[cm-1] 
- 
 

-33 pω   
[cm-1] 

1γ  

[cm-1] 
Kramers-Kronig, sum-rule consistent power-law function: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−−
+

−=
1

12

1

2

,2,1,1
)( γω

γγ
αα

γωω
ω

ε
i

F
i

p , where ),,,( zcbaF  

is the hypergeometric function. It shows the powerlaw behavior 
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-34 α  
2γ  

[cm-1] 

-41 pω  

[cm-1] 

impγ  
[cm-1] 

-42 T  [K] #B 
 

Dielectric function of electrons, which scatter on some bosons 
(for example, phonons) and impurities [16].  
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)(xψ  - digamma function, 

impγ  - impurity scattering rate, 

-43 
nodesN  - 
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T  - temperature, 
)(ΩB  - electron-boson coupling function  

(in the case of the phonons – transport Eliashberg function 
)(2 ΩFα ) 

 
The function )(ΩB  is taken from the dataset, which has a 
number #B.  

nodesN  tells the program how to do the integration. If 0=nodesN  
then all datapoints of )(ΩB  will be used. If 0>nodesN  then the 
given )(ΩB  will be substituted by a set of nodesN  evenly spaced 
delta-functions, each of those represents the integrated )(ΩB  in 
the respective frequency region. Note, that the performance of 
the calculations depends strongly on nodesN , therefore it makes 
sense to take the minimal possible nodesN , which gives results, 
close to the case of large nodesN . 

-44 pω  

[cm-1] 

impγ  
[cm-1] 

-45 T  [K] #B 
 

The same function as for codes (-41), (-42) and (-43), just in 
case one needs more terms of this type. 

-46 
nodesN  - 

-51 pω  

[cm-1] 

impγ  
[cm-1] 

-52 λ  cω  

[cm-1] 
-53 T  [K]  Flag 

Conductivity Kubo formula in the Marginal Fermi-Liquid 
theory with a high-frequency cut-off of the boson spectrum. 
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with the self-energy )()()( ωωω Σ ′′+Σ′=Σ i : 
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[ ] impc TTT γπωπθωωπωθλπω −−+−−=Σ′ )(),min()(
2

)( , 

 
where  
 

xxxg ln)( ≡ ,  )(xθ  - Heaviside step function, 

pω  - plasma frequency, impγ  - impurity scattering rate, 
T  - temperature, T/1≡β , 
λ  - coupling constant, cω  - high-frequency cutoff. 

-54 C1 C2 
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If Flag=0, then the above (Kramers-Kronig-consistent) 
expression for the self-energy is used. If Flag=1, then the 
‘original’, (not Kramers-Kronig consistent) expression is used: 
 

xix

c 2
ln)( πλ
ω

λωω −=Σ , where ),max( Tx πω= . 

 
1C  and 2C  are technical parameters which tell the program 

how to perform the integration. The integral limits are taken 
from ω−− TC1  to TC1  with a step of 2/ CT . Increasing 1C  
and 2C  will increase the accuracy but slow down the 
calculation. The recommended values are 101 =C , 22 =C . 
 

-1000 ∞ε  

 

- 

-1001 TOi.Ω  
[cm-1] 

TOi,γ  
[cm-1] 

The factorized (TO-LO) formula for the dielectric function: 
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∏
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i
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1
,

22
,

1
,

22
,

ωγω

ωγω
εε , where 

∞ε  is the high-frequency dielectric constant (note: it is different 
from the one in the Drude-Lorentz model!), 

TOi.Ω , LOi.Ω  are the transversal (longitudinal) frequencies, 

TOi,γ , LOi,γ  are the transversal (longitudinal) scattering rates. 
The advantage of this formula with respect to the DL model is 
that it allows different scattering rates for the TO and LO 
modes. 
RefFIT determines TOn  as the total number of rows with the 
code (-1001) and LOn  as the total number of rows with the code 
(-1002). There can be as many rows with codes (-1001) and (-
1002) as necessary.  
 
In principle, physically sensible are only such models, 
where LOTO nn = , and the TO and LO frequencies are alternated: 

L≤Ω≤Ω≤Ω≤Ω LOTOLOTO ,2,2,1,1 . Even then, some 
unphysical artifacts, like a negative value of  2ε , may happen, 
if improper scattering rates are chosen. More discussion of this 
model can be found, for instance in Ref. 14. 
Be careful: RefFIT blindly feeds the parameters to the TO-LO 
formula. It is the user’s responsibility to provide the right initial 
parameters and to check that they are still OK after the fitting! 

-1002 LOi.Ω  
[cm-1] 

LOi,γ  
[cm-1] 

Table 4-3  Special dielectric functions. 
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4.6.3. Variational dielectric function 

Variational dielectric functions (VDFs) cannot be described by a single mathematical 
formula. Instead, the values of the dielectric function at a mesh of the anchor frequency points 

Nωω K1  are considered as independent parameters. The theory behind this approach is given in 
sections 2.2.4 and 2.2.5. 

A VDF can be added to the total model dielectric function. The user can switch it on and 
off, or can make it adjustable (active in fit), or fixed. The anchor frequency set Nωω K1  is 
specified when the VDF is initialized.  

There exist two types of VDFs: the KK-constrained (Kramers-Kronig-constrained) ones 
and the not KK-constrained ones. In the not-KK-constrained regime both 1ε  and 2ε  are treated 
as independently varied parameters at every frequency point (see section 2.2.5). In the KK 
regime only 2ε  is treated as an independent function, while 1ε  is given by the KK-transform of 

2ε  (see section 2.2.4). In the KK mode 2ε  is set to zero at the edges of the spectral range, in 
order to avoid a discontinuity of 2ε , which causes divergent singularities in 1ε . Thus, a KK-
constrained VDF has 2−N  parameters, while a non-KK-constrained one has N2  parameters.  

The VDF controls are collected in the ‘Variational Diel. Function’ button group of the 
model window, which can be made visible or invisible by clicking the  button (see 
Figure 4-5). 

 
Figure 4-5  The “Dielectric function” model window with the VDF controls visible (the anchor mesh is not 
defined yet). 

When a new model is created, the VDF of this model is deactivated and its anchor mesh 
is not defined. In order to initialize VDF and set its mesh, one has to press the  button (or 
press F6). The ‘Initialize VDF’ window will show up (Figure 4-8).  
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Figure 4-6  The “Initialize VDF” window. 

 

The anchor mesh can be generated on the base of one or more (up to three) loaded 
datasets (see Section 4.8). If ‘every 2nd point’ button is not checked, then all frequency points 
from the datasets will be used as anchor points of the VDF. Otherwise, every 2nd data point will 
be used. The ‘every 2nd point’ may be sometimes helpful to avoid some numerical instabilities 
of the fitting routine (typically, fast spurious oscillations of the resulting 1ε  and 2ε ). The VDF 
properties - KK constraint, on/off and fitting activity - can also be set here.  

When VDF is initialized, the information about the anchor mesh is indicated (Figure 4-7). 
A VDF can be switched between KK and non-KK-constrained regimes by 
checking/unchecking the ‘KK’ button (or by pressing F5). It can be switched on and off 
(without removing it from the memory) by checking/unchecking the ‘On’ button (or by 
pressing F4). It can be made active in fit (adjustable) or fixed with the ‘Fit’ button (or by 
pressing F7).  

 
Figure 4-7  The “Dielectric function” model window with the VDF controls visible (the anchor mesh defined). 
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A VDF is not saved together with the main model (when using button F2). However, this 
shortcoming is easily bypassed by using macros to generate VDFs ‘on-fly’ or by exporting the 
model 1ε  and 2ε  to a file. 

It worth mentioning that to handle VDF in the KK-constrained mode requires a lot of 
computational work and may significantly slow down the program. Therefore one should avoid 
the fitting of unnecessary large datasets. On an average modern PC (at the moment of writing 
this manual it is Pentium 1.5-2.5 GHz) RefFIT manages easily with 1000~N . Working with 
larger datasets would require some patience. 

4.7. Special models 
As was mentioned in section 4.5, special models are distinguished from the “Dielectric 

Function” model by a ‘code’, which is stored in the parameter “Einf”. The table “Lorentzians” 
is used to store the model parameters, whose meaning depends solely on the model type. Also, 
the output quantities are different from the ones of the “Dielectric Function” model (even 
though the same abbreviations are used, as in Table 4-2). Special models often contain links to 
other models. 

Table 4-4 lists special models and the corresponding codes. The detailed description of 
special models is presented in the subsequent sections. 

“Einf” 
(Code) Special model 

-1 Differential dielectric function (section 4.7.1) 
-2 Reflection and transmission of a multi-layer sample (section 4.7.2) 
-3 Ellipsometry of an orthorhombic sample (section 4.7.3) 
-4 Ellipsometry of an orthorhombic sample (differential model) (section 4.7.4) 
-5 Ellipsometry of an orthorhombic film on an orthorhombic substrate (section 

4.7.5) 
-6 Extended Drude (section 4.7.6) 
-9 Epsilon+Mu (section 4.7.7) 
-10 Spectral Weight (section 4.7.8) 
-13 Optics of a plate sample  (section 4.7.9) 
-17 Reflectivity of a sample in a medium  (section 4.7.10) 
-18 Reflectivity of a Film (Epsilon+Mu) on a Substrate (section 4.7.11) 
-33 Reflectance/transmittance/ellipsometry of a multilayer (section 4.7.12) 

Table 4-4 Special models. 

 

4.7.1. Differential dielectric function (code -1) 

This model is intended to fit differential spectra of any quantity that can be generated by 
the “Dielectric function” model (section 4.6). The theoretical description of differential spectra 
is presented in section 2.3.  
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A model of the “Differential dielectric function” type combines the two models of the 
“Dielectric function” type. The first dielectric function is treated as a base model and the 
second one – as a differential model. The description of the parameters is given in Table 4-5.  

# Wo Wp G 
1 Base model # - - 
2 Differential model # - - 

Table 4-5  The meaning of the parameters of the “Differential dielectric function” model. 

The output quantities of this model are the differential analogs of the quantities, 
generated by the “Dielectric function” model (see Table 4-2). For instance, the quantity “S1” is 
the differential conductivity. 

The Figure 4-8 presents an example of the “Differential dielectric function” model. It is 
assumed here that the base DF is stored in the “Model2” and the differential DF is in “Model3”. 
Note that all parameters of the “Model1” are fixed. The output quantity “R” of the “Model1” 
will correspond to the differential reflectivity RΔ , “T” will correspond to the differential 
transmission TΔ  and so forth. 

 
Figure 4-8 An example of the “Differential dielectric function” model. 

Usually the fitting of differential spectra is done in two steps. On the first step the base 
model is adjusted to fit the base spectra. On the second step all the parameters of the base 
model are fixed and the differential model is adjusted to fit the differential spectra. Note that 
the internal parameters of the base model should be fixed on the second step. 

4.7.2. Reflection and transmission of a multi-layer sample (code -2) 

This model has been designed to fit the normal-incidence reflection and transmission 
spectra of samples that consist of an arbitrary number of layers (Figure 4-9). Each layer is 
supposed to be isotropic and described by its own complex dielectric functionε , thickness d  
and thickness spread dδ . 
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Figure 4-9  The experimental configuration of the model “Reflection and transmission of a multi-layer sample”. 

The sample reflectivity is defined as incref IIR /= , transmission is defined as 

inctrans IIT /= , where incI  is the intensity of the incident light, refI  - intensity of the reflected 
light and transI  - intensity of the transmitted light. The exact formulas for R  and T  are rather 
cumbersome; they can be found, for instance, in Ref. [15]. 

The parameters of this model are described in Table 4-6. The number of layers is given 
by the number of rows in the “Lorentzians” table. Each row corresponds to a particular layer. 

# Wo Wp G 
1 DF model (layer #1) Thickness d (layer #1) [cm] Relative thickness spread δd/d 

(layer #1)  
2 DF model (layer #2) Thickness d (layer #2) [cm] Relative thickness spread δd/d 

(layer #2) 
… … … … 
N DF model (layer #n) Thickness d (layer #n) [cm] Relative thickness spread δd/d 

(layer #n) 
Table 4-6  The parameters of the model “Reflection and transmission of a multi-layer sample”. 

An example of this of kind of model window is shown in Table 4-5. Here a two-layer 
system (film-substrate) is modeled. The top layer (film) is described by the dielectric function 
from “Model2”; it has a thickness of 1.76e-6 cm (17.6 nm) and relative thickness spread of 1%. 
The substrate is described by the dielectric function from “Model3” and it is 0.057 cm (570 
micron) thick with a relative spread of 3%. Note that the film thickness is treated as a variable 
parameter (marked blue). 

dn±δdn 

d1±δd1 

… 

)1(ε  

d2±δd2 

Iinc Iref 

Itrans 

)2(ε  

)(nε  



 Guide to RefFIT                                                                                                                                         Page  71 

 
Figure 4-10  An example of the model “Reflection and transmission of a multi-layer sample”. 

Table 4-7 describes the meaning of the output quantities.  

It saves a lot of computational time to set the thickness spread to zero unless it is really 
necessary to model a wedged sample. 

Quantity 
abbreviation 

Description 

“R” 2|| rR =   
“T” 2|| tT =  
“E1” rRe  
“E2” rIm  
“S1” tRe  
“S2” tIm  
Table 4-7  The output quantities of the model “Reflection and transmission of a multi-layer sample”. 

 

4.7.3. Ellipsometry of an orthorhombic sample (code -3) 

This model is designed to fit the ellipsometric measurements done on an anisotropic 
semi-infinite sample. Of course, it can be also used (as the simplest case) for an isotropic 
sample. The experimental geometry, including the orientation of principal dielectric tensor 
axes, is shown in Figure 4-11.  
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Figure 4-11  The experimental configuration of the model “Ellipsometry of an orthorhombic sample”. 

As this manual is not an ellipsometry textbook, we present only the formulas used. The 
complex reflectivities for the p- and s-polarized light are: 
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In ellipsometry the complex ratio sp rr /=ρ  is measured, commonly expressed in terms 

of the two real parameters ψ  and Δ : Δ= ieψρ tan . The inversion of this formula gives 
ρψ arctan=  and ρarg=Δ .  

The pseudo-dielectric function is defined as:  
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In the case of an isotropic sample the pseudoε  coincides with the true dielectric function ε . 

One of the possible ellipsometry configurations involves a fixed polarizer (at angle P ) 
and a rotating analyzer (without a retarder). In this case the Fourier coefficients of the detector 
signal as functions of the analyzer angle are: 

P
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The description of the model parameters is given in Table 4-8. 

# Wo Wp G 
1 DF model for εx θ [degrees] P [degrees] 
2 DF model for εy - - 
3 DF model for εz - - 

Table 4-8 The parameters of the model “Ellipsometry of an orthorhombic sample”. 

An example of such a model is shown in Figure 4-12. It is assumed that the “Model2” 
contains xε , the “Model3” contains yε  and “Model4” contains zε . The angle of incidence is 
80o and the polarizer angle is 45 o.  

To imitate the isotropic sample, one should assign the dielectric components xε , yε  and 

zε  may to the same model. For a uniaxial crystal two of the three components should refer to 
the same “Dielectric function” model. 
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Figure 4-12  An example of the model “Ellipsometry of an orthorhombic sample”. 

Table 4-9 describes the meaning of the output quantities.  

Quantity 
abbreviation 

Description 

“Rp” 2|| prRp =   
“Rs” 2|| srRs =  
“E1” ψ  [degrees] 
“E2” Δ [degrees] 
“S1” α  
“S2” β  
“N1” pseudoεRe  
“N2” pseudoεIm  

Table 4-9  The output quantities of the model “Ellipsometry of an orthorhombic sample”. 

4.7.4. Differential ellipsometry of an orthorhombic sample (code -4) 

This model is the ‘differential’ extension of the model “Ellipsometry of an orthorhombic 
sample”. The details about differential models are given in section 2.3. 

The description of the model parameters is given in Table 4-8. 

# Wo Wp G 
1 The base model for xε  The differential model for xε  θ  [degrees] 
2 The base model for yε  The differential model for yε  P [degrees] 
3 The base model for zε   The differential model for zε  - 

Table 4-10   The parameters of the model “Differential ellipsometry of an orthorhombic sample. 

The output quantities are the differential versions of quantities listed in Table 4-9. 
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4.7.5. Ellipsometry of an orthorhombic film on an orthorhombic substrate 
(code -5) 

This model is an extension of the ellipsometry to the double-layer system, like a film on a 
substrate (Figure 4-13). The symmetry of both film and substrate dielectric tensors can be as 
low as orthorhombic. The substrate is treated as a semi-infinite one. 

`  
Figure 4-13  The experimental configuration of the model “Ellipsometry of an orthorhombic film on an 
orthorhombic substrate”. 

All the formulas are the same as for the model “Ellipsometry of an orthorhombic 
Sample” (section 4.7.3), except the ones for pr  and sr , which are a bit more lengthy: 

fs
p

of
pp

fs
pp

of
p

p rrt
rtr

r
+

+
=

1
, fs

s
of

ss

fs
ss

of
s

s rrt
rtr

r
+
+

=
1

, where 

 

θε
ε

θ

θε
ε

θ

cossin1

cossin1

2

2

0

f
xf

z

f
xf

zf
pr

+−

−−

= , 
θεθ

θεθ
2

2
0

sincos

sincos

−+

−−
=

f
y

f
yf

sr , 

 

f
z

s
xs

z

f
x

f
z

s
xs

z

f
x

fs
pr

ε
θε

ε
θε

ε
θε

ε
θε

22

22

sin1sin1

sin1sin1

−+−

−−−

= , 
θεθε

θεθε
22

22

sinsin

sinsin

−+−

−−−
=

s
y

f
y

s
y

f
yfs

sr  

f
yε  

θ 
p

refE  
s
incE  

p
incE  s

refE  

f
xε  

f
zε  

s
yε

 

s
xε  

s
zε  

d



 Guide to RefFIT                                                                                                                                         Page  75 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−= f
z

f
xp dit

ε
θεωπ

2sin14exp , { }θεωπ 2sin4exp −= f
ys dit , d  is the thickness of 

the top layer (measured in cm), ω  is the light frequency (measured in cm-1). 

The description of the model parameters is given in Table 4-11. 

# Wo Wp G 
1 DF model for f

xε  θ [degrees] P [degrees] 
2 The model for f

yε  d  [cm] - 

3 The model for f
zε  - - 

4 The model for s
xε  - - 

5 The model for s
yε  - - 

6 The model for s
zε  - - 

Table 4-11  The parameters of the model “Ellipsometry of an orthorhombic film on an orthorhombic substrate”. 

An example of such a model is shown in Figure 4-14. It is assumed that the “Model2”, 
“Model3” and “Model4” describe the x, y and z components respectively of the film dielectric 
tensor. The substrate is uniaxial with the symmetry axis z, normal to the sample surface. The x- 
and y-components of the substrate dielectric tensor are described by the “Model5”, the z-
component is given by the “Model6”. The angle of incidence is 70o, the angle of polarizer is 
45o and the film thickness 0.000532 cm (5.32 micron). 

 
Figure 4-14  An example of the model “Ellipsometry of an orthorhombic film on an orthorhombic substrate”. 

The following table describes the meaning of the output quantities.  

Quantity 
abbreviation 

Description 

“Rp” 2|| prRp =   
“Rs” 2|| srRs =  
“E1” ψ  [degrees] 
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“E2” Δ [degrees] 
“S1” α  
“S2” β  
“N1” pseudoεRe  
“N2” pseudoεIm  

Table 4-12  The output quantities of the model “Ellipsometry of an orthorhombic sample on an orthorhombic 
substrate”. 

 

4.7.6. Extended Drude (code -6) 

This model takes as an input a dielectric function )(ωε  given by some dielectric function 
model and converts it to the frequency-dependent scattering rate )(/1 ωτ  and the normalized 
frequency-dependent effective mass mm /)(* ω  according to the formulas: 
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Here pω  and ∞ε  are considered as parameters of the extended Drude model (note, that they 
have nothing to do with the parameters of the model, which calculates )(ωε ). In addition 
another ‘scattering rate’ )(/1 * ωτ  is calculated: 
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Note, that )(/1 * ωτ  does not depend on the parameter pω . 

The description of the model parameters is given in Table 4-13. 

# Wo Wp G 
1 The model for )(ωε  pω  [cm-1] ∞ε  

Table 4-13  The model parameters of the model “Extended Drude”. 

Table 4-14 describes the meaning of the output quantities.  

Quantity 
abbreviation 

Description 

“R” )(/1 ωτ  [cm-1] 
“T” )(/1 * ωτ  [cm-1]  
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“Rp” mm /)(* ω  

Table 4-14  The output quantities of the model “Extended Drude”. 

Figure 4-15 gives an example of the extended Drude model. The complex value of  )(ωε  
is taken from “Model 2”, pω  = 12000 cm-1 and ∞ε  = 3.6. 

 
Figure 4-15  An example of the model “Extended Drude”  

4.7.7. Epsilon+Mu (code -9) 

This model calculates optical properties of a medium, which has not only the dielectric function 
1)( ≠ωε , but also an arbitrary the magnetic permeability 1)( ≠ωμ .  

The description of the model parameters is given in Table 4-13. 

# Wo Wp G 
1 The model for )(ωε  The model for )(ωμ  - 

Table 4-15  The model parameters of the model “Epsilon+Mu”. 

Even though the model for )(ωμ  is formally of the type “Dielectric function”, its output 
is assumed to be the magnetic permeability. 

 

“AC” Absorption 
coefficient 

0

2
l

=α  
cm-1 - 

Table 4-16 lists all output quantities of the “Epsilon+Mu” model. Note that they have 
basically the same physical meaning as they do in the case of the “Dielectric function” model 
(Table 4-2). 

Quantity 
abbre-
viation 

Description Calculation formula(s) Units Experimental 
parameters 

used 
“R” Normal-

incidence 
reflectivity of 
semi-infinite 
sample 

2|| rRα  , where 

εμ
εμ

+

−
=r  

- Scaling factor 
of R  ( Rα ) 
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“Rph” Complex phase 
of the normal-
incidence 
reflectivity of a 
semi-infinite 
sample 

))Re(/)arctan(Im()arg( rrr ≡  , where 

εμ
εμ

+

−
=r  

- - 

“T” Normal-
incidence 
transmission of 
a finite-
thickness 
sample, 
considering 
multiple (Fabry-
Perot) internal 
reflections and a 
possible 
thickness spread 
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“TT” Normal-
incidence 
transmission of 
a finite-
thickness 
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multiple (Fabry-
Perot) internal 
reflections but 
considering a 
possible 
thickness spread 

averageT Tα
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“Rp” Grazing-
incidence 
reflectivity (p-
polarization) 
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- angle of 
incidence 
(θ ), angle 
spread ( θs ) 

“N1” The real part of 
the refraction 
index 

εμRe  - - 

“N2” The imaginary 
part of the 
refraction index 
(extinction 
coefficient) 

εμIm  - - 
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“PD” Penetration 
depth ωεμπ Im2

1  
cm - 

“AC” Absorption 
coefficient 

0

2
l

=α  
cm-1 - 

Table 4-16  The output quantities of the “Epsilon+Mu” model. 

 

Figure 4-15 gives an example of the model “Epsilon+Mu”. The complex value of  )(ωε  
is taken from “Model 1”, The complex value of  )(ωμ  is taken from “Model 2”. 

 
Figure 4-16  An example of the model “Epsilon+Mu”  

4.7.8. Spectral Weight (code -10) 

This model takes as an input a dielectric function )(ωε  given by some dielectric function 
model and calculates the integrated spectral weight: 

∫∫ ==
ωω

εσω
0

2
0

1 )(
60
1)()( dxxxdxxSW ,  

where 1σ  is measured in Ω-1cm-1, ω  is measured in cm-1. It also calculates the related 
quantities: the effective plasma frequency )(ωω p and effective number of carriers )(ωeffN . 

The calculations are done analytically. At the moment, it works correctly only for the 
usual Lorentz function (see section 4.6.1), Lorentz-derived special functions (codes -25, -26, 
etc, see section 4.6.2) and variational dielectric function (see section 4.6.3). If other special 
dielectric functions are used, then the returned spectral weight is set to zero. 

# Wo Wp G 
1 The model for )(ωε  The unit cell volume 

Vcell [cm3] 
-- 

Table 4-17  The model parameters of the model “Spectral Weight”. 

Table 4-14 describes the meaning of the output quantities.  

Quantity 
abbreviation 

Description 
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“R” SW [Ω-1cm-2] 
“T” 

SWp π
ω 120

=  [cm-1] 

“Rp” VcSWCNeff **=  
[dimensionless],  
where C = 4.2568·1014, 
Vcell[cm3] is the unit cell 
volume. 

Table 4-18  The output quantities of the model “Spectral Weight”. 

Figure 4-15 gives an example of this special model. The value of  )(ωε  is taken from 
“Model1”. The unit cell volume is 2.89·10-23 cm3. 

 
Figure 4-17  An example of the model “Spectral Weight”  

4.7.9. Optics of a plate sample (code -13) 

This model can calculate reflectivity, transmission and ellipsometric parameters (in both 
reflection and transmission regimes) of a plate sample. The material is assumed to be optically 
isotropic. The angle of incidence and the angle of polarization of the incident light can be set. 
In contrast to other models (such as special models 2 and 5) this model offers a number of 
possibilities to treat the multiple internal reflections (Fabry-Perot effect) and the degree of 
optical phase coherence between different internal rays. The experimental geometry is shown 
in Figure 4-11.  
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Figure 4-18  The experimental configuration of the model “Ellipsometry of an orthorhombic sample”. 

Below we present the formulas used by this model.  

 

Bulk complex reflectivities (p, and s refer to the p- and s-polarized light): 
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constant, θ  is the angle of incidence. 

 

Complex transmission: 

{ }θεωπτ 2sin2exp −= di , where d  is the sample thickness (measured in cm), ω  is the 
light frequency (measured in cm-1). 

 

Complex reflectivities of individual rays: 
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The total complex reflectivity (all rays added with some weighting coefficients nα ): 
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Equation 4-1 

The power coefficients, which correspond to the full phase coherence between different 
rays: 
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The auxiliary coefficients, which correspond to the absence of any coherence between 

different rays: 
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Equation 4-3 

 
One can roughly introduce a partial coherence ( 10 ≤≤ γ ): 

pppppp ABC )1( γγ −+= , 

ssssss ABC )1( γγ −+= , 

pspsps ABC )1( γγ −+= , 

 

The measured (intensity) reflectivity: 

)sincos( 22 PCPCsR sspp += , where P  is the polarizer angle (=0o for the p-polarized 
light, =90o for the s-polarized light), s  is a scaling coefficient (which should normally be 1, but 
is introduced only in order to compensate a possible uncertainty of the absolute value of R ). 

 
Ellipsometric parameters: 
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A possible ellipsometry configuration involves a fixed polarizer (set at angle P ) and a 
rotating analyzer (without a retarder). In this case the Fourier coefficients of the detector signal 
as functions of the analyzer angle are: 
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For the transmission rays, we have: 

122
,

2
,

)(
, ))(1( −−= n

spsp
n
sp rrt ττ , ( 1≥n ), and then the Equation 4-1, Equation 4-2 and Equation 2-9 

are valid with the substitution tr → . 
In addition, the model calculates the phase shift (divided by π2 ) due to the double pass 

through the sample: 
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0
2sin2 ϕθεωϕ +−= d . For the Fabry-Perot interference maxima in transmission it 

should be an integer, for the minima – half integer. Thus, if the Fabry-Perot pattern is well 
seen, one can determine ϕ  from it. 

 
The description of the model input parameters is given in Table 4-8. 

# Wo Wp G 
1 DF model for ε θ [degrees] P [degrees] 
2 d [cm-1] γ  RayNo 
3 ReflTran 0ϕ  s  

Table 4-19 The parameters of the model “Optics of a plate sample”. 

RayNo is an integer number, which selects the rays which are detected. If RayNo = 0, 
then all rays are assumed to equally reach the detector (all 1=nα ). If RayNo = 1, 2, etc., then 
only this ray reaches the detector, while the others miss it ( 0,1 == ≠= RayNonRayNon αα ). 

ReflTran chooses between reflection and transmission. If ReflTran = 1(0), then all output 
properties (intensity and ellipsometry) refer to reflection(transmission). 

An example of such a model is shown in Figure 4-19. It is assumed that the “Model2” 
containsε . The angle of incidence is 60o and the polarizer angle is 45 o, the sample thickness is 
0.001 cm (10 microns), the degree of coherence γ =0.7, the RayNo=0 (all rays are detected), 
ReflTran is 1 (reflectivity), 0ϕ =7 and the scaling coefficient s =1.03, . 

 
Figure 4-19  An example of the model “Optics of a plate sample”. 

Table 4-9 describes the meaning of the output quantities. Note, that the quantity 
abbreviations have no original meanings. 

Quantity 
abbreviation 

Description 

“R” Reflection R , or 
transmission T , 
depending on 
ReflTran 
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“RPS” ϕ  
“E1” ψ  [degrees] 
“E2” Δ [degrees] 
“S1” α  
“S2” β  

Table 4-20  The output quantities of the model “Optics of a plate sample”. 

4.7.10. Reflectivity of a sample in a medium (code -17) 

This model is to fit the normal-incidence reflectivity from a flat semi-infinite sample, 
which is not in air but in other medium. This can useful for a reflectivity of a sample immersed 
into a liquid. It will also model the situation when the reflecting sample surface is tightly 
attached to a transparent plate, for example to a diamond in a pressure cell, and when the light 
reflected from the front surface of this plate is not reaching the detector. The reflectivity is 
calculated by the formula: 

2

sm

smCR
εε

εε

+

−
=  

where sε  and mε  are the dielectric functions of the sample and the medium correspondingly 
and C  is a correction factor (should be 1 normally). 

The description of the model parameters is given in the following table. 

# Wo Wp G 
1 DF model for sε  DF model for mε  C  

Table 4-21 The parameters of the model “Reflectivity of sample in a medium”. 

An example of such a model is shown in the following figure. It is assumed that the 
“Model1” contains sε , the “Model2” contains mε  and 1=C . 

 
Figure 4-20  An example of the model “Reflectivity of sample in a medium”. 

The reflectivity is written to the output “R”. 
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4.7.11. Reflectivity of a Film (Epsilon+Mu) on a Substrate (code -18) 

This model calculates the normal-incidence reflectivity R  of a film of thickness d , 
which is characterized by a dielectric function ε  and a magnetic susceptibility μ  on a semi-
infinite substrate, characterized by a dielectric function sε . There is a possibility to roughly set 
the degree of coherence γ  between multiply reflected rays in order to suppress the Fabry-Perot 
interference. 
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⎡= d

c
i εμωτ exp . 

The description of the model input parameters is given in Table 4-8. 

# Wo Wp G 
1 DF model for ε  DF model for μ  d [cm-1] 
2 DF model for sε  γ  - 

Table 4-22 The parameters of the model “Reflectivity of a film (Epsilon+Mu) on a substrate”. 

An example of such a model is shown in Figure 4-19. It is assumed that the “Model1” 
containsε , “Model2” containsμ , “Model3” contains sε . The sample thickness is 0.012 cm, the 
degree of coherence γ =0.3. 

 
Figure 4-21  An example of the model “Reflectivity of a film (Epsilon+Mu) on a substrate”. 
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Table 4-9 describes the meaning of the output quantities (there is only one actually). 

Quantity 
abbreviation 

Description 

“R” Reflection R  
Table 4-23  The output quantities of the model “Reflectivity of a film (Epsilon+Mu) on a substrate”. 

4.7.12. Reflectance/transmittance/ellipsometry of a multilayer (code -33) 

This model calculates the reflectivity R , the transmittivity T  and ellipsometric 
parameters ψ ,  Δ , α  β  (both in reflection and transmission modes) of a multilayer sample. 
The number of layers is not limited. Each layer can be treated as “coherent” or “incoherent”. 
“Coherent” means that the phase difference between multiply reflected rays in this layer is 
preserved, which gives rise to the Fabry-Perot effect. In an “incoherent” layer, the phase 
difference is lost (averaged out), and one has to add the ray intensities rather than their complex 
amplitudes. This usually applies to a thick substrate, where the Fabry-Perot effect is suppressed 
due to different factors. The angle of incidence θ  and the polarizer angle P  are arbitrary 
(between 00 and 900). The ellipsometry configuration is described in Section 4.7.9.  

In the calculations, the approach of by B.Harbecke (Appl. Phys. B 39, 165-170 (1986)) is 
used that we extend to calculate ellipsometric parameters in a way similar to the Model (-13), 
described in Section 4.7.9. 

The description of the model input parameters is given in the following table. 

# Wo Wp G 
1 - θ  [degrees] P [degrees] 
2 DF model 

(layer #1) 
Thickness d 
(layer #1) [cm] 

Coherence (layer #1) 
1 – coh./0 – incoh 

3 DF model 
(layer #2) 

Thickness d 
(layer #2) [cm] 

Coherence (layer #2) 
1 – coh./0 – incoh 

… … … … 
N+1 DF model 

(layer #N) 
Thickness d 
(layer #N) [cm] 

Coherence (layer #N) 
1 – coh./0 – incoh 

Table 4-24 Reflection/transmission/ellipsometry properties of a multilayer”. 

An example of such a model is shown in Figure 4-22. Here the angle of incidence is 70 
degrees, the polarizer angle is 45 degrees. The sample is a bilayer. (e.g. a film on a substrate). 
The dielectric function of the first layer is described by the “Model2”; its thickness is 0.0003 
cm (3 μm); it is treated as “coherent”. The dielectric function of the second layer is described 
by the “Model3”; its thickness is 0.1 cm; it is treated as “incoherent”. 
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Figure 4-22  An example of the model “Reflection/transmission/ellipsometry properties of a multilayer””. 

The table below describes the output quantities. 

Quantity 
abbreviation 

Description 

“R” Reflectivity R  
“T” Transmittivity T  
“E1” ψ  [degrees]  

(in the reflection mode) 
“E2” Δ [degrees] 

(in the reflection mode) 
“S1” α  

(in the reflection mode) 
“S2” β  

(in the reflection mode) 
“N1” ψ  [degrees]  

(in the transmission mode) 
“N2” Δ [degrees] 

(in the transmission mode) 
“PD” α  

(in the transmission mode) 
“LF” β  

(in the transmission mode) 
Table 4-25  The output quantities of the model “Reflectivity of a film (Epsilon+Mu) on a substrate”. 

 

4.8. Dataset manager 
The dataset manager is used to load, assign, store and unload experimental datasets. To 

activate this window one should choose the “Dataset manager” item from the “Window” menu 
(Figure 3-8). Using this window one can load up to 10 independent datasets at the same time. 
One can store more of them, using the macro language (see section 4.11.4).  
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To close the “Dataset Manager” window you can either click the  or  
button. Closing this window helps to save the screen space but does not cause unloading of 
datasets. 

4.8.1. Loading and unloading datasets 

In order to load a dataset to a certain slot, one should click the  button. An extra 
window will show up, where you can specify the way the data should be loaded to the RefFIT 
memory. Each dataset is a table, which consists of three columns: X, Y and Yerr. The X is the 
light frequency (in cm-1), the Y is the measured optical quantity (e.g., reflectivity) and the Yerr 
is the error bar. 

 
Figure 4-23  The dataset manager window. 

One should always specify the master data file. It must contain at least two columns: X 
and Y. Optionally it may have third column Yerr. The fastest way is to take X, Y and Yerr from 
the master file. If Yerr is missing, a default value (=0.01) will be put. 

The data file should be a plain (ANSI) text file. Do not use special text encodings, like 
UNICODE. The columns in the data file have to be separated by the space character “ “ or the 
tabulation character. Do not use commas, semicolons etc.  

Sometimes, it is convenient to have different frequency points in the dataset. For 
instance, if you load reflection and transmission file, which are measured with different 
frequency points, you might still want to have two datasets with the same frequency points. In 
this case there two options. Firstly, you may provide an extra file with only one column – X, 
which will serve as a source of frequency points. Secondly, you may generate your own grid of 
frequency points by specifying the interval  in the fields “Xmin” and “Xmax”, the number of 
points “#pts” and the grid type (linear or logarithmic). For a linear grid all the frequencies are 
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equally spaced. For a logarithmic grid the logarithms of frequencies are equally spaced. The 
latter grid is useful, if you have more structures in the low-frequency part of your spectrum 
than in the high-frequency part. The conversion from the original frequency grid to the new one 
is done by a linear interpolation method. 

If the frequency points are generated externally (from a file, or generated) then there are 
two possibilities to match the Y and Yerr values for the new frequency set with the one in the 
master data file: by interpolation, or by averaging. You should choose the corresponding 
option. Interpolation means that Y and Yerr are taken from the linear interpolation between the 
two closest points in the original (master) dataset. Averaging means that all original points 
falling into the interval, which belongs to the given new frequency point, are averaged to 
generate the new values of Y or Yerr. Averaging reduces the noise of the original file. 

In most cases the Y-column should be taken from the master file. However, there is a 
possibility to set Y to a fixed (constant) value. 

Ideally, the error bars should be provided in the master file. Proper error bars always 
improve the fitting reliability. There is an option to load error bars from a separate file, or set it 
to a fixed (constant) value.  

Having chosen the correct loading options click the  button. Once you have loaded 
the data set you must specify its type. The dataset types should correspond to one of the model 
output types (see Table 4-2). You can choose the type from the list in the “Quantity” column. 
By default, the program determines the data type looking at the first letters of the file name. For 
instance, RefFIT will suggest type “PD” (Penetration depth) for the filename 
“PD_T300K.DAT”. 

There is an extra possibility to cut the spectral range to a subset that will be used for 
fitting. To do this you may specify the limits of the “Cutting range”. The corresponding number 
of frequency points will be highlighted in the field “# points”. 

To unload a dataset click the  button. To unload all the datasets at once, click the 
 button in the lower part of the window. 

4.9. Graphs 
Graphs in RefFIT serve to visualize the model and experimental data and update their 

changes in real time. Each graph is shown in a separate window (Figure 4-24). A new graph 
can be created by choosing “Graph” in the “Window” menu. Closing the graph window 
destroys the graph as an object.  

One can specify graph properties, such as axis scale, title etc., and graph contents, such as 
the set of curves and their appearance on the screen. 
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Figure 4-24  The “Graph” window. 

4.9.1. Graph properties 

To set the graph properties, one should double-click on the gray (outer) area of the graph 
(Figure 4-24). The window “Graph properties” will pop up (Figure 4-25). Here one can change 
the properties of the “X” and “Y” axes. It is only necessary to set the range. The tick step will 
be determined automatically according to the graph size. The default value for the “Y” axis is 
“Reflectivity” which should be changed if other spectra will be plotted (e.g., conductivity) in 
order to avoid confusions. This, however, does not influence the fitting procedure. One can 
save a bit of the graph space by not showing axis titles. 

 
Figure 4-25  The “Graph properties” window 

By default, all the loaded dataset points are plotted. However, one can show only the data 
points which are used for fitting (specified in the “cutting range” in the dataset manager) by 
checking the “show only fitted data points” option.   
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4.9.2. Graph contents 

To set the graph contents, one should double-click on the white (inner) area of the graph 
(Figure 4-24). In the window “Graph contents” (Figure 4-26) one can select the curves to show 
in the graph and specify their appearance. 

 
Figure 4-26  The “Graph contents” window. 

It is possible to plot five types of curves: “DATA”, “MODEL”, “CHI-SQ”, “MULTI” 
and “FREQ”.  

The curves of the “DATA” type represent experimental spectra, loaded as datasets (see 
section 4.8). They can be plotted either as symbols of different shape and size, as lines, as error 
bars, or as a combination of these. 

The “MODEL” type corresponds to model output quantities (transmission, conductivity 
etc.). Model curves are always continuous.  

A curve of the “CHI-SQ” type shows the square of the difference between experimental 
and model spectra (chi-square). It is used to estimate the fitting match. It is this value, which is 
minimized in the fitting procedure (see section 2.1.2). 

The “MULTI” type is used to show the contribution of all Lorentz oscillators, included in 
the model, separately. Obviously, it applies only to the Drude-Lorentz model type and only to 
the additive quantities, such as the outputs “E1”, “E2”, “S1” and “S2” of the “Dielectric 
function” model. 

The “FREQ” is a special curve type, which indicates the transverse frequencies of the 
Lorentz oscillators in a form of dashed vertical lines. 

In order to specify the curves to be plotted one should first check the corresponding 
buttons in the groups “Curve type” and “Quantity”. The full list of available curves, according 
to these buttons will be shown in the “Available curves” section. The next step is to select some 
curves from this list (using the mouse, possibly in combination with the CTRL and SHIFT 
keys) and move them to the list “Graph curves” by clicking the  button. In order to remove 
curves from the “Graph curves” list one should select them and click the  button. 
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The graph curves appearance can be adjusted using the controls from the ‘Curve 
properties’ part. One should select one curve and change its properties, then switch to another 
one and repeat the procedure and so on. It is possible to select a group of curves and modify 
their properties. Each curve can be shifted or/and scaled, if necessary, in order to be better seen 
on the graph. 

To apply the specified graph contents curves one should press button  or . 
In the latter case the changes will be applied without closing the “Graph Contents” window. 

4.10. Fit window 
The “Fit” window is activated by the “Fit” item from the “Window” menu (Figure 4-27). 

It is used to set the fitting task, launch/stop the automated fitting routine and monitor the fitting 
progress. The closing of this window does not change the fitting task (section 4.10.1) and 
fitting options (section 4.10.2). 

 
Figure 4-27  The “Fit” window. 

4.10.1. Setting up the fitting task 

The posing of the fitting task is essentially the setting the chi-square terms to be 
minimized (see section 2.1, Equation 2-11, Equation 2-12). Each chi-square term is specified 
by a pair “Dataset-Model”. By including such a pair you tell RefFIT which model has to be 
fitted to which dataset.  

It is important, that one can select many chi-square terms simultaneously, which allows 
fitting several spectra of different type at the same time. There is a full freedom to specify any 
combinations of Dataset-Model pairs! 

Initially there are no chi-square terms in the fitting task (Figure 4-27). To add them, one 
should press the  button. In the window ”Add ChiSq terms” (Figure 4-28) one can select 
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Available ChiSq terms and click the  (using field “Model” and “Dataset” helps to 
narrow the list). After that the new terms will show up in the “Fit” window (Figure 4-29).  

 
Figure 4-28 The “Add ChiSq term(s)” window. 

To remove chi-square terms one should select them in the list and press the  button 
(Figure 4-29). By default, all terms have the same weight w  equal to 1. To change the weight, 
one should select the corresponding term(s) and type the new weight in the “Weight” field.  

 
Figure 4-29  The “Fit” window with one chi-square term selected. 

The values of the individual chi-square terms and the total chi-square value (considering 
term weights) are always seen in the “Fit” window. They are updated in real time as the model 
parameters are changed manually, or automatically.  

The number of fit points and parameters is derived on the base of the chi-square terms. 
Only the points in the cutting range of the Dataset are considered by the fitting routine.  
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4.10.2. Fitting options 

There is a possibility to set up the technical parameters, which regulate the flow of the 
fitting process. To do this one should click the  button in the “Fit” window (Figure 
4-29). The dialog window “Fitting options” will show up (Figure 4-30).  

 
Figure 4-30  The “Fitting options” window. 

To use these options requires the knowledge of the Levenberg-Marquardt algorithm, 
described in section 2.1.1. However, in most cases the default settings work reasonably well. 

The first set of parameters (“Stop fitting after”) define the criteria to terminate the fitting 
process. The following criteria can be applied: 

(i) a certain maximum number of iterations is exceeded; 

(ii) the fitting takes too much time; 

(iii) the process seems to converge, i.e., the total chi-square did not vary significantly 
during the last few iterations; 

(iv) one of the parameters goes out of range19; 

(v) the linearity parameter λ  becomes too large. 

The group “Confidence limits” deals with the calculation of the parameter confidence 
limits, or error bars (see section 2.1.3). One can force RefFIT to calculate them after each 
fitting iteration. This may slightly slow down the fitting process. The value in the “DeltaChiSq” 
corresponds to 2δχ  in Equation 2-14. 

By default, all spectra and parameters are updated on the screen after each iteration. In 
order to save some time it is possible to let the program to update the screen not so often by 
changing the field “Update screen every … iteration(s)”20.  
                                                 
19 This option is not realized yet 
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At each iteration a linear equation system with the α -matrix is solved (Equation 2-9). It 
becomes impossible when the determinant of the matrix is getting too small. This happens, for 
instance, if one of the active parameters does not affect the value of chi-square. In this case the 
iterations stop. One can specify the minimal allowed value of the determinant, which is by 
default 10-30. 

The initial value of λ  can also be modified (the default value is 0.001).  

4.10.3. Starting/stopping fitting process 

To start the automated fitting one should click the  button (Figure 4-29). Only a 
very limited set of actions is allowed when the fit is running (e.g., one can resize the windows). 
The process can be stopped by the same button, which is now looks as . It may take some 
time before the program really stops, because it must complete the current iteration. 

During the fitting process the following quantities are displayed: the current value of this 
chi-square, its absolute change compared to the initial value, the number of iterations and 
elapsed fitting time. 

In order to recover the previous parameter values before the last fitting started, one 
should click the  buttons21. It is only possible right after the fitting run. 

4.11. Macro language 
Once you have found a good data fit, you may need to do the same task many times, for 

instance, to fit the same kind of spectra for different temperatures. Each case, however, 
involves an appreciable number of actions, such as opening a model, loading data, adding chi-
square terms and so forth. Imagine, how many mouse clicks have to be done to fit spectra for, 
let’s say, 10 temperatures! And what about 300 temperatures?!!! 

To facilitate the execution of routine operation the macro scripts are indispensable. 
Another advantage of scripts is the possibility to modify them in order to tackle new problems, 
which are similar to the ones already solved. Also, a script may serve as a sort of logbook, 
which helps to recollect, how exactly a particular data analysis has been performed a long time 
ago. 

4.11.1. Writing and executing macros 

Macro scripts are stored as text files, which can be created and modified using any text 
editor such as Windows Notepad. Make sure, that the file is saved as a usual, or ANSI, text 
(and not, for example, as UNICODE text). The convention is (although it is not obligatory) to 
use the extension ‘RFS’ to macro files, for instance “MACRO1.RFS”.  

Once a macro is created, it can be executed at the stage when RefFIT starts. One should 
call the RefFIT program supplemented with the macro file name, for example 
“D:\REFFIT\REFFIT.EXE MACRO1.RFS”. In this case the executable file “REFFIT.EXE” 
                                                                                                                                                           
20 The screen update time is usually only a minor fraction of the total computing activity. 
21 this option is not realized yet 
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should be in the directory “D:\REFFIT” and the macro file “MACRO1.RFS” should be in the 
currently selected directory. 

There are several ways to launch the RefFIT program with a script name. The most 
universal one (though not the most handy) is to create a batch file, called, e.g., 
“MACRO1.BAT”, which contains only one command line “D:\REFFIT\REFFIT.EXE 
MACRO1.RFS”. It can be done using the same editor program, like Notepad (Figure 4-31). 
The execution of “MACRO1.BAT” (e.g., by clicking on it in the Windows Explorer) will have 
the desired effect.  

 
Figure 4-31   The batch file to start macro “MACRO1.RFS”. 

Scripts can be called more comfortably by just double-clicking on the icons of their files. 
For that one should associate the file extension “RFS” with the executable “REFFIT.EXE”. It 
can be done, for instance, in the standard Windows Explorer program by clicking on a macro 
file with the right mouse button, selecting item “Open With”→”Choose program” and then 
specifying the actual path to “REFFIT.EXE”. 

4.11.2. Macro syntax 

The RefFIT macro syntax is extremely simple. Macro scripts consist of commands, 
separated by semicolon “;”. It is a good idea (although not imperative) to write each command 
on a separate line. Commands correspond to actions done by the mouse or the keyboard in the 
application windows.  

The command syntax is as follows: “CommandName(Par1 = Value1, Par2 = Value2, 
…);” The CommandName identifies the command. “Par1”, “Par2” etc. are the names of 
parameters; “Value1”, “Value2” etc. are their values. The parameters should be separated by 
commas “,”. The set of parameters depends, of course, on the command. In some cases certain 
parameters might be omitted. Even if no parameters are set in the command, the command 
name must be followed by empty brackets “()”. The sequence of parameters in brackets does 
not matter. 

The parameters can be of integer, double or text type. The integer parameter value can be 
any integer number, e.g., 10. The double parameter value can be any double (floating point) 
number, e.g., 1.23E-4. The text parameter value should be a text string, enclosed in parentheses 
“…”, e.g., “CONDUCTIVITY”. 

Any command preceded by the “#” character is ignored by the macro interpreter. This 
can be used to put text comments into the macro, or temporarily ‘comment out’ some 
commands. 
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Before a macro is actually executed, it is first translated by the macro interpreter. If the 
interpreter finds any kind of error, the execution does not start. Unfortunately, at this moment 
the interpreter is not programmed to make any error report. If a macro does not run, the easiest 
way to localize the error is to comment out potentially erroneous commands one by one and try 
the macro again. 

4.11.3. General macro commands 

Command name:  MainWindow 

Description: Moves, resizes and renames the main application window. 

Parameters: 

Name Type Description What if omitted 
XPos Integer Horizontal position of the left side (in 

screen pixels) 
Window is neither 
moved nor resized 

YPos Integer Vertical position of the top side (in 
screen pixels) 

Window is neither 
moved nor resized 

Width Integer Window width (in screen pixels) The window is moved 
but the width is not 
changed 

Height Integer Window height (in screen pixels) The window is moved 
but the height is not 
changed 

Title Text Window title The window title is not 
changed 

 

Command name:  Wait 

Description: makes sure that the screen (i.e., parameters and model curves) is fully updated to 
reflect the last parameter changes and then waits the specified amount of time. 

Note: this is a ‘technical’ command, which has absolutely no influence on the data and fitting 
process. 

Parameters: 

Name Type Description What if omitted 
Time Integer The extra time to wait (in 

milliseconds) 
Assumed to be 0 

 

Command name:  Suspend 

Description: suspends the macro execution and shows a “Suspend” window (Figure 4-32), 
which allows a user to choose whether to continue or stop macro execution.  

Note: It is useful, when the macro works in a cycle and the fitting match has to be visually 
verified on each step of the cycle. 



 Guide to RefFIT                                                                                                                                         Page  99 

 
Figure 4-32  The “Suspend” window. 

Parameters: no parameters 

 

Command name:  Exit 

Description: terminates the execution of macro without going further. 

Note: this command is useful during the ‘debugging’ of the macro. 

Parameters: 

Name Type Description What if omitted 
QuitApp Integer If QuiteApp ≠ 0, then the application 

will be terminated also  
Assumed to be 0 

 

4.11.4. Dataset macro commands 

Command name:  DatasetManager 

Description: shows the “Dataset Manager” window on the screen and sets its position  

Parameters: 

Name Type Description What if omitted 
XPos Integer Horizontal position of the left side (in 

screen pixels) 
The position is not 
changed 

YPos Text Vertical position of the top side (in 
screen pixels) 

The position is not 
changed 

 

Command name:  LoadDataset 

Description: loads a dataset  

Note: This command has the same effect as manual dataset loading (section 4.8). Even though 
not more than 10 datasets can be loaded manually in the dataset manager, up to 100 datasets 
can be loaded with this command. 

Parameters: 

Name Type Description What if omitted 
DatasetNo Integer Dataset number, corresponding to the 

slot number in the Dataset Manager. 
Starts from 1. 

Assumed to be 1 
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Quantity Text Abbreviation of the quantity, which is 
ascribed to this dataset, e.g. “R”, “S1” 
etc. (see Table 4-2); 

Assumed to be “R” (i.e. 
reflectivity) 

MasterFile Text The name of the master file (including 
file path, if the file is not in the same 
directory, as the macro file), i.e. 
“R.DAT”, or 
“C:\MYDATA\E2.DAT”, or 
“..\SPECTRA\N1.DAT” 

Does not load any 
dataset 

XMethod Integer Specifies the algorithm used to 
generate column X in the database. 
=1: X is taken from the master file (1st 
column) 
=2: X is taken from the extra file, 
according to parameter XFile 
=3: X is generated, according to 
parameters Xmin, Xmax, XPts and 
XGrid 

Assumed to be 1 

XFile Text The name of the extra file, used to 
generate column X (including file 
path, if the file is not in the same 
directory, as the macro file). Only 
applies when XMethod=2. 

No action is taken (if 
XMethod=2). 

XMin Double The minimum value of the generated 
X Only applies, when XMethod=3. 

Assumed to be 1.0 

XMax Double The maximum generated X value.Only 
applies when XMethod=3. 

Assumed to be 1000.0 

XPts Integer The number of the generated X values. 
Only applies when XMethod=3. 

Assumed to be 1000 

XGrid Integer Specifies the grid type of the 
generated X values 
=1: linear grid (equally spaced values) 
=2: logarithmic grid 

Assumed to be 1 

Match Integer Specifies the way to match the values 
of Y and Yerr to the ones from the 
original dataset 
=1: interpolation 
=2: averaging 

Assumed to be 1 

YMethod Integer Specifies the algorithm used to 
generate column Y in the dataset. 
=1: Y is taken from the master file (2nd 
column) 
=2: Y is set to a constant value, 
according to parameter YVal 

Assumed to be 1 

YVal Double Specifies the constant value to be set 
to column Y. Only applies when 

Assumed to be 0.0 
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YMethod=2. 
YErrMethod Integer Specifies the algorithm used to 

generate column YErr in the dataset. 
=1: YErr is taken from the master file 
(3rd column) 
=2: YErr is taken from the extra file, 
according to parameter YErrFile 
=3: YErr is set to a constant value, 
according to parameter YErrVal 

Assumed to be 0.01 

YErrFile Text The name of the extra file, used to 
generate column YErr (including file 
path, if the file is not in the same 
directory, as macro file). Only applies 
when YErrMethod=2. 

Sets YErr to be 0.01 
(constant value) 

YErrVal Double Specifies the constant value to be set 
to column YErr. Only applies when 
YErrMethod=3. 

Assumed to be 0.01 

 

Command name:  UnloadDataset 

Description: unloads a dataset. 

Parameters: 

Name Type Description What if omitted 
DatasetNo Integer Dataset number, which corresponds to 

the slot number in the Dataset 
Manager. Starts from 1. 

Assumed to be 1 

 

Command name:  CutDataset 

Description: specifies the cutting range of the dataset, which is considered by the fitting 
routine. 

Parameters: 

Name Type Description What if omitted 
DatasetNo Integer Dataset number, which corresponds to 

the slot number in the Dataset 
Manager. Starts from 1. 

Assumed to be 1 

XMin Double The minimum value of the cutting 
range 

Xmin is not changed 

XMax Double The maximum value of the cutting 
range 

Xmax is not changed 

 

4.11.5. Model macro commands 

Command name:  NewModel 
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Description: Creates a new model; moves and resizes the model window. 

Note: when a new model is created, it is automatically ascribed an identity number, which 
starts from 1 and increments for every new model. It can be seen in the window title, e.g., 
model #5 has title “Model5”. This number is used by other commands to identify this model. 

Parameters: 

Name Type Description What if omitted 
XPos Integer Horizontal position of the left side 

(in screen pixels) 
The default value is 
assumed 

YPos Integer Vertical position of the top side (in 
screen pixels) 

The default value is 
assumed 

Width Integer Window width (in screen pixels) The default value is 
assumed 

Height Integer Window height (in screen pixels) The default value is 
assumed 

VarDielFuncSeen Integer = 0: the control group “Variational 
Diel. Function” is not seen 
= 1: it is seen 

0 is assumed 

 

Command name:  SaveModel 

Description: Saves the specified model to a file. 

Note: This command is equivalent to using the F2 button in the “Model” window (section 4.5). 

Parameters: 

Name Type Description What if omitted 
ModelNo Integer The identity number of the model to 

be saved 
Assumed to be 1 

File Text The name of the model file (including 
file path, if the file is not in the same 
directory, as macro file), i.e. 
“MODEL1.RFM”, or 
“C:\MYDATA\MODEL1.RFM”, or 
“..\MODELS\MODEL2.RFM” 

No action is taken 

 

Command name:  LoadModel 

Description: Loads a model from a file to the specified (already created) model. 

Note: This command has the same effect as using F3 button in the window ‘Model’ (section 
4.5). It does NOT create a new model in RefFIT, so the model with the specified identity 
number has to be already created with the NewModel command. 

Parameters: 

Name Type Description What if omitted 
ModelNo Integer Model identity number Assumed to be 1 
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File Text The name of the model file (including 
file path, if the file is not in the same 
directory, as macro file), i.e. 
“MODEL1.RFM”, or 
“C:\MYDATA\MODEL1.RFM”, or 
“..\MODELS\MODEL2.RFM” 

No action is taken 

 

Command name:  SetModelParam 

Description: Sets the value and the fitting activity of the specified model parameter 

Note: this command affects only one model parameter 

Parameters: 

Name Type Description What if omitted 
ModelNo Integer Model identity number No action is taken 
ParamName Text The name of the parameter. 

“Einf” - epsilon at infinity; 
“Wo” – transverse frequency; 
 “Wp” – plasma frequency; 
“G” – linewidth. 

No action is taken 

LorNo Integer The number of the Lorenzian (starting 
from 1). It is ignored, if 
ParamName=”Einf” 

No action is taken in 
case ParamName = 
”Wo”, “Wp” or “G” 

Value Double The new value The current value of the 
parameter is unchanged 

FitActive Integer =0 – not active in fitting (fixed) 
=1 – active in fitting (free) 

The current fitting 
activity of the 
parameter is unchanged 

MinLimit Double The minimum allowed value The current value of the 
parameter is unchanged 

MaxLimit Double The maximum allowed value The current value of the 
parameter is unchanged 

MinOn Integer =0 – the minimum value is not active 
=1 - the minimum value is active 

The current value of the 
parameter is unchanged 

MaxOn Integer =0 – the maximum value is not active 
=1 - the maximum value is active 

The current value of the 
parameter is unchanged 

CoupledTo Integer The coupling variable 
=0 – no coupling 

The coupling variable is 
unchanged 

 

Command name:  CopyModelParam 

Description: Makes a (destination) parameter to be the exact copy of another (source) 
parameter. 

Note: it copies ALL characteristics of the parameter, including minimum and maximum limits 
(not only the value and the fitting activity).  
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Parameters: 

Name Type Description What if omitted 
DestModelNo Integer Identity number of the destination 

model 
No action is taken 

DestParamName Text The name of the destination 
parameter. 
“Einf” - epsilon at infinity; 
“Wo” – transverse frequency; 
 “Wp” – plasma frequency; 
“G” – linewidth. 

No action is taken 

DestLorNo Integer The number of the destination 
Lorenzian (starting from 1). It is 
ignored, if 
DestParamName=”Einf” 

No action is taken in 
case DestParamName 
= ”Wo”, “Wp” or “G” 

SourceModelNo Integer Identity number of the source 
model 

No action is taken 

SourceParamName Text The name of the source  parameter. 
“Einf” - epsilon at infinity; 
“Wo” – transverse frequency; 
 “Wp” – plasma frequency; 
“G” – linewidth. 

No action is taken 

SourceLorNo Integer The number of the source 
Lorentian (starting from 1). It is 
ignored, if 
SourceParamName=”Einf” 

No action is taken in 
case 
SourceParamName = 
”Wo”, “Wp” or “G” 

 

Command name:  FixAllModelParams 

Description: Makes all the parameters of the specified model not active in fitting (fixed). 

Note: it is nice to use this command when one has to adjust a model using one set of data and 
then to use it for other purposes without fitting. For example, when extracting optical properties 
of a thin film, it is common to obtain first the dielectric function of the substrate from an 
independent measurement and then to use it as known (fixed) while analyzing spectra measured 
on the ‘film-substrate’ system. 

Parameters: 

Name Type Description What if omitted 
ModelNo Integer Model identity number No action is taken 

 

Command name:  VarDielFunc 

Description: Controls the variational dielectric functions (VDFs) (see sections 2.2.4, 2.2.5 and 
4.6.3). It can initialize the anchor mesh on the base of up to three source datasets, and/or 
change the properties of the VDF. 
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Note: If none of the three source datasets is specified, then the mesh is not initialized (only the 
VDF properties are affected. 

Parameters: 

Name Type Description What if omitted 
ModelNo Integer Identity number of the Model, 

which hosts the VDF 
No action is taken 

Source1DatasetNo Integer Dataset number, which is used as a 
1st source of anchor points 

The 1st source of 
anchor points is not 
used 

Source1Every2nd Integer = 1, if every second point from the 
1st source should be used 
= 0, if all points from the 1st source 
should be used 

Assumed to be 0 

Source2DatasetNo Integer Dataset number, which is used as a 
2nd source of anchor points 

The 2nd source of 
anchor points is not 
used. 

Source2Every2nd Integer = 1, if every second point from the 
2nd source should be used 
= 0, if all points from the 2nd source 
should be used 

Assumed to be 0. 

Source3DatasetNo Integer Dataset number, which is used as a 
3rd source of anchor points 

The 3rd source of 
anchor points is not 
used. 

Source3Every2nd Integer = 1, if every second point from the 
3rd source should be used 
= 0, if all points from the 3rd source 
should be used 

Assumed to be 0. 

KK Integer = 1, KK-constrained 
= 0, not KK-constrained 

Does not change the 
KK regime, if no 
sources of anchor 
points are specified. 
 
Assumed to be 1, if  
sources of anchor 
points are specified. 

On Integer = 1, On (activated) 
= 0, Off (deactivated) 

Does not change the 
On/off status, if no 
sources of anchor 
points are specified. 
 
Assumed to be 1, if  
sources of anchor 
points are specified.. 

FitActive Integer = 1, active in fit (adjustable) 
= 0, not active in fit (fixed) 

Does not change the 
‘Active in fit’ status, 
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if no sources of 
anchor points are 
specified. 
 
Assumed to be 1, if  
sources of anchor 
points are specified. 

 

Command name:  FreeShape 

Description: Emulates the pressing of buttons F4, F5, F6 and F7 in the model window. Note: 
these buttons are used to set up the so called variational, or ‘free-shape’, dielectric function (see 
section 4.6.3). 

Note: this command is obsolete, and is retained for the compatibility with the previously 
written macros only. It is strongly advised to use a more powerful command VarDielFunc. 

Parameters: 

Name Type Description What if omitted 
ModelNo Integer Model identity number No action is taken 
Key Text Specifies the button to be emulated: 

“F4”, “F5”, “F6” or “F7” 
No action is taken 

 

4.11.6. Graph macro commands 

Command name:  NewGraph 

Description: Creates a new graph; moves and resizes the graph window. 

Note: when a new graph is created, it is automatically ascribed an identity number, which starts 
from 1 and increments for every new graph. It can be seen in the window title, e.g. graph #5 
has title “Graph5”. This number is used by other commands to identify this graph. 

Parameters: 

Name Type Description What if omitted 
XPos Integer Horizontal position of the left side (in 

screen pixels) 
The default value is 
assumed 

YPos Integer Vertical position of the top side (in 
screen pixels) 

The default value is 
assumed 

Width Integer Window width (in screen pixels) The default value is 
assumed 

Height Integer Window height (in screen pixels) The default value is 
assumed 

 

Command name:  GraphProperties 

Description: Sets the graph properties. 
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Parameters: 

Name Type Description What if omitted 
GraphNo Integer Graph identity number No action is taken 
XMin Double Minimal X value XMin is unchanged 
XMax Double Maximal X value XMax is unchanged 
XLog Integer =0: linear X scale 

=1: logarithmic X scale 
XLog is unchanged 

XTitle Text X title XTitle is unchanged 
YMin Double Minimal Y value YMin is unchanged 
YMax Double Maximal Y value YMax is unchanged 
YLog Integer =0: linear Y scale 

=1: logarithmic Y scale 
YLog is unchanged 

YTitle Text Y title YTitle is unchanged 
ShowFitted Integer =0: show all datapoints 

=1: show fitted datapoints only 
ShowFitted is 
unchanged (=0 by 
default) 

 

Command name:  AddDataCurve 

Description: Adds a data curve to the graph. 

Parameters: 

Name Type Description What if omitted 
GraphNo Integer Graph identity number No action is taken 
DatasetNo Integer Number of the dataset to be plotted No action is taken 
nColor Integer The curve color 

=0: AUTO (automatic incrementing) 
=1: Black 
=2: Red 
=3: Green 
=4: Blue 
=5: Cyan 
=6: Magenta 
=7: Yellow 
=8: Gray 
=9: Grass 
=10: Sky 
=11: Orange 
=12: Chalk 
=13: Brown 
=14: Sea 
=15: Gold 
=16: Khaki  

Assumed to be 0 

ShowLine Integer =0: not to show line 
=1: to show line 

Assumed to be 1 

ShowSymbol Integer =0: not to show symbol Assumed to be 1 
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=1: to show symbol 
ShowError Integer =0: not to show error bar 

=1: to show error bar 
Assumed to be 1 

nSymbolSize Integer Symbol size (only for ShowSymbol 
=1 ) 
=0: 1 pixel 
=1: 3 pixels 
=2: 5 pixels 
=3: 7 pixels 
=4: 9 pixels 
=5: 11 pixels 
=6: 13 pixels 
=7: 15 pixels 

Assumed to be 2 

nSymbolShape Integer Symbol shape (only for ShowSymbol 
=1 ) 
=0: square 
=1: circle 
=2: up triangle 
=3: down triangle 
=4: diamond 

Assumed to be 0 

SymbolOpen Integer  (only for ShowSymbol =1 ) 
=0: closed symbol 
=1: open symbol 

Assumed to be 0 

Scale Double Curve scale Assumed to be 1.0 (not 
scaled) 

Shift Double Curve shift Assumed to be 0.0 (not 
shifted) 

 

Command name:  AddModelCurve 

Description: Adds a model curve to the graph. 

Parameters: 

Name Type Description What if omitted 
GraphNo Integer Graph identity number No action is taken 
ModelNo Integer Number of the model to be plotted No action is taken 
Quantity Text Abbreviation of the quantity to be 

plotted, e.g. “R”, “S1” etc. (see Table 
4-2); 

Assumed to be “R” (i.e. 
reflectivity) 

nColor Integer The curve color  
(the same as for command 
AddDataCurve)  

Assumed to be 0 

Scale Double Curve scale Assumed to be 1.0 (not 
scaled) 

Shift Double Curve shift Assumed to be 0.0 (not 
shifted) 
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Command name:  DeleteDataCurve 

Description: Deletes data curve from the graph. 

Parameters: 

Name Type Description What if omitted 
GraphNo Integer Graph identity number No action is taken 
DatasetNo Integer Number of the dataset, which gives the 

curve to be deleted 
No action is taken 

 

Command name:  DeleteModelCurve 

Description: Deletes model curve from the graph. 

Parameters: 

Name Type Description What if omitted 
GraphNo Integer Graph identity number No action is taken 
ModelNo Integer Number of the model, which gives the 

curve to be deleted 
No action is taken 

Quantity Text Abbreviation of the quantity, which 
corresponds to the curve to be deleted 

No action is taken 

 

Command name:  ExportModelCurve 

Description: exports the spectrum of the specified model quantity to a file 

Parameters: 

Name Type Description What if omitted 
File Text The name of the file (including file 

path, if the file is not in the same 
directory, as macro file), i.e. 
“E1.DAT”, or 
“C:\MYDATA\E1.DAT”, or 
“..\EPS\E2.DAT” 

No action is taken 

ModelNo Integer The model number No action is taken 
Quantity Text Abbreviation of the quantity to be 

exported 
No action is taken 

XMin Double Minimal X (frequency) value No action is taken 
XMax Double Maximal X value No action is taken 
XPts Number Number of points to be exported No action is taken 
XGrid Number =1: linear grid 

=2: logarithmic grid 
Assumed to be 1 
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4.11.7. Experimental parameters macro commands 

Command name:  ExpParams 

Description: shows the “Experimental parameters” window on the screen and sets its position  

Parameters: 

Name Type Description What if omitted 
XPos Integer Horizontal position of the left side (in 

screen pixels) 
The position is not 
changed 

YPos Text Vertical position of the top side (in 
screen pixels) 

The position is not 
changed 

 

Command name:  SetExpParam 

Description: Sets the value and the fitting activity of the specified experimental parameter 

Parameters: 

Name Type Description What if omitted 
ParamName Text The name of the parameter. The 

possible names are: 
“Sample thickness” 
“Thickness spread” 
“Angle of incidence” 
“Angle spread” 
"Scaling factor of R" 
"Scaling factor of T" 

No action is taken 

Value Double The new value The current value of the 
parameter is unchanged 

FitActive Integer =0 – not active in fitting (fixed) 
=1 – active in fitting (free) 

The current fitting 
activity of the 
parameter is unchanged 

MinLimit Double The minimum allowed value The current value of the 
parameter is unchanged 

MaxLimit Double The maximum allowed value The current value of the 
parameter is unchanged 

MinOn Integer =0 – the minimum value is not active 
=1 - the minimum value is active 

The current value of the 
parameter is unchanged 

MaxOn Integer =0 – the maximum value is not active 
=1 - the maximum value is active 

The current value of the 
parameter is unchanged 

CoupledTo Integer The coupling variable 
=0 – no coupling 

The coupling variable is 
unchanged 

4.11.8. Fitting macro commands 

Command name:  WindowFit 
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Description: shows the “Fit” window on the screen and sets its position. 

Note: this command is not necessary to do a fit.  

Parameters: 

Name Type Description What if omitted 
XPos Integer Horizontal position of the left side (in 

screen pixels) 
The position is not 
changed 

YPos Text Vertical position of the top side (in 
screen pixels) 

The position is not 
changed 

 

Command name:  AddChiSqTerm 

Description: adds the specified chi-square term to the fitting task 

Note: the chi-square term is defined by the pair Dataset-Model. The right quantity should be 
ascribed to the dataset when loading!  

Parameters: 

Name Type Description What if omitted 
DatasetNo Integer Number of the dataset No action is taken 
ModelNo Integer Number of the model No action is taken 
Weight Double The weight of the term Assumed to be 1.0 

 

Command name:  DeleteChiSqTerm 

Description: delete the specified chi-square term from the fitting task 

Note: the chi-square term is defined by the pair dataset-model.  

Parameters: 

Name Type Description What if omitted 
DatasetNo Integer Number of the dataset No action is taken 
ModelNo Integer Number of the model No action is taken 

 

Command name:  Fit 

Description: starts the fitting process 

Note: there is no command to stop the fitting process. It will be stopped on the base of the 
termination criteria (see section 4.10.2). 

Parameters: 

Name Type Description What if omitted 
NumIters Integer The maximum number of iterations 

that will be performed 
No limit on the number 
of iterations is imposed 
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4.11.9. Loop macro commands 

The two loop commands allow to perform calculations in a cycle, for instance, to do the 
same data fitting for several temperature (or magnetic field) values. Command BeginLoop 
marks the beginning of the cycle; command EndLoop marks the end of the cycle. They  
always come in pairs. All commands enclosed between BeginLoop and EndLoop are 
executed in a cycle. 

The command BeginLoop has one text parameter “LoopFile”, which contains the name 
(with a path, if necessary) of the so-called loop file. The loop file instructs RefFIT on how to 
run the cycle. It is a text file, which has the same number of lines, as the desired number of 
cycle steps. Each line contains one or more words separated by space. The first word is the first 
cycle variable, the second word is the second variable and so forth. 

The cycle variables are used to modify parameters of the commands in the cycle. If a text 
parameter contains combination “%1”, then it will be substituted by the first cycle variable. The 
combination “%2” is substituted by the second cycle variable etc. For instance, if the first cycle 
variable is “250”, then text string “C:\MYDATA\REFL_T%1.DAT” will become 
“C:\MYDATA\REFL_T250.DAT”. Such a substitution, for example, in the File parameter of 
the LoadDataset command will cause the loading of a different dataset on each cycle step. 

One can also use combinations %1, %2 etc. (without parentheses) to set values of integer 
and double parameters. For instance, in a command SetModelParam(ModelNo = %1, 
ParamName = "Wp", LorNo = 1, Value = %2)  the values of parameters ModelNo and Value 
are set by the cycle variables. 
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