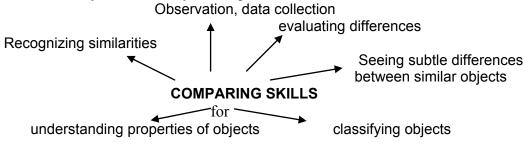
7. COMPARING THE ELEMENTS

BRAINSTORMING

1. In groups, find the similarities and differences between the words in pairs.



enthusiastic student - bored student

dolphin – submarine

Adam – Eve

- 2. What can you compare in chemistry?
- 3. What skills do you use when you compare?

LISTENING FOR NUMBERS- Abundance of the most common elements by mass.¹

1. Listen to the recording and note down the elements and the figures (percentages). Reading numbers: 0.05 %: nought point nought five percent, 50-60 %: fifty to sixty percent

Earth's crust		Sea Water		Whole Earth
Element	%	Element	%	Element %

2. Look at the figures and write sentences comparing the occurrence of the elements. Use the following expressions:

slightly more than

far more than

a bit less than

much less than

not as much ...as...

Other examples:

In the Earth's crust there is **much more** oxygen than aluminium (not as much Al as O). In sea water we can find slightly less sulphur than magnesium.

DESCRIBING SIMILARITIES AND DIFFERENCES

The Physical Properties of Six Metals

Metal	Specific	Melting Point	Boiling Point	Atomic	Ionic Radius
	Gravity	(°C)	(°C)	Radius (Å)	(Å)
Group I					
Copper	8.9	1083	2595	1.17	.96
Silver	10.5	960	2212	1.34	1.26
Gold	19.3	1063	2966	1.34	1.37
Group II					
Zinc	7.14	420	907	1.25	.74
Cadmium	8.65	321	765	1.41	.96
Mercury	13.60	-38.87	357	1.44	1.1

1.	Circle the answer	that best com	pletes the	e statement	according to	the informa	tion in	the c	hart.

a	The atomic radius o	t cadmium is	that of mercury.
---	---------------------	--------------	------------------

- 1. as high as 2. not as high as
- b) mercury, cadmium has a high boiling point.
 - 2. Compared to
- c) The specific gravity of cadmium and copper are
 - 2. identical 1. similar
- d) Compared to the other metals in this table, gold has specific gravity.
 - 1. a relatively high 2. the highest
- e) The properties of cadmium and zinc are
 - 2. identical 1. comparable
- f) Copper and gold have high boiling points.
 - 2. equally (=identically) 1. comparatively
- g) The melting points of the Group II metals are those of Group I.
 - 1. lower than 2. as low as
- h) The ionic radius of copper is to that of cadmium.
 - 1. similar 2. equal

2. Speaking

Work in pairs and describe this table as a part of your presentation

Do not describe every number. You need to look at the important trends or characteristics and give a comparison or general overview.

Use the typical phrases, for example:

This is a table which shows ... OK. Let's take a look at ...

As you can see on the left side of the table, ...

The first / second / next / column – row shows

The top row shows... / refers to .../specifies

WRITING

SHOWING SIMILARITIES

A is	<u>like</u> <u>as</u> important <u>as</u> similar to	В
	comparable to	

The properties of these metals are	equal / identical.
	similar / comparable.

A	resembles	B in many ways.
	parallels	

Both carbon dioxide **and** hydrogen are gases. Carbon dioxide and hydrogen are **both** gases.

SHOWING DIFFERENCES

X	is unlike is different from	Υ.
	differs from	

X is less e	nuch) heavier than xpensive than Y.	
-------------	-------------------------------------	--

Unlike X,	
In contrast to X,	Y is light.
Compared to X,	
In comparison to X,	

X is heavy,	whereas / while/whilst	Y	is light.

X is a	relatively	soft metal.
	comparatively	

Write a paragraph comparing these metals. Use some of the sentence structures mentioned above.

	atomic weight	occurrence on the Earth	density	corrosion resistant	
aluminium	26.982	crust	2.70 g/cm ³	yes	
iron	55.845	core, crust	7.87 g/cm ³	no	
magnesium	1 24.305	crust, sea water	1.74 g/cm ³	no	

READING

THE WONDER METALS

Vocabulary:

make a discovery (v+n) – učinit objev all but 20 – všechny kromě 20 rarely (adv) – málokdy, zřídka extract (v) – vytěžit, extrahovat major component (adj+n) – hlavní složka remain (v) – zůstávat, zbývat stainless steel (adj+n) – nerezová ocel cast iron (adj+n) – litina abundant(adj) /abundance(n) – hojný/hojnost emerge (v) – objevit se supply (n) – zásoba withstand heat (v+n) – odolat teplu

1. Read the text and complete the gaps with these forms of adjectives:

lighter, stronger, more chemically active, more durable, more resistant to corrosion, less abundant the most widely used

The study of metals began in the Middle Ages when alchemists searched for a technique to convert "base metals", like lead, to gold. They never succeeded in making gold but at least by experimenting with the metals (in contrast to the ancient Greeks, who only speculated about them) they made discoveries.

All but 20 of the over 100 elements identified to date are metals but only 7 of these are common in the earth's crust. Iron, 1 ______ metal, is rarely found in the free state (not combined with other metals) and must be extracted from naturally occurring compounds (ores) such as hematite, magnetite, and pyrite. The beautiful colors of rocks are due to these iron compounds. In fact, iron pyrite is often called fool's gold because of the similarity of its color to gold. Iron is very strongly magnetic, and the fact that the earth is a magnet itself tipped scientists off to the fact that iron is a major component of the earth's core, or centre.

Pure iron is a relatively soft, silvery metal that is very active chemically (that is, it combines with oxygen to corrode or form rust). It is usually mixed with other elements or compounds to form alloys such as steel, stainless steel, or cast iron, which are 2_____ and rust resistant than pure iron.

Aluminum is the most abundant metal, but it was not used until a century ago because it is so active chemically and difficult to extract. Like iron it is soft, but in contrast to iron and steel, aluminum is very light and 3______. These qualities make it useful for airplanes, trains, automobiles, and rockets.

In the 1940s, magnesium emerged as an important metal. Although it is

4______ in the earth, 5_____, and harder to extract than aluminum, it is present in sea water and that means there is almost an endless supply of it.

In the space age, the extraordinary properties of titanium have made it the new

In the space age, the extraordinary properties of titanium have made it the new wonder metal. 6_____ and 7____ than steel, it is more resistant to corrosion and able to withstand heat.

The remaining major metals are sodium, potassium, and calcium, all too active chemically (they react violently with water) for use in construction.

2. Speaking. Discuss these questions in pairs:

- 1. Did alchemists contribute to the progress of chemistry? How?
- 2. How can iron be obtained? obtain = získat
- 3. How do we know that iron is in the Earth's core?
- 4. How are the iron alloys different from iron in properties?
- 5. What are the advantages of Al over Fe?
- 6. Which metal is stronger than steel?

3. Test your vocabulary. Which words go to these phrases from the reading?

1. succeeded making gold	6. Al is difficultextract
2. they discoveries	7. in contrast iron
3. all 20	8. Mg emerged an important metal
4. such hematite, magnetite, and	9. able to heat
pyrite	10. react with water
5. similarity of its color gold	

Names of chemical elements

Listening. Listen to the song of the elements by Tom Lehrer and fill in the gaps. Available at http://www.privatehand.com/flash/elements.html, Transcript http://www.edu-cyberpg.com/iec/elementsong.html

There's antimony, arsenic, aluminum,	There's holmium and helium and hafnium		
selenium,	and erbium,		
And hydrogen and and	And and francium and		
nitrogen and rhenium.	fluorine and terbium.		
And nickel, neodymium, neptunium,	And manganese and mercury,		
germanium,			
And, americium, ruthenium,	molybdenum,		
uranium,	cesium,		
Europium, zirconium, lutetium, vanadium,	And lead, praseodymium, and platinum,		
And lanthanum and osmium and astatine and	plutonium,		
	Palladium, promethium,		
And gold, protactinium and indium and	polonium,		
gallium,	Tantalum, technetium, titanium, tellurium,		
And and thorium and thulium	And cadmium and and chromium and curium.		
and thallium.	chromium and curium.		
There's yttrium, ytterbium, actinium,	There's sulfur, californium and fermium,		
And boron, gadolinium, niobium, iridium.	berkelium,		
And strontium and and	And also mendelevium, einsteinium and		
silver and samarium,	nobelium.		
And bismuth, bromine, lithium, beryllium	And argon,, neon, radon,		
and barium.	xenon, zinc and rhodium,		
	And chlorine, carbon, cobalt, copper,		
	Tungsten, tin and		
	These are the only ones of which the news		
	has come to Harvard,		
	And there may be many others but they		
	haven't been discovered.		

HOMEWORK

Complete the gaps in the following list of common chemical elements.

	Al	gold	Au	oxygen	0
argon	Ar		He		Р
barium	Ва	hydrogen	Н	platinum	Pt
beryllium	Be		I		K
	В	iron	Fe		Si
bromine	Br		Pb	silver	Ag
	Cd	lithium	Li		Na
	Ca		Mg	strontium	Sr
carbon	С	manganese	Mn		S
	CI		Hg	tin	Sn
chromium	Cr	neon	Ne		W
	Cu		Ni	xenon	Xe
fluorine	F	_	N		Zn

GRAMMAR

Použijte slov v závorkách a dokončete věty. Použijte **much / a bit** + *druhý stupeň*, popř. **than**:

- 1. Her illness was *much more serious than* we thought at first. (much / serious)

- 4. You looked depressed this morning but you look now. (a bit / happy)
- d) Dokončete věty, použijte as.....as:
 - 1. I'm quite tall but you are taller. I'm not as tall as you.
 - 2. My salary is high but yours is higher. My salary isn't
 - 3. You know a bit about cars but I know more. You don't
 - 4. It's still cold but it was colder yesterday. It isn't
- e) Vytvořte věty, kde použijete the same as:
 - 1. Sally and Kate are both 22 years old. Sally is the same age as Kate.
 - 2. You and I both have dark brown hair. Your hair
 - 3. I arrived at 10:25 and so did you. I
 - 4. My birthday is 5 April. Tom's birthday is 5 April, too. My
- f) Dokončete věty. Použijte than.... nebo as:
 - 1. I can't reach as high as you. You are taller *than me*.
 - 2. He doesn't know much. I know more
 - 3. I don't work particularly hard. Most people work as hard
 - 4. We were very surprised. Nobody was more surprised......

Sources: Lesson based on Zimmerman, F.: English for Science, Prentice Hall, Inc., London, 1989.

¹Bates, Martin and Dudley-Evans, Tony: Nucleus of General Science. Longman 1990. Unit 9, Listening Practice 1.

³ Raymond Murphy: English Grammar in Use second edition, Cambridge University Press 1994.

Hana Němcová, English for Biologists