Goniometrické rovnice (Seminář z matematiky i - m1130/02 2014) (1) Řešte v IR rovnice: (a) 2 sin * — sin* = 0 (b) sin2*+ 2sin*-3 =0 (c) cos*(2cos* + 1) = 1 (d) v/3tg2* + 2tg*- ^ = 0 (e) 3 sin* = 2cos2* (f) sin* + cos2* = - 4 (g) 3cos2* — 4cos*— sin2* — 2 = 0 (h) cos 2* +sin* = 0 (i) sin* = cos* (j) sin*+ \/3 cos* = 0 /i x sinjc (k) —-pr + cos* = 1 (1) y/3sin* + cos* = v7^ * = U {f+ 2ta} K= (J {^: + 2ta, f+2ta, |^: + 2ta} ^ = U {f +ta, f^ + ta} £ = U {f +2ta, §rc + 2Jbr} A:= U {g7T + 2ta, ^-^: + 2ta} A:= U {f + 2ta, \% + 2k%, ^n + lkn} K= U {f+ta} * = U {|^+ta} £ = U {2kK,§ + 2k7t} ke2 K= (J {f +2ta,f + 2ta} jfceZ (2) Řešte v IR následující rovnice (nezapomeňte stanovit podmínky, je-li to třeba): (a) sin2* + cos2* = 1 +tg* (b) sin (*+f)+cos (*+§) = l+cos2* (c) sin 2* — cos2 2* = cos 2* K= U {ta,f+*f} A:= U {f+ta, f+2ta, f^: + 2ta} K= U {f+ta, |7r + ta, f+ta} jfceZ (d) COSJC +sinjc cos2jc 1 — sin2jc (e) cos4x — sin4x = únlx sinjc + sin3jc (f) cosjc — cos3jc (g) cosjccos2jc = cos4jccos5jc (h) sin3jc = 2 siru (i) tgx— sku + cosjc = 1 (j) 2sin2jc + cosjc = 2sin2jc COSJC+ 1 (k) ^±3^ = i 1 — V3tgx 3 (1) sin2 2x + sin2 4x= - (m) |sku| = sinjc + 2 , 4 (n) |tgjc + cotgjc| = -j= K= U {ln + kn,2kn, \n + 2kn} K= U {f+*f} jfceZ K= U {1+kTt} kel k= u m kel kei kel * = U {f+*f,f+*f,f+*f} K= (J {§rc + 2Jbr} kel