#------------------ # Testovani hypotez #------------------ # Prvni priklad - chlapci # Nacteni dat load("cviceni3.RData") x <- data3$pr1$x n <- length(x) alpha <- 0.05 # prvni zpusob ux <- (mean(x)-136.1)/6.4*sqrt(n) kvantil <- qnorm(1-alpha) # druhy zpusob 1 - pnorm(mean(x),mean=136.1,sd=6.4/sqrt(n)) # treti zpusob D <- mean(x) - kvantil*6.4/sqrt(n) # ctvrty zpusob - pro nezname sigma library("TeachingDemos") z.test(x,mu=136.1,alternative="greater",sd=6.4) # Druhy priklad - hnojiva # Nacteni dat load("cviceni3.RData") x <- data3$pr2$x y <- data3$pr2$y alpha <- 0.05 n1 <- length(x) n2 <- length(y) s1 <- sd(x) s2 <- sd(y) # a) f <- (s1/s2)^2 kvantil1 <- qf(1-alpha/2,n1-1,n2-1) kvantil2 <- 1/qf(1-alpha/2,n2-1,n1-1) # b) 2*min(1-pf(var(x)/var(y),n1-1,n2-1),pf(var(x)/var(y),n1-1,n2-1)) # c) D <- (s1/s2)^2/kvantil1 H <- (s1/s2)^2/kvantil2 # d) var.test(x,y) # I prumer_x <- mean(x) prumer_y <- mean(y) s12 <- sqrt(((n1-1)*s1^2+(n2-1)*s2^2)/(n1+n2-2)) kvantil <- qt(1-alpha/2,n1+n2-2) t <- (prumer_x - prumer_y)/s12*sqrt((n1*n2)/(n1+n2)) # II p <- 2*(1-pt(t,n1+n2-2)) # III D <- prumer_x - prumer_y - kvantil*s12*sqrt((n1+n2)/(n1*n2)) H <- prumer_x - prumer_y + kvantil*s12*sqrt((n1+n2)/(n1*n2)) # IV t.test(x,y,var.equal=T) # Treti priklad - listy # Nacteni dat load("cviceni3.RData") x <- data3$pr3$x y <- data3$pr3$y z <- x - y alpha <- 0.05 n <- length(z) prumer <- mean(z) odchylka <- sd(z) kvantil <- qt(1-alpha/2,n-1) # I t <- prumer/odchylka*sqrt(n) # II p <- 2*(1-pt(t,n-1)) # III D <- prumer - kvantil*odchylka/sqrt(n) H <- prumer + kvantil*odchylka/sqrt(n) # IV t.test(x,y,paired=T) # Ctvrty priklad - mince # Nacteni dat n <- 40 rub <- 22 lic <- n - rub alpha <- 0.05 # vypocet prumer <- rub/n odchylka <- sqrt(prumer*(1-prumer)) kvantil <- qnorm(1-alpha/2) # I u <- (prumer - 0.5)*sqrt(n)/odchylka # II p <- 2*(1-pnorm(u)) # III D <- prumer - kvantil*odchylka/sqrt(n) H <- prumer + kvantil*odchylka/sqrt(n) # IV binom.test(rub,n) #-----------------------------------------------------------------------------------