Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 – 1965): Americký statistik a chemik Nechť X1, ..., Xn je náhodný výběr ze spojitého rozložení s hustotou φ(x), která je symetrická kolem mediánu x0,50, tj. φ(x0,50 + x) = φ(x0,50 - x). Nechť c je reálná konstanta. Testujeme hypotézu H0: x0,50 = c proti oboustranné alternativě H1: x0,50 ≠ c nebo proti levostranné alternativě H1: x0,50 < c nebo proti pravostranné alternativě H1: x0,50 > c. Postup provedení testu: a) Utvoříme rozdíly Di = Xi – c, i = 1, ..., n. (Jsou-li některé rozdíly nulové, pak za n bereme jen počet nenulových hodnot.) b) Absolutní hodnoty │Di│uspořádáme vzestupně podle velikosti a spočteme pořadí Ri. c) Zavedeme statistiky ∑ > ++ = 0D iW i RS , což je součet pořadí přes kladné hodnoty Di, ∑ < −− = 0D iW i RS , což je součet pořadí přes záporné hodnoty Di. Přitom platí, že součet SW + + SW = n(n+1)/2. Je-li H0 pravdivá, pak E(SW + ) = n(n+1)/4 a D(SW + ) = n(n+1)(2n+1)/24. d) Testová statistika = min(SW + , SW ) pro oboustrannou alternativu, = SW + pro levostrannou alternativu, = SW pro pravostrannou alternativu. e) H0 zamítáme na hladině významnosti α, když testová statistika je menší nebo rovna tabelované kritické hodnotě. Asymptotická varianta jednovýběrového Wilcoxonova testu: Pro n ≥ 30 lze využít asymptotické normality statistiky SW + . Platí-li H0, pak ( ) ( ) 24 )1n2)(1n(n 4 )1n(n W W WW 0 S SD SES U ++ ++ + ++ − = − = ≈ N(0,1). Kritický obor: pro oboustrannou alternativu W = ( )∞∪−∞− α−α− ,uu, 2/12/1 , pro levostrannou alternativu W = ( α− −∞− 1 u, , pro pravostrannou alternativu W = )∞α− ,u1 H0 zamítáme na asymptotické hladině významnosti α, když WU0 ∈ . Příklad: U 12 náhodně vybraných zemí bylo zjištěno procento populace starší 60 let: 4,9 6,0 6,9 17,6 4,5 12,3 5,7 5,3 9,6 13,5 15,7 7,7. Na hladině významnosti 0,05 testujte hypotézu, že medián procenta populace starší 60 let je 12 proti oboustranné alternativě. Řešení: Testujeme hypotézu H0: x0,50 = 12 proti oboustranné alternativě H1: x0,50 ≠ 12. Vypočteme rozdíly pozorovaných hodnot od čísla 12: -7,1 -6,0 -5,1 5,6 -7,5 0,3 -6,3 -6,7 -2,4 1,5 3,7 -4,3. Absolutní hodnoty těchto rozdílů uspořádáme vzestupně podle velikosti. Kladné rozdíly přitom označíme červeně: usp. │ xi – 12│ 0,3 1,5 2,4 3,7 4,3 5,1 5,6 6 6,3 6,7 7,1 7,5 pořadí 1 2 3 4 5 6 7 8 9 10 11 12 SW + = 1 + 2 + 4 + 7 =14, SW = 3 + 5 + 6 + 8 + 9 + 10 + 11 + 12 = 64, n = 12, α = 0,05, tabelovaná kritická hodnota pro n = 12 a α = 0,05 je 13, testová statistika = min(SW + , SW ) = min(14,64) = 14. Protože 14 > 13, H0 nezamítáme na hladině významnosti 0,05. Znamená to, že na hladině významnosti 0,05 se nepodařilo prokázat, že aspoň v polovině zemí by se podíl populace nad 60 let odlišoval od 12 %. Výpočet pomocí systému STATISTICA: Utvoříme nový datový soubor se dvěma proměnnými a 12 případy. Do proměnné procento napíšeme zjištěné hodnoty a do proměnné konst uložíme číslo 12. Statistiky – Neparametrická statistika – Porovnání dvou závislých vzorků – OK – 1. seznam proměnných rozdil, Druhý seznam proměnných konst – OK – Wilcoxonův párový test. Wilcoxonův párový test (populace_nad_60) Označené testy jsou významné na hladině p <,05000 Dvojice proměnných Počet platných T Z Úroveň p procento & konst 12 14,00000 1,961161 0,049861 Výstupní tabulka poskytne hodnotu testové statistiky SW+ (zde označena T), hodnotu asymptotické testové statistiky U0 a p-hodnotu pro U0. V tomto případě je p-hodnota 0,049861, tedy nulová hypotéza se zamítá na asymptotické hladině významnosti 0,05. Tento výsledek je v rozporu s výsledkem, ke kterému jsme dospěli při přesném výpočtu. Je to způsobeno tím, že není splněna podmínka pro využití asymptotické normality statistiky SW+ , tj. n ≥ 30. Párový Wilcoxonův test (nerametrická obdoba párového t-testu) Nechť (X1, Y1), ..., (Xn, Yn) je náhodný výběr ze spojitého dvourozměrného rozložení. Testujeme H0: x0,50 - y0,50 = c proti H1: x0,50 - y0,50 ≠ c (resp. proti jednostranným alternativám). Utvoříme rozdíly Zi = Xi – Yi, i = 1, ..., n a testujeme hypotézu o mediánu z0,50, tj. H0: z0,50 = c proti H1: z0,50 ≠ c. Příklad: K zjištění cenových rozdílů mezi určitými dvěma druhy zboží bylo náhodně vybráno 15 prodejen a byly zjištěny ceny zboží A a ceny zboží B: (11,10), (14,11), (11,9), (13,9), (11,9), (10,9), (12,10), (10,8), (12,11), (11,9), (13,10), (14,10), (14,12), (19,15), (14,12). Na hladině významnosti 0,05 je třeba testovat hypotézu, že medián cenových rozdílů činí 3 Kč. Řešení:Testujeme H0: z0,50 = 3 proti oboustranné alternativě H1: z0,50 ≠ 3, kde z0,50 je medián rozložení, z něhož pochází rozdílový náhodný výběr Z1 = X1 – Y1, … Z15 = X15 – Y15.Vypočteme rozdíly mezi cenou zboží A a cenou zboží B, čímž úlohu převedeme na jednovýběrový test. Výpočty uspořádáme do tabulky: č. prodejny cena zboží A cena zboží B rozdíl |rozdíl-medián| pořadí 1 11 10 1 2 12 2 14 11 3 0 - 3 11 9 2 1 5,5 4 13 9 4 1 5,5 5 11 9 2 1 5,5 6 10 9 1 2 12 7 12 10 2 1 5,5 8 10 8 2 1 5,5 9 12 11 1 2 12 10 11 9 2 1 5,5 11 13 10 3 0 - 12 14 10 4 1 5,5 13 14 12 2 1 5,5 14 19 15 4 1 5,5 15 14 12 2 1 5,5 (Tučně jsou vytištěna pořadí pro kladné hodnoty rozdíl - medián.) SW + = 5,5 + 5,5 + 5,5 = 16,5, SW = 12 + 5,5 + 5,5 + 12 + 5,5 + 5,5 + 12 + 5,5 + 5,5 + 5,5 = 74,5, n = 13, α = 0,05, tabelovaná kritická hodnota = 17, testová statistika = min(SW + , SW ) = min(16,5; 74,5) = 16,5. Protože 16,5 ≤ 17, H0 zamítáme na hladině významnosti 0,05. Výpočet pomocí systému STATISTICA: Vytvoříme nový datový soubor se čtyřmi proměnnými A, B, rozdíl, konst a 15 případy. Do proměnných A, B napíšeme ceny zboží A a B, do proměnné rozdíl uložíme rozdíl cen A a B a do proměnné konst uložíme číslo 3. Statistiky – Neparametrická statistika – Porovnání dvou závislých vzorků – OK – 1. seznam proměnných rozdil, 2. seznam proměnných konst – OK – Wilcoxonův párový test. Wilcoxonův párový test (ceny zbozi) Označené testy jsou významné na hladině p <,05000 Dvojice proměnných Počet platných T Z Úroveň p rozdil & konst 15 16,50000 2,026684 0,042696 Testová statistika (zde označená jako T) nabývá hodnoty 16,5, asymptotická testová statistika (označená jako Z) nabývá hodnoty 2,026684, odpovídající asymptotická p-hodnota je 0,042696, tedy na asymptotické hladině významnosti 0,05 nulovou hypotézu zamítáme. Příklad (na asymptotickou variantu Wilcoxonova testu): 30 náhodně vybraných osob mělo nezávisle na sobě bez předchozího nácviku odhadnout, kdy od daného signálu uplyne právě 1 minuta. Byly získány následující výsledky (v sekundách): 53 48 45 55 63 51 66 56 50 58 61 51 64 63 59 47 46 58 52 56 61 57 48 62 54 49 51 46 53 58. Na asymptotické hladině významnosti 0,05 testujte hypotézu, že medián rozložení, z něhož daný náhodný výběr pochází, je 60 sekund proti oboustranné alternativě (nulová hypotéza vlastně tvrdí, že polovina osob délku jedné minuty podhodnotí a druhá nadhodnotí). Řešení: Testujeme H0: x0,50 = 60 proti oboustranné alternativě H1: x0,50 ≠ 60. Obvyklým způsobem stanovíme statistiku SW + = 55. Asymptotická testová statistika: ( ) ( ) 65,3 55S SD SES U 24 )130.2)(130(30 4 )130(30 24 )1n2)(1n(n 4 )1n(n W W WW 0 −= − = − = − = ++ + ++ ++ + ++ Kritický obor: W = ( ) ( ) ( )∞∪−∞−=∞∪−∞−=∞∪−∞− α−α− ,96,196,1,,uu,,uu, 975,0975,02/12/1 . Testová statistika se realizuje v kritickém oboru, tedy H0 zamítáme na asymptotické hladině významnosti 0,05. S rizikem omylu nejvýše 5% jsme tedy prokázali, že pravděpodobnost nadhodnocení jedné minuty není stejná jako pravděpodobnost podhodnocení. Výpočet pomocí systému STATISTICA: Utvoříme nový datový soubor se dvěma proměnnými a 30 případy. Do proměnné odhad napíšeme zjištěné hodnoty a do proměnné konst uložíme číslo 60. Statistiky – Neparametrická statistika – Porovnání dvou závislých vzorků – OK – 1. seznam proměnných odhad, 2. seznam proměnných konst – OK – Wilcoxonův párový test. Wilcoxonův párový test (odhad minuty) Označené testy jsou významné na hladině p <,05000 Dvojice proměnných Počet platných T Z Úroveň p odhad & konst 30 55,00000 3,650880 0,000261 Testová statistika (zde označená jako T) nabývá hodnoty 55, asymptotická testová statistika (označená jako Z) nabývá hodnoty 3,65088, odpovídající asymptotická p-hodnota je 0,000261, tedy na asymptotické hladině významnosti 0,05 nulovou hypotézu zamítáme. Dvouvýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba dvouvýběrového t-testu) Nechť X1, ..., Xn a Y1, ..., Ym jsou dva nezávislé náhodné výběry ze dvou spojitých rozložení, jejichž distribuční funkce se mohou lišit pouze posunutím. Označme x0,50 medián prvního rozložení a y0,50 medián druhého rozložení. Na hladině významnosti 0,05 testujeme hypotézu, že distribuční funkce těchto rozložení jsou shodné neboli mediány jsou shodné proti alternativě, že jsou rozdílné, tj. H0: x0,50 - y0,50 = 0 proti H1: x0,50 - y0,50 ≠ 0. Postup provedení testu: a) Všech n + m hodnot X1, ..., Xn a Y1, ..., Ym uspořádáme vzestupně podle velikosti. b) Zjistíme součet pořadí hodnot X1, ..., Xn a označíme ho T1. Součet pořadí hodnot Y1, ..., Ym označíme T2. c) Vypočteme statistiky U1 = mn + n(n+1)/2 – T1 , U2 = mn + m(m+1)/2 - T2. Přitom platí U1 + U2 = mn. d) Pokud min(U1,U2) ≤ tabelovaná kritická hodnota (pro dané rozsahy výběrů m, n a dané α), pak nulovou hypotézu o totožnosti obou distribučních funkcí zamítáme na hladině významnosti α. V tabulkách: n = min{m,n} a m = max{m,n}. Asymptotická varianta dvouvýběrového Wilcoxonova testu: Pro velká n, m (n, m > 30) lze využít asymptotické normality statistiky U1. Platí-li H0, pak 12 )1nm(mn 2 mn 1 0 U U ++ − = ≈ N(0,1), kde U1 = min(U1,U2). Kritický obor: pro oboustrannou alternativu W = ( )∞∪−∞− α−α− ,uu, 2/12/1 , pro levostrannou alternativu W = ( α− −∞− 1 u, , pro pravostrannou alternativu W = )∞α− ,u1 H0 zamítáme na asymptotické hladině významnosti α, když WU0 ∈ . Předpoklady použití dvouvýběrového Wilcoxonova testu: - dané dva náhodné výběry jsou nezávislé - rozložení, z nichž dané dva náhodné výběry pocházejí, jsou spojitá - distribuční funkce těchto rozložení se mohou lišit pouze posunutím - sledovaná veličina má aspoň ordinální charakter Příklad: Bylo vybráno 10 polí stejné kvality. Na čtyřech z nich se zkoušel nový způsob hnojení, zbylých šest bylo ošetřeno starým způsobem. Pole byla oseta pšenicí a sledoval se její hektarový výnos. Je třeba zjistit, zda nový způsob hnojení má týž vliv na průměrné hektarové výnosy pšenice jako starý způsob hnojení. hektarové výnosy při novém způsobu: 51 52 49 55 hektarové výnosy při starém způsobu: 45 54 48 44 53 50 Test proveďte na hladině významnosti 0,05. Řešení: Na hladině významnosti 0,05 testujeme H0: x0,50 - y0,50 = 0 proti oboustranné alternativě H1: x0,50 - y0,50 ≠ 0. usp. hodnoty 44 45 48 49 50 51 52 53 54 55 pořadí x-ových hodnot 4 6 7 10 pořadí y-ových hodnot 1 2 3 5 8 9 T1 = 4 + 6 + 7 + 10 = 27, T2 = 1 + 2 + 3 + 5 + 8 + 9 = 28 U1 = 4.6 + 4.5/2 - 27 = 7, U2 = 4.6 + 6.7/2 - 28 = 17 Kritická hodnota pro α = 0,05, min(4,6) = 4, max(4,6) = 6 je 2. Protože min(7,17) = 7 > 2, nemůžeme na hladině významnosti 0,05 zamítnout hypotézu, že nový způsob hnojení má na hektarové výnosy pšenice stejný vliv jako starý způsob. Výpočet pomocí systému STATISTICA: Utvoříme nový datový soubor se dvěma proměnnými a 10 případy. Do proměnné vynos napíšeme zjištěné hodnoty a do proměnné hnojeni napíšeme 4x číslo 1 pro nový způsob hnojení a 6x číslo 2 pro starý způsob hnojení. Statistiky – Neparametrická statistika – Porovnání dvou nezávislých vzorků – OK – Proměnné – Seznam závislých proměnných vynos, Nezáv. (grupov.) proměnná hnojeni – OK – M-W U test. Upozornění: Ve STATISTICE je dvouvýběrový Wilcoxonův test uveden pod názvem Mannův – Whitneyův test. Mann-Whitneyův U test (vynos) Dle proměn. hnojeni Označené testy jsou významné na hladině p <,05000 Proměnná Sčt poř. skup. 1 Sčt poř. skup. 2 U Z Úroveň p Z upravené Úroveň p N platn. skup. 1 N platn. skup. 2 2*1str. přesné p vynos 27,00000 28,00000 7,000000 1,066004 0,286423 1,066004 0,286423 4 6 0,352381 Ve výstupní tabulce jsou součty pořadí T1, T2, hodnota testové statistiky min(U1, U2) označená U, hodnota asymptotické testové statistiky U0 (označená Z), asymptotická p-hodnota pro U0 a přesná p-hodnota (ozn. 2*1str. přesné p – ta se používá pro rozsahy výběrů pod 30). V našem případě přesná p-hodnota = 0,352381, tedy H0 nezamítáme na hladině významnosti 0,05. Výpočet je vhodné doplnit krabicovým diagramem. Krabicový graf dle skupin Proměnná:vynos Medián 25%-75% Min-Max 1 2 hnojeni 42 44 46 48 50 52 54 56 vynos Je zřejmé, že výnosy při starém způsobu hnojení jsou vesměs nižší než při novém způsobu a také vykazují mnohem větší variabilitu.