Modelové interakce jaderných receptorů a enzymových systémů Olefsky J M J. Biol. Chem. 2001;276:36863-36864 JADERNÉ RECEPTORY JADERNÉ RECEPTORY http://www.ens-lyon.fr/LBMC/laudet/nurebase/nurebase.html General design of transcription factors in nuclearreceptor superfamily. The centrally located DNAbinding domain exhibits considerable sequence homology among different receptors and has the C4 zinc-finger motif. The C-terminal hormonebinding domain exhibits somewhat less homology. The N-terminal regions in various receptors vary in length, have unique sequences, and may contain one or more activation domains. This general pattern has been found in the estrogen receptor (553 amino acids [aa]), progesterone receptor (946 aa), glucocorticoid receptor (777 aa), thyroid hormone receptor (408 aa), and retinoic acid receptor (432 aa). [See R. M. Evans, 1988, Science 240:889.] A: Unliganded heterodimerizing receptors, exemplified here by VDR, exist as weakly associated heterodimers with RXR, presumably bound nonspecifically to DNA [Haussler et al., 1998]. Binding of the 1,25(OH)2D3 ligand to VDR (1) promotes high-affinity heterodimerization with RXR accompanied by binding of the heterodimer to its direct repeat VDRE (2). B: Unliganded GR, like other receptors in group (d) (see Fig. 2), exists as a complex with heat shock proteins in the cytoplasm. Upon binding its cortisol ligand (1), GR dissociates from the cytoplasmic complex, translocates to the nucleus and forms a homodimer on its palindromic GRE (2). Triggered by a ligand-mediated change in GR conformation, the AF1 and AF2 domains then synergize to promote a series of events (3–6) involving the recruitment of coregulatory complexes similar to those described for the VDR-RXR heterodimer, but with some distinctive features. Evoluce jaderných receptorů Many family members have been identified by DNA sequencing only, and their ligand is not yet known; these proteins are therefore referred to as orphan nuclear receptors. The importance of such nuclear receptors in some animals is indicated by the fact that 1–2% of the genes in the nematode C. elegans code for them, although there are fewer than 50 in humans. Syntéza ligandů Jaderné receptory Transaktivace Metabolismus ligandů Cílové geny (metabolismus, kontrola buněčné proliferace, diferenciace a apoptózy) Toxické látky, farmaka ????? Nízkomolekulární lipofilní sloučeniny jako ligandy = aktivita jaderných receptorů je do značné míry závislá na syntéze a degradaci ligandů a naopak Úloha jaderných receptorů a enzymů katalyzujících degradaci nebo syntézu jejich ligandů: • endokrinní regulace - steroidní hormony, thyroidní hormony; • regulace signálních drah – eikosanoidy, metabolismus kyseliny retinové, vitamínu D3; • metabolismus lipidů; • metabolismus xenobiotik; Modelový příklad 1: Metamorfóza hmyzu Regulation of insect metamorphosis. (A) Structures of juvenile hormone, ecdysone, and the active molting hormone 20- hydroxyecdysone. (B) General pathway of insect metamorphosis. Ecdysone and juvenile hormone together cause molts to keep the status quo and form another larval instar. When there is a lower concentration of juvenile hormone, the ecdysoneinduced molt produces a pupa. When ecdysone acts in the absence of juvenile hormone, the imaginal discs differentiate, and the molt gives rise to the adult Formation of the ecdysone receptors. Alternative mRNA splicing of the ecdysone receptor (EcR) transcript creates three types of EcR mRNAs. These generate proteins having the same DNA-binding site (blue) and hydroxyecdysone-binding site (red), but with very different amino termini. Three isoforms of EcR have been identified in insects, each with a different, stage-specific role in regulation of molting and development. This allows for one steroid hormone to induce a variety of different tissue responses. In general, EcR A is predominant when cells are undergoing a maturation response (from juvenile to adult) and is predominant in imaginal discs, whereas EcR B1 predominates in juvenile cells during proliferation or regression. Little is known about the function of the EcR B2 isoform. DNA and hormone binding are similar in the three isoforms of EcR. Little is known about the crustacean EcR isoforms and how they change during the molt cycle. However, the EcR that has been cloned from the crab, Uca pugilator (U31817, GenBank), shares 85–87% homology with that of Drosophila (M74078, GenBank). The differences are primarily in the region of the molecule involved with dimerization. Similar sequence similarities are found between the heterodimeric partner, USP. There are several ecdysteroids which bind EcR, including 20-hydroxyecdysone, turkesterone, makisterone A, ponasterone A, and muristerone A. Some arthropods may use specific ecdysteroids as their principal molting hormone, but often several ecdysteroids are found within one group. The primary molting hormone for a range of organisms, including some insects and crustacea, is 20OH ecdysone (20 HE). Among other examples, makisterone A is an important hormone for some crustacea and hemipteran insects. Cholesterol (from diet- a vitamin for insects) Prothoracic gland 20-HydroxyecdysoneEcdysone mono-oxygenase (fat body, epidermis) Conjugates (storage) Metabolites (excretion) Synthesis of molting hormones Syntéza ekdysteroidů a úloha cytochromů P450: Modelový příklad 2: Metabolismus xenobiotik Metabolismus a detoxikace polutantů 3 fáze metabolismu cizorodých látek: • 1. fáze biotransformace – konverze – oxidace, redukce, hydrolýza, hydratace a izomerace; • 2. fáze biotransformace – konjugační reakce – glukuronidace, sulfonace, metylace, acetylace, konjugace s glutathionem, konjugace s aminokyselinami; • 3. fáze biotransformace – vyloučení konjugovaných metabolitů z buňky – ABC transportéry a další transportní proteiny; Přehled: L. Skálová a kol., Metabolismus léčiv a jiných xenobiotik, Karolinum, Praha, 2011 1. fáze biotransformace Oxidace: • hydroxylace – běžná biotransformační reakce (alifatické, aromatické uhlovodíky) – snižuje se lipofilita toxikantu, vzniklé hydroxyderiváty podléhají dalším konverzním nebo konjugačním reakcím; • oxidace alkoholů a aldehydů; • oxidační deaminace; • dealkylace - sekundární a terciární aminy, alkoxy-, alkylthiolové skupiny; • dehalogenace; • N-oxidace, S-oxidace; 1. fáze biotransformace Redukce: • z hlediska množství metabolizovaných látek méně významné, ale představují hlavní cestu pro detoxikaci některých specifických skupin látek; • např. redukce nitrosloučenin a azosloučenin; • redukce N-oxidů a S-oxidů; • redukce karbonylových sloučenin a chinonů; 1. fáze biotransformace Hydrolýza: • estery, epoxidy, amidy, hydrazidy a karbamáty; • některé hydrolasy (např. epoxidhydrolasa) jsou schopné katalyzovat i hydrataci (tj. adici vody); • hydrolýze mohou podléhat i některé konjugáty xenobiotik; Enzymy 1. fáze biotransformace • cytochromy P450; • flavinové monooxygenasy; • peroxidasy; • alkoholdehydrogenasy; • aldehyd dehydrogenasy; • aldo-keto reduktasy; • dehydrogenasy s krátkým řetězcem (např. karbonylreduktasy); • hydrolasy – zvl. roli epoxidhydrolasa; 2. fáze biotransformace Konjugační reakce: • nejvýznamnější pro – konjugace s UDP-glukuronovou skupinou, glutathionem a sulfonace (s 3'-fosfoadenosin- 5'-fosfosulfátem); L. Skálová a kol., Metabolismus léčiv a jiných xenobiotik, Karolinum, Praha, 2011 2. fáze biotransformace Konjugační reakce: • nejvýznamnější pro – konjugace s UDP-glukuronovou skupinou, glutathionem a sulfonace (s 3'- fosfoadenosin-5'-fosfosulfátem); L. Skálová a kol., Metabolismus léčiv a jiných xenobiotik, Karolinum, Praha, 2011 2. fáze biotransformace Konjugační reakce: • acetylace – cytosolové N-acetyltransferasy; • bioaktivace heterocyklických aminů – silné genotoxiny; L. Skálová a kol., Metabolismus léčiv a jiných xenobiotik, Karolinum, Praha, 2011 2-amino-1-methyl-6-fenylimidazo[4,5-b]pyridin (PhIP) Enzymy 2. fáze biotransformace • UDP-glukuronosyltransferasy; • gluthathion-S-transferasy – cytosolové, mikrosomální; • sulfotransferasy; • N-acetyltransferasy; • methyltransferasy; Transport xenobiotik a jejich metabolitů • někdy označován jako 3. fáze biotransformace; • hlavní roli hrají specifické transportní proteiny – přenašeče; • ABC transportéry (z angl. ATP-binding cassette) – BRCP, MDR1/Pgp, MRP proteiny; • SLC proteiny - přenašeče hygrofilních látek (angl. solute carrier family); Dong et al., 2005, Science 308: 1023-1028. Aktivace promutagenů: Metabolismus léčiv: Modelový příklad 3: Steroidní hormony Pět hlavních skupin steroidních hormonů: Biosyntéza steroidních hormonů: Diagrammatic outline of the synthesis of cortisol from cholesterol in the adrenal cortex Cholesterol is either obtained from the diet or synthesized from acetate by a CoA reductase enzyme. Approximately 300 mg cholesterol is absorbed from the diet each day and about 600 mg synthesized from acetate. Cholesterol is insoluble in aqueous solutions and its transport from the main site of synthesis, the liver, requires apoproteins to form a lipoprotein complex. In the adrenal cortex, about 80% of cholesterol required for steroid synthesis is captured by receptors which bind low-density lipoproteins (LDL) although recent evidence has shown that high-density lipoprotein (HDL) cholesterol may also be taken up by adrenal cells. The remaining 20% is synthesized from acetate within the adrenal cells by the normal biochemical route. aromatáza The glucocorticoid receptor and activation by cortisol 1) Unbound, lipophilic cortisol readily crosses cell membranes and in target tissues will combine with the glucorticoid receptor (GR). 2) Like the androgen and progesterone receptors, unliganded GRs are located in the cytoplasm attached to heat shock proteins (hsp-90, hsp-70 and hsp-56). 3) When hormones bind to these receptors hsps are released and the hormone receptor complexes translocate to the nucleus. 4) These complexes form homo- or heterodimers and the zinc fingers of their DNA-binding domains slot into the glucocorticoid response elements (GREs) in the DNA helix. 5) Together with other transcription factors, such as NF-κB or c-jun and c-fos, they initiate RNA synthesis (activation of RNA polymerase) downstream of their binding. Modelový příklad 4: Metabolismus mastných kyselin Receptory aktivované peroxizómovými proliferátory (PPAR) The peroxisome proliferator-activated receptors (PPAR , , ) are activated by polyunsaturated fatty acids, eicosanoids, and various synthetic ligands. Consistent with their distinct expression patterns, gene-knockout experiments have revealed that each PPAR subtype performs a specific function in fatty acid homeostasis. PPAR is a global regulator of fatty acid catabolism. PPAR activation up-regulates the transcription of liver fatty acid–binding protein, which buffers intracellular fatty acids and delivers PPAR ligands to the nucleus. In addition, expression of two members of the adrenoleukodystrophy subfamily of ABC transporters, ABCD2 and ABCD3, is similarly up-regulated to promote transport of fatty acids into peroxisomes where catabolic enzymes promote b-oxidation. The hepatocyte CYP4A enzymes complete the metabolic cascade by catalyzing v-oxidation, the final catabolic step in the clearance of PPAR ligands. PPAR was identified initially as a key regulator of adipogenesis, but it also plays an important role in cellular differentiation, insulin sensitization, atherosclerosis, and cancer. Ligands for PPAR include fatty acids and other arachidonic acid metabolites, antidiabetic drugs (e.g., thiazolidinediones), and triterpenoids. In contrast to PPAR, PPAR promotes fat storage by increasing adipocyte differentiation and transcription o a number of important lipogenic proteins. Ligands for PPAR include long-chain fatty acids and carboprostacyclin. PPAR may affect lipid metabolism in peripheral tissues; it can be antagonized by other small lipophilic agents, including 22(S)-hydroxycholesterol, certain unsaturated fatty acids, and geranylgeranyl pyrophosphate. Syntéza ligandů Jaderné receptory Transaktivace Metabolismus ligandů Cílové geny (metabolismus, kontrola buněčné proliferace, diferenciace a apoptózy) Toxické látky, farmaka ????? Nízkomolekulární lipofilní sloučeniny jako ligandy = aktivita jaderných receptorů je do značné míry závislá na syntéze a degradaci ligandů a naopak