1 Bi7430 Molecular Biotechnology 7. Microfluidics – „Lab on a Chip“ Outline  Introduction to microfluidics  Physics of micro-scale  Design and fabrication  Sensing and detection  Lab on a chip (LOC) concept  Examples of LOC applications Introduction to microfluidics  d e v e l o p e d i n t h e 1 9 8 0 s ( I B M )  m u l t i d i s c i p l i n a r y f i e l d e n g i n e e r i n g , p h y s i c s , c h e m i s t r y, m a t e r i a l s c i e n c e , n a n o t e c h n o l o g y  i n t e g ra t e p ro c e s s e s o n c h i p  m i n i a t u r i z a t i o n a n d a u t o m a t i o n  ( u l t r a ) f a s t t h r o u g h p u t  h i g h p r e c i s i o n  l o w e n e r g y a n d s a m p l e c o n s u m p t i o n  l e s s w a s t e p r o d u c t i o n  c o n t i n u o u s - f l o w m i c ro f l u i d i c s m a n i p u l a t i o n o f c o n t i n u o u s l i q u i d f l o w t h ro u g h m i c ro - f a b r i c a te d c h a n n e l s  d ro p l e t - b a s e d m i c ro f l u i d i c s m a n i p u l a t i n g d i s c re te v o l u m e s o f f l u i d s i n i m m i s c i b l e p h a s e s  d i g i t a l m i c ro f l u i d i c s d ro p l e t s m a n i p u l a te d o n a s u b s t ra te u s i n g e l e c t ro - w e tt i n g Introduction to microfluidics 2 Physics of micro-scale  m i c ro d o m a i n d i f f e rs g re a t l y f ro m m a c ro s c o p i c f l u i d s  s m a l l v o l u m e s ( n L , p L , f L )  r e d u c e d i m e n s i o n s ( m m , m m )  l a r g e s u r f a c e a r e a - t o - v o l u m e r a t i o  h i g h l y e f f i c i e n t m a s s a n d h e a t t r a n s f e r Physics of micro-scale  s u r f a c e t e n s i o n  s t r e t c h f o r c e a l o n g t h e m a t e r i a l i n t e r f a c e  C a p i l l a r y n u m b e r ( C a ) r a t i o b e t w e e n v i s c o u s f o r c e t o s u r f a c e t e n s i o n  C a < < 1 i n m i c r o f l u i d i c s , f l u i d d o m i n a t e d b y s u r f a c e t e n s i o n  w e t t i n g o n ( h y d r o p h i l i c ) s u r f a c e s  e l e c t r o w e t t i n g - e l e c t r i c a l m o d u l a t i o n o f t h e s o l i d - l i q u i d s u r f a c e t e n s i o n Physics of micro-scale  v i s c o s i t y  R e y n o l d s n u m b e r ( R e ) r a t i o b e t w e e n i n e r t i a l f o r c e t o v i s c o u s f o r c e  R e < 1 i n m i c r o - f l u i d i c s , f l u i d s i n f l u e n c e d b y v i s c o s i t y r a t h e r t h a n i n e r t i a  l a m i n a r f l o w a n d d i f f u s i o n d o m i n a n t  m i x i n g i n m i c r o s c a l e c h a l l e n g i n g Design and fabrication  d e s i g n  e n g i n e e r i n g s o f t w a r e s ( e . g . , A u t o C A D , D r a f t S i g h t )  m o d e l l i n g ( e . g . , C O M S O L , M a t L a b )  p r i n t i n g t h e m a s k 3 Design and fabrication  f a b r i c a t i o n  s o f t p h o t o l i t h o g r a p h y  n e g a t i v e / p o s i t i v e p h o t o r e s i s t s  P D M S m o l d i n g Design and fabrication  f a b r i c a t i o n  d i r e c t f a b r i c a t i o n m e t h o d s o 3 D p r i n t i n g o C N C m i c r o - m i l l i n g o l a s e r c u t t i n g Design and fabrication  m a t e r i a l s  i n e r t a n d t r a n s p a r e n t  P D M S - p o l y ( d i m e t h y l s i l o x a n e )  P M M A - p o l y ( m e t h y l m e t h a c r y l a t e )  f u s e d s i l i c a , q u a r t z a n d g l a s s  s u r f a c e m o d i f i c a t i o n  p l a s m a t r e a t m e n t  s i l a n i z a t i o n  f u n c t i o n a l i z a t i o n  s o l – g e l c o a t i n g Sensing and detection  p ro c e s s i n g o f s m a l l re a g e n t v o l u m e s  a n a l y t i c a l t i m e s c a l e a n d p e r f o r m a n c e  o n c h i p d e t e c t i o n  f l u o r e s c e n c e  U V/ V I S a b s o r b a n c e  I R s p e c t r o s c o p y  R a m a n s c a t t e r i n g  ( c h e m o / e l e c t r o ) l u m i n e s c e n c e  t h e r m a l c o n d u c t i v i t y  R I v a r i a t i o n  o f f c h i p d e t e c t i o n  G C , H P L C , M S  N M R , X - r a y 4 Microfluidics  b e n e f i t s o f m i n i a t u r i s at i o n  s u p e r i o r p e r f o r m a n c e ( s p e e d , e f f i c i e n c y a n d c o n t r o l )  r e d u c e d c o n s u m p t i o n o f s a m p l e / r e a g e n t a n d p o w e r  c o s t e c o n o m i e s t h r o u g h m i c r o m a c h i n i n g  p o r t a b i l i t y ( p o i n t - o f - c a r e / u s e a p p l i c a t i o n s )  f a c i l e p r o c e s s i n t e g r a t i o n a n d a u t o m a t i o n  h i g h a n a l y t i c a l t h r o u g h p u t Lab on a Chip (LOC) concept o n a c h i p i n t e g ra t i o n o f l a b o ra t o r y p ro c e s s e s P r e p a r a t i o n A n a l y s i sI n c u b a t i o n C o l l e c t i o n P r e - t r e a t m e n t Life science and medical application  a n a l y t i c s a n d s y n t h e s i s  P C R a n d s e q u e n c i n g  d i a g n o s t i c s  p h a r m a c o l o g y  p ro te o m i c s  ( u l t ra ) h i g h - t h ro u g h p u t b i o l o g y  c l i n i c a l s t u d i e s Organs (human) on chip N e u r o v a s c u l a r I n t e s t i n e L u n g K i d n e y S p l e e n H e a r t B o n e A r t e r y 5 Organs (human) on chip  o rg a n s - o n - a - c h i p  m u l t i - c o m p a r t m e n t a l 3 D m i c r o f l u i d i c c e l l c u l t u r e c h i p s  s i m u l a t e s a c t i v i t i e s , m e c h a n i c s a n d p h y s i o l o g i c a l r e s p o n s e  r e a l i s t i c i n v i t r o m o d e l c l o s e r t o i n v i v o c e l l e n v i r o n m e n t  m i m i c k i n g h u m a n ’s p h y s i o l o g i c a l r e s p o n s e s ( e . g . , p a t h o l o g i c a l r e s p o n s e s , p h a r m a c o k i n e t i c , t o x i c o l o g y )  h u m a n - o n - a - c h i p  i n t e r a c t i o n s u n d e r n e a r - p h y s i o l o g i c a l f l u i d f l o w c o n d i t i o n s  s i m u l a t i n g m u l t i - o r g a n m e t a b o l i c i n t e r a c t i o n s  s y n e r g i s t i c d r u g i n t e r a c t i o n s  c a n re p l a c e e x p e n s i v e a n d c o n t ro v e rs i a l a n i m a l te s t i n g (Ultra)High-throughput biology (Ultra)High-throughput biology S T A N D A R D D E S I G N  r a n d o m m u t a g e n e s i s ( 2 - 3 p o s i t i o n s )  l i b r a r y o f 1 0 4 c l o n e s A D V A N C E D D E S I G N  r a n d o m m u t a g e n e s i s ( 5 - 7 p o s i t i o n s )  l i b r a r y o f > 1 0 6 c l o n e s v o l u m e : 1 0 ´ p L a s s a y s / d a y : 1 0 7 v o l u m e : 1 0 0 ´ m L a s s a y s / d a y : 1 0 3 (Ultra)High-throughput biology  m o n o d i s p e r s e e m u l s i o n ( 2 p L , 1 0 7 d r o p l e t s / h o u r )  f l u o r e s c e n c e - a c t i v a t e d o n - c h i p d r o p l e t s o r t i n g ( FA D S )  1 0 3 e v e n t s / h o u r Baret et al. 2009. Lab Chip 9: 1850-1858 Abate et al. 2010. Appl. Phys. Lett. 96: 203509 6 (Ultra)High-throughput biology  f l u o r e s c e n c e - a c t i v a t e d o f f - c h i p c e l l s o r t i n g ( FA C S )  1 0 8 e v e n t s / h o u r  m o n o d i s p e r s e d o u b l e e m u l s i o n ( 2 p L , 1 0 7 d r o p l e t s / h o u r ) Polymerase chain reaction  c l a s i c a l P C R  9 6 - w e l l m i c r o - t i t r e p l a t e s  v o l u m e 5 0 t o 5 0 0 m L  s l o w h e a t i n g / c o o l i n g c y c l e s K a r y M u l l i s N o b e l P r i z e i n 1 9 9 3 Polymerase chain reaction  P C R i n m i c ro f l u i d i c d ro p l e t s  5 0 0 d r o p l e t s p e r s e c o n d  v o l u m e 5 0 t o 1 0 0 p L  2 9 s p e r h e a t i n g / c o o l i n g c y c l e Schaerli et al. 2009. Anal. Chem. 2009, 81, 302–306Kiss et al. 2008. Anal. Chem. 80, 8975–8981 Digital PCR  “ Q X 1 0 0 ” D ro p l e t D i g i t a l P C R ( B i o R a d )  “ R a i n d ro p ” D i g i t a l P C R ( R a i n d a n c e ) 7 Next-generation sequencing  p a ra l l e l i zat i o n o f s i n g l e m o l e c u l e s e q u e n c i n g  4 5 4 P y ro s e q u e n c i n g ( R o c h e ) d e te c t i o n v o l u m e 1 p i c o l i te r ( 1 0 -1 2 l i t re s ) 1 m i l . re a d s p e r r u n , 1 0 U S D p e r M b a s e F r e d e r i c k S a n g e r N o b e l P r i z e i n 1 9 8 0 Next-generation sequencing  p a ra l l e l i zat i o n o f s i n g l e m o l e c u l e s e q u e n c i n g  S M R T s e q u e n c i n g ( P a c i f i c B i o s c i e n c e s ) d e te c t i o n v o l u m e 2 0 ze p t o l i te rs ( 1 0 -2 1 l i t re s ) 0 . 1 m i l . re a d s p e r r u n , 0 . 5 U S D p e r M b a s e Next-generation sequencing  H u m a n G e n o m P ro j e c t - 1 0 y e a rs , 3 b i l l i o n U S D  g e n o m e s e q u e n c i n g t o d ay i n 1 0 t o 1 5 h rs Plants on a chip Grossmann, G., et al. 2011. The plant cell online, 23 (12), 4234-4240  e f f i c i e n t c o n t ro l o v e r s e v e ra l s i m u l t a n e o u s ex p e r i m e n t s  o b s e r v e d e v e l o p i n g ro o t s i n p a ra l l e l  f l u o re s c e - l a b e l e d m e ta b o l i te a c t i v i t y  i n te ra c t i o n w i t h s y m b i o n t s / p a ra s i te s