

8. Molecular Biotechnology in Industry

Outline

- Enzymes and applications
- Definition of white biotechnology
- ☐ Sustainable development
- Enzyme sources
- Industrial production of proteins
- Enzyme and cells immobilization
- Examples of biocatalytic applications

Enzymes

- natural catalysts (biocatalyst)
- catalyze chemical reactions in living systems

- oxidoreductases oxidation/reduction
- transferases transfer of functional groups
- hydrolases hydrolytic cleavage
- Iyases cleavage of C-C, C-N and C-O bonds
- isomerases racemization, epimerization
- ligases formation of C-C, C-Nand C-O bonds

Enzyme applications

restrictases DNA ligases polymerases

phosphatases peroxidases

amylases proteases cellulases phytases lipases

lipases nitrilases peptidases amidases aldolases

asparaginase DNase urokinases proteases

cellulases ligninase lipases

amylase cellulases catalase

dehalogenases choline esterase peroxidases

White (industrial) biotechnology

- biotechnology incorporated into production processes and products that involve chemical reactions - biocatalysis
- □ sustainable and environmentally-friendly industry
- using biomass rather than traditional petrochemicals
- provide energy efficiency, increased productivity and better safety
- uses **enzymes** and **micro-organisms** to make products and services in a wide range of industrial sectors

Sustainable solutions

- ☐ innovative and competitive products and processes meeting criteria of sustainability
- □ transfer of biological solutions to modern technologies create the future in balance between economy, cleaner environment and better lives
- "... development that meets the **needs of the present**without compromising the ability of **future** generations
 to meet their own needs" (WCED, 1987)
 - reduce environmental impact
 - reduce consumption of resources (raw materials, energy, air, water)
 - use of renewable materials
 - reduce waste production
 - maximize waste recycling

Example of sustainable technology

Chemical process (-40°C)

1000	t	peni	icil	lin	G

160 t ammonia

penicillin G

300 t dimethylchlorosilane

800 t N, N-dimethylaniline

600 t phosphopentachloride

4,200 m³ dichloromethane

4,200 m³ *n*-butanol

Biocatalysis (+30°C)

1000 t penicillin G

45 t ammonia

10,000 m³ water

1 t ENZYME

(1 \$/kg 6-APA)

Enzyme-based technologies

ADVANTAGES

- high catalytic efficiency
- broad substrate specificity
- high selectivity
- compatibility of each other
- reusability
- sustainability
 - produced from biomass
 - non-toxic and biodegradable
 - operate at mild conditions
 - less byproducts and wastes

LIMITATIONS

- cofactor requirement
- prone to inhibitions
- highest activity in water
- less stable
- ☐ low selectivity
- expensive

Enzyme sources

- animal and plant tissues
 - thousands years old developed empirically
 - pancreas (treatment of hides), calf stomach (cheese-making)
 - papaya, pineapple (meat tenderization)
 - content up to 1% enzyme of tissue weight
 - less competitive compared to fermentation of microorganism
 - risk of contamination with prions and viruses harmful to humans

Source	Enzyme	Application	
Animal tissues			
Bovine and porcine pancreas	proteases (e.g., trypsine, chymotrypsine), amylases, lipases	digestive enzymes, anti-inflammator agents, health food additives	
Porcine stomach	pepsine	body fortifying agents	
Liver and muscle	aldolases	fructose digestion	
Porcine kidney	D-aminoacid oxidase		
Plant tissues			
Pineapple stem	bromelain (mixture of proteases)	anti-inflammatory agents, meat tenderizer	
Papaya latex	papain (protease)	se) anti-inflammatory agents	
Aspegillus	proteases, lipases, amylases, cellulases	natural food supplements, digestive enzymes	

Enzyme sources

- wild-type microorganisms
 - enzymes from microorganisms long been safely used in food industry
 - food processing regulation strict for non-recombinant enzymes
 - microorganisms used for screening for "new" catalytic enzymes
 - screen for enzymes active at desired process conditions (e.g., pH, temperature)
- recombinant microorganisms
 - most technical enzymes produced using recombinant technology
 - when yield in wild type organism is low or desired enzyme is not in class I organism
 - bacteria, fungi and yeasts
 (e.g., E.coli, Bacillus, Aspergillus, Saccharomyces)

Industrial production of proteins

fermentation

- non-recombinant and recombinant organisms
- steady and safe (class I or GRAS) organisms
- up-scale and optimization
- high cell density fermentation (50 g cell dry weight per liter)
- upper limit of protein concentration (10 g.L⁻¹; 40% of total cell protein)

Downstream process

- separation and homogenization
 - dependent on application and required purity
 - technical enzymes low to moderate purity
 - enzymes for therapy and diagnostics high purity

Downstream process

- enzyme purification
- impurities (e.g., proteins, DNA and others)
- further purification when safety (e.g., recombinant DNA, viruses)
 or function reasons (impurities disturbing catalytic function)
- basic knowledge of protein properties necessary
 - o molecular weight (MW)
 - isoelectric point (pl)
 - cofactors
 - o pH range
 - temperature stability
- methods of protein purification
 - precipitation and differential solubilization (e.g., ammonium sulfate, pH, solvents)
 - membrane filtration
 - chromatographic methods
 (e.g., size exclusion, ion exchange, hydrophobic, metal affinity, biospecific)
- more steps -> higher purity (multi-step manipulation, loss >10% of enzyme)

Whole cell vs. isolated enzyme

advantages

- allow more enzymes
- cofactor regeneration
- cheap

disadvantages

- side-reactions
- low tolerance to solvents
- low productivity

advantages

- smaller reactors
- less side reactions
- higher productivity

disadvantages

- more expensive
- addition of cofactors
- less stable outside cell

Immobilisation methods

- biocatalysts (enzyme or cell) limited in moving due to chemical or physical treatment
- benefits
 - stabilization by immobilization
 - easy separation of product
 - repeated use of biocatalyst
 - continuous bioprocessing
- limitations
 - expenses of carriers and immobilization
 - activity loss during immobilization
 - changes in properties of biocatalyst
 - mass transfer limitations

Immobilisation of enzyme

Immobilisation of cell

Examples of whole cell biocatalysis

synthesis of agrochemical intermediates by microbial hydroxylation of heteroatomics (Lonza)

 mandelic acid - urinary antiseptic, skin care cosmetics (du Pont, Nitto Chemicals, etc.)

 large-scale production of commodity chemical - acrylamide (Mitsubishi, Nitto Chemicals)

Examples of enzyme biocatalysis

 large scale production of Aspartame, low-calorie sweetener (DSM, NutraSweet)

synthesis of high fructose syrup from corn starch
 (10 million tons per year)

synthesis of **atorvastatin, Lipitor**®, intermediate (Pfizer - sales since 1996 exceed US\$ 150 billion)

Let's make world better

- □ sustainable and environmentally-friendly industry
- biomass rather than traditional petrochemicals
- ☐ energy efficient, increased productivity and better safety

