„Populačníekologie živočichů" Stano Pekár Effect of conditions ► all conditions affect population growth via controlling metabolic processes in ectotherms ► temperature, humidity, day length, pH, etc. Lepidoglyphus sp. Rate Universal effect of temperature ► temperature affects population growth of ectotherms ■ rate of metabolism increases approx. by 2.5x for every 10 °C do =2-5 ► physiological time - combination of time and temperature ► universal temperature dependence: -p/ - rate of metabolism B: B ~ e ■ (T.. temperature) - rate increases with body mass (M): per mass unit ... - biological time tb: M 1/ P/ L ~ MAe/T 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 10 A A. siro u C. malaccensis 15 20 Temperature [°C] 25 30 Linear model ► model is based on the assumption that developmental rate is a linear function of temperature T ► valid for the region of moderate temperatures (15-25°) ► at low temperatures organisms die due to coldness D .. development time (days) v .. rate of development = 1/D Tmin .. lower temperature limit - temperature at which developmental rate = 0 0.045 ro +■> c E Q. O > Q 0.04 0.035 0.03 0.025 0.02 0.015 0.01 0.005 0 -I 0 ♦ 5 10 15 20 25 30 35 Temperature ET.. effective temperature .. developmental temperature between T and Tmh S .. sum of effective temperature .. number of day-degrees [°D] required to complete development does not depend on temperature = D*ET Tmin and S can be estimated from the regression line of v = a + bT a + bT = 0 V a ► sum of effective temperature (S) [°D] is equal to area under temperature curve restricted to the interval between current temperature (T) and Tmin ► biofix .. the date when day-degrees begin to be accumulated time, days i=l ► when development rate is a non-linear function of temperature ► ET.. developmental temperature between Tmin and T max ► at high temperatures organisms die due to overheating Tmax .. upper temperature threshold - temperature at which developmental rate = 0 0) c E Q. _o > Q 0 10 20 30 40 Temperature |Vl3; mm time, days ► several different non-linear models (Briere, Lactin, etc.) ► allow to estimate Tmin, Tmax and Topt (optimum temperature) ► easy to interpret for experiments with constant temperature ► instead of using average day temperature, use actual temperature Briere et al. (1999) v = a x T x (T - Tmin ) x JTW - T v .. rate of development (=11 D) T.. experimental temperature Tmin.. low temperature threshold Tmax.. upper temperature threshold a .. unknown parameter Optimum temperature: 0 Tmin j Topt Tmax A T _|_ _i_ /i rr 2 I 2 i ^ ^ . _ max min \ max min min max ► parameters are estimated using non-linear regression Lactin et al. (1995) v .. rate of development T.. experimental temperature rm, A, p, .. unknown parameters 0 Tmin rmaY and T • can be estimated from the formula: IlldA II11I1 0 = epT - e(pTm~T"^T) +