There  are  several  topics  from  BFCH1  (lectures:  Structure   of  biopolymers  (2),  Canonical  ensemble)  that  are  expected     that  students  know:   -­‐  canonical  ensemble   -­‐  Boltzmann  probability   -­‐  free  energy,  enthalpy,  entropy     -­‐  free  energy  cycle       For  which  problems  are  simula1ons  useful  ?   Simulation can replace or complement the experiment: 1. Experiment is impossible Inside of stars Weather forecast 2. Experiment is too dangerous Flight simulation Explosion simulation 3. Experiment is expensive High pressure simulation Windchannel simulation 4. Experiment is blind Some properties cannot be observed on very short timescales and very small space- scales 5. Fantasy It is possible to simulate unrealistic phenomena Simula1ons  can  complement  the  experiment:         •  SimulaGon  explains  experiments      Proper&es  of  water                    Folding  of  protein  molecules                 •  SimulaGon  suggests            Design  of  drugs,  enzymes      new  experiments          Stock  market  prices         less  experiments   beHer  chance  of  success   knowledge   new  ideas   For  which  problems  are  simula1ons  useful  ?   Hritz,  J.;  de  Ruiter,  A.;  Oostenbrink,  C.  Impact  of  plasGcity  and  flexibility  on  docking   results  for  Cytochrome  P450  2D6:  a  combined  approach  of  molecular  dynamics  and   ligand  docking.  J.  Med.  Chem.  2008,  51,  7469-­‐7477   Simulation and experiment are complementing methods to study different aspects of nature experiment simulation Typical space / time scales size : 10-3 meter 10-7 meter time : 103 seconds 10-3 seconds Resolution* size : 1023 molecules 1 molecule time : 1 second 10-15 seconds *: Single molecules / 10-15 seconds possible (but not both in the liquid phase) (restricted)   (unrestricted)   Molecular  simulaGon  and  experiment   How would you calculate movement of planets in our solar system? Choose  relevant  degrees  of  freedom:  elementary  par1cles   .  .  .  .  .  .   atomic  nuclei                      +  electrons       quantummechanics         electrosta&cs   all  atoms   (excluding  solvent)       classical   mechanics         Force  Field   (including  solvent)   monomers         classical   mechanics         Force  Field   (sta&s&c)   Par1cles:   Descrip1on:   all  atoms         classical   mechanics         Force  Field   (atomis&c)   Interac1ons:   Broader  applicability   Less  model  parameters     Physical  parameters   More  expensive   Restricted  applicability   More  model  parameters   Empirical  parameters   Less  expensive   =   Interac1ons  in  atomic  simula1es  :  Force  Field                      physico-­‐chemical  knowledge   RotaGon  around   bond   Planar   atomgroups   van  der  Waals   interacGons   ElectrostaGc   interacGons   -­‐   +   -­‐   -­‐      Bond  stretching   non-­‐bonded     interac3ons   bonded     interac3ons   Angle  bending   InteracGng  ParGcles   ( ) i→ ⎩ Δ = − −r r 1/ Bk Tβ = Hansmann,  U.H.E.;  Chem.  Phys.  LeH.  1997,  281,  140-­‐150.     Temperature  REMD   ΔT  ~  (square  root  of  degrees  of  freedom)-­‐1   Is  there  alternaGve  way  how  to  get  from  one   side  of  barrier  to  other  one?   Hamiltonian  replica  exchange   (Fukunishi,  H.;  Watanabe,  O.;  Takada,  S.;  J.  Chem.  Phys.  2002,  113,  6042-­‐6051.)     IDEA: instead of changing a temperature, rather alter specific interactions ( , ) ( ) ( )i i i i i iH K U= +r p p r ( ) ( )( ) ( ) ( )( )i i j i i j j j j iU U U Uβ βΔ = − − −r r r r Soc  core  interacGons   The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. 2 2 2 6 12 666 12 ; 1 4 )( ; 1 )( λα πε λα α α el ij ji ij el vdw ijij ij vdw B rB qq rE C C A rA C rA C rE = + = = +% % & ' ( ( ) * − + = Where  else  to  get  crazy  ideas  J?   Real  REMD  of  GTP   REMD  costs:  6x5ns  =  30ns                  anGàsyn  transiGons:16                  synàanG  transiGons:16     MD  costs:  2x20ns  =  40ns                  anGàsyn  transiGons:  0                  synàanG  transiGons:  1     RelaxaGon   PotenGal  of  mean  force   GTP antisynG −Δ GTP antisynG −Δ GTP antisynG −Δ (REMD)                                =  7.6  ±  0.3  kJ.mol-­‐1            (REMD)                                      =  -­‐6.8  ±  0.9  kJ.mol-­‐1                (TI)                                =  7.7  ±  1.2  kJ.mol-­‐1                              (TI)                                      =  -­‐5.8  ±  1.6  kJ.mol-­‐1     GTP antisynG −Δ GTP antisynG −Δ ΔGsyn−anti 8−Br−GTP ΔGsyn−anti 8−Br−GTP Molecular  dynamics  is  more  than   super-­‐microscope!   ENERGY!   Efficient  free  energy  calcula1ons  for  compounds   with  high  intramolecular  energy  barriers   Hritz,  J.;  Lappchen  T.;  Oostenbrink,  C.     CalculaGons  of  binding  affinity  between  C8-­‐subsGtuted  GTP  analogs     and  the  bacterial  cell-­‐division  protein  FtsZ.     Eur.Biophys.  J..  2010,  39,  1573-­‐1580       Hritz,  J.;  Oostenbrink,  C.     Efficient  free  energy  calculaGons  for  compounds  with  mulGple  stable  conformaGons   separated  by  high  energy  barriers.     J.  Phys.  Chem.  B  2009,  113,  12711-­‐12720   Thermodynamic  cycle   Cl Cl OH OH ΔGbind(1)   ΔGbind(2)   ΔG21(bound)  ΔG21(free)   1   2   ( ) ( ) ( ) ( ) bind bind bindG G G G free G bound ΔΔ = Δ − Δ = Δ − Δ21 21 2 1 One-step perturbation ( )/ ln BA BE A k T B E B B G k T e− − Δ = − ,BAG Gλ λ δλ λ +Δ = Δ∑ A ARB RBG G GΔ = Δ −Δ A   B   C   D   E   …   R   X  =  H,  F,  Cl,  Br,  CH3     ( ) S Tk HH BSRSR B SR eTkGGG ),(),( ln pqpq − − −=−=Δ ( ) ( ) ∑ − − − − = i Tk HH Tk HH R i B iiSiiR B iiSiiR e e p ),(),( ),(),( pqpq pqpq Enhanced  sampling  one  step  perturbaGon  method  (ES-­‐OS)   Crystal  structures  of  FtsZ  from  Aquifex  aeolicus   (Oliva  et  al.  J.  Mol.  Biology  (2007);  Lappchen  et  al.  Chemistry  &  Biology  (2008))     Figures  taken  from  Lappchen  et  al.  Chemistry  &  Biology  (2008)                                                                   Thermodynamic  cycle   Cl Cl OH OH ΔGbind(1)   ΔGbind(2)   ΔG21(bound)  ΔG21(free)   1   2   ( ) ( ) ( ) ( ) bind bind bindG G G G free G bound ΔΔ = Δ − Δ = Δ − Δ21 21 2 1 The  comparison  of  relaGve  binding  affiniGes  obtained  from   computaGonal  (Hritz,  J.  et  al.  Eur.Biophys.  J.  (2010))  simulaGons   and  experimental  assays  (Lappchen  et  al.  Chemistry  &  Biology   (2008)).   Conclusion   •  VisualizaGon  of  biomolecular  structures,  their  electrostaGcs   potenGal,  etc.  can  provide  very  useful  informaGon   •  Dynamical  features  can  be  obtained  from  molecular  dynamics   simulaGons.  Be  aware  about  a  lot  of  used  approximaGons,   simplificaGons  and  restricted  Gme  length  of  simulaGon.     •  PotenGal  of  molecular  dynamics  can  be  enhanced  sampling   methods  such  as  replica  exchange  molecular  dynamics:  T-­‐REMD   or  H-­‐REMD.     •  Free  energy  calculaGons  allows  for  calculaGng  the  binding   affiniGes,  solvaGon  free  energies,  lipophiliciGes,  etc.