

Genome Size Variation: Consequences and Evolution

Ilia Leitch and Martin Lysak

Genome size variation: consequences and evolution

- (i) How genome size varies across plants
- (ii) What are the consequence of this variation
- (iii) How did such variation evolve

The Origin, Evolution and Proposed Stabilization of the Terms 'Genome Size' and 'C-Value' to Describe Nuclear DNA Contents

JOHANN GREILHUBER^{1,*}, JAROSLAV DOLEŽEL², MARTIN A. LYSÁK³ and MICHAEL D. BENNETT³

- Holoploid genome the whole chromosome set with chromosome number
 n (irrespective of polyploidy, aneuploidy etc.)
- Monoploid genome one chromosome set of an organism and its DNA having the chromosome base number x
- Genome size covering term for the amount of DNA in both holoploid and monoploid genomes

Sometimes terminology matters...

- C-value DNA content of a holoploid genome with chromosome number n
- **1C-value** DNA content of one non-replicated holoploid genome with chromosome number n (= the half of a holoploid non-reduced genome with the chromosome number 2n); cf. 2C-value, 4C-value,...
- C_x-value DNA content of a monoploid genome with chromosome base number x
- **Diploids:** 1C-value = 1C_x-value
- Polyploids: example 2C-value of allohexaploid wheat (*Triticum aestivum*; 2n=6x=42) is 34.6 → 1C-value: 17.3 pg; 1C_x-value: 5.8 pg (34.6 : 6)

Remember ! 1 pg = 980 Mbp

Early genome size studies in plants

First genome size of a plant: Lilium longiflorum

Ogur M et al. 1951. Exp. Cell Res. 2: 73-89.

Concept of C-value:

DNA amount in unreplicated gametic nucleus

'C' means Constant

Swift H. 1950. Proc. Natl. Acad. Sci. USA 36: 643-654.

Plant DNA C-values database

www.kew.org/genomesize/homepage.html

5150 species

Land plants Algae 4427 angiosperms 207 gymnosperms 44 Phaeophyta 87 pteridophytes 118 Rhodophyta

176 bryophytes

C-values in angiosperms range nearly 2000-fold

Genlisea margaretae

Utriculation rigidako ifolium

Fritillaria assyriaca

1C = 0.065 pg

1C+C0±0\$01pgpg

1C = 127.4 pg

Plant Biology 8: 770-777

Greilhuber et al. 2006. Greilhuber et al. 2006. Plant Biology iya 8:27:01337-1338

Bennett. 1972. Proc. Roy. Soc. Lond. B 181: 109-135.

The smallest and largest plant genome

dicots, Lentibulariaceae

monocots, Melanthiaceae

Range of DNA amounts in land plants

DNA amount variation in angiosperms

C-value paradox

Thomas CA. 1971.

The genetic organization of chromosomes. *Annual Review of Genetics* 5: 237-256.

'why the lowly liverwort
has 18 times as much DNA as we have,
and the slimy, dull salamander
known as *Amphiuma* has 26 times our
complement of DNA'.

C-value enigma

Gregory TR. 2001. Coincidence, co-evolution, or causation? DNA content, cell size, and the C-value enigma. *Biological Reviews* **76:** 65-101.

Variation of genome size: Consequences at nuclear level

Bennett et al. 1983. J. Cell Sci. 63: 173-179.

Anderson et al. 1985. Exp. Cell Res. **156:** 367-378.

Bennett et al. 1981. J. Cell Sci. 47: 91-115.

Baetcke et al. 1967. Proc. Natl. Acad. Sci. USA 58: 533-540.

Variation of genome size: Consequences of timing

Van't Hof & Sparrow AH. 1963.

Proc. Natl. Acad. Sci. USA 49: 897-902.

Bennett MD. 1977.

Phil. Trans. Roy. Soc. B 277: 201-277.

Variation of genome size: Consequences at cell and tissue level

Relationship between pollen volume and DNA amount in 16 grass species.

Bennett et al. 1972

Relationship between seed weight and DNA amount in 12 *Allium* species.

Bennett et al. 1972

Whole plant level

- a) Life cycle options
- b) Life strategy options
- c) Ecology options
- d) Coping with environmental change

Whole plant level

a) Life cycle options

Bennett MD. 1972.

Nuclear DNA content and minimum generation time in herbaceous plants.

Proceedings of the Royal Society of London Series B-Biological Sciences **181**: 109-135.

Consequences: life cycle options

Bennett MD. 1977.

Phil. Trans. Roy. Soc. B 277: 201-277.

Consequences: life cycle options

Bennett MD. 1972. Proc. Roy. Soc. Lond. B 181: 109-135

Life cycle options:

Conclusions

- DNA amount can impose limits on the type of life cycle a species can display
- Species with small genomes may be ephemerals, annuals or perennials
- Species with large genomes are restricted to being obligate perennials

Whole plant level

- a) Life cycle options
- b) Life strategy options
- c) Ecology options
- d) Coping with environmental change

Whole plant level

b) Life strategy options:

Potential to become a weed

Bennett, Leitch & Hanson. 1998.

DNA amounts in two samples of angiosperm weeds.

Annals of Botany 82: 121-134.

Consequences: option to be a weed

Method

DNA amounts for 156 angiosperms recognised as weeds compared with 2685 non-weed species

Consequences: option to be a weed

Bennett, Leitch & Hanson. 1998.

DNA amounts in two samples of angiosperm weeds.

Annals of Botany 82: 121-134.

Success of an invasive weed

- Rapid establishment or completion of reproductive development
- Short generation time
- Rapid production of many small seeds

Whole plant level

- a) Life cycle options
- b) Life style options
- c) Ecology options
- d) Coping with environmental change

Genome size and latitude

Pop.	Several Picea sitchensis	Miksche 1967, 1971
Sp.	Tropical vs. temperate grasses	Avdulov 1931
Sp.	329 tropical vs. 527 temperate plants	Levin and Funderburg 1979
Sp.	17 Poaceae and 15 Fabaceae crops	Bennett 1976
Pop.	24 Berberis in Patagonia	Bottini et al. 2000

+ correlation

Consequences: ecology options

Knight & Ackerly. 2002.

Variation in nuclear DNA content across environmental gradients: a quantile regression analysis.

Ecology Letters 5: 66-76.

Consequences: ecology options

Knight & Ackerly. 2002. Ecology Letters 5: 66-76.

Consequences: ecology options

Summary

- The relationship between genome size and environmental factors is not uniform but appears to be stronger for species with large genomes
- Species with large genomes are excluded from extreme environments

Whole plant level

- a) Life cycle options
- b) Life style options
- c) Ecology options
- d) Coping with environmental change

Threat of extinction

Is genome size important?

Vinogradov AE. 2003.

Selfish DNA is maladaptive: evidence from the plant Red List. *Trends in Genetics* **19:** 609-614.

Data and analysis

Vinogradov AE. 2003.

Selfish DNA is maladaptive: evidence from the plant Red List.

Trends in Genetics 19: 609-614.

Results

Vinogradov AE. 2003.

Trends in Genetics **19:** 609-614.

Conclusions

Species with large genomes are at greater risk of extinction than those with small genomes.

- Independent of life cycle type (at least partially)
- Independent of polyploidy

DNA amount variation and consequences

Summary

- Huge variation in DNA amount in plants
- Consequences of this variation visible at:

Cellular level

Tissue level

Whole organism level

 Possession of large genomes appear to impose constraints which operate at:

Functional level

Ecological level

Evolutionary level