Meiosis and mitosis

Meiotic chromosome dance

The function of meiosis is to generate cells that contain exactly half of the genetic materials of the parental cells and that develop into germ cells.

Chromosome rarrangements

could occur during meiosis, get fixed in populations, and eventually can contribute to genetic differentiation and speciation.

Meiotic prophase (diakinesis) in a sporocyte of *Ophioglossum reticulatum*, showing about 630 bivalents.

Mitosis vs. Meiosis

Meiotic phases

- premeiotic S-phase

Meiosis I (reductional division)

• prophase

leptotene

zygotene

pachytene

diplotene

diakinesis

- metaphase
- anaphase
- telophase

Meiosis II (equational division)

- prophase
- metaphase
- anaphase
- telophase

Meiosis

Meiotic phases

Prophase I

- leptotene
- zygotene
- pachytene
- diplotene
- diakinesis

© 2012 Pearson Education, Inc.

Meiotic divisions I and II in the rye (Secale cereale)

(a – f) prophase I
(a) early zygotene
(b - d) early to late pachytene
(e) diplotene
(f) diakinesis
(g, h) metaphase I
(i, j) anaphase I
(k) telophase I

(*I*) prophase II
(*m*) metaphase II
(*n*) anaphase II
(*o*) telophase II (four haploid pollen mother cells)

Meiotic divisions I and II in Arabidopsis thaliana

- (A H) prophase I
- (A) leptotene
- (B) zygotene
- (C) pachytene
- (D) diplotene
- (E) diakinesis
- (F) metaphase I
- (G) anaphase I
- (H) telophase I

(I) prophase II
(J) metaphase II
(K) anaphase II
(L) telophase II
(M) four newly formed nuclei

Prophase I in *Arabidopsis thaliana* as revealed by chromosome painting

139 clones of a BAC tiling path covering *Arabidopsis* chromosome 4 were divided into 11 pools of 8-18 BACs. Individual pools were labelled either by biotin-dUTP (red) or digoxigenin-dUTP (green) for painting of either the long arm (113 BACs) or the entire chromosome (139 BACs).

zygotene

pachytene

NOR

CEN

Key events of meiosis I

Links between chromosome **pairing**, **synapsis** and **recombination** are not well undestood. Recombination plays a key role in unifying meiotic events in prophase I.

Chromosome pairing

- the mechanism is not known

Synapsis

- synaptonemal complex (SC)
- the link between synapsis and recombination is not well understood

Meiotic recombination

- process of formation of doublestrand breaks (DSBs) and their subsequent repair

- results in formation of crossover and non-crossover products

Homologous chromosome recognition and pairing

Homologous chromosome pairing facilitated by telomere and centromere clustering (?)

The meiotic telomere cluster is visualized by telomere FISH. Microscopic image of a maize nucleus fixed at meiotic prophase (zygotene stage), subjected to telomere (green) and centromere (white) FISH, and counterstained for total DNA with DAPI (red). This pseudo-colored image is a 2-D projection of a 3-D, multi-color image dataset, courtesy of SP Murphy and HW Bass, Florida State University. Centromere pairing is prior to the alignment of chromosome arms at the leptotene stage (maize)

Arabidopsis: telomere clustering around nucleolus

Armstrong et al. 2001, JCS

Synaptonemal complex (SC)

- synapsis

- consists of two lateral elements (**le**) connected by a central element (**ce**) [the lateral elements formed as axial elements (AEs, also called the chromosome axis) in leptotene]

- the central element assembles following chromosome pairing during zygotene

Synaptonemal complex in Arabidopsis thaliana

Recombination (crossing over) and chiasmata

Recombination (crossing over) and chiasmata

chiasma formation

Copyright 2000 John Wiley and Sons, Inc.

Prophase I: crossing over

- SPO11 protein introduces DSBs into chromosomal DNA
- DNA ends adjacent to these breaks are later bound by RAD51 and DMC1 that catalyze singleend invasion of the broken DNA ends into the homologous chromosome

Crossing over during meiosis

Recombination: double-strand breaks (DSBs) and their repair

dHJ: double-Holliday junction; SDSA: synthesis-dependent strand annealing; COs: crossovers; NCOs: noncrossovers

Plants – male gametogenesis

Plants – famale gametogenesis

Female gamete

Megasporogenesis				Megagametophyte formation (Embryo sac)		
Megaspore mother cell	Meiosis I	Meiosis II	Megaspore with functions	Mitosis	Mitosis	Mitosis
	0	0000	Degeneration and disappearance		•••	Antipodal cells Central Polar cell Polar nuclei Egg cell Synergids

Plants – fertilization

