V)' ho€e(c«P&j 14-, a. cM^lirilu K*t>\*UAU i 1 ' ---—-U-1__A f. HO-LGAO 0 = "a^- + ^ o _i Ö ô ^v o A, J_J Euev^vc ^0 uXyil 2*oe<>cü; Wudt^ CavC^ >t=" o , ^yjpt^i^___ ------- y ' »-- > n*l \ 0 ---. 1 V ^ • . A V j 1 * -» ■» v^,---- -toaiiAulíU- iiW.= CA£ U -v £ ŕ U d \ \ + eeU sa M as S ^>,.,. 0 ^ i —* > \ /\o 1 z\ i*) — i t Q ^ 0 U.„= \ As. U 4s A'l7 i 0 - TVemk. <2u Or H FIGURE 12-7 Surface plots of (a) the o-,ls and (6) the rruls wavefunctions of the Hj, together with (c) and (<*), the corresponding probability densities (o-,1j)2 and (a-Jsf. The - =F^r-^ííží(;£l_Z2) (12) [2(1 [2(1 - S)]1 So, starting off from two AOs, X\ and x2, we have obtained two MOs + and _. This relationship between the number of AOs and the number of MOs they generate is a general one, even in more complex systems; n AOs give rise to n MOs. If we calculate the overlap between the MOs we get 1 < + | -> = — "„2 + Oil I *2> - - <*2 I *2» (1 + S — S — 1) 2(1 - S2)112 1 2(1 - S2)112 = 0 (13) X2 Figure 3.1. Molecular orbital diagram showing the interaction between two identical atomic orbitals in a homonuclear molecule. 3.2.2. Interaction of two different AOs *S 3-2h,M,olecula/ orbltal dla0ram showing the interaction between two different atomic orbitals in a heteronuclear molecule. LoNMe owe/ 7-5 LINEAR COMBINATION OF ATOMIC ORBITALS 207 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -O.B -0.9 -1.0 -1.1 -1.2 -1.3 H atom energy \ \ \ HAA ~HAB. »aa \ I"aa+»ab c FIG. 7-6 Contributions to energy of H2 + at R — 2 in minimal basis LCAO-MO calculation. 208 7. THE VARIATION METHOD 0.3 0.2 0.1 0.0 -0.1 ~ -0,2 <ü -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 FIG. 7-7 Separated atom energies and energies at an intermediate R for H2+. f *1 « (a.u.l calcuEn7"* E± + K for H2+. (__) Calculation described in text. (—) Exact