V a VI. Bioqeochemicke toky P a N Earth System Control variable process Threshold avoided or influenced by slow variable Planetary Boundary (zone of uncertainty) State of knowledge* Biogeo- chemical flows: interference with P and N cycles P: inflow of phosphorus to ocean, increase compared with natural background weathering N: amount of N2 removed from atmosphere for human use, Mt N yr"1 P: avoid a major oceanic anoxic event (including regional), with impacts on marine ecosystems. N: slow variable affecting overall resilience of ecosystems via acidification of terrestrial ecosystems and eutrophication of coastal and freshwater systems. P: < lux (lOx -100x) N: Limit industrial and agricultural fixation of N2 to 35 Mt N yr-1, which is - 25% of the total amount of N2 fixed per annum naturally by terrestrial ecosystems (25%-35%) P: (1) Limited knowledge on ecosystem responses; (2) High probability of threshold but timing is very uncertain; (3) Boundary position highly uncertain. N: (1) Some ecosystem responses known; (2) Acts as a slow variable, existence of global thresholds unknown; (3) Boundary position highly uncertain. Boundary N: < 35 million tonnes of N fixed from the atmosphere per year Current level: 121 million tonnes per year Diagnosis: Boundary far exceeded and effects worsening Boundary P: < 11 million tonnes of P to flow into the oceans per year Current level: 9 million tonnes per year Diagnosis: Boundary not yet exceeded Změny - ovlivňování biogeochemických cyklů P a N s důsledky: 1) na lokální až regionální úrovni náhlé změny v jezerních a mořských ekosystémech (např. anoxie v jezerech a Baltickém moři) ^ 2) nelineární změny z oligotrofního stavu do eutrofního Dusík (©) Denitrifying bacteria Nitrifying bacteria Nitrites (N02") Nitrogen-fixing soil bacteria Ctuynnfil © Peereon Education, lne , publishing es Benjemin Cummings Nitrifying bacteria Dusík I - lidskou aktivitou je dnes přeměněno více N2 na reaktivní formy N, než ve všech terestriálních procesech dohromady - Haber-Bosch 80 MtN/yr, leguminózy 40 MtN/yr, spalování fosilních paliv 20 MtN/yr, spalování biomasy 10 MtN/yr Unbalancing the cycle Nitrogen flows, megaton n c s mo r Lightning Atmospheric nitrogen 1990 "1 fixation B Lightning Atmospheric nitrogen Farm i ] 13 1 Wild plants Farms Source: G^LIowayand ÍQwLirg^můro Dusík ^ - primární důvod výroby reaktivních forem N ? - většina končí ve vodě - eutrofizace - či v atmosféře - N20 je významný skleníkový plyn + 03„rozkladač" - nebezpečné je celkové snižování pružnosti planetárních subsystémů v důsledku vnášení velkého množství reaktivního N do Zemského systému (skleníkový jev + úbytek ozónu + hypoxie vod) co Centrum pro výzkum toxických Látek v prostředí NITROGEN POUimOH The amount of reactive nitrogen released into the environment k increasing • Total human input • Fertiliserand industrial uses • Nitrogen fixation in agri-ecosystems • Fossil fuels 200- ^7 Oj S Fosfor - přirozený cyklus Fosfor - cyklus ovlivněný člověkem (©) Fosfor - primární zdroj P v ekosystému - zvetrávaní či těžba apatitu - lidskou činností proudí do oceánů 8-9x větší množství P než přirozeně - z 20 MtN/yr průmyslového fosforu skončí polovina v mořích - přítok P do oceánů zvyšuje riziko anoxických událostí, práh nastání této události je ale zatím nejasný 26 n-1 24-- Dopady těžby guana na ostrůvku Nauru Simplified view of the nitrogen and phosphate cascade Unreactive di-nitrogen inair (N2) N,->N, High temperature combustion & industry Mineral phosphate (P04) Greenhouse Stratospheric gas balance ozone loss Nitrous Oxide Urban air quality Ái 4 Tropospheric ozone formation Particulate Matter Ammonium nitrate in rain (NH4Nq) Further Nr emission as carrying on the cascade Fertilizer manufacture 60 n/i £ j Consumption Manufactured b hum£ns detergents & 3 other products Terrestrial Eutrophi Natural ecosystems_ I Sol I acidification | Nitrate leaching (NQ), Phosphorus run-off (P043) ^ plus Sewage N & P I, Eventual denitrification of Nr to N2 A atio N & P in streams, ► lakes & coastal seas Key Intended N & P flows Unintended N & P flows I Environmental concern |Freshwater Eutrophication Marine Eutrophication Fosfor + dusík = anoxické zóny v mořích 200 AND COUNTING The number of dead zones around the world is doubling every decade ^^F"*\\ Centrum pro výzkum (Wj JJ toxických látek ^^fc^/ v prostredí Fosfor + dusík = anoxické zóny v mořích ANNUAL PLAGUE Every summer, oxygen levels in Chesapeake Bay plummet. Strong winds can make surface water pile up on one side of the bay, causing the dead zone to spill over into the shallow waters Dissolved uxygpn (mg/l) • 10.0 • SO * 2.5 • 0.0 (dead zone) HO WIND Dissolved oxygen in Chesapeake. Bay in August 2 HO5 P. 3n i Vznik a zanik anoxickych zon - ne vse lasne Home | Environment | Life | News Pacific dead zone has been shrinking for a century > 19:00 07 August 2014 by Anna Williams For similar stories, visit the Endangered Species , Mysteries of the Deep Sea and Climate Change Topic Guides Huge areas of ocean could suffocate as a result of global warming. But one of these "dead zones" has been shrinking for a century, we now know. Freak local conditions may be at work, but the discovery offers hope that at least one region of the ocean will still be breathable. Most tropical coastlines have oxygen minimum zones, which form when plankton die, sink and get eaten by bacteria, a process that consumes oxygen. The majority of marine animals cannot breathe in low-oxygen water, and either leave or die. Around the world, oxygen minimum zones have been growing, partly due to the effects of global warming. But one such zone, in the eastern Pacific off the coast of North and Central America, has been bucking the trend, says Curtis □eutsch of the University of Washington in Seattle. Using coastal sediments that carry traces of past oxygen levels, Deutsch and his colleagues reconstructed changes in oxygen levels in the eastern tropical Pacific since 1850. They found that the oxygen minimum zone has been shrinking nearly all that time. e □ □ □ Weakening winds can help dead zones recover (image: image Source/Getty) v prostredi Vznik a zánik anoxickych zón - ne vše jasné - - - - — Home | Environment | Life | N Pacific dead zone has Home | Environment | Life | News The oceans are heating, acidifying and choking > 19:00 07 August 2014 by Anna 1 > For similar Stories, visit the Enda| > 1^58 04 October 2013 by Fred Pearce ) For similar stories, visit the Climate Change Topic Guide Huge areas of ocean could suffoca these "dead zones" has been shrin local conditions may be at work, bi one region of the ocean will still be 9' Most tropical coastlines have oxy plankton die, sink and get eaten by oxygen. The majority of marine anil and either leave or die. Around the world, oxygen minimun] the effects of global warming. But a coast of North and Central America Deutsch of the University of Washi Using coastal sediments that carry his colleagues reconstructed chan< Pacific since 1850. They found that shrinking nearly all that time. We know the oceans are warming. We know they are acidifying. And now, to cap it all, it turns out they are suffocating, too. A new health check on the state of the oceans warns that they will have lost as much as 7 per cent of their oxygen by the end of the century. The cascade of chemical and biological changes now under way could see coral reefs irreversibly destroyed in 50 to 100 years, with marine ecosystems increasingly taken over by jellyfish and toxic algal blooms. The review is a repeat of a study two years ago by the International Programme on the State of the Ocean [IPSO), a coalition of scientists. It concludes that things have become worse since the first study 'The health of the oceans is spiralling downwards far more rapidly than we had thought, exposing organisms to intolerable and unpredictable evolutionary pressure," says Alex Rogers at the University of Oxford, the scientific director of IPSO. Deadly trio Rogers describes a "deadly trio" of linked global threats. The first is global warming: surface sea water has been warming almost as fast as the atmosphere. The second is acidification - a result of the water absorbing ever more C02 from the atmosphere. The third is deoxygenation. Zi To se mi líbí EJ Shirs íět]{256] I g+1 I I 109 aral sea uzbekistan 1999 ILL1 km 2002 no^araísÍa £f south aral sea - 2005 postavena přehrada mezi S a J částí - co se následovalo? Centrum pro výzkum toxických látek v prostředí Aralské Jezero THE SHRINKING SEA The changed shape of the Aral Sea since i960 I960 Aralsk 1999 (©) Centrum pro výzkum toxických látek v prostředí Lake Hamoun - Irán, Afghanistan Lake Turka n a Keňa ??? Harnessing the Omo's waters Today Lake Turkana in Kenya has a surface area of 6400 square kilometres and Is the world's largest desert lake. It is replenished mostly by water from the river Omo, which flows through Ethiopia blahobyt x přírodní dědictví (©) Centrum pro výzkum toxických látek vprostredí Omo National Park Contains early humanfossíls —- SOUTH SUDAN KENYA DEPTH 0-20 metres • 20-40 metres • >40metres GILGELGIBE III DAM Will be completed in late 2014) OMO RIVER Provides Lake Turkana with 9D per cent of its water Planned reservoir At least 50 per ce nt of the water reieasect f rom the dam is ea rm arked to i rrigate new sugar plantations and agricultural land and so will no longer reach Lake Turkana The lake loses 16 trillion litres of waterthrough evaporation each year. Without the flow from the Omo it would be empty within 11 years Koobi Fora 'O Fossils of five species ot hominin discovered here Sibiloi National Park Central Island National Park Important breeding grounds for Nile crocodiles Odvětví spotřeby vody Pacific Ocean Industry widely dominant Industry and agriculture equally dominant Industry dominant with significant use by the domestic sector Domestic use widely dominant Domestic use and agriculture dominant Agriculture dominant with significant use by the domestic sector Agriculture dominant with significant use by the industrial sector Agriculture widely dominant with significant use by the industrial sector Source: Based on data fromTable FW1 in World Resources 2000-2001, People and Ecosystems: The Fraying Web of Life, World Resources Institute (WRI), Washington DC, 2000. _I Data not available PHILIPPE REKACEWICZ MARCH 2002 Oblasti a příčiny nedostatku vody Areas around the globe suffering from depleted water resources Physical water scarcity Water resource development is approaching or has exceeded sustainable limits. More than 751 of livei Nuw is extiritted loi iigritultme Approaching physical water scarcity More than 60% of rrver Hdw is extracted. These areas will experience physical water scarcity in the near luture □ 0 0 Economic water scarcity Limited access to water even though natural local supplies are available to meel human demands: Less than 25% of water extracted for human needs tittle or no water scarcity Abundant water resources relative to use, with less than ?5% of water extracted for human purposes Not estimated 9 (©) Centrum pro výzkum toxických látek v prostředí VIII. Změna využívání krajiny Earth System Control variable Threshold avoided Planetary State of knowledge* process or influenced by Boundary (zone of slow variable uncertainty) Land-system Percentage of change global land cover converted to cropland Trigger of irreversible and <15% of global widespread conversion of ice-free land biornes to undesired states. Primarily acts as a slow variable affecting carbon storage and resilience via changes in biodiversity and landscape heterogeneity surface converted to cropland (15%-20%) 1. Ample scientific evidence of impacts of land-cover change on ecosystems, largely local and regional. 2. Slow variable, global threshold unlikely but regional thresholds likely. 3. Boundary is a global aggregate with high uncertainty, regional distribution of land-system change is critical. Boundary: No more than 15 % of ice-free land to be used for crops Current level: 12 % Diagnosis: Boundary will be approached by mid-century CUrnatc change (©) Centrum pro výzkum toxických Látek v prostředí Změna využívání krajiny - poháněno expanzí zemědělství a jeho intenzifikace - posledních 50 let byly lesní a další ekosystémy měněny na zemědělskou půdu rychlostí 0,8% ročně - hlavní síla řídící ztrátu ekosystémových funkcí a služeb (např. produkce potravin a cyklus vody), ztrátu biodiverzity a podkopává lidský blahobyt a dlouhodobou udržitelnost - maximální únosná míra přeměny ekosystémů na zeměd. půdu je přibližně 15 % nezaledněné plochy souše - v současnosti je to 12 % - při překročení únosné míry využívání v určitém regionu může dojít k náhlé změně charakteru krajiny - např. nadkritická přeměna Amazonských pralesů na zemědělské plochy či pastviny může „skokově" změnit celý charakter povodí na polosuchou savanu I Centrum pro výzkum toxických látek | vprostredí Změn Parts of Amazon close to tipping point poh pos zem hlav (naj a po maJ půd sou ) 13:52 05 March 2009 by Catherine Brahic ) For similar stories, visit the Endangered Species Topic Guide The Mato Grosso, the most scarred region of the Amazon rainforest, is teetering on a deforestation "tipping point", and may soon be on a one-way route to becoming a dry and relatively barren savannah. Monica Carneiro Alves Senna and colleagues at the Federal University of Vicosa, Brazil, used computer models to simulate how the Amazon would recover from various amounts of deforestation. Their simulations ranged from a complete wipe-out of the entire forest to a situation where just one fifth of the forest would be removed. ^^^^^^^^^^ při překročení únosné míry využívání v určitém regionu může dojít k náhlé změně charakteru krajiny např. nadkritická přeměna Amazonských pralesů na zemědělské plochy či pastviny může „skokově" změnit celý charakter povodí na polosuchou savanu (©) Centrum pro výzkum toxických látek v prostředí Graf 1: Rozloha obhospodařovaných systémů v roce 2000 Obhospodařované systémy pokrývají 24 % suchozemského povrchu. Centrum pro výzkum toxických látek ^^É^/ v prostředí PŘEMĚNA SUCHOZEMSKÝCH BIOMŮ Zlomek potenciálně přetvořeného území -10 STREDOMORSKÉ LESY A KŘOVINY LESY MÍRNÉHO PÁSU, STEPI A LESNATÉ KRAJE LISTNATÉ A SMÍŠENÉ LESY MÍRNÉHO PÁSU TROPICKÉ A SUBTROPICKÉ SUCHÉ LISTNATÉ LESY ZAPLAVOVANÉ LUČINY A SAVANY TROPICKÉ A SUBTROPICKÉ LUČINY SAVANY A KŘOVINY TROPICKÉ A SUBTROPICKÉ JEHLIČNATÉ LESY POUŠTĚ HORSKÉ LOUKYA KŘOVINY TROPICKÉ A SUBTROPICKÉ VLHKÉ LISTNATÉ LESY JEHLIČNATÉ LESY MÍRNÉHO PÁSU BOREÁLNÍ (SEVERSKÉ) LESY TUNDRA 10 20 30 40 50 60 70 80 90 100% j_i_i_i_i_i_i_i_i_i ■ \ 1 1- Přeměny původních biómů ztráta před r. 1950 ztráta mezi r. 1950 a 1990 předpokládaný ztráta do r. 2050b IX. Chemické znečištění Earth System Control variable Threshold avoided Planetary State of knowledge* process or influenced by Boundary (zone of slow variable uncertainty) Chemical For example, pollution emissions, concentrations, or effects on ecosystem and Earth System functioning of persistent organic pollutants (POPs), plastics, endocrine disruptors, heavy metals, and nuclear wastes. Thresholds leading to unacceptable impacts on human health and ecosystem functioning possible but largely unknown. May act as a slow variable undermining resilience and increase risk of crossing other thresholds. To be determined 1. Ample scientific evidence on individual chemicals but lacks an aggregate, global-level analysis. 2. Slow variable, large-scale thresholds unknown. 3. Unable to suggest boundary yet. CUrnatc change (©) Boundary: Not yet identified Centrum pro výzkum toxických Látek v prostředí Message From the Gyre Ce ntrum pro vyz ku m ^^fc^/ v prostredi Plastikové kousky v ŽP Growth in plastics production 1950-2012 2012:288 ^"Europe ^™ World jf 2012:57 iear Source: PlasticsEurope 2013 Growing plastic production - include thermoplastics, polyurethanes, thermosets, elastomers, adhesives, coatings and sealants, and polypropylene fibres. PET, PA and polyacryl fibres are not included Main sources and movement pathways for plastic in the marine environment. Most plastic accumulates on beaches (1), in coastal waters and their sediments (2), and in the open ocean (3). Dark blue arrows depict wind-blown litter; grey arrows water-borne litter; orange arrows vertical movement through the water column, including burial in sediments; and black arrows ingestion by marine organisms. Global garbage dump Much of the ocean's plastic waste is found near heavily popu lated coastlines, but farther out, it is concentrated in five "gyres" in the Atlantic, Pacific and Indian oceans. Where most of it ends up is unclear Arctic Sea ice traps and concentrates particles of plastic Seabed Deep sediments may contain 10 times more particles than coastal sediments Azores The Ocean Cleanup project is testing technology to remove plastic from the sea Romania The river Danube empties 1500 tonnes of plastic into the Black Sea annually Hawaii Melted "plastiglomerate rock" found on beaches Fisheries Plastic particles cause a build-up of pollutants. Eaten by fish, these chemicals pass up the food chain Ocean currents 100 1000 10,000 g I 9, Grams of plastic per square kilometre 2. 4. 2014 | poslední aktualizace: 2. 4. 2014 14:57 R □ E3 □ □ □ 'C 5 s+i Q velikost písma {+] Místo zmizelého boeingu našli nový "kontinent". Tvoří jej tuny plastového odpadu Je to krídlo, nebo kus sedačky? Otazník vznášející se nad zmizením malajsijského boeingu obrací zájem verejnosti k dalším otázkám - tentokrát ekologickým. Pátrání potvrzuje předpoklad, že oceán z hromadícího se odpadu začíná formovat "nový kontinent". Čtěte více o: Pacifik | oceán | ekologie ČTK r -"i ČLÁNEK DISKUSE (115} Jeto už téměř měsíc, co záchranáři několika států pátrají po zmizelém letu MH370, bohužel neúspěšně. Hledání pohřešovaného malajsijského letadla zatím vedlo jen k objevení velké spousty trosek a různých plovoucích předmětů. Bohužel o žádném z nich nebylo možné s jistotou říct že patří k hledanému Boeingu 777 společnosti Malaysia Airlines. Značné množství odpadků pohupujících se na hladině oceánu dělá ze sisyfovského hledání zmizelého letadla ieště komolikovaněiší úkol. Ve vodách oluií zbvtkv Obrovskou masu odpadků v Tichém oceánu přináší mořský proud ze všech břehů. Nature, Septempber 2015 THIS WE down on scientific controversy p.42G world view End the unfair racket of academic jobs for the boys p.427 deception Orchid shape and smell fools amorous wasps p.429 In the name of beauty The ugly truth is that the plastic microbeads found in many skin scrubs and other personal-care products are a serious pollutant of the marine environment. They should bephased out rapidly. Abran I ifu I woman comes inlo focus. What makes her skin glow so? Why, she says, she uses Aveeno's Positively Radian I skin-brighlening daily scrub for"nalurally heauliful results". Whal is not clear from I his advertisement is that the "gentle exfolialors™ in the product promoted by Jennifer An iston are minuscule beads of plastic When Aniston, or those she Inspires to follow her, rinse I he scrub down the drain, many of the beads end up in the sea, where they will persist indefinitely. This Ls unnecessary, damaging and musl stop. Others agree, and the face scrub, along with hundreds of other products, including toothpastes, may not be Jong for this world. On 10 September, the (la lift) ml a Legislature sent a bill (All 8KK) to the state's governor, Jerry llmwn, that would ban the inclusion of spheres of polyethylene, polypropylene and other plastics less than 5 millimetres across In personal-care products after 2020. If signed into law, the bill will prevent trillions of plastic beads from being rinsed down the drain. Not all of these make i I to l he sea wastewater treatment plants can sift out 90% of them but the problems caused by the remaining millions are considerable. (Meanwhile, beads t rapped in sludge' at the plants do not disappear. Plenty are sprayed on crops, from where they escape to rivers and lakes.) In a paper published on 3 September, aquatic-health researcher Chelsea Rochman al Ihe University of California, Davis, and her colleagues estimate that 8 trillion microbeads per day are emit led Inlo .............. ......... While bans and phase-outs slowly take effect, the Heal the Microbead campaign, funded by Dutch non-governmental organizations the Plastic Koup Pound alio n and the North Sea foundation, has created an app for consumers who want to avoid contributing to the problem. A few dicks can confirm whether the tempting scrub in the pharmacy aisle contains the heads. This is helpful in Ihe short term, but ultimately the onus of responsibility should not be on the consumer. Microbeads are not the only source of mixoplastic in the oceans. Tiny plastic pellets used in making plastic items spill inlo I he sea; plastic bags and bottles break down over lime. On almost any beach on liarlh, the sand carries liny, brighl grains of plastic. And macroplastlcs remain a serious prob- k'iii. A šimly published last monthestimated I hat around 90% of seahirds have plastic in their bellies ((Wilcox ei ai, ikoc. Nail Acad, Sci USA http://dol.org/7dv; 2015). Some birds mistake shopping bags for jellyfish; others confuse cigarette lighters and pen caps with prey and lly home lo feed them to their chicks. The consequences of this ubiquitous plastic for marine species, marine ecosystems and human health remain areas of active research. Put the public and policymakers need not wail for detailed results before faking action. Banning microbeads will not solve the plast 1c-pollullon problem, bul U is an easy star I. Jennifer Aniston and Ihe "i\r> luminous complexion ht worth the wholesale pollution of Earth's oceans. Oázy života „For some microbes, plastic is the equivalent of a hotel buffet table. Any hard surface in the ocean becomes a collection plate for nutrients..." X. Emise atmosférických aerosolů Earth System Control variable Threshold avoided Planetary State of knowledge* process or influenced by Boundary (zone of slow variable uncertainty) Atmospheric Overall particulate Disruption of monsoon To be determined 1. Ample scientific aerosol concentration in systems. evidence. loading the atmosphere. Human-health effects. 2. Global threshold on a regional Interacts with climate behavior unknown. basis change and freshwater 3. Unable to suggest boundaries. boundary yet. Boundary: Not yet identified Emise atmosférických aerosolů - důsledky NewScientist Home News In-Depth Articles Blogs Opinion TV Galleries Topic G. SPACE TECH ENVIRONMENT 1) Ovlivnění klimatického systému 2) Škodlivé účinky na lidské zdraví ad 1) globální koncentrace aerosolů je od prům. rev. dvojnásobná aerosoly ovlivňují: - radiační rovnováhu planety zvýšeným odrazem do vesmíru - hydrologický cyklus změnou mechanizmu tvorby srážek - cirkulaci asijských monzunů - aerosoly nad Indo-Ganžskou plání více zahřívají atmosféru, zatímco dochází k ochlazování povrchu - dochází tak k posunu srážek do oblasti Himalájí a změnu časového rozvržení Environment HEALTH LIFE PHYSICS&MA Home | Environment | News Air pollution is stunting India's monsoon i 12:16 30 September 2011 by Michael Marshall 1 For similar stories, visit the Climate Change Topic Guide India has been drying out for half a century, and air pollution thousands of kilometres away is partly to blame. The monsoon has been weakening since the 1950s. Indian air pollution has been blamed, but now it seems that emissions further afield are also a factor. "The summer monsoon provides up to 80 per cent of total annual rainfall in south Asia, and supports 20 per cent of the world's population," says Yi Ming of Princeton University in New Jersey. With his colleagues, Ming used climate models to assess how different factors changed the monsoon. The monsoon is brought by large-scale wind patterns that transport heat between the northern and southern hemispheres. For half the year the nnrthprn hpmiQnhprp pynpripnrp^ mnrp anlar hpatinn anrl ?n ia wnrmpr than Znečištění atmosféry nad indickým oc 8-12.12. 2004 zlatá barva - větší částice (písek, soli) červená barva - menší částice (spalování fosilních paliv či vegetace) Znečištění atmosféry pod Himalájemi 7.11.2007 16.12.2004 smog nad Pákistánem a Indií smog nad tokem Gangy Globální přenos znečištění přenos oblaku CO z Číny do USA - květen 2000 Emise atmosférických aerosolů - důsledky 1) Ovlivnění klimatického systému 2) Škodlivé účinky na lidské zdraví ad 2) částice PM25 zodpovídají za: - 3 % úmrtí na kardiovaskulární choroby ^ - 5 % tracheální, bronchiálni a plicní rakoviny - 1% úmrtí akutních respiračních onemocnění dětí - 0,8-106 předčasných úmrtí/rok kvůli průmyslovému zneč. - 1,6-106 předčasných úmrtí/rok kvůli vnitřnímu zakouření - 0,3-106 předčasných úmrtí/rok prašností v povolání - většina případů v rozvojových Asijských zemích UNEPYear Book 2014 emerging issues update Air Pollution: World's Worst Environmental Health Risk Choking to death Deaths attributable to the joint effects of household and ambient air pollution in 2012, by region (f000) America HI 96 America LMI 131 Europe HI 295 P Europe LMI 287 Deaths attributable in 2012, by disease Acute lower respiratory disease Lung cancer Chronic obstructive pulmonary disease Stroke Ischaemic heart disease Source: WHO 2012 596 000 443 100 1 187 900 2 296 900 2 529 700 Southeast Asia 2 275 Eastern 14 Mediterranean HI Key: LMI = low-and middle Income HI = high-Income Western Pacific HI 68 Western Pacific LMI 2817 Jak se k této situaci postavit?