PRINCIPALS OF MALDI TOF Josef Havel havel@chemi.muni.cz Department of Chemistry Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic CEPLANT, R&D Center for Low-Cost Plasma and Nanotechnology Surface Modifications, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic ULL, La Laguna, Seminary of GRANT MAT2014-57465-R, Ministry of Economy and Competiveness, Spain, 13th October 2015 (1856 - 1940) Cambridge University Cambridge, Great Britain The Nobel Prize in Physics 1906 "in recognition of the great merits of his theoretical and experimental investigations on the conduction of electricity by gases" The Nobel Foundation first mass spectrometer Joseph John THOMSON Mass spectrum of neon with masses 20 and 22 u measured by J. J. Thomson (1913) using his parabola mass spectrograph (1877 - 1945) Cambridge University Cambridge, Great Britain The Nobel Prize in Chemistry 1922 "for his discovery, by means of his mass spectrograph, of isotopes, in a large number of nonradioactive elements, and for his enunciation of the wholenumber rule" The Nobel Foundation Francis William ASTON (1913 - 1993) University of Bonn Bonn, Germany The Nobel Prize in Physics 1989 "for the development of the ion trap technique" The Nobel Foundation Wolfgang Paul A quite different type of mass spectrometer – the first 180 magnetic sector field mass spectrometer (see Figure 1.7), with directional focusing of ions for isotope analysis, was constructed by Dempster, independently of other instrumental developments in mass spectrometry, in 1918. A – ion source; B – electromagnet; C – Faraday cup; D – electrometer Basic investigations in mass spectrometry, continue to influence instrumental developments. The first application in ion cyclotron resonance mass spectrometry (ICR-MS)was described by Sommer, Thomas and Hipple in 1949. The instrumental development of a quadrupole ion trap, which can trap and analyze ions separated by their m/z ratio using a 3D quadrupole radio-frequency electric field, was initiated by Paul and coworkers in the fifties. In 1974, Comarisov and Marshall developed Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). This technique allows mass spectrometric measurements at ultrahigh mass resolution R = 100 000–1000 000, which is higher than that of any other type of mass spectrometer and has the highest mass accuracy at attomole detection limits. Ultrahigh mass resolution R = 100 000–1000 000, which is higher than that of any other type of mass spectrometer and has the highest mass accuracy at attomole detection limits. However, NEEDS for Mass Spectrometry of HIGH MASS BIOMOLECULES were growing and SOFT MS approaches were searched for …. Two recently developed mass spectrometric techniques have had a major impact on the analysis of large biomolecules: matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and electrospray ionization mass spectrometry (ESI-MS). SOFT IONISATION Fennand Tanaka(together with 2002 Wüthrich) received the Nobel Prize for chemistry in 2002 in recognition of their contribution to the characterization of biomolecular macromolecules and to mass spectrometry and nuclear resonance spectroscopy (NMR). ELECTROSPRAY Nobel Prize for chemistry in 2002 K. Tanaka MALDI Nobel Prize for chemistry in 2002 MALDI TOF MS Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry MALDI Laser pulse Matrix Analyt e Sample + MATRIX GAS PHASE SER 1.Laser Desorption Ionisation LDI MALDI Laser pulse 337 nm Matrix Analyt e Sample ˇ+ MATRIX GAS PHASE IONISATION The matrix absorbs the laser energy and from analyte M the ions are formed for example [M+H]+in the case of an added proton, [M+Na]+in the case of an added sodium ion, or [M-H]-in the case of a removed proton. Profs KARAS and HILLENKAMP, Germany : co-discovered MALDI Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry [1] Karas M., Hillenkamp F., Anal. Chem. 1988, 60, 2299-2301. [2] Tanaka K., Waki H., Ido Y., Akita S., Yoshida Y., Yoshida T., Rapid Commun. Mass Spectrom. 1988, 8, 151-53. MALDI ionizes molecules with molecular masses up to 1,000,000 Da for analysis by MS. It has been introduced 17 years ago almost simultaneously in Germany [1] and in Japan [2] and now belongs to the most prominent method to analyze biomolecules and even DNA. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) +TOF PEPTIDES, PROTEINS PROTEOMICS BIOMOLECULES TISSUE IMAGINING 1. LASER DESORPTION IONISATION 2. DELAYED EXTRACTION 3. TOF DETECTION 4. REFLECTRON 1. LASER desorption ionisation 1. IONISATION DELAYED EXTRACTION TIME OF FLIGHT DETECTOR REFLECTRON High productivity: 384 samples/target MALDI Matrices used for MALDI: OH HO COOH Dihydroxybenzoic Acid (154,1) OH COOHCl 5-chlorsalicylic Acid (172,6) COOH CN HO a-Cyano-4-hydroxycinnamic Acid (189,17) HO OCH3 CH3O COOH Sinapinic acid (224,21) Nitrogen laser 337 nm, pulse duration 3 ns Linear positive mode Axima Kratos - CFR Shimadzu Mass Spectrometer CHC, DHB, DHC, OHP Principals of LDI and MALDI 1. Ultra short laser pulse, typically t ~ 3 ns (LDI, MALDI), max. ms. Molecules are vaporized BEFORE decomposition. 2. Energy is absorbed mostly by matrix (M), not by analyte. e (matrix) >> e (analyte), c(matrix) >> c(analyte) Matrix  MH+, M+, M*, fragments, ions of fragments. Analyte, dispersed in matrix, is vaporized together with matrix. The problem: Peaks are inherently broad in MALDI-TOF spectra (poor mass resolution). + + + Sample + matrix on target Ions of same mass, different velocities The cause: Ions of the same mass coming from the target have different speeds. This is due to uneven energy distribution when the ions are formed by the laser pulse. DELAYED EXTRACTION Can we compensate for the initial energy spread of ions of the same mass to produce narrower peaks? Delayed Extraction Reflector TOF Mass Analyzer 2. DELAYED EXTRACTION Step 1: No applied electric field. Ions spread out. + + + Ions of same mass, different velocities Step 2: Field applied. Slow ions accelerated more than fast ones. 0 V. 0 V. + + + Step 3: Slow ions catch up with faster ones. 20 kV. 20 kV. 0 V. 0 V. + + + Delayed Extraction (DE) improves performance A “delayd extraction”. This is basically a time delay between ion generation and allowing the ions to go into the flight tube. This, in a way, cools the ions and narrows their initial kinetic energy distribution, so they start with more uniform kinetic energies improving resolution. 3. DELAYED EXTRACTION DELAYED EXTRACTION DELAYED EXTRACTION TIME OF FLIGHT TOF The mass-to-charge ratio of an ion is proportional to the square of its drift time( Time Of Flight) t = Drift time L = Drift length m = Mass K = Kinetic energy of ion z = Number of charges on ion 2 2 2 L Kt z m  5. REFLECTRON MALDI TOF MS Schéma přístroje MALDI TOF  Moderní hmotnostně spektrometrická metoda Detector Ion Source What is a reflector TOF analyzer? Reflector (Ion Mirror) The reflector or ion mirror compensates for the initial energy spread of ions of the same mass coming from the ion source, and improves resolution. A single stage gridded ion mirror that subjects the ions to a uniform repulsive electric field to reflect them. 0 V. +20 kV A reflector focuses ions to give better mass resolution + + Reflector Resolution & mass accuracy on mellitin 0 2000 4000 6000 8000 Counts 2840 2845 2850 2855 Mass (m/z) Resolution = 14200 Resolution = 4500 Resolution = 18100 15 ppm error 24 ppm error 55 ppm error 1 4 4 5 m /z 0 1 0 0 2 0 0 3 0 0 4 0 0 a .i. 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 m /z 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 a .i. Sensitivity and resolution: MALDI MS peptide (< fmol) [M+H]+ R ~ 18 000 Femto 10 -15 Atto 10 -18 Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) +TOF PEPTIDES, PROTEINS PROTEOMICS BIOMOLECULES TISSUE IMAGING INORGANIC MATERIALS? INORGANIC COMPOUNDS MATERIALS NANO-MATERIALS SURFACES Laser ablation synthesis Examples: 50 Nanotubes Fullerene Nanorods Nanoparticles Nanomaterials Nanodiamonds 51 Ag2 cluster Ag8 cluster N. R. Panyala, E. M. Pena/Mendez,et al. Silver or silver nanoparticles: a hazardous Silver or silver nanoparticles: a hazardous threat to the environment and human health? Silver clusters NANO GOLD Structure of selected Nano-gold clusters • Au1-Au8 planar, higher 3D • Structures of some higher gold clusters: Structure of clusters e.g. like Au7 is different for cation, neutral and anion GOLD FULLERENE !!!!! Au16 Bulusu, S., Li, Xi., Wang, L.S., Zeng, X.C. (2006) Evidence of hollow golden cages. PNAS, 103: 8326-8330. Au1-Au6 clusters 53 Titanium carbide, TiC Titanium Carbide –DLC composite MAGNETRONE SPUTTERING . Laser desorption ionisation quadrupole ion trap time-of-flight mass spectrometry of titanium-carbon thin films. Rapid Commun. Mass Spectrom, 2013, 27, 1-7. SURFACE ANALYSIS and CLEANING via PLASMA TREATMENT A. Pamreddy, D. Skácelová, M. Haničinec, P. Sťahel, M. Stupavská, M. Černák a J. Havel. Plasma cleaning and activation of silicon surface in Dielectric Coplanar Surface Barrier Discharge. Surf. Coat. Technol., 2013, 236, 326-331. LASER ABLATION synthesis GOLD ARSENIDES there are just a few known Au + As  ? GOLD ARSENIDES there are just a few known Au + As  ? L. Prokeš, E. M. Peña-Méndez, J. E. Conde, N. R. Panyala, M. Alberti and J. Havel, Laser ablation synthesis of new gold arsenides using nano-gold and arsenic as precursors. LDI-TOF mass spectrometry and spectrophotom., Rapid Commun. Mass Spectrom. 2014 Mar 30;28(6):577-86 . C D 0 50 100 1134.7 1256.8 1378.8 984.9 1040.5 1059.8 1157.7 1190.3 1284.6 1331.7 1012.7 0 50 100 1000 1080 1160 1240 1320 Au7 + Au3As8 + Au5 + Au4As5 + Au4As3 + Au3As6 + Au5As+ Au4As4 + Au5As2 + Au5As3 + Au4As6 + Au6As+ Au5As4 + Au6As2 + Au6 + m/z RelativeIntensity[%] EXPERIMENTAL MODEL 0 50 100 2000 2400 2800 3200 3600 4000 m/z 11,10 12,10 12,11 13,10 14,11 14,10 12,8 15,11 16,11 11,11 13,9 15,10 13,8 12,7 13,12 16,10 13,7 13,11 15,9 9,2 12,5 12,12 16,9 9,3 9,4 9,5 9,6 9,7 9,8 9,9 10,8 10,9 10,10 11,7 11,8 12,6 11,6 11,9 12,9 14,8 14,9 14,12 15,12 RelativeIntensity[%] Au11As10 Au12As10 0 50 100 1300 1700 2100 2500 5 7 6 86 9 75 6 4 6 9 4 5 874 109 9 10 11 3 6 7 8 7 8 9 10 4 5 10 5 8 AumAs8 (m=4-10) AumAs9 (m=5-9) AumAs7 (m=4-10) AumAs5 (m=4-11) AumAs6 (m=3-10) m/z RelativeIntensity[%] 0 50 100 3400 3600 3800 4000 4200 4400m/z RelativeIntensity[%] 13,11 13,13 13,12 Au14Asn (n=8-13) 11 10 9 8 12 13 9 10 11 12 13 Au15Asn (n=8-13) 876 Au16Asn (n=9-14) 9 10 11 13 14 8 Au17Asn (n=9-14) 9 10 11 12 13 14 12 n 5:1 GOLD ARSENIDES L. Prokeš, E. M. Peña-Méndez, J. E. Conde, N. R. Panyala, M. Alberti and J. Havel, Laser ablation synthesis of new gold arsenides using nano-gold and arsenic as precursors. LDI-TOF mass spectrometry and spectrophotometry, Rapid Commun. Mass Spectrom. 2014 Mar 30;28(6):577- 86 . ... more than 450new gold arsenides were identified ... MALDI TOF MS Is first of all used for analysis peptides-proteins In Proteomics PROTEOMICS MIXTURE OF HUMANIN-LIKE PEPTIDES 1500 2000 2500 3000 0 20 40 60 80 100 1214.23 2559.43 2525.44 2428.39 2341.35 2325.38 2194.29 1849.17 2656.48 Intensity[%] Mass/Charge Met Ala Pro Leu Pro Val Lys Arg Arg Ala Arg Gly Phe Ser Leu Leu Leu Leu Thr Glu Ile Asp Gly Cys Met Ala Leu Pro Val Lys Arg Arg Ala Arg Gly Phe Ser Leu Leu Leu Leu Thr Glu Ile Asp Gly Cys Ala Pro Leu Pro Val Lys Arg Arg Ala Arg Gly Phe Ser Leu Leu Leu Leu Thr Glu Ile Asp Gly Cys Ala Leu Pro Val Lys Arg Arg Ala Arg Gly Phe Ser Leu Leu Leu Leu Thr Glu Ile Asp Gly Cys Ala Leu Pro Val Lys Arg Arg Ala Arg Gly Leu Leu Thr Glu Ile Asp Gly Phe Leu Leu CysAlaAla Leu Pro Val Lys Arg Arg Ala LeuLeu ProPro ValVal LysLys ArgArg ArgArg AlaAla ArgArg GlyGly LeuLeu LeuLeu ThrThr GluGlu IleIle AspAsp GlyGly PhePhe LeuLeu LeuLeu CysCys SerAla Leu Pro Val Lys Arg Arg Ala Arg Gly Leu Leu Thr Glu Ile Asp Gly Phe Leu Leu SerSerAlaAla Leu Pro Val Lys Arg Arg Ala LeuLeu ProPro ValVal LysLys ArgArg ArgArg AlaAla ArgArg GlyGly LeuLeu LeuLeu ThrThr GluGlu IleIle AspAsp GlyGly PhePhe LeuLeu LeuLeu Ala Leu Pro Val Lys Arg Arg Ala Arg Gly Leu Leu Thr Glu Ile Asp Gly Phe Leu Leu AlaAla Leu Pro Val Lys Arg Arg Ala LeuLeu ProPro ValVal LysLys ArgArg ArgArg AlaAla ArgArg GlyGly LeuLeu LeuLeu ThrThr GluGlu IleIle AspAsp GlyGly PhePhe LeuLeu LeuLeu Ala Leu Pro Val Lys Arg Arg Ala Arg Gly Leu Leu Thr Ile Asp Gly LeuAlaAla Leu Pro Val Lys Arg Arg Ala LeuLeu ProPro ValVal LysLys ArgArg ArgArg AlaAla ArgArg GlyGly LeuLeu LeuLeu ThrThr IleIle AspAsp GlyGly LeuLeu use of MALDI TOF MS peptides-proteins in Proteomics But also i) inorganic compounds and nano-materials (ii) adsorbed organic and/or inorganic compounds on various surfaces (iii) Elucidate chemical structure of coordination polymers MOF´s (iv) Laser Ablation Synthesis MALDI -> SALDI -> SELDI -> NALDI Surface Assisted LDI Surface Enhanced LDI NAno Particles LDI Acknowledements Lenka Kolářová Katarína ŠÚTOROVÁ Krístína HAJTMANOVÁ Luboš PROKEŠ José Elias CONDE-GONZÁLEZ Eladia María PEŇA-MÉNDEZ Catalina RUIZ-PÉREZ MAT2014-57465-R EU ERASMUS ULL-MU ULL, La Laguna, Seminary of GRANT MAT2014-57465-R, Ministry of Economy and Competiveness, Spain, 13th October 2015 74 75 Gold nanoparticles (GNPs) used as a drug carriers Gold nanoparticle Drug molecule Drug loaded Gold nanoparticle Cell + 76 EXPLOADING Gold nanoparticles Nano photothermolysis of cancer cells R. R. Letfullin, et al. Laser induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer. Nanomedicine 2006, 1, 473. 76 Titanium carbide, TiC RESULTS: Ti-C films were found to be composites of (i) pure and hydrogenated TiC (ii) titanium oxycarbides, and [Ti8(9)CnOp:H]. (iii) titanium oxides of various degrees of hydrogenation (all embedded in an amorphous and/or diamond-like carbon matrix). (iv)Hydrogenated titanium oxycarbide is was the main component of the surface layer, whereas while deeper layers are were composed mostly primarily of TiC and titanium oxides (also embedded in the carbon matrix). [Ti8C25O10H8], [Ti8C25O10H9] , and [Ti8C25O10H10] SURFACE ANALYSIS and CLEANING via PLASMA TREATMENT A. Pamreddy, D. Skácelová, M. Haničinec, P. Sťahel, M. Stupavská, M. Černák a J. Havel. Plasma cleaning and activation of silicon surface in Dielectric Coplanar Surface Barrier Discharge. Surf. Coat. Technol., 2013, 236, 326-331. CARBIDES, NITRIDES, …. Boron nitrides P3N5 Ceramic applications -sintering additives -pigments -ionic conductors -microporous materials -for the doping of semiconductors Aims -to study laser ablation ionization of solid P3N5 and analyse PmNn +/– clusters formed in order to understand the formation of phosphorus-nitrogen clusters -and/or also to check the possibility of generating nitrogen rich compounds As POSSIBLE HIGH ENERGY CONTENT MATERIALs Applications 100 150 200 250 300 350 0 50 100 m/z Relativeintensity[%] 2 N5 + P2N+ PN4 + 3 P3N+ P3N2 + P2N4 + 4 P4N+ PN8 + 5 P4N3 + P5N+P4N4 + P5N2 + 6 P5N3 + P6N+ P2N10 + P5N4 + P6N2 + 7 P5N5 + P6N3 + P7N+P7N2 + P6N5 + P6N6 + P6N7 + P2N16 + P2N16H2 + P6N8 + 10 P2N18 + P2N18H2 +P6N10 + P10N2 + P2N20H2 + LDI TOF MS • 2,5-dihydroxybenzoic acid (DHB) • fullerene (C60) • a-cyano-4-hydroxycinnamic acid (CHC) • 1,8-dihydroxy-9[10H]-anthracenone (DIT) • 3-hydroxypicolinic acid (HPA) • trans-2-[3-(4-terc-butylphenyl)-2-methyl-2-propenylidene]malononitrile (TMN) • 2-amino-5-nitropyridine (ANP) • Sulfur • Selenium Matrices HPA TMN S. D. Pangavhane, L. Hebedová, M. Alberti and J. Havel, Laser ablation synthesis of new phosphorus nitride clusters from α-P3N5. Laser desorption ionization and MALDI time of flight mass spectrometry, Rapid Commun. Mass Spectrom., Rapid Commun. Mass Spectrom. 2011, 25, 1(wileyonlinelibrary.com) DOI: 10.1002/rcm.4937. P3N5 Summary  Many new Nn and binary PmNn cluster ions were identified in positive and negative ion modes  It was found that HPA is the most suitable matrix to generate nitrogen rich PmNn clusters in positive ion mode  high nitrogen clusters (up to N15 –) generated by laser from a solid material are described for the first time Phosphorus nitride 0 50 100 RelativeIntensity[%] 50 100 200 300 400 500 600 Mass/Charge 90 100 110 120 130 FIGURE 1 0 50 100 RelativeIntensity[%] 60 120 180 240 Mass/Charge FIGURE 2A C4 + C5 + C6 + C7 + C8 + C9 + SiCNa3 + C10 + C11 + C12 + C13 + C14 + C15 + C16 + C17 + C18 + C19 + C20 + Si2Na3 + Si2CNa+ SILICON WAFERS 0 50 100 150 200 250 0 10 20 30 40 50 time (sec) Intensity(mv) SiCNa3 + C11 + C14 + C15 + FIGURE 5B PLASMA TREATMENT CHALCOGENIDE GLASSES 13 14 15 16 17 p-block Chalcogenide elements in Mendeleev Table Chalcogenide glasses S Se Te Ga5Ge20Sb10S65 1. Like traditional glasses transmit and focus light 1. Like traditional glasses transmit and focus light 1. Like traditional glasses transmit and focus light 1. Like traditional glasses transmit and focus light Pulsed laser deposition Phase change random access memory chip Waveguides Micro-lenses Relief Gratings Scientific instruments Push internet speeds Chalcogenide glass photonic chip Main advantages for this technology are: -stable and scalable communication method. -high-speed communication with low cost. -does not interfere nor is it disturbed by other radiofrequency devices. -Information is secured -license free and can be used worldwide. Infrared technology in communication Live-Cell based bio-optic sensors -Live human lung cells are coated onto an IR transparent chalcogenide glasses fibres -Biochemical change in the living cells -Detection minute quantities of bio-hazardous and toxic molecules Minimally invasive surgery Fibre optic camera for endoscopy Gastroscopy Colonoscopy 3D image of brain helps to understand growth of tumour Growth of Brain tumour What is the structure for? + - - - + Analyte ions To mass analyser Glass sample deposited on target + + Isotopic envelope Theoretical model 0 50 100 542.4 540.4 544.4538.4 536.4 546.4 534.4 548.5 532 535 538 541 544 547 550 0 50 100 542.4 540.4 544.4 538.4 536.4 546.4 534.4 548.4532.4 Relativeintensity[%] m/z Experiment Model As3Se4 + As2Se3 Glass As-Se As-S-Se Composition of the glasses studied AsSe2, As2Se3, As4Se4, As4Se3, and As7Se3 As33S33.5Se33.5, As33S50Se17, and As33S17Se50 Ga5Ge20Sb10S65 Er doping: 0.05, 0.1, 0.5 w.%  AsSe2  As2Se3  As4Se4  As4Se3  As7Se3 AspSer: Glasses of the composition studied Selenium rich Arsenic rich 1:1 0 50 100 200 300 400 500 600 m/z RelativeIntensity[%] 60 70 90 Effect of laser energy: As7Se3 Glass 154.8 229.8 304.8 384.6 462.5 542.4 612.4 200 300 400 500 600 700 As3Se+ As3Se2 + As3Se3 + As3Se4 + As3Se5 + As5Se3 + As5Se4 + As2Se+ AsSe+ Se2 - AsSe2 - AsSe3 - As2Se3 - As2Se2 - AsSe- As3Se2 - As3Se3 - As2Se4 - As3Se4 - As3Se5 - 0 50 100 0 50 100 RelativeIntensity[%] m/z A B As2Se3 Glass Raman spectra for As-Se glasses 100 150 200 250 300 Intensity[a.u.] Raman shift [cm -1 ] AsSe2 As2 Se3 As4 Se4 As4 Se3 As7 Se3 AsSe3 pyramidal units (broad band at 220-230 cm-1) Se rich glass (AsSe2): -Se-Se-Sechains or AsSe3 units, band at 238 cm-1 As rich glass (As7Se3): As4 Raman band at 206 cm-1 As3Se, As2Se2 As rich cage like structures As4Se4 and As4Se3 0 50 100 350 400 450 500 550 600 m/z 494.8 448.9 542.8 416.9 332.6 368.9 384.2 50 60 70 80 RelativeIntensity[%] 0 50 100 350 400 450 500 550 600 As33S17Se50 Glass 470.9 As33S17Se50 Glass 0 100 200 300 400 500 m/z 50 AsSe2 - AsSSe2 - As2S2Se- As2Se2H3 - As2SSe2 - As3S3Se- As3S2Se2 - As3SSe3 - As3S5Se2 - AsS2 - As3Se2H3 - As3S2Se- As3SSe2 - As3S5Se- As3S2Se3 - Relativeintensity[%] AsS2Se- AsS3 - (A) AsSSe- 0 100 200 300 400 500 50 AsSe2 - AsSSe2 - As2S2Se- As2Se2H3 - As2SSe2 - As3S3Se- As3S2Se2 - As3SSe3 - As3S5Se2 - AsS2 - As3Se2H3 - As3S2Se- As3SSe2 - As3S5Se- As3S2Se3 - Relativeintensity[%] AsS2Se- AsS3 - AsSSe- As2Se2H5 - 0 100 200 300 400 500 m/z 50 AsSe2 - AsSSe2 - As2S2Se- As2Se2H3 - As2SSe2 - As3S3Se- As3S2Se2 - As3SSe3 - As3S5Se2 - AsS2 - As3Se2H3 - As3S2Se- As3SSe2 - As3S5Se- As3S2Se3 - Relativeintensity[%] AsS2Se- AsS3 - AsSSe- 0 100 200 300 400 500 50 AsSe2 - AsSSe2 - As2S2Se- As2Se2H3 - As2SSe2 - As3S3Se- As3S2Se2 - As3SSe3 - As3S5Se2 - AsS2 - As3Se2H3 - As3S2Se- As3SSe2 - As3S5Se- As3S2Se3 - Relativeintensity[%] AsS2Se- AsS3 - AsSSe- As2Se2H5 - As33S33.5Se33.5 glass m/z 0 100 200 300 400 500 50 Relativeintensity[%] AsS2 - AsS3 - AsSe2 - AsS2Se- AsSSe2 - As2S2Se- As2Se3 - As2SSe2 - As3S3Se- As3S2Se2 - As2S3 - As3S4 - As3S2Se- As3S5 - As3SSe2 - As3S4Se- As3S3Se2 - As3SSe3 - As3S2Se3 - (B) AsSSe- m/z 0 100 200 300 400 500 50 Relativeintensity[%] AsS2 - AsS3 - AsSe2 - AsS2Se- AsSSe2 - As2S2Se- As2Se3 - As2SSe2 - As3S3Se- As3S2Se2 - As2S3 - As3S4 - As3S2Se- As3S5 - As3SSe2 - As3S4Se- As3S3Se2 - As3SSe3 - As3S2Se3 - AsSSe- As33S50Se17 glass 0 100 200 300 400 500 50 AsS2 - AsSSe- AsS3 - AsSe2 - AsS2Se- AsSSe2 - As2S2Se- As2Se3 - As3S3Se- As3S2Se2 - As2S3 - As3S4 - As3S2Se- As3S5 - As3S4Se- As3S3Se2 - As3SSe3 - As2S4 - As3S3 - As3S6 - As3S5Se- As3S4Se2 - Relativeintensity[%] m/z (C) 0 100 200 300 400 500 50 AsS2 - AsSSe- AsS3 - AsSe2 - AsS2Se- AsSSe2 - As2S2Se- As2Se3 - As3S3Se- As3S2Se2 - As2S3 - As3S4 - As3S2Se- As3S5 - As3S4Se- As3S3Se2 - As3SSe3 - As2S4 - As3S3 - As3S6 - As3S5Se- As3S4Se2 - Relativeintensity[%] m/z As33S17Se50 Glass 0 100 140 180 220 260 300 340 186.8 234.8138.8 266.8 312.7218.8 0 100 140 180 220 260 300 340 m/z 186.8 312.7 341.6293.7 50. 50 138.9 RelativeIntensity[%] 170.8 218.8 234.8 266.7 341.7170.8 293.7 (A) Experiment (B) Model AsS2 - AsSSe- AsS3 - AsS2Se- AsSe2 - AsSSe2 - As2S2Se- As2Se2H5 - As2SSe2 - As2Se2H3 - 0 100 140 180 220 260 300 340 186.8 234.8138.8 266.8 312.7218.8 0 100 140 180 220 260 300 340 m/z 186.8 312.7 341.6293.7 50. 50 138.9 170.8 218.8 234.8 266.7 341.7170.8 293.7 (B) Model AsS2 - AsSSe- AsS3 - AsS2Se- AsSe2 - AsSSe2 - As2S2Se- As2Se2H5 - As2SSe2 - As2Se2H3 - 0 100 50 0 100 50 RelativeIntensity[%] Glass m/z 0 100 50 As33S33.5Se33.5 Glass As33S17Se50 As33S50Se17 Glass As3S2Se+ As3Se2 + As3S3Se+ As3SSe2 + As3S2Se2 + As3Se3 + As3SSe3 + As3Se4 + 380 400 420 440 460 480 500 520 540380 400 420 440 460 480 500 520 540 . . . 0 100 50 0 100 50 RelativeIntensity[%] Glass m/z 0 100 50 As33S33.5Se33.5 Glass As33S17Se50 As33S50Se17 Glass As3S2Se+ As3Se2 + As3S3Se+ As3SSe2 + As3S2Se2 + As3Se3 + As3SSe3 + 380 400 420 440 460 480 500 520 540380 400 420 440 460 480 500 520 540 . . . 0 100 50 0 100 50 RelativeIntensity[%] Glass m/z 0 100 50 As33S33.5Se33.5 Glass As33S17Se50 As33S50Se17 Glass As3S2Se+ As3Se2 + As3S3Se+ As3SSe2 + As3S2Se2 + As3Se3 + As3SSe3 + As3Se4 + 380 400 420 440 460 480 500 520 540380 400 420 440 460 480 500 520 540 . . . 0 100 50 0 100 50 RelativeIntensity[%] Glass m/z 0 100 50 As33S33.5Se33.5 Glass As33S17Se50 As33S50Se17 Glass As3S2Se+ As3Se2 + As3S3Se+ As3SSe2 + As3S2Se2 + As3Se3 + As3SSe3 + 380 400 420 440 460 480 500 520 540380 400 420 440 460 480 500 520 540 . . . Clusters common to all samples 0 50 100 m/z Relativeintensity[%] As3S+ As3Se+ As3S3 + As3S4 + As3S2Se+ As3S3Se+ As3S2Se2 + As3SSe3 + S6Se+ As3S2 + As2S5H+ As4S+ Bulk As33S50Se17 glass 250 300 350 400 450 500 As2Se3 + As3SSe+ As3Se2 + As3SSe2 + (A) 0 50 100 m/z Relativeintensity[%] As3S+ As3Se+ As3S3 + As3S4 + As3S2Se+ As3S3Se+ As3S2Se2 + As3SSe3 + S6Se+ As3S2 + As2S5H+ As4S+ Bulk As33S50Se17 glass 250 300 350 400 450 500 As2Se3 + As3SSe+ As3Se2 + As3SSe2 + (A) Spectra of bulk and nano layer of glasses 0 50 100 Relativeintensity[%] m/z As3S+ As3Se+ As3S3 + As3S4 + As3S2Se+ As3S3Se+ As3S2Se2 + As3SSe3 + As3S2 + Glass nano-layer 250 300 350 400 450 500 As2Se3 + (B) 0 50 100 Relativeintensity[%] m/z As3S+ As3Se+ As3S3 + As3S4 + As3S2Se+ As3S3Se+ As3S2Se2 + As3SSe3 + As3S2 + Glass nano-layer 250 300 350 400 450 500 As2Se3 + (B) Er Doped glass: Ga-Ge-Sb-S Erbium doped Ga5Ge25Sb10S60 glass 1. Suitable thermo-mechanical properties for optical fibre drawing 2. Gallium allows better solubilisation of erbium ions 3. Erbium posses mid-IR emission around 4.5 µm IR emissions beyond 3 µm are scarcely reported using other rare earth elements (Terbium, Dysprosium, Holmium, Thulium, etc). Ga5Ge20Sb10S65 glass - Strong luminescence - Laser action Fiber amplifier and near/mid infrared laser devices - IR emission at std telecommunication wavelength ~1540 nm Er doping: 0.05, 0.1, 0.5 w.% 0 50 100 100 200 300 400 500 m/z Relativeintensity[%] Ga+ GaGeS+ Ga3S2 + Sb2S2 + Ga2SbS2 + Ga2SbS3 + GaSb2S2 + Sb3S+ GaSb2S4 + GaSb2S3 + Sb3S2 + Sb3S3 + GaSb2S5 + Sb3S4 + Ga2S2 + GaSbS+ Ga3S+ GaSbS2 + Ga2SbS4 + A Ga3S4H4 + GaSbS3H+ Er 0.1 w% 0 50 100 500 600 700 800 900 1000 m/z Relativeintensity[%] GaSb2SEr+ Ga2GeSbS6 + Ga2Sb2S5 + Ga4SbS5 + Ga3Sb2S4 + GaS6Er2 + Ga3Sb2S5 + Ga3Sb2S6 + Ga2Sb3S5 + Ga3GeSb2S3H4 + Ga3Sb2S7 + Ga2Sb3S6 + Ga2Sb3S7 + GaSb4S6 + Ga3GeS15 + GaSb4S7 + Ga5Sb2S9 + Ga4Sb3S9 + Ga4Sb3S10 + Ga3Sb4S9 + Ga4Sb5S4 + Ga4Sb2S6H+ Ga4SbS16 + Ga6Sb2S9 + BEr 0.1 w% 0 50 100 500 600 700 800 m/z Relativeintensity[%]GaSb2SEr+ Ga2GeSbS6 + Ga2Sb2S5 + Ga4SbS5 + Ga3Sb2S4 + GaS6Er2 + Ga3Sb2S5 + Ga3Sb2S6 + Ga2Sb3S5 + Ga3GeSb2S3H4 + Ga3Sb2S7 + Ga2Sb3S6 + Ga2Sb3S7 + GaSb4S6 + Ga3GeS15 + GaSb4S7 + Ga4Sb2S6H+ 0 50 100 0 50 100 171 175 179 GaGeS+ 174.8 490 494 498 Sb3S4 + 492.6 926 932 938 Ga4Sb3S9 + 932.2 m/z Relativeintensity[%] Experiments Models Ga5Ge20Sb10S65 glass Er 0.1 w.% 0 50 100 100 200 300 400 500 m/z Relativeintensity[%] S‾ S2 ¯ S3 ‾ GaS2 ‾ SbS‾ GaS3 ‾ SbS2 ‾ SbS3 ‾ GaGeS3 ‾ GaGeS4 ‾ GaSbS3 ‾ Sb2S3 ‾ GeSbS4 ‾ Ga3S3 ‾ GeSbS5 ‾ Ge3SbS‾ Ga2SbS4 ‾ Ga2Ge2Sb‾ Ga2SbS5 ‾ GaSb2S4 ‾ Ga5GeSH2 ‾ GaSb2S5 ‾ Sb3S4 ‾ AEr 0.5 w% 0 50 100 600 700 800 900 1000 m/z Relativeintensity[%] Ga3GeS7 ‾ Sb3S5 ‾ Ga2Ge3SbS2 ‾ Ga3GeSb2S‾ Ga2GeSb3 ‾ GaSb3S5 ‾ Sb5 ‾ Ga5Sb2SH2 ‾ GaGeSb2S8 ‾ Ga4SbS8 ‾ Ga3Sb2S7 ‾ Ga6Sb2S ‾ Ga3Sb2S8 ‾ Ga3Sb4S‾ Ga8SbS2 ‾ Ga2Sb3S8 ‾ Ga5Sb3S2 ‾ Ga3Sb4S3 ‾ Ga4Sb2S9 ‾ Ga7Sb2S3 ‾ Ga2Sb5S3 ‾ Ga5S16 ‾ GaSb4S10 ‾ Ga6SbS11 ‾ Ga5Sb2S10 ‾ GaSb6S4 ‾ Ga5Sb2S11 ‾ Ga5Sb4S4 ‾ Ga3Sb5S5 ‾ Ga4Sb3S11 ‾ BEr 0.5 w% 0 50 100 0 50 100 185 187 189 SbS2 ‾ 184.8 186.8 553 558 563 Ga3GeSb2S‾ 556.5 974 979 984 Ga3Sb5S5 ‾ 977.2 Experiments Models m/z Relativeintensity[%] Ga5Ge20Sb10S65 glass Er 0.5 w.% 150 200 250 300 350 400 450 500 Ge23 Ga5 Sb12 S60 Ge20 Ga5 Sb10 S65 Ge17 Ga8 Sb10 S65 Ge24 Ga1 Sb10 S65 Ge15 Ga5 Sb10 S70 Ge25 Ga5 S70 Intensity(a.u.) Wavenumber(cm -1 ) [GeS4/2] tetrahedra ~330-340 cm-1 ~290-300 cm-1 [SbS3/2] pyramids [GaS4/2] tetrahedra ~320 cm-1 Raman Spectra STRUCTURE of CLUSTERS As3S3 + As3S2Se+ As3SSe2 +As3S3 + As3S2Se+ As3SSe2 + Structures: series of clusters Arsenic:chalcogen = 3:3 and 3:4 Structures: series of clusters Arsenic:chalcogen = 3:3 and 3:4 As3S3 + As3S2Se+ As3SSe2 + As3S4 + As3S3Se+ As3S2Se2 + As3SSe3 + As3Se4 + As3S3 + As3S2Se+ As3SSe2 + As3S4 + As3S3Se+ As3S2Se2 + As3SSe3 + As3Se4 + 100 150 200 250 300 0 25 50 75 100 RelativeIntensity[%] Mass/Charge AsS + S + 4 AsS + 2 S + 8 AsS + 3 As2 S + AsS + 4 As2 S + 2 AsS + 5 As2 S + 3 As3 S + As2 S + 4 As3 S + 2 AsS + 7 As3 O + 5 As2 S + 5 A 100 150 200 250 300 0 25 50 75 100 RelativeIntensity[%] Mass/Charge AsS + S + 4 AsS + 2 S + 8 AsS + 3 As2 S + AsS + 4 As2 S + 2 AsS + 5 As2 S + 3 As3 S + As2 S + 4 As3 S + 2 AsS + 7 As3 O + 5 As2 S + AsS + 4 As2 S + 2 AsS + 5 As2 S + 3 As3 S + As2 S + 4 As3 S + 2 AsS + 7 As3 O + 5 As2 S + 5 A Mass spectra of a mixture (1:1) of As2S3 and S8 as precursors 100 150 200 250 300 0 25 50 75 100 RelativeIntensity[%] Mass/Charge AsS + S + 4 AsS + 2 S + 8 AsS + 3 As2 S + AsS + 4 As2 S + 2 AsS + 5 As2 S + 3 As3 S + As2 S + 4 As3 S + 2 AsS + 7 As3 O + 5 As2 S + 5 A 100 150 200 250 300 0 25 50 75 100 RelativeIntensity[%] Mass/Charge AsS + S + 4 AsS + 2 S + 8 AsS + 3 As2 S + AsS + 4 As2 S + 2 AsS + 5 As2 S + 3 As3 S + As2 S + 4 As3 S + 2 AsS + 7 As3 O + 5 As2 S + AsS + 4 As2 S + 2 AsS + 5 As2 S + 3 As3 S + As2 S + 4 As3 S + 2 AsS + 7 As3 O + 5 As2 S + 5 A Mass spectra of a mixture (1:1) of As2S3 and S8 as precursors AsS+ AsS2 + AsS3 + AsS4 + AsS5 + AsS6 + AsS7 + More Stable Mass/Charge 294 296 298 300 302 304 EXPERIMENT 75 0 25 50 MODEL 294 296 298 300 302 304 25 50 75 100 AsS7 RelativeIntensity[%] 294 296 298 300 302 304 75 25 50 294 296 298 300 302 304 294 296 298 300 302 304 0 100 B + AsS7 + Mass/Charge 294 296 298 300 302 304 EXPERIMENT 75 0 25 50 MODEL 294 296 298 300 302 304 25 50 75 100 AsS7 RelativeIntensity[%] 294 296 298 300 302 304 75 25 50 294 296 298 300 302 304 294 296 298 300 302 304 0 100 B + AsS7 + Comparison of theoretical and experimental mass spectra of AsS7 + Some structures of AsSn (n=1-7) clusters were demonstrated by QUANTUM CHEMISTRY MODELLING 12 3 4 5 2.14 Å 2.11 Å 2.02 Å 2.11 Å 2.14 Å 0.5617 0.1340 0.1342 0.0854 A 12 3 4 5 102.6˚ 103.0˚ 98.7˚ 98.7˚ 103.0˚ -46.8˚ -49.9˚ B C 12 3 4 5 2.22 Å 2.08 Å 2.10 Å 2.11 Å 2.24 Å 2.35 Å 0.4563 0.1059 0.2542 0.1448 0.0387 D 12 3 4 5 66.1˚ 84.2˚ 54.0˚ 89.3˚94.2˚ 92.1˚ -61.5˚ E S S S S As + G. Ramirez-Galicia, E. M. Peña-Méndez, S. D. Pangavhane, M. Alberti, J. Havel, Mass spectrometry and ab initio calculation of AsSn (n = 1–7) ion structures, Polyhedron 29 (2010) 1567–1574. Do Mass Spectra Reflect Condensed-Phase Chemistry of Glasses? YES, Mass spectrometry is giving (some) information about the structure of the glasses Se Se Se Se Se SeSe Se As As As As AsAs As As As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se S. Dagurao Pangavhane, J. Houška, T. Wágner, M. Pavlišta and Josef Havel, Laser ablation of ternary As-S-Se glasses and clusters analysis by time of flight mass spectrometry, Rapid Commun. Mass Spectrom., 2010, 24: 95-102. As As As Se Se Se As As As Se Se Se Se Se Se Se Se SeSe Se As As As As AsAs As As As AsAs Se Se Se As As As Se Se Se As As As Se Se Se As AsAs Se Se Se Se Se Se Se Se SeSe Se As As As As AsAs As As As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se Se Se Se Se Se SeSe Se As As As As AsAs As As As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se Se Se Se Se Se SeSe Se As As As As AsAs As As As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se Se Se Se Se Se SeSe Se As As As As AsAs As As As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se Se Se Se Se Se SeSe Se As As As As AsAs As As As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se Se Se Se Se Se SeSe Se As As As As AsAs As As As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se Se As Se Se As Se Se Se Se Se Se Se Se Se Se Se Se SeSe Se As As As As AsAs As As As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se Se Se Se Se Se SeSe Se As As As As AsAs As As As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se Se Se Se Se Se SeSe Se As As As As AsAs As As As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se Se Se Se Se Se SeSe Se As As As As AsAs As As As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se Se Se Se Se Se SeSe Se As As As As AsAs As As As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se Se Se Se Se Se SeSe Se As As As As AsAs As As As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se As As As Se Se Se Se As Se Se As Se Se Se Se Se Se Se S S S S S S SS S Sb Sb Ga Ga S S S S S S SS S Sb Sb Ga Ga S S S S S S SS S Sb Sb Ga GaS S S S S S SS S Sb Sb Ga Ga S S S S S S SS S Sb Sb Ga Ga S S S S S S Sb Sb Ga Ga S S SS S S Sb Sb Ga Ga S S SS S S Sb Sb Ga Ga S S SS S S Sb Sb Ga Ga J. Houška, E. M. Peña-Méndez, J. Kolář, J. Přikryl, M. Pavlišta, M. Frumar, T. Wágner a J. Havel. Laser Desorption Time of Flight Mass Spectrometry of atomic switch memory Ge2Sb2Te5 thin films, Rapid Commun. Mass Spectrom, 2014, in print. Atomic switch memory Ge2Sb2Te5 Ge Sb Te Sb3Te+ Sb2Te+ GeTe2 + Te3 + GeTe2 + GeSbTe2 + GeSbTe3 + Mass Spectrometer 337 nm 140 mJ/pulse Time of Flight Vacuum Chamber Mass/Charge Relativeintensity(%) 0 20 40 60 80 100 200 300 400 500 Te2 + GeSb3 + GeTe2 + GeSbTe2 + GeTe+ SbTe2 + Sb2Te+ Te3 + Clusters in plasma Pulsed laser Deposition Vacuum Chamber 248 nm 300 mJ/pulse Nano-layer Bulk Material Precursors Ge, Sb, Te 800°C 24 h Preparation Bulk materialPlasma Plume Laser Bulk material Nano-layer BA Mass Spectrometer 337 nm 140 mJ/pulse Time of Flight Vacuum Chamber BMass Spectrometer 337 nm 140 mJ/pulse Time of Flight Vacuum Chamber B 0 800 1600 m/z Intensity(mV) Bulk250.78 327.72 201.91 450.63 200 250 300 350 400 450 500 492.57 371.65 Nano-Layer 250.80 201.84 492.65 371.64 450.59 327.52 0 800 1600 200 250 300 350 400 450 500 Intensity(mV) GeTe2 + 0 20 40 60 80 100 200 250 300 350 400 450 500 250.3 329.3 492.4201.3 323.2 378.3 450.4 Te2 + GeSbTe2 + Sb3Te+ GeTe+ Te3 + SbTe2 + Sb2Te+ Relativeintensity(%) Mass/Charge 0 20 40 60 80 100 360 365 370 375 380 385 390 395 Mass/Charge 378.7 371.7 376.7 380.7 369.7 382.7 385.7367.7 EXPERIMENT MODEL Sb2Te SbTe2 Te3 B 0 20 40 60 80 100 360 365 370 375 380 385 390 395 Mass/Charge ARelativeintensity(%)Relativeintensity(%) Mass/Charge 437 441 445 449 453 457 461 452.4 437 441 445 449 453 457 461 450.6 448.6 452.6 446.6 454.6 100 0 20 40 60 80 0 20 40 60 80 100 450.4 448.3 446.3 454.4 Relativeintensity(%)Relativeintensity(%) Mass/Charge (A) Experiment (B) Model GeSbTe2 + Ge Sb Te Sb3Te+ Sb2Te+ GeTe2 + Te3 + GeTe2 + GeSbTe2 + GeSbTe3 + Publications 1. S. D. Pangavhane, J. Houška, T. Wágner, M. Pavlišta, J. Janča, Josef Havel. Laser ablation of ternary As-S-Se glasses and time of flight mass spectrometric study Rapid Commun. Mass Spectrom. 2010, 24: 95. 2. S. D. Pangavhane, P. Němec, T. Wágner, J. Janča, J. Havel. Laser desorption Ionization Time-of-flight mass spectrometric study of binary As-Se glasses Rapid Commun. Mass Spectrom. 2010; 24: 2000. 3. Guillermo Ramírez-Galicia, E. M. Peña-Méndez, S. D. Pangavhane, M. Alberti, Josef Havel. Ab initio structure modeling of AsSn + (n = 1-7) cluster ions Polyhedron 2010; 29: 1567. 4. S. D. Pangavhane, Lucie Hebedová, Milan Alberti, J. Havel. Laser ablation synthesis of new phosphorus nitride clusters from α-P3N5. Laser desorption ionization and MALDI time of flight mass spectrometry Rapid Commun. Mass Spectrom 2011; 25: 917. 5. S. D. Pangavhane, P. Němec, V. Nazabal, Alain Moreac, Pál Jóvári, J. Havel. Laser desorption ionization time-of-flight mass spectrometric study of erbium doped Ga-Ge-Sb-S glasses Rapid Commun. Mass Spectrom. In print, 2014. 6. J. Houška, E. M. Peña-Méndez, J. Kolář, J. Přikryl, M. Pavlišta, M. Frumar, T. Wágner a J. Havel. Laser Desorption Time of Flight Mass Spectrometry of atomic switch memory Ge2Sb2Te5 thin films, Rapid Commun. Mass Spectrom, 2014, in print. What is the structure of chalcogenide glasses ? Dan Shechtman (Hebrew: ‫שכטמן‬ ‫דן‬; born January 24, 1941 in Tel Aviv)[1] Technion – Israel Institute of Technology The Nobel Prize in Chemistry 2011 CRYSTALS SEMi. CRYSTALS Are chalcogenide glasses SEMI-CRYSTALS or even less organized CHAOTIC CRYSTALS (Havel´s term) LASER ABLATION SYNTHESIS LASER ABLATION SYNTHESIS Gold carbides Gold arsenides Gold phosphides Gold tellurides Gold selenides Precursor: mixture of elements or compounds = TOF MS analysis 166 Gold Phosphide is a semiconductor used in (i) high power, high frequency applications (ii) laser diodes (iii) biomedical technology (iv) fabrication of high purity gold phosphide sputtering targets - useful in semiconductor, chemical vapour deposition (CVD) and physical vapour deposition (PVD) display and optical applications Gold phosphide sputtering target Gold phosphides Applications 167 Two phenyl rings bound to each phosphorus are not shown. P. Sevillano, O. Fuhr, E. Matern, D. Fenske. Synthesis, Crystal structure and Spectroscopic Characterization of [Au12(PPh)2(P2Ph2)2(dppm)4Cl2]Cl2. Z. Anorg. Allg. Chem. 2006, 632, 735-738. Au6P3 unit cell Heterocyclic structures as proposed by X-D. Wen et al. 2009 Au4P6 heterocycle X-D Wen, T. J. Cahill, R. Hoffmann. Element Lines: Bonding in the Ternary Gold Polyphosphides, Au2MP2 with M ) Pb, Tl, or Hg. J. Am. Chem. Soc. 2009, 131, 2199. M. Eschen, W. Jeitschko. Au2PbP2, Au2TlP2, and Au2HgP2: Ternary Gold Polyphosphides with Lead, Thallium, and Mercury in the Oxidation State Zero. J. Solid State Chem. 2002, 165, 238. 168 169 Gold phosphides These compounds contain a framework of condensed Au2P6 and Au4P6 rings forming parallel channels, which are filled by lead, thallium, or mercury atoms. M. Eschen, W. Jeitschko. Au2PbP2, Au2TlP2, and Au2HgP2: Ternary Gold Polyphosphides with Lead, Thallium, and Mercury in the Oxidation State Zero. J. Solid State Chem. 2002, 165, 238. X. D. Wen, T.J. Cahill, R. Hoffmann. Element Lines: Bonding in the Ternary Gold Polyphosphides, Au2MP2 with M= Pb, Tl, or Hg. J. Am. Chem. Soc. 2009, 131, 2199. 171 LASER ABLATION SYNTHESIS of gold phosphides from NANOGOLD and RED PHOSPHORUS precursors N.R. Panyala, Havel J, et al. Laser ablation synthesis of new gold phosphides using red phosphorus and nano-gold as precursors. Laser Desorption Ionisation time-of-flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2013 172 0 50 100 200 600 1000 1400 1800 Au2 + Au+ Au3 + AuNa+ Au5 + AuCa+ Au7 + Au4 + Au9 + 0 50 100 2000 2400 2800 3200 3600 4000 11 13 12 15 14 17 16 18 19 Au6 + Au8 + Au10 + 20 m/z RelativeIntensity[%] Aum + (m=11-20) N.R. Panyala, et al. Rapid Commun. Mass Spectrom. submitted . 172 173 0 50 100 200 600 1000 1400 1800 Au2 + Au+ Au3 + AuNa+ Au5 + AuCa+ Au7 + Au4 + Au9 + 0 50 100 2000 2400 2800 3200 3600 4000 11 13 12 15 14 17 16 18 19 Au6 + Au8 + Au10 + 20 m/z RelativeIntensity[%] Aum + (m=11-20) 0 50 100 100 300 500 700 900 0 50 100 1000 1200 1400 1600 1800 2000 0 50 100 2200 2600 3000 3400 65 103 111 33 67 71 75 79 83 89 95 99 35 37 39 41 43 45 47 49 57 51 53 55 59 61 63 P23 + P25 + P21 + P19 + P27 + P15 + P13 + P31 +P29 +P17 + P7 + P9 + P11 + P5 + P3 + m/z RelativeIntensity[%] 173 174 0 50 100 200 600 1000 1400 1800 Au2 + Au+ Au3 + AuNa+ Au5 + AuCa+ Au7 + Au4 + Au9 + 0 50 100 2000 2400 2800 3200 3600 4000 11 13 12 15 14 17 16 18 19 Au6 + Au8 + Au10 + 20 m/z RelativeIntensity[%] Aum + (m=11-20) 0 50 100 100 300 500 700 900 0 50 100 1000 1200 1400 1600 1800 2000 0 50 100 2200 2600 3000 3400 65 103 111 33 67 71 75 79 83 89 95 99 35 37 39 41 43 45 47 49 57 51 53 55 59 61 63 P23 + P25 + P21 + P19 + P27 + P15 + P13 + P31 +P29 +P17 + P7 + P9 + P11 + P5 + P3 + m/z RelativeIntensity[%] 0 50 100 500 1000 1500 2000 Au3 + Au2 + Au3P4 + Au2 + Au4P+ Au3P4 + Au5P4 + Au2 + Au3 + Au3P4 + Au3 + 60 70 80 90 LaserEnergy(a.u.) RelativeIntensity[%] m/z N.R. Panyala, et al. Rapid Commun. Mass Spectrom. submitted . 174 175 0 50 100 200 600 1000 1400 1800 Au2 + Au+ Au3 + AuNa+ Au5 + AuCa+ Au7 + Au4 + Au9 + 0 50 100 2000 2400 2800 3200 3600 4000 11 13 12 15 14 17 16 18 19 Au6 + Au8 + Au10 + 20 m/z RelativeIntensity[%] Aum + (m=11-20) 0 50 100 100 300 500 700 900 0 50 100 1000 1200 1400 1600 1800 2000 0 50 100 2200 2600 3000 3400 65 103 111 33 67 71 75 79 83 89 95 99 35 37 39 41 43 45 47 49 57 51 53 55 59 61 63 P23 + P25 + P21 + P19 + P27 + P15 + P13 + P31 +P29 +P17 + P7 + P9 + P11 + P5 + P3 + m/z RelativeIntensity[%] 0 50 100 500 1000 1500 2000 Au3 + Au2 + Au3P4 + Au2 + Au4P+ Au3P4 + Au5P4 + Au2 + Au3 + Au3P4 + Au3 + 60 70 80 90 LaserEnergy(a.u.) RelativeIntensity[%] m/z 0 50 100 300 500 AuCa+ Au+ AuP4 + Au2 + AuP2 + ** AuP8 + AuNa+ AuNa2 + *P7 + Au2P+ P15 + P16 + AuP6 + Au2P2 + Au2P3 + AuP+ RelativeIntensity[%] m/z 200 400 N.R. Panyala, et al. Rapid Commun. Mass Spectrom. submitted . 176 176 0 50 100 500 600 700 800 900 1000 Au3 + AuP14 + Au3P+ Au4P+ Au3P8 + Au2P4 + Au4P4 + Au5 + Au4P5 + Au3P3 + Au4 + Au2P5 + Au2P6 + Au2P7 + Au3P2 + Au3P4 + Au3P5 + Au3P6 + Au2P14 + Au4P2 + Au2P15 + Au3P9 + Au2P16 + Au4P3 + Au4P6 + P17 + P19 + P21 + P23 + P25 + RelativeIntensity[%] m/z 0 50 100 1000 1100 1200 1300 1400 1500 m/z Au5P2 + Au3P14 + Au5P4 + Au6P2 + Au7P2 + Au6P4 + Au7 + Au5P5 + Au5P3 + Au6P+ Au5P+ Au7P3 + Au6P6 + Au4P9 + Au5P6 + Au4P7 + Au4P8 + Au6P3 + Au6P5 + Au7P+ RelativeIntensity[%] Au7 + 0 50 100 1500 1600 1700 1800 1900 2000 Au7P4 + Au9 + Au8P2 + Au7P5 + Au8P4 +Au7P6 + Au8P6 + Au9P3 + Au9P+ Au7P7 + AuP50 + Au10 + Au8 + Au8P+ Au8P3 + Au8P5 + Au8P8 + Au9P2 + Au9P4 + Au9P5 + m/z RelativeIntensity[%] Au9P6 + Au9P7 + Au6P14 + Au6P15 + Au6P16 + Au7P14 + Au7P16 + 0 50 100 590.9393.9 433.8 444.7 456.0 487.0424.9 518.0 579.8495.9 0 50 100 400 440 480 520 560 Au2 + Au3 + P14 + Au2P+ AuP8 + Au2P2 + Au2P3 + P16 + Au2P4 + Au2P6 + Experiment Model RelativeIntensity[%] m/z N.R. Panyala, et al. Rapid Commun. Mass Spectrom. submitted . 177 0 50 100 2000 2100 2200 2300 2400 2500 Au10P+ Au10P2 + Au10P7 + Au11P2 + Au11P3 + Au10P8 + Au9P10 + Au10P15 + Au12P4 + Au9P8 + Au11P4 + Au11P5 + Au11P6 + Au12P2 + m/z RelativeIntensity[%] Au11 + Au12 + Au9P9 + Au11P+ Au10P3 + Au10P4 + Au10P5 + Au10P6 + Au12P+ 0 50 100 200 400 600 800 1000 Au- Au2 - P17 - Au3 -P15 - P9 - Au2P2 - P19 - P10 - Au2P13 - AuP22 - P11 - AuP20 - AuP10 - AuP6 - Au2P5 - Au2P3 - P8 - P7 - AuP4 - P13 - AuP5 - AuP8 - P16 - AuP12 - AuP14 - AuP16 - AuP18 - P23 - P25 - P27 - P29 - Au4P- AuP24 - Au3P10 - Au3P7 - P21 - Au3P11 - Au4 - Au5 - Au4P2 - Au4P4 - P31 - m/z RelativeIntensity[%] 0 50 100 1000 1200 1400 1600 1800 AuP32 - P33 - P39 - P35 - Au3P32 - AuP48 - Au7P8 - Au4P10 - AuP30 - P41 - AuP34 - Au6P5 - P47 - P49 - P55 - m/z RelativeIntensity[%] AuP36 - AuP26 - 0 50 100 2013.3 1951.3 2075.2 2137.31993.5 2199.1 2055.2 2179.82117.7 0 50 100 1960 2000 2040 2080 2120 2160 2200 P63 + AuP58 + P65 + AuP60 + P67 + AuP62 + P69 + AuP64 + P71 + RelativeIntensity[%] m/z Model Experiment N.R. Panyala, et al. Rapid Commun. Mass Spectrom. submitted . 178 172 AumPn clusters Table. Overview of clusters detected in plasma plume via laser desorption ionisation of red phosphorus +nanogold mixture AumPn clusters observed (excess of gold) Positive ion mode n=0 Au+ Au2 + Au3 + Au4 + Au5 + Au6 + Au7 + Au8 + Au9 + Au10 + Au11 + Au12 + m=0 P2 + P3 + P4 + P5 + P6 + P7 + P14 + P15 + P16 + P17 + m=1 AuP+ AuP2 + AuP4 + AuP6 + AuP8 + AuP14 + AuP50 + m=2 Au2P+ Au2P2 + Au2P3 + Au2P4 + Au2P5 + Au2P6 + Au2P7 + Au2P14 + Au2P15 + Au2P16 + m=3 Au3P+ Au3P2 + Au3P3 + Au3P4 + Au3P5 + Au3P6 + Au3P8 + Au3P9 + Au3P14 + m=4 Au4P+ Au4P2 + Au4P3 + Au4P4 + Au4P5 + Au4P6 + Au4P7 + Au4P8 + Au4P9 + Au4P14 + Au4P15 + Au4P16 + m=5 Au5P+ Au5P2 + Au5P3 + Au5P4 + Au5P5 + Au5P6 + Au5P14 +* Au5P16 +* m=6 Au6P+ Au6P2 + Au6P3 + Au6P4 + Au6P5 + Au6P6 + m=7 Au7P+ Au7P2 + Au7P3 + Au7P4 + Au7P5 + Au7P6 + Au7P7 + m=8 Au8P+ Au8P2 + Au8P3 + Au8P4 + Au8P5 + Au8P6 + Au8P8 + m=9 Au9P+ Au9P2 + Au9P3 + Au9P4 + Au9P5 + Au9P6 + Au9P7 + Au9P8 + Au9P9 + Au9P10 + m=10 Au10P+ Au10P2 + Au10P3 + Au10P4 + Au10P5 + Au10P6 + Au10P7 + Au10P8 + Au10P15 + m=11 Au11P+ Au11P2 + Au11P3 + Au11P4 + Au11P5 + Au11P6 + m=12 Au12P+ Au12P2 + Au12P4 + AumPn clusters observed (excess of phosphorus) Positive ion mode n=0 Au+ Au2 + Au3 + Au4 + m=0 P3 + P4 + P5 + P6 + P7 + P9 + P11 + P13 + P15 + P16 + P17 + P18 + P19 + P20 + P21 + P22 + P23 + P24 + P25 + P26 + P27 + P28 + P29 + P31 + P32 + P33 + P35 + P37 + P39 + P41 + P43 + P45 + P47 + P49 + P51 + P53 + P55 + P57 + P59 + P61 + P63 + P65 + P67 + P69 + P71 + P73 + P75 + P77 + P79 + P81 + P83 + P85 + P87 + P89 + P91 + P93 + P95 + m=1 AuP2 + AuP4 + AuP6 + AuP8 + AuP10 + AuP12 + AuP14 + AuP16 + AuP18 + AuP20 + AuP22 + AuP24 + AuP26 + AuP28 + AuP30 + AuP32 + AuP34 + AuP36 + AuP38 + AuP40 + AuP42 + AuP44 + AuP46 + AuP48 + AuP50 + AuP52 + AuP54 + AuP56 + AuP58 + AuP60 + AuP62 + AuP64 + AuP66 + AuP68 + AuP70 + AuP72 + AuP74 + AuP76 + AuP78 + AuP80 + AuP82 + AuP84 + AuP86 + AuP88 + m=2 Au2P21 + Au2P23 + Au2P25 + Au2P27 + Au2P29 + Au2P31 + Au2P33 + Au2P35 + Au2P37 + Au2P39 + Au2P41 + Au2P43 + Au2P45 + Au2P47 + Au2P49 + Au2P51 + m=3 Au3P2 + Au3P4 + Au3P6 + Au3P8 + m=4 Au4P4 + Au4P6 + Negative ion mode n=0 Au- Au2 - Au3 - Au4 - Au5 m=0 P2 -* P3 -* P5 -* P6 -* P7 - P8 - P9 - P10 - P11 - P13 - P15 - P17 - P18 - P19 - P21 - P23 - P25 - P27 - P29 - P31 - P33 - P35 - P39 - P41 - P47 - P49 - P55 m=1 AuP4 - AuP5 - AuP6 - AuP8 - AuP10 - AuP12 - AuP14 - AuP16 - AuP18 - AuP20 - AuP22 - AuP24 - AuP26 - AuP30 - AuP32 - AuP34 - AuP36 - AuP48 m=2 Au2P2 - Au2P3 - Au2P4 -* Au2P5 - Au2P8 -* Au2P11 -* Au2P13 - Au2P15 -* Au2P17 -* N.R. Panyala, et al. Rapid Commun. Mass Spectrom. submitted . 179 1.Rich family of several series of AumPn clusters was detected in positive and negative ion modes via laser ablation synthesis. Summary N.R. Panyala, et al. Rapid Commun. Mass Spectrom. submitted . 179 180 1. Rich family of several series of AumPn clusters was detected in positive and negative ion modes via laser ablation synthesis. 2.The formation of fullerene like phosphorus containing AumPn (m=1, n=14, 16, 20, 24, 28, 30, 32, 40, 44 and 60) clusters was suggested. Summary N.R. Panyala, et al. Rapid Commun. Mass Spectrom. submitted . 180 181 1. Rich family of several series of AumPn clusters was detected in positive and negative ion modes via laser ablation synthesis. 2. The formation of fullerene like phosphorus containing AumPn (m=1, n=14, 16, 20, 24, 28, 30, 32, 40, 44 and 60) clusters was suggested. 3.Experimental evidence of AuP60 cluster formation given for the first time. –possible fullerene? Summary N.R. Panyala, et al. Rapid Commun. Mass Spectrom. submitted . 181 182 1. Rich family of several series of AumPn clusters was detected in positive and negative ion modes via laser ablation synthesis. 2. The formation of fullerene like phosphorus containing AumPn (m=1, n=14, 16, 20, 24, 28, 30, 32, 40, 44 and 60) clusters was suggested. 3. Experimental evidence of AuP60 cluster formation was proved for the first time. 4.AumPn (m=1, n=10, 14, and 40) clusters formation containing “magic” numbers of phosphorus atoms (n=10, 14, and 40) was detected. Summary N.R. Panyala, et al. Rapid Commun. Mass Spectrom. submitted . 182 183 1. Rich family of several series of AumPn clusters was detected in positive and negative ion modes via laser ablation synthesis. 2. The formation of fullerene like phosphorus containing AumPn (m=1, n=14, 16, 20, 24, 28, 30, 32, 40, 44 and 60) clusters was suggested. 3. Experimental evidence of AuP60 cluster formation was proved for the first time. 4. AumPn (m=1, n=10, 14, and 40) clusters formation containing “magic” number of phosphorus atoms (n=10, 14, and 40) was detected. 5.Experimental proof of gold-covered phosphorus PnAu12 (n=1, 2, and 4) clusters formation is given. Summary N.R. Panyala, et al. Rapid Commun. Mass Spectrom. submitted . 183 184 1. Rich family of several series of AumPn clusters was detected in positive and negative ion modes via laser ablation synthesis. 2. The formation of fullerene like phosphorus containing AumPn (m=1, n=14, 16, 20, 24, 28, 30, 32, 40, 44 and 60) clusters was suggested. 3. Experimental evidence of AuP60 cluster formation was proved for the first time. 4. AumPn (m=1, n=10, 14, and 40) clusters formation containing “magic” number of phosphorus atoms (n=10, 14, and 40) was detected. 5. Experimental proof of gold-covered phosphorus PnAu12 (n=1, 2, and 4) clusters formation is given. 6.Phosphorus-rich clusters e.g. AuP88 +, AuP48 clusters were detected. The knowledge about the generation of Au-P clusters might be useful for the inspiration to fabricate new Au-P materials with specific properties. The elucidation of the structures will require additional experimental and computing work. Summary 185 Endohedral Au@P60?? Au is bound to P60 ?? Or 186 Cluster-cluster structures ? m n A 187 C O N C L U S I O N S Instrumentation of MALDI, LDI (matrix free) TOF MS can be used for characterization of INORGANIC MATERIALS including NANO MATERIALS or for analysis of surfaces…. In spite of the fact that LDI is partially destructive, some information about the original structure of the materials is obtained “Puzzle items” of structural fragments can be useful to elucidate the structure of inorganic materials, e.g. of chalcogenide glasses Combination of LDI TOF MS with non-destructive methods like Raman, NMR etc is needed and highly reccomended LDI TOF MS based LASER ABLATION SYNTHESIS is promising technique for generation of new un-usual clusters and might initiate development of new materials with unusual properties 188 C O N C L U S I O N S Instrumentation of MALDI, LDI (matrix free) TOF MS can be used for characterization of INORGANIC MATERIALS including NANO MATERIALS Or for analysis of surfaces…. In spite of the fact that LDI is partially destructive, some information about the original structure of the materials is obtained “Puzzle items” of structural fragments can be useful to elucidate the structure of inorganic materials, e.g. of chalcogenide glasses Combination of LDI TOF MS with non-destructive methods like Raman, NMR etc is needed and highly reccomended LDI TOF MS based LASER ABLATION SYNTHESIS is promising technique for generation of new un-usual clusters and might initiate development of new materials with unusual properties 189 C O N C L U S I O N S Instrumentation of MALDI, LDI (matrix free) TOF MS can be used for characterization of INORGANIC MATERIALS including NANO MATERIALS Or for analysis of surfaces…. In spite of the fact that LDI is partially destructive, some information about the original structure of the materials is obtained “Puzzle items” of structural fragments can be useful to elucidate the structure of inorganic materials, e.g. of chalcogenide glasses Combination of LDI TOF MS with non-destructive methods like Raman, NMR etc is needed and highly reccomended LDI TOF MS based LASER ABLATION SYNTHESIS is promising technique for generation of new un-usual clusters and might initiate development of new materials with unusual properties 190 C O N C L U S I O N S Instrumentation of MALDI, LDI (matrix free) TOF MS can be used for characterization of INORGANIC MATERIALS including NANO MATERIALS Or for analysis of surfaces…. In spite of the fact that LDI is partially destructive, some information about the original structure of the materials is obtained “Puzzle items” of structural fragments can be useful to elucidate the structure of inorganic materials, e.g. of chalcogenide glasses Combination of LDI TOF MS with non-destructive methods like Raman, NMR etc is needed and highly reccomended LDI TOF MS based LASER ABLATION SYNTHESIS is promising technique for generation of new un-usual clusters and might initiate development of new materials with unusual properties 191 C O N C L U S I O N S Instrumentation of MALDI, LDI (matrix free) TOF MS can be used for characterization of INORGANIC MATERIALS including NANO MATERIALS Or for analysis of surfaces…. In spite of the fact that LDI is partially destructive, some information about the original structure of the materials is obtained “Puzzle items” of structural fragments can be useful to elucidate the structure of inorganic materials, e.g. of chalcogenide glasses Combination of LDI TOF MS with non-destructive methods like Raman, NMR etc is needed and highly reccomended LDI TOF MS based LASER ABLATION SYNTHESIS is promising technique for generation of new un-usual clusters and might initiate development of new materials with unusual properties CEPLANT, R&D center for low-cost plasma and nanotechnology surface modifications (CZ.1.05/2.1.00/03.0086) provided by the European Regional Development Fund Grant Agency of Czech Republic, No. 13- 05082S GAMU, Grant Agency of Masaryk University (MUNI/M/0041/2013).