Goniometrické rovnice (Seminář z matematiky i - m1130/02 2015) (1) Řešte v IR rovnice: (a) 2 sin x — sin* = 0 (b) sin2*+ 2sin*-3 = 0 (c) cos*(2cos* + 1) = 1 (d) v/3tg2* + 2tg*- ^ = 0 (e) 3 sin* = 2cos2* (f) sin* + cos2* = - 4 (g) 3cos2* — 4cos* — sin2* — 2 = 0 (h) cos2* + sin* = 0 (i) sin* = cos* (j) sin*+ \/3 cos* = 0 /i x sin-* (k) —=■ + cos* = 1 V3 (1) y/3sin* + cos* = v7^ K= U {ta, f + 2ta, |^: + 2^} * = U {f+2Jbr} fceZ * = U {f+ta, jn + kn} fceZ a:= u {f+ 2ta, |^+2^} fceZ kel K= U {iTZ + lkTZ^TZ + lkTt} kel kel K= U {f+ ^} * = U {j^ + ta} a:= u {2ta,f+2ta} fceZ a:= U {f+ 2ta,f+2Jbr} feeZ (2) Řešte v IR následující rovnice (nezapomeňte stanovit podmínky, je-li to třeba): (a) sin2* +cos2* = 1 +tg* (b) sin(*+|)+cos(*+|) = l+cos2* (c) sin 2* — cos2 2* = cos 2* K= U {Jbr,f+ *f} feeZ a:= u {§+Jbr, § + 2ta, §rc+2Jbr} * = U {f +ta, §rc + ta, f + ta} feeZ (d) cosA + sinx cos 2x 1 — sinŽA" (e) cos4jc — sin4jc = sin2jc sku + sin3jc (f) cosx — cos 3.x: V3 (g) cosacos2x = cos4jccos5a" (h) sin3jc = 2sinjc (i) tgx — sinx + cosjc = 1 (j) 2 sin2.* + cos a = 2sin2a" cos.t + 1 l-VŠtgjc (1) sin2 2x + sin2 4x = - 2 (m) |sinjc| = shut+ 2 (n) |tgjc + cotgjc| V3 K= U {\n + kK, 2kn, \n + 2kn} K= U {f + £f} K= U {% + kn} k